WO2013117978A1 - Einspritzdüse zum einspritzen von medien in den brennraum einer brennkraftmaschine - Google Patents
Einspritzdüse zum einspritzen von medien in den brennraum einer brennkraftmaschine Download PDFInfo
- Publication number
- WO2013117978A1 WO2013117978A1 PCT/IB2013/000151 IB2013000151W WO2013117978A1 WO 2013117978 A1 WO2013117978 A1 WO 2013117978A1 IB 2013000151 W IB2013000151 W IB 2013000151W WO 2013117978 A1 WO2013117978 A1 WO 2013117978A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- injection
- nozzle
- combustion chamber
- injection nozzle
- section
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1806—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
- F02M61/1833—Discharge orifices having changing cross sections, e.g. being divergent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1806—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
- F02M61/1846—Dimensional characteristics of discharge orifices
Definitions
- Injection nozzle for injecting media into the combustion chamber of an internal combustion engine
- the invention relates to an injection nozzle for injecting media into a combustion chamber, in particular of fuel into the combustion chamber of an internal combustion engine, comprising a nozzle body with a nozzle tip having spray holes and a closing member axially displaceably guided in the nozzle body, which closes the injection holes between one of the injection holes and one releasing the injection holes Position is displaced, wherein the injection holes taper in the flow direction.
- Injectors are known in various designs and for different applications. Injectors are used in the chemical industry, for example, for the extraction or application of various substances, such. Odors or flavors used. Injectors are also widely used for injecting fuels into a combustion chamber, in particular the high-pressure injection of fuel into the combustion chamber of an internal combustion engine.
- Fuel injection nozzles consist of the nozzle body and a closing member, such as the nozzle needle, both made of high quality steel.
- the nozzle needle is arranged axially displaceable in the nozzle body and has a conical valve sealing surface at its end on the combustion chamber side. With this conical valve sealing surface, the nozzle needle cooperates with a conical valve seat surface arranged at a closed end of a bore in the nozzle body, wherein a sealing cross section is formed at the contact line between the valve sealing surface and the valve seat surface.
- injection holes are arranged downstream, which are arranged in the wall of the nozzle body and
- CONFIRMATION COPY which, starting from the bore in the nozzle body, open on its outer circumferential surface and protrude into the combustion chamber of the internal combustion engine to be supplied.
- these spray holes may be formed, for example, conical, with the cross section of the injection holes from a relatively large diameter at the fuel inlet to a relatively small diameter at the fuel outlet uniformly reduced conically.
- Top nozzles described above are used in direct injection diesel engines, especially in common rail systems, where they atomize the under very high pressure fuel in a sharp injection jet on the walls of the opposite piston recess.
- the nozzle body usually has a plurality of injection holes, which form a uniform hole circle on the jacket of a cone inside the nozzle.
- the number of spray holes is between 5 (for cars) and 14 (for large diesel engines).
- the hole diameter varies between 0.15 mm (for cars) and 0.4 mm (for large diesel engines).
- the number of spray holes, the spray hole angle and the spray hole size and the flow conditions at the nozzle holes affect the injection jet and its atomization.
- the respective spray pattern together with other factors, such as the injection quantity, the injection pressure, the pressure curve, the combustion chamber geometry, the compression pressure and the compression temperature, the combustion quality in the combustion of the diesel fuel.
- the spray holes are exposed to very high mechanical loads.
- wear mechanisms such as cavitation or particle erosion
- rapid wear progress can occur and, as a result, changes in the injection jet shape, beam propagation or mass flow rate.
- the present invention aims to avoid wear and tear, especially due to cavitation.
- the invention provides that the spray hole inlet is rounded, wherein the rounding is already present in particular when the injection nozzle is new.
- Under the injection hole inlet here is the transition from the high pressure leading inner contour of the injection nozzle to the injection hole to understand.
- the medium to be injected normally separates from the injection-hole wall and into asymmetrical pressure and velocity zones. This has the formation of forces e.g. by cavitation or abrasion result, which can change the injection hole geometry, especially in the region of the injection hole inlet.
- the formation of the mentioned forces is prevented by setting a cavitation-free flow, in particular a stationary pipe flow, in the injection hole.
- This is achieved by the combination of two measures, namely the rounded design of the injection hole inlet and the conical formation of the injection hole with a flow cross-section which decreases in the direction of flow.
- the rounding of the spray hole inlet can be produced by various known methods, for example by flow grinding or HE rounding.
- HE rounding is one of the hydro-erosive machining methods that are Abrasive manufacturing processes in which an abrasive liquid mixed with abrasive particles is pumped through the workpiece to be machined (the injection hole) under high pressure of up to 120 bar.
- the invention also leads to the result that at the outlet of the spray hole a free jet with a large jet break-up length (length from the jet outlet to the maximum interaction of the beam and Atmo- sphere) and with only low transverse velocities.
- a detachment of the jet from the spray hole wall is particularly effectively prevented according to a preferred development of the invention, if the ratio of the flow cross section at the spray hole inlet to the flow cross section at the spray hole outlet is at least 1.25: 1. It is particularly preferred if the ratio of the flow cross section at the injection hole inlet to the flow cross section at the injection hole outlet is between 1.25: 1 and 1.35: 1.
- an injector 1 which has an injection nozzle 2, a throttle plate 3, a valve plate 4, a holding body 5 and a high-pressure accumulator 6, wherein a screwed to the holding body 5 nozzle retaining nut 7, the injection nozzle 2, the throttle plate and the valve plate 4 holds together.
- the solenoid valve 13 is closed, so that high-pressure fuel from the high-pressure accumulator 6 via the high pressure line 8, the cross-connection 9 and the inlet throttle 10 flows into the control chamber 11 of the injection nozzle 2, the outflow from the control chamber 11 via the outlet throttle 12 but at the valve seat of the solenoid valve 13 is blocked.
- a resonator line 20 with a high-pressure accumulator-side resonator choke 21 is attached. orders with which occurring pressure peaks can be lowered more quickly.
- a spray hole 17 is shown enlarged.
- the axis of the injection nozzle 2 is denoted by 24.
- the injection hole 17 has at the transition from the high-pressure inner contour 22 of the injection nozzle 2 to the injection hole .17 a spray hole inlet 23 which according to the invention has a rounding 25.
- the spray hole outlet is designated 26.
- the diameter of the cylindrical spray hole 17 is continuously and uniformly reduced in the flow direction 27, so that the flow cross section of the spray hole inlet 23 measured at the position a is greater than the flow rate of the spray hole outlet 26 measured at the point b.
- the diameter at the spray hole inlet 23 is measured here after the rounding 25.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Bei einer Einspritzdüse (2) zum Einspritzen von Medien in einen Brennraum, insbesondere von Kraftstoff in den Brennraum einer Brennkraftmaschine, umfassend einen Düsenkörper mit einer Spritzlöcher (17) aufweisenden Düsenspitze und ein im Düsenkörper axial verschieblich geführtes Schließglied, das zwischen einer die Spritzlöcher (17) verschließenden und einer die Spritzlöcher (17) freigebenden Lage verschiebbar ist, wobei die Spritzlöcher (17) sich in Durchflussrichtung (27) verjüngen, ist der Spritzlocheinlauf (23) abgerundet ausgebildet.
Description
Einspritzdüse zum Einspritzen von Medien in den Brennraum einer Brennkraftmaschine
Die Erfindung betrifft eine Einspritzdüse zum Einspritzen von Medien in einen Brennraum, insbesondere von Kraftstoff in den Brennraum einer Brennkraftmaschine, umfassend einen Düsenkörper mit einer Spritzlöcher aufweisenden Düsenspitze und ein im Düsenkörper axial verschieblich geführtes Schließglied, das zwischen einer die Spritzlöcher verschließenden und einer die Spritzlöcher freigebenden Lage verschiebbar ist, wobei die Spritzlöcher sich in Durchflussrichtung verjüngen.
Einspritzdüsen sind in verschiedenen Ausbildungen und für verschiedene Einsatzgebiete bekannt. Einspritzdüsen werden in der chemischen Industrie beispielsweise zum Aus- oder Aufbringen von verschiedenen Substanzen, wie z.B. Geruchs- oder Geschmacksstoffen verwendet. Einspritzdüsen sind auch zum Einspritzen von Brennstoffen in einen Brennraum weit verbreitet, wobei insbesondere die Hochdruckeinspritzung von Kraftstoff in den Brennraum einer Brennkraftmaschine zu nennen ist.
Kraftstoffeinspritzdüsen bestehen aus dem Düsenkörper und einem Schließglied, wie z.B. der Düsennadel, die beide aus hochwertigem Stahl hergestellt sind. Die Düsennadel ist axial verschieb- bar in dem Düsenkörper angeordnet und weist an ihrem brennraum- seitigen Ende eine konische Ventildichtfläche auf. Mit dieser konischen Ventildichtfläche wirkt die Düsennadel mit einer an einem geschlossenen Ende einer Bohrung im Düsenkörper angeordneten konischen Ventilsitzfläche zusammen, wobei an der Berüh- rungslinie zwischen Ventildichtfläche und Ventilsitzfläche ein Dichtquerschnitt gebildet wird. Diesem Dichtquerschnitt sind in KraftstoffStrömungsrichtung stromabwärts Spritzlöcher nachgeordnet, die in der Wand des Düsenkörpers angeordnet sind und
BESTÄTIGUNGSKOPIE
die ausgehend von der Bohrung im Düsenkörper an dessen Außenmantelfläche münden und dabei in den Brennraum der zu versorgenden Brennkraftmaschine ragen. Dabei können diese Spritzlöcher beispielsweise konisch ausgebildet sein, wobei sich der Querschnitt der Spritzlöcher von einem relativ großen Durchmesser am Kraftstoffeintritt zu einem relativ kleinen Durchmesser am Kraftstoffaustritt gleichmäßig konisch verringert.
Oben beschriebene Lochdüsen kommen in direkt einspritzenden Dieselmotoren, insbesondere bei Common-Rail-Systemen zum Einsatz, wo sie den unter sehr hohem Druck befindlichen Kraftstoff in einem scharfen Einspritzstrahl auf die Wände der gegenüberliegenden Kolbenmulde zerstäuben. Der Düsenkörper weist in der Regel mehrere Spritzlöcher auf, die im Inneren der Düse einen gleichmäßigen Lochkreis auf dem Mantel eines Kegels bilden. Je nach Motor liegt die Anzahl der Spritzlöcher zwischen 5 (bei PKWs) bis zu 14 (bei Großdieselmotoren) . Der Lochdurchmesser variiert zwischen 0,15 mm (bei PKWs) und 0,4 mm (bei Großdieselmotoren) . Die Spritzlochanzahl, der Spritzlochwinkel und die Spritzlochgröße sowie die Strömungsverhältnisse an den Düsenlöchern beeinflussen den Einspritzstrahl und dessen Zerstäubung. Das jeweilige Spritzbild bestimmt gemeinsam mit anderen Faktoren, wie z.B. der Einspritzmenge, dem Einspritzdruck, dem Druckverlauf, der Brennraumgeometrie, dem Kompressionsdruck und der Kompressionstemperatur die Verbrennungsqualität bei der Verbrennung des Dieselkraftstoffs.
Die Spritzlöcher sind sehr hohen mechanischen Belastungen ausgesetzt. Bei Angriff von Verschleißmechanismen, wie z.B. Kavi- tation oder Partikelerosion kann es zu einem raschen Verschleißfortschritt und dadurch zu Veränderungen der Einspritzstrahlform, der Strahlausbreitung oder auch des Massendurchsatzes kommen. Diese Veränderungen können neben dem Überschreiten
von gesetzlichen Emissionslimits durchaus auch zu Motorschäden und damit zum Ausfall führen. Um diese Folgeschäden hintan zu halten, müssen die Einspritzdüsen nach relativ kurzer Laufzeit ausgetauscht und durch neue ersetzt werden.
Die vorliegende Erfindung zielt darauf ab, Verschleißerscheinungen, insbesondere aufgrund von Kavitation zu vermeiden.
Zur Lösung dieser Aufgabe sieht die Erfindung vor, dass der Spritzlocheinlauf abgerundet ausgebildet ist, wobei die Verrun- dung insbesondere bereits im Neuzustand der Einspritzdüse vorhanden ist. Unter dem Spritzlocheinlauf ist hierbei der Übergang von der Hochdruck führenden Innenkontur der Einspritzdüse zum Spritzloch zu verstehen. Am und/oder unmittelbar nach dem Spritzlocheinlauf kommt es bei einer herkömmlichen Spritzlochgeometrie in der Regel zur Ablösung des einzuspritzenden Mediums von der Spritzlochwand sowie zu unsymmetrischen Druck- und Geschwindigkeitszonen. Dies hat die Entstehung von Kräften z.B. durch Kavitation oder Abrasion zur Folge, welche die Spritzlochgeometrie vor allem im Bereich des Spritzlocheinlaufs verändern können.
Erfindungsgemäß wird die Entstehung der erwähnten Kräfte dadurch verhindert, dass sich im Spritzloch eine kavitations- freie Strömung, insbesondere eine stationäre Rohrströmung einstellt. Dies wird durch die Kombination von zwei Maßnahmen erreicht, nämlich durch die abgerundete Ausbildung des Spritz- locheinlaufs und die konische Ausbildung des Spritzloches mit sich in Durchflussrichtung verkleinerndem Durchflussquer- schnitt. Die Verrundung des Spritzlocheinlaufs kann durch verschiedene bekannte Verfahren hergestellt werden, beispielsweise durch Strömungsschleifen oder HE-Verrunden . Das HE-Verrunden gehört zu den hydroerosiven Bearbeitungsverfahren, das sind
abtragende Fertigungsverfahren, bei denen eine mit Schleifpartikeln versetzte abrasive Flüssigkeit unter hohem Druck von bis zu 120 bar durch das zu bearbeitende Werkstück (die Spritzlochbohrung) gepumpt wird.
Neben der Verhinderung von Kavitationsschäden führt die Erfindung auch dazu, dass sich am Austritt des Spritzloches ein Freistrahl mit großer Strahlaufbruchslänge (Länge vom Strahlaustritt bis zur maximalen Wechselwirkung von Strahl und Atmo- Sphäre) und mit nur geringen Quergeschwindigkeiten ergibt.
Günstige Strömungsverhältnisse ergeben sich bei einer bevorzugten Weiterbildung der Erfindung, wenn die am Spritzlocheinlauf ausgebildete Verrundung einen Radius von 0,05 - 0,4 mm auf- weist. Besonders vorteilhaft ist es, wenn die am Spritzlocheinlauf ausgebildete Verrundung einen Radius von 0,1 - 0,3 mm aufweist .
Ein Ablösen des Strahls von der Spritzlochwand wird gemäß einer bevorzugten Weiterbildung der Erfindung besonders effektiv verhindert, wenn das Verhältnis des Durchflussquerschnitts am Spritzlocheinlauf zum Durchflussquerschnitt am Spritzlochaustritt mindestens 1,25:1 beträgt. Besonders bevorzugt ist es, wenn das Verhältnis des Durchflussquerschnitts am Spritz- locheinlauf zum Durchflussquerschnitt am Spritzlochaustritt zwischen 1,25:1 und 1,35:1 beträgt.
Die angegebenen Wertebereiche für die Verrundung des Spritz- locheinlaufs und die Verjüngung des Spritzloches sind besonders vorteilhaft, wenn das Spritzloch so dimensioniert ist, dass der Durchflussquerschnitt am Spritzlochaustritt 0,125 mm2 - 0,5 mm2, insbesondere 0,3 mm2 - 0,5 mm2 beträgt.
Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert. In dieser zeigen Fig.l eine schematische Darstellung einer Einspritzdüse und Fig.2 eine Detaildarstellung eines Spritzloches.
In Fig. 1 ist ein Injektor 1 dargestellt, der eine Einspritzdüse 2, eine Drosselplatte 3, eine Ventilplatte 4, einen Haltekörper 5 und einen Hochdruckspeicher 6 aufweist, wobei eine mit dem Haltekörper 5 verschraubte Düsenspannmutter 7 die Ein- spritzdüse 2, die Drosselplatte 3 und die Ventilplatte 4 zusammenhält. Im Ruhezustand ist das Magnetventil 13 geschlossen, sodass Hochdruckkraftstoff aus dem Hochdruckspeicher 6 über die Hochdruckleitung 8, die Querverbindung 9 und die Zulaufdrossel 10 in den Steuerraum 11 der Einspritzdüse 2 strömt, der Abfluss aus dem Steuerraum 11 über die Ablaufdrossel 12 aber am Ventilsitz des Magnetventils 13 blockiert ist. Der im Steuerraum 11 anliegende Systemdruck drückt gemeinsam mit der Kraft der Düsenfeder 14 die Düsennadel 15 in den Düsennadelsitz 16, sodass die Spritzlöcher 17 verschlossen sind. Wird das Magnetventil 13 betätigt, gibt es den Durchfluss über den Magnetventilsitz frei, und Kraftstoff strömt aus dem Steuerraum 11 durch die Ablaufdrossel 12, den Magnetventilankerraum und die Niederdruckbohrung 18 zurück in den nicht dargestellten Kraftstofftank. Es stellt sich ein durch die Strömungsquerschnitte von Zulaufdrossel 10 und Ablaufdrossel 12 definierter Gleichgewichtsdruck im Steuerraum 11 ein, der so gering ist, dass der im Düsenraum 19 anliegende Systemdruck die im Düsenkörper längs verschieblich geführte Düsennadel 15 zu öffnen vermag, sodass die Spritzlöcher 17 freigegeben werden und eine Einspritzung erfolgt.
Parallel zur Hochdruckbohrung 8 ist eine Resonatorleitung 20 mit einer hochdruckspeicherseitigen Resonatordrossel 21 ange-
ordnet, mit welcher auftretende Druckspitzen rascher abgesenkt werden können.
In Fig.2 ist nun ein Spritzloch 17 vergrößert dargestellt. Die Achse der Einspritzdüse 2 ist mit 24 bezeichnet. Das Spritzloch 17 weist am Übergang von der Hochdruck führenden Innenkontur 22 der Einspritzdüse 2 zum Spritzloch .17 einen Spritzlocheinlauf 23 auf, der erfindungsgemäß eine Verrundung 25 aufweist. Der Spritzlochaustritt ist mit 26 bezeichnet. Wobei der Durchmesser des zylindrischen Spritzloches 17 sich in Durchflussrichtung 27 kontinuierlich und gleichmäßig verringert, sodass der an der Stelle a gemessene Durchflussquerschnitt des Spritzlocheinlau- fes 23 größer ist als der an der Stelle b gemessene Durchfluss- qüerschnitt des Spritzlochaustritts 26. Der Durchmesser am Spritzlocheinlauf 23 wird hierbei nach der Verrundung 25 gemessen.
Claims
1. Einspritzdüse zum Einspritzen von Medien in einen Brennraum, insbesondere von Kraftstoff in den Brennraum einer Brenn- kraftmaschine, umfassend einen Düsenkörper mit einer Spritzlöcher aufweisenden Düsenspitze und ein im Düsenkörper axial verschieblich geführtes Schließglied, das zwischen einer die Spritzlöcher verschließenden und einer die Spritzlöcher freigebenden Lage verschiebbar ist, wobei die Spritzlöcher sich in Durchflussrichtung verjüngen, dadurch gekennzeichnet, dass der Spritzlocheinlauf (23) abgerundet ausgebildet ist.
2. Einspritzdüse nach Anspruch 1, dadurch gekennzeichnet, dass die am Spritzlocheinlauf (23) ausgebildete Verrundung (25) einen Radius von 0,05 - 0,4 mm aufweist.
3. Einspritzdüse nach Anspruch 2, dadurch gekennzeichnet, dass die am Spritzlocheinlauf (23) ausgebildete Verrundung (25) einen Radius von 0,1 - 0,3 mm aufweist.
4. Einspritzdüse nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass das Verhältnis des Durchflussquerschnitts am Spritzlocheinlauf (23) zum Durchflussquerschnitt am Spritzlochaustritt (26) mindestens 1,25:1 beträgt.
5. Einspritzdüse nach Anspruch 4, dadurch gekennzeichnet, dass das Verhältnis des Durchflussquerschnitts am Spritzlocheinlauf (23) zum Durchflussquerschnitt am Spritzlochaustritt (26) zwischen 1,25:1 und 1,35:1 beträgt.
6. Einspritzdüse nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Durchflussquerschnitt am Spritzloch- austritt (26) 0, 125 mm2 - 0,5 mm2, insbesondere 0,3 mm2 - 0,5 mm2 beträgt .
7. Einspritzdüse nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Spritzlocheinlauf (23) bereits her- stellerseitig abgerundet ausgebildet ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA159/2012 | 2012-02-07 | ||
AT1592012A AT512423A1 (de) | 2012-02-07 | 2012-02-07 | Einspritzdüse zum einspritzen von medien in den brennraum einer brennkraftmaschine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013117978A1 true WO2013117978A1 (de) | 2013-08-15 |
Family
ID=48044942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2013/000151 WO2013117978A1 (de) | 2012-02-07 | 2013-02-07 | Einspritzdüse zum einspritzen von medien in den brennraum einer brennkraftmaschine |
Country Status (2)
Country | Link |
---|---|
AT (1) | AT512423A1 (de) |
WO (1) | WO2013117978A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019219716A1 (de) * | 2018-05-17 | 2019-11-21 | Robert Bosch Gmbh | Vorrichtung zur erzeugung eines hochdruckfluidstrahls |
WO2020127382A1 (de) * | 2018-12-21 | 2020-06-25 | Vitesco Technologies GmbH | Einspritzdüse, verfahren zum herstellen eines düsenkörpers für eine einspritzdüse, sowie verwendung einer einspritzdüse |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014019022B4 (de) * | 2014-12-18 | 2017-05-24 | L'orange Gmbh | Düsenkörper |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0553479A1 (de) * | 1992-01-31 | 1993-08-04 | Robert Bosch Gmbh | Kraftstoffeinspritzdüse für Brennkraftmaschinen |
DE10214096A1 (de) * | 2001-03-29 | 2002-10-31 | Denso Corp | Kraftstoffeinspritzvorrichtung |
EP1312796A2 (de) * | 2001-11-15 | 2003-05-21 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
WO2005103481A1 (de) * | 2004-04-24 | 2005-11-03 | Robert Bosch Gmbh | Kraftstoffeinspritzdüse für diesel-brennkraftmaschinen |
DE102004055262A1 (de) * | 2004-11-17 | 2006-05-18 | Robert Bosch Gmbh | Kraftstoffeinspritzventil für Brennkraftmaschinen |
DE102008041676A1 (de) * | 2008-08-29 | 2010-03-04 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001182641A (ja) * | 1999-12-24 | 2001-07-06 | Denso Corp | 燃料噴射ノズルおよびその製造方法 |
JP2008068360A (ja) * | 2006-09-14 | 2008-03-27 | Mitsubishi Heavy Ind Ltd | ノズルボディの噴孔加工方法、噴孔加工装置、及びそれらを用いて作製された燃料噴射ノズル |
GB0712403D0 (en) * | 2007-06-26 | 2007-08-01 | Delphi Tech Inc | A Spray Hole Profile |
-
2012
- 2012-02-07 AT AT1592012A patent/AT512423A1/de not_active Application Discontinuation
-
2013
- 2013-02-07 WO PCT/IB2013/000151 patent/WO2013117978A1/de active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0553479A1 (de) * | 1992-01-31 | 1993-08-04 | Robert Bosch Gmbh | Kraftstoffeinspritzdüse für Brennkraftmaschinen |
DE10214096A1 (de) * | 2001-03-29 | 2002-10-31 | Denso Corp | Kraftstoffeinspritzvorrichtung |
EP1312796A2 (de) * | 2001-11-15 | 2003-05-21 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
WO2005103481A1 (de) * | 2004-04-24 | 2005-11-03 | Robert Bosch Gmbh | Kraftstoffeinspritzdüse für diesel-brennkraftmaschinen |
DE102004055262A1 (de) * | 2004-11-17 | 2006-05-18 | Robert Bosch Gmbh | Kraftstoffeinspritzventil für Brennkraftmaschinen |
DE102008041676A1 (de) * | 2008-08-29 | 2010-03-04 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019219716A1 (de) * | 2018-05-17 | 2019-11-21 | Robert Bosch Gmbh | Vorrichtung zur erzeugung eines hochdruckfluidstrahls |
WO2020127382A1 (de) * | 2018-12-21 | 2020-06-25 | Vitesco Technologies GmbH | Einspritzdüse, verfahren zum herstellen eines düsenkörpers für eine einspritzdüse, sowie verwendung einer einspritzdüse |
Also Published As
Publication number | Publication date |
---|---|
AT512423A1 (de) | 2013-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AT511880B1 (de) | Verschleissoptimierte herstellung von konischen spritzlöchern | |
DE102008044096A1 (de) | Verfahren zur Herstellung von Drosselbohrungen mit niedrigem Kaviationsumschlagpunkt | |
EP2331806A1 (de) | Injektor mit einem vor der zulaufdrossel angeordneten partikelfilter | |
WO2013117978A1 (de) | Einspritzdüse zum einspritzen von medien in den brennraum einer brennkraftmaschine | |
EP2235356A1 (de) | Kraftstoffinjektor | |
EP2320064B1 (de) | Verfahren zum Bearbeiten einer Einspritzdüse | |
WO2015086536A1 (de) | Düsenkopf und fluid-einspritzventil | |
EP0890735B2 (de) | Kraftstoffeinspritzventil | |
DE102015015518A1 (de) | Kraftstoff/Luft-Einspritzsystem für Verbrennungsmotoren | |
DE19843616A1 (de) | Kraftstoffeinspritzdüse | |
EP3155253A1 (de) | Einspritzeinrichtung | |
EP1062423B1 (de) | Kraftstoffeinspritzventil für brennkraftmaschinen | |
DE102009002484A1 (de) | Einspritzventil für eine Abgasnachbehandlungseinrichtung | |
EP1751423B1 (de) | Kraftstoffeinspritzsystem | |
DE102008041167A1 (de) | Kraftstoffinjektor | |
EP2807367B1 (de) | Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine | |
EP2825740B1 (de) | Dosiervorrichtung | |
EP1483499A1 (de) | Einrichtung zur druckmodulierten formung des einspritzverlaufes | |
EP4077908B1 (de) | Einspritzdüse zur einspritzung von kraftstoff unter hohem druck | |
WO2000032928A1 (de) | Kraftstoffeinspritzdüse für selbstzündende brennkraftmaschinen | |
EP1412633A1 (de) | Kraftstoffinjektor mit schliessdruckkompensation | |
DE102007006415A1 (de) | Ventil, Vorrichtung und Verfahren zur Erzeugnis eines Fluidpulses | |
DE102018219649A1 (de) | Ventil zum Zumessen eines Fluids, insbesondere Brennstoffeinspritzventil | |
DE102010064275A1 (de) | Einspritzventil | |
EP3821117A1 (de) | Kraftstoffinjektor und verfahren zum betreiben eines kraftstoffinjektors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13713489 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13713489 Country of ref document: EP Kind code of ref document: A1 |