WO2013117827A1 - Adsorbeur constitué de plusieurs contacteurs à passage parallèles - Google Patents

Adsorbeur constitué de plusieurs contacteurs à passage parallèles Download PDF

Info

Publication number
WO2013117827A1
WO2013117827A1 PCT/FR2012/052876 FR2012052876W WO2013117827A1 WO 2013117827 A1 WO2013117827 A1 WO 2013117827A1 FR 2012052876 W FR2012052876 W FR 2012052876W WO 2013117827 A1 WO2013117827 A1 WO 2013117827A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
adsorbent
fluid
element according
modules
Prior art date
Application number
PCT/FR2012/052876
Other languages
English (en)
Inventor
Christian Monereau
Céline CARRIERE
François Fuentes
Madhava R. Kosuri
Yudong Chen
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Publication of WO2013117827A1 publication Critical patent/WO2013117827A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/2804Sheets with a specific shape, e.g. corrugated, folded, pleated, helical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • B01D2253/342Monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/406Further details for adsorption processes and devices using more than four beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/41Further details for adsorption processes and devices using plural beds of the same adsorbent in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0473Rapid pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/56Use in the form of a bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/60Use in several different columns
    • B01J2220/606Use in several different columns parallel disposed columns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • Adsorber consisting of several parallel-flow contactors
  • the invention relates to an adsorption element comprising a plurality of modules arranged in parallel and comprising 1 or more series contactors; a device for purifying or separating a gas stream implementing such an adsorber and the use of such a device in a TSA or PSA type adsorption process.
  • Adsorption is a physical phenomenon that is increasingly used industrially to separate or purify gas flows.
  • adsorption is conventionally used to dry various gas streams, in particular air, natural gas, for the production of hydrogen, for the production of oxygen and / or nitrogen from air atmospheric, to capture many components of various effluents before their use in a downstream process or venting such as VOC, nitrogen oxides, mercury ...
  • VSA vacuum swing adsorption
  • PSA and TSA to describe all these adsorption processes including a step of regeneration in situ according to the preponderant effect used to regenerate the adsorbent either pressure or temperature .
  • the adsorbent used is generally in the form of particles filled with an adsorber. These particles can be in the form of granules, rods, balls, crushed. The characteristic dimensions of these particles generally range from 0.5 mm to 5 mm. The smallest particles make it possible to improve the kinetics of adsorption and thus the efficiency of the process, but in part they create significant losses on the fluid phase.
  • adsorbers having a large fluid passage section are used, such as cylindrical adsorbers with a horizontal axis or radial adsorbers.
  • Document EP 1 413 348 mentions, for example, a contactor with parallel passages wound in a spiral approximately 10 cm long.
  • US 6,692,626 discloses a contactor with channel lengths of 10 to 20 centimeters.
  • US 7,300,905 meanwhile indicates channel lengths of 1 centimeter to 1 meter and preferably 5 to 30 centimeters.
  • larger diameter contactors have lengths not exceeding 30 cm whereas this same length may be a bit higher for small diameter laboratory type contactors.
  • Another constraint in a majority of cases will be to obtain a good distribution of the fluid throughout the contactor section.
  • the most efficient method is to obtain a regular geometry especially for the channels of circulation of the fluid with low tolerances. It is conceivable that it is easier to control the regularity of manufacture of a module of small or medium dimension, for example of diameter or more generally of dimensions of a few tens of centimeters than a large module, for example superior by the meter.
  • a problem is to provide an adsorption device, including parallel passage contactor adsorbers, improved so that it can be implemented in a wider range of applications.
  • a solution of the invention is an adsorption element for the purification or the separation of a fluid, comprising:
  • each module being spaced from the neighboring module by a volume 17 and comprising at least 1 parallel-channel contactor
  • the solution according to the invention solves the problem of limiting the length of channels to a few tens of centimeters and the problem of dead volumes detrimental to the proper functioning of TSA or PSA units.
  • Parallel passage contactor means a device in which the fluid passes through channels whose walls contain adsorbent.
  • the fluid circulates in essentially obstacle free channels, these channels allowing the fluid to flow from an input to an output of the contactor.
  • These channels can be rectilinear connecting directly the input to the output of the contactor or present changes of direction.
  • the fluid is in contact with at least one adsorbent present at said walls.
  • module an adsorption element comprising one or more series contactors as defined above;
  • the section of the M modules may be of identical shape and dimensions, for example circular of the same diameter, or conversely of different shapes and / or dimensions, for example some modules will be of trapezoidal shape and others rectangular, the purpose for example being to "fill" at best the ferrule of the adsorber.
  • adsorbent particles themselves have an internal porosity consisting of macropores and micropores. This porosity is necessary to allow the molecules to adsorb within the particle. It is admitted here that this intragranular porosity is an integral part of the adsorbent particle and therefore does not form part of the free volume accessible to gas.
  • the majority of the particulate adsorbents are shaped by means of a binder whose initial volume proportion ranges from a few% to generally 25% maximum. Part of this binder can then be made optionally active. It is assumed that the residual binder is an integral part of the adsorbent.
  • the total volume of the sphere is used as the adsorbent volume.
  • an inlet section is defined where the adsorbent starts and an exit section where it ends.
  • the volume V between these sections will generally be subdivided into a volume occupied by the support of the adsorbent, a volume of adsorbent itself (including its porosity and its possible binder) and a free volume accessible to the fluid.
  • the volume ( ⁇ * D * h / 4) will be distributed for example in 10% of carrier sheet, 10% of adsorbent and 80% of free volume accessible to the fluid.
  • a small geometric calculation based on direct measurements on the wheel or an enlarged photograph of a portion of the equipment should be made. For example, on a representative portion, the support length per unit section and its average thickness are determined; the average thickness of the adsorbent is also determined. It is then easy to calculate according to our definitions the free volume accessible to gas, the volume of adsorbent and to draw the ratio.
  • the volume of the support itself even if it has a certain porosity as the adsorbent is not accessible to the fluid when it serves as a support essentially by its surface or surfaces, that is to say say that the adsorbent is fixed on it and that less than 10% of the total amount of adsorbent has penetrated into the volume of the support.
  • the case where the adsorbent is intimately fixed in a fiber network which also serves as support is also to be treated.
  • the total volume is then divided into a first volume accessible to the fluid and a second volume of support / adsorbent.
  • This second volume can be separated into an inert carrier volume and an adsorbent volume.
  • the ratio referred to in the present invention is the ratio between the volume of adsorbent and the volume accessible to the fluid.
  • the ratio of the volume of adsorbent included in the M modules to the volume accessible to the fluid, between the inlet section and the outlet section is greater than 1.0, more preferably greater than 1.25.
  • the vacuum rate of a granular adsorbent bed is of the order of 38% which corresponds to the ratio 1.63.
  • the negative impact of a decrease in this ratio can be determined by the now widespread adsorption simulation programs. This can result, for a ratio of 1 by a loss of several percent on the performance of a PSA H2, which is not acceptable industrially. It has no general rules for determining the impact of this parameter, nor for the upstream / downstream dead volumes, the impact depending both on the cycle of the adsorption unit, on the properties of the adsorbents, desired performance ....
  • the volumes left to the fluid of which we are speaking here do not include the dead volumes necessary upstream and downstream of the element, volumes necessary for the introduction and good distribution of the fluid.
  • the adsorption element may have one or more of the following characteristics:
  • the fluid is a gaseous flow
  • each module comprises at least two parallel-passage contactors arranged in series in the direction of the path of the fluid to be adsorbed;
  • each module has sealed walls
  • the inlet and outlet sections have between each module sealing elements; these sealing elements may be chosen from the known means: seals, welding, gluing ...;
  • the volume (17) is at least partially filled by a packing limiting or excluding the presence of a gas stream; it may be a polymer such as epoxy or a solid, particulate (quartz, ceramic beads, chips ...) or not (braid, fiber ...) filling the voids;
  • the modules are essentially cylindrical; that is, their base is close to a circle with deviations in radii R1 / R2 less than 5%.
  • the contactor 1 is formed by the winding of a support impregnated with adsorbent (detail 2) on a central mandrel 3;
  • the contactors comprise an adsorbent material fixed on a folded support sheet, said sheet being spirally wound alone or associated with a flat sheet;
  • the contactors comprise an adsorbent material fixed on a sheet wound in a spiral whose passages are kept open by spacers;
  • the thickness of the adsorbent material is less than 500 microns, preferably less than 250 microns; note that the use of thin adsorbent layers improves the kinetics.
  • the modules of the adsorption element according to the invention can be of different diameters, preferably of 2 different diameters. This can indeed make it possible to increase the density of contactors of the adsorption element. The length, meanwhile, the modules is a priori identical regardless of the diameter and the flow of the fluid (flow divided by the passage section) through the various modules.
  • the invention does not exclude the paralleling of modules of sections of different shape (square, rectangular, trapezoidal, etc.), but the manufacture of such contactors, essentially by stacking support sheets and then possibly cutting, seems less industrial than the coil winding.
  • FIG. 14 represents an example of adsorption element 1 according to the invention.
  • the adsorption element is housed in an envelope 2, generally comprising a bottom bottom and an upper bottom with openings for the passage of the gas stream (not shown in the Figure).
  • This envelope may be an integral part of the element and added during manufacture or it may be the ferrule of an adsorber, the element being housed in this adsorber.
  • the element 1 consists of a plurality of modules (3, 4, 5 ...) installed in parallel. Preferably, each module consists of several switches arranged in series (1 1, 12, 13 ). Sections 6 and 7 show the input and output sections of item 1. Volume 17 represents the free volume between the modules.
  • a first solution is to make a double seal 15 and 16, that is to say at each end of the element.
  • a second solution is to achieve a seal on one side, preferably in the lower part if the element is used vertically, and fill the space between modules of a lining limiting or excluding the presence of gas. It can be a polymer or a particulate solid filling the voids.
  • the volume (18) at the periphery can be treated in a similar way or differently differently if the adsorption element is introduced into a ferrule.
  • the sealing at the inner wall of the casing (2), to avoid a preferential passage of the gas stream at this location, is achieved by the simple pressure of the element, here supposed circular in shape, on the wall of the envelope. If necessary, this seal can be improved by any of the known means (joints, welding, gluing, filling ...)
  • FIGS 1 to 7 show schematically, not exhaustive, the different types of contactors. Indeed, the contactors may comprise channels of different shapes and sizes. We then distinguish:
  • the fluid can also circulate in the free space left by solid walls presented in the form of cylinders or fibers (Figure 6).
  • the solid walls may also have the configuration "packing" as used in distillation ( Figure 7). In the latter case, it is possible to use all the geometric possibilities relating to said packings by playing on the bending angles, the orientation of the passages relative to the vertical (supposed vertical contactor), the dimensions of the channels ...
  • the fluid which is preferably a gaseous flow, circulates in channels presenting little (or no) obstacle to flow. and the adsorbent is located or constitutes the wall of said channels.
  • the embodiment of the contactor itself, and more particularly of the support-wall assembly, is carried out according to various techniques which can for example be classified according to the way the adsorbent is integrated into the wall.
  • the adsorbent optionally mixed with a binder, constitutes directly the wall of the channels (FIG. 8).
  • volume of adsorbent will take into account the binder as soon as its volume percentage exceeds 25%, the usual maximum percentage for standard particulate adsorbents (beads, rods) as indicated above.
  • the adsorbent 1 10 is fixed on a support 1 11, for example a metal sheet, adhesion to the wall can be done through the binder of the adsorbent (The role of which is then twofold: agglomeration of the micro particles of adsorbents with each other and attachment to the wall) as shown in FIG. 9 or via a specific glue 120 (FIG. 10).
  • the support will generally have been treated to facilitate the adhesion, it can be porous by nature (membrane, tissue ...); many materials can be used such as polymers, ceramics, metals, paper ...
  • the support of the adsorbent may be folded (before or after deposition of the adsorbent layer) and this folded sheet itself wound around a central axis.
  • Figure 3 of US 5,771,707 shows such an arrangement. In the case of folds substantially triangular shape, the height of the triangle and its base will generally be between 0.5 and 5 mm.
  • the adsorbent can also be trapped.
  • "imprisonment" can be homogeneous, that is to say that the particles of adsorbents 130 are immobilized by a network of thin and dense fibers 131 which occupy the entire volume of the wall ( Figure 11).
  • An adhesive may be added to strengthen the attachment.
  • the entrapment of adsorbent particles in fiber networks has been used in the manufacture of gas masks. Note however that in the latter case, the air breathed through the adsorbent medium while in the case considered here, the gas flow along the wall containing the adsorbent.
  • the adsorbent particles 140 are held between two walls (141, 142) porous fluid ( Figure 12).
  • a binder and / or an adhesive may be added to improve if necessary the maintenance of the particles between the porous walls.
  • These walls may be of metal type, polymers ... They are chosen so that they can simultaneously contain the adsorbent particles and not create significant resistance to the diffusion of the molecules.
  • Figure 13 shows the base cell, i.e. the smallest element that can be used to describe the geometry of a parallel-pass contactor.
  • the channel 20 in which flows the gaseous flow, of total thickness 2 epf, the porous membrane maintaining the adsorbent 21 of thickness epm, the adsorbent layer 22 of thick epads, a adhesive layer 23 of epc thickness and the support sheet 24 of total thickness 2 eps.
  • the base cell is epf + epm + epads + epc + eps.
  • the orders of magnitude of these thicknesses are for example:
  • the cell of base e would therefore have in the example a thickness of 31 microns (75 + 25 + 150 + 10 + 50).
  • the porous membrane if it exists, being in direct relationship with the channel reserved for the fluid, is integrated in the free section accessible to the fluid, its porosity being taken into account.
  • the ratio would be 150 divided by (75 + 25/2), of the order of 1.7
  • the width of the space left to the fluid in a channel (2epf) is preferably less than 2 times the thickness of the epads adsorbent layer (in case of support) or the thickness of said layer in the absence of support.
  • the contactors installed in series may have different characteristics, in particular the adsorbent deposited may be different from one contactor to another, for example 2 different types of zeolites such as CaLSX and LiLSX or the thickness layers may be different, for example thinner for the last contactors in a series to promote kinetics.
  • total porosity average size of the macropores, density of the adsorbent particles, optionally size, internal porosity, heat capacity, thermal conductivity as well as adsorption and co-adsorption isotherms linking the adsorbent and the molecules present in the gas stream for the adsorbent layer.
  • the present invention also relates to a device for separating or purifying a fluid comprising at least one adsorption element according to the invention.
  • This device can be used more specifically:
  • PSA H 2 cycle PSA O 2 , VSA O 2 , PSA or VSA C0 2 .
  • the adsorbents that may be used in the parallel-passage contactors are those used in the conventional gas stream separation or purification units. The choice depends on the application. It is possible in the same contactor to use successively several different adsorbents. Mention may be made of silica gels, optionally doped activated alumina, activated carbons, zeolites of various types (3A, 4A, 5A, type X, LSX, Y etc. optionally exchanged, etc.). The zeolites are generally used in the form of microcrystals or even nano-crystals according to the synthetic methods. Other adsorbents, for example activated carbons, can be crushed to obtain micron-sized particles.
  • TSA Wind Adsorption Temperature
  • the unit comprises 2 adsorbers as shown in Figure 16.
  • the cycle used is a conventional cycle comprising an adsorption step at 5 bar abs and at room temperature which makes it possible to produce dry and decarbonated air. Meanwhile, the second adsorber is in regeneration.
  • the peculiarity of the cycle is that the adsorption and regeneration steps only last 10 minutes.
  • the use of contactors makes it possible to conserve areas of reduced mass transfer and to use most of the adsorbent at equilibrium.
  • Each adsorber comprises an adsorption element 1 according to the invention housed in an envelope 2 comprising a shell 8 and bottoms 9, 10.
  • the elements 13, 14, 15 represent the inlet / outlet pipes.
  • the adsorption element consists of a plurality of modules 3, 4 ..., each of the modules being formed of 2 series contactors 11 and 12 separated by a spider-type spacer 16 avoiding any blockage of the passages reserved for the air.
  • the two contactors and the central spacer are assembled in a single module sealed to the outside by the envelope 19.
  • the various modules are supported by the bottom plate 6, itself attached to the ferrule.
  • the seal at the lower end is via a conventional seal system.
  • the top plate 7 only has a guide role now in place the various modules.
  • the space between the modules 17 is filled with a thermal insulating material 18 so that the residual free volume is less than 35%.
  • the space between modules represents about 25% of the volume of the element. Taking into account the free volume of the modules, we arrive at a system with a volume offered to gas of the order of 30%, which is comparable - and even lower - than what is found with gas beds. conventional adsorbents.
  • moist air 31 enters the lower part, is dried and decarbonated and exits 32 through one of the pipes at the top.
  • the adsorber is depressurized and the regeneration gas 33 is introduced at the adsorber head. This gas is heated via the exchanger 34 at a temperature of the order of 150 ° C.
  • Each adsorber has its own heater located near the adsorbent element, in order to minimize thermal inertia.
  • the insulating material 18 has the dual role of isolating the element of the ferrule (at the periphery) and of reducing the dead volume while limiting the thermal inertia.
  • the device according to the invention can be used in various PSA processes such as PSA H 2 to produce high purity hydrogen, deballasting C0 2 by PSA or VSA, PSA / VSA 0 2 .
  • the device according to the invention is particularly suitable for capturing C0 2 in low pressure gas streams, of the order of 0.8 to 2 bar absolute. Indeed, studies have shown that an important part of the cost of capturing C0 2 in low pressure gas streams is the energy consumption related to the pressure drop in the capture process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

Elément d'adsorption pour l'épuration ou la séparation d'un fluide, comprenant M modules (3, 4, 5) en parallèle, avec M > 2, chaque module étant espacé du module voisin par un volume (17) et comprenant au moins 1 contacteur à passages parallèles, caractérisé en ce que le ratio du volume d'adsorbant compris dans les M modules sur le volume libre accessible au fluide est supérieure à 0,75.

Description

Adsorbeur constitué de plusieurs contacteurs à passage parallèles
L'invention se rapporte à un élément d'adsorption comprenant une pluralité de modules disposés en parallèle comprenant eux-mêmes 1 ou plusieurs contacteurs en série; à un dispositif de purification ou de séparation d'un flux gazeux mettant en œuvre un tel adsorbeur et à l'utilisation d'un tel dispositif dans un procédé d'adsorption de type TSA ou PSA.
L'adsorption est un phénomène physique de plus en plus utilisé industriellement pour séparer ou épurer des flux gazeux.
Par exemple, l'adsorption est utilisée classiquement pour sécher des flux gazeux divers, en particulier l'air, le gaz naturel, pour la production d'hydrogène, pour la production d'oxygène et/ou d'azote à partir d'air atmosphérique, pour capturer de nombreux constituants d'effluents variés avant leur utilisation dans un procédé aval ou leur mise à l'évent comme les VOC, des oxydes d'azote, du mercure ...
Les procédés mis en œuvre sont soit à charge perdue (on parle alors généralement de lit de garde) soit régénérables. La régénération s'effectue soit par baisse de pression soit par augmentation de la température. On peut aussi coupler ces deux effets. On parle respectivement de PSA (pressure swing adsorption = adsorption à pression modulée), TSA (température swing adsorption = adsorption à température modulée), PTSA (adsorption à pression et température modulée).
Lorsque la régénération d'un PSA s'effectue sous vide, on utilise généralement le sigle VSA (vacuum swing adsorption).
Par la suite, et sauf application particulière, nous n'utiliserons, par souci de simplicité que les termes PSA et TSA pour décrire tous ces procédés d'adsorption comportant une étape de régénération in situ suivant que l'effet prépondérant utilisé pour régénérer l'adsorbant soit la pression ou la température..
L'adsorbant utilisé se présente généralement sous forme de particules dont on remplit un adsorbeur. Ces particules peuvent se trouver sous forme de granulés, de bâtonnets, de billes, de concassés. Les dimensions caractéristiques de ces particules vont généralement de 0.5 mm à 5 mm. Les particules les plus petites permettent d'améliorer la cinétique d'adsorption et par là l'efficacité du procédé mais en contre partie elles créent sur la phase fluide des pertes de charge importantes.
Pour contrebalancer cet effet, on utilise des adsorbeurs présentant une grande section de passage au fluide tels que les adsorbeurs cylindriques à axe horizontal ou les adsorbeurs radiaux.
Cependant, lorsqu'on veut aller plus loin dans l'amélioration de la perte de charge et/ ou de la cinétique, cette technologie conduit à des géométries d'adsorbeurs non industrielles.
C'est par exemple le cas lorsqu'on veut traiter d'importants débits gazeux en basse pression comme pour la capture du C02 dans des effiuents à pression atmosphérique ou lorsqu'on veut réaliser des cycles rapides, en particulier des cycles PSA.
Dès 1996, Ruthven et Thaeron -in Gas Sep. Purif. Vol. 10, p.63- montrent qu'une telle amélioration peut être obtenue en utilisant des contacteurs à passages parallèles.
Il s'agit de système dans lequel le fluide passe dans des canaux dont les parois contiennent de l'adsorbant.
Actuellement, seuls des systèmes où l'adsorbeur se présente sous la forme d'une roue tournant autour de son axe central sont fabriqués de façon industrielle en grandes dimensions, c'est à dire avec des diamètres atteignant plusieurs mètres. De nombreuses brochures commerciales décrivent ces appareils et on peut citer par exemple parmi les plus connus NovelAire Technologies, Munters, EcoDry, ProFlute, DST Seibu Giken.
Ces roues présentent des inconvénients qui les rendent inefficaces pour la majorité des procédés d'adsorption et en pratique, elles ne sont utilisées presque exclusivement que pour le séchage partiel de l'air. Un de ces inconvénients résulte du fait que le volume d'adsorbant par rapport au volume de la roue est très faible, souvent de l'ordre de 10%.
On peut également noter que ces contacteurs formés par enroulage ou par empilage de feuilles dépassent rarement quelques dizaines de centimètres dans le sens de circulation du fluide, ce qui constitue également un sérieux obstacle à leur utilisation dans d'autres applications.
Le document EP 1 413 348 cite par exemple un contacteur à passages parallèles enroulés en spirale d'environ 10 cm de long. Le document US 6 692 626 décrit un contacteur avec des longueurs de canaux de 10 à 20 centimètres. Le document US 7 300 905 quant à lui indique des longueurs de canaux de 1 centimètre à 1 mètre et préférentiellement de 5 à 30 centimètres.
Ces limitations proviennent en particulier du mode de dépôt de l'adsorbant sur le support qui nécessite des opérations assez complexes pour obtenir les caractéristiques mécaniques nécessaires (tenue dans le temps, porosité ...).
Généralement, les contacteurs de plus grand diamètre ont des longueurs n'excédant pas 30 cm alors que cette même longueur peut être un peu supérieure pour les contacteurs de petit diamètre de type laboratoire.
Cette limitation de la longueur des canaux à quelques dizaines de centimètres pour des contacteurs industriels ne permet pas non plus aujourd'hui d'envisager la technologie des contacteurs à passage parallèle pour toutes les applications.
Une autre contrainte dans une majorité de cas va être d'obtenir une bonne distribution du fluide dans toute la section du contacteur. La méthode la plus efficace est d'obtenir une géométrie régulière en particulier pour les canaux de circulation du fluide avec de faibles tolérances. On conçoit qu'il est plus facile de contrôler la régularité de fabrication d'un module de petite ou moyenne dimension, par exemple de diamètre ou plus généralement de dimensions de quelques dizaines de centimètres que d'un module de grande taille, par exemple supérieure au mètre.
Partant de là, un problème qui se pose est de fournir un dispositif d'adsorption, comprenant des adsorbeurs à contacteur à passages parallèles, amélioré de manière à pouvoir être mis en œuvre dans une plus large gamme d'applications.
Une solution de l'invention est un élément d'adsorption pour l'épuration ou la séparation d'un fluide, comprenant :
- M modules (3, 4, 5...) en parallèle, avec M > 2, chaque module étant espacé du module voisin par un volume 17 et comprenant au moins 1 contacteur à passages parallèles,
- une section d'entrée 6, et
- une section de sortie 7, et
caractérisé en ce que le ratio du volume d'adsorbant compris dans les M modules sur le volume libre accessible au fluide , entre la section d'entrée et la section de sortie du dit élément, est supérieur à 0.75. Notons que la solution selon l'invention permet de résoudre le problème de la limitation de la longueur des canaux à quelques dizaines de centimètres et le problème des volumes morts néfastes au bon fonctionnement des unités TSA ou PSA.
Par contacteur à passages parallèles, on entend un dispositif dans lequel le fluide passe dans des canaux dont les parois contiennent de l'adsorbant. Le fluide circule dans des canaux essentiellement libres d'obstacles, ces canaux permettant au fluide de circuler d'une entrée à une sortie du contacteur. Ces canaux peuvent être rectilignes reliant directement l'entrée à la sortie du contacteur ou présenter des changements de direction. Au cours de sa circulation, le fluide est en contact avec au moins un adsorbant présent au niveau des dites parois.
Par module, on entend un élément d'adsorption comprenant un ou plusieurs contacteurs en série tels que définis ci-dessus ; La section des M modules peut être de forme et dimensions identiques, par exemple circulaire de même diamètre, ou au contraire de formes et/ ou dimensions différentes, par exemple certains modules seront de forme trapézoïdale et d'autres rectangulaire, le but par exemple étant de «remplir » au mieux la virole de l'adsorbeur.
Il convient aussi de définir clairement ce qu'on entend ici par « volume d'adsorbant » et « volume libre accessible au fluide ».
Prenons d'abord l'exemple d'un adsorbeur classique renfermant un lit d'adsorbant, ce dit lit ayant une section d'entrée SI et une section de sortie S2 quand on considère l'étape de purification. Ces 2 sections et les parois de l'adsorbeur délimitent un volume V qui va contenir le lit d'adsorbant. Il s'agit du volume géométrique qu'on appelle parfois volume en eau ou volume fût vide. Lorsqu'on remplit ce volume V de particules, il se crée entre les dites particules un volume libre dit inter particulaire que peut occuper un fluide. Le volume total V se répartit ainsi entre un volume libre accessible au fluide et un volume occupé par les particules solides.
Il convient de faire 3 remarques.
Si on a placé d'autres internes tels des tubes d'échangeur, des éléments de mesure... dans le volume V, ces internes occupant un volume v, c'est le volume restant V-v que l'on doit considérer comme se répartissant en un volume libre accessible au fluide et un volume occupé par les particules d'adsorbant. Les particules d'adsorbant elles mêmes présentent une porosité interne constituée de macropores et micropores. Cette porosité est nécessaire pour permettre aux molécules de s'adsorber au sein de la particule. On admet ici que cette porosité intragranulaire fait partie intégrante de la particule d'adsorbant et qu'elle ne fait donc pas partie par définition du volume libre accessible au gaz.
Enfin, la majorité des adsorbants particulaires sont mis en forme au moyen d'un liant dont la proportion volume initiale va de quelques % à généralement 25% maximum. Une partie de ce liant peut ensuite être rendu éventuellement actif. On admet que le liant résiduel fait partie intégrante de l'adsorbant.
Ainsi dans le cas d'adsorbant sous forme de bille sphérique par exemple, on compte comme volume adsorbant le volume total de la sphère.
Par la suite on généralise le principe de cette définition à des adsorbeurs non classiques tels que des contacteurs.
On définit de même une section d'entrée où commence l'adsorbant et une section de sortie où il se termine. Le volume V compris entre ces sections va généralement se subdiviser en un volume occupé par le support de l'adsorbant, un volume d'adsorbant proprement dit (incluant sa porosité et son liant éventuel) et un volume libre accessible au fluide.
Dans le cas d'une roue de diamètre D, de profondeur h supportant par exemple du silica-gel, le volume (π* D * h/4) se répartira par exemple en 10% de feuille support, 10% d'adsorbant et 80% de volume libre accessible au fluide. Pour déterminer les pourcentages de support et d'adsorbant, il convient de faire un petit calcul géométrique basé sur des mesures directes sur la roue ou sur une photographie agrandie d'une portion de l'équipement. On détermine par exemple sur une portion représentative la longueur de support par unité de section et son épaisseur moyenne ; on détermine aussi l'épaisseur moyenne d'adsorbant. Il est alors facile de calculer selon nos définitions le volume libre accessible au gaz, le volume d'adsorbant et d'en tirer le ratio.
On suppose que le volume du support lui-même, même s'il présente une certaine porosité comme l'adsorbant n'est pas accessible au fluide dès lorsqu'il sert de support essentiellement par sa ou ses surfaces, c'est-à-dire que l'adsorbant est fixé dessus et que moins de 10% de la quantité totale d'adsorbant a pénétré dans le volume du support. Il convient de traiter également le cas où l'adsorbant est fixé intimement dans un réseau de fibres qui sert également de support.
Le volume total se répartit alors en un premier volume accessible au fluide et un second volume de support/ adsorbant. Ce second volume peut être séparé en un volume support inerte et un volume d'adsorbant. Le ratio dont il est question dans la présente invention est le rapport entre le volume d'adsorbant et le volume accessible au fluide.
De préférence le ratio du volume d'adsorbant compris dans les M modules sur le volume accessible au fluide, entre la section d'entrée et la section de sortie est supérieur à 1.0, encore préférentiellement supérieur à 1.25.
Avec des valeurs égales ou supérieures à 1.5, on se place dans les conditions de ratio des adsorbants particulaires classiques.
En effet, le taux de vide d'un lit d'adsorbant granulaire est de l'ordre de 38% ce qui correspond au ratio 1.63. L'impact négatif d'une diminution de ce ratio peut être déterminé au moyen des programmes de simulation d'adsorption maintenant bien répandus. Cela peut se traduire, pour un ratio de 1 par une perte de plusieurs pourcents sur le rendement d'un PSA H2, ce qui n'est pas acceptable industriellement. Il n'a pas de règles générales pour déterminer l'impact de ce paramètre, pas plus que pour les volumes morts amont/aval, l'impact dépendant à la fois du cycle de l'unité d'adsorption, des propriétés des adsorbants, des performances recherchées....
Avec des valeurs supérieures à 0.75 dans des cas non critiques (certains TSA), surtout à 1.0 et mieux encore supérieures à 1.25, on se rapproche des ratios standards et on limite voire on annule ou on améliore l'impact des volumes libres accessible au fluide.
On remarquera que si la section d'un contacteur se répartit en 20% support, 40% adsorbant, 40% passage du fluide, ce qui pour ce contacteur conduirait à un ratio de 1 à priori acceptable au moins pour certains procédés mais que pour une section de l'élément d'adsorbant (comprenant plusieurs modules en parallèle) normale à la circulation du fluide, les modules installés en parallèle n'occupent que 75% de la section totale et donc la section libre est de 25% , le ratio volume d'adsorbant sur volume laissé au fluide n'est alors que de l'ordre de 0.55 ( (0.4*0.75)/(0.25+ (0.4*0.75)) = 0.55) ce qui sera insuffisant pour rendre une majorité de procédés TSA et PSA efficaces.. Il faudra donc sélectionner pour rester dans le cadre de l'invention non seulement des contacteurs de caractéristiques particulières en termes d'épaisseur de couche adsorbante et de passage réservé au fluide mais aussi utiliser des technologies particulières pour la mise en parallèle des modules.
On notera également que les volumes laissés au fluide dont on parle ici ne comprennent pas les volumes morts nécessaires en amont et en aval de l'élément, volumes nécessaires à l'introduction et à la bonne répartition du fluide.
Selon le cas, l'élément d'adsorption peut présenter une ou plusieurs des caractéristiques suivantes :
- le fluide est un flux gazeux ;
- chaque module comprend au moins 2 contacteurs à passages parallèles disposés en série dans le sens du trajet du fluide à adsorber ;
- chaque module présente des parois étanches ;
- les sections d'entrée et de sortie présentent entre chaque module des éléments d'étanchéité ; ces éléments d'étanchéité peuvent être choisis parmi les moyens connus : joints, soudure, collage... ;
- le volume (17) est au moins partiellement rempli par un garnissage limitant ou excluant la présence d'un flux gazeux ; il peut s'agir d'un polymère tel par exemple que de l'époxy ou d'un solide, particulaire (quartz, billes de céramiques, copeaux...) ou pas (tresse, fibres...) remplissant les vides ;
- les modules sont essentiellement cylindriques ; c'est-à-dire que leur base est proche d'un cercle avec des écarts sur les rayons R1/R2 inférieurs à 5%. On pourra se référer à la Figure 15 ou le contacteur 1 est formé par l'enroulement d'un support imprégné d'adsorbant (détail 2) sur un mandrin central 3 ;
- les contacteurs comprennent un matériau adsorbant fixé sur une feuille support plissée, ladite feuille étant enroulée en spirale seule ou associée à une feuille plane ;
- les contacteurs comprennent un matériau adsorbant fixé sur une feuille enroulée en une spirale dont les passages sont maintenus ouverts par des espaceurs ;
- l'épaisseur du matériau adsorbant est inférieur à 500 microns, de préférence inférieure à 250 microns ; notons que l'utilisation de couches adsorbantes minces permet d'améliorer la cinétique. Notons également que les modules de l'élément d'adsorption selon l'invention peuvent être de différents diamètres, préférentiellement de 2 diamètres différents. Ceci peut en effet permettre d'augmenter la densité de contacteurs de l'élément d'adsorption. La longueur, quant à elle, des modules est à priori identique quel que soit le diamètre ainsi que le flux du fluide (débit divisé par la section de passage) à travers les différents modules.
L'invention n'exclut pas la mise en parallèle de modules de sections de forme différente (carré, rectangulaire, trapézoïdale...) mais la fabrication de tels contacteurs, essentiellement par empilage de feuilles support puis découpe éventuelle, parait moins industrielle que le bobinage en cylindre.
La figure 14 représente un exemple d'élément d'adsorption 1 selon l'invention.
L'élément d'adsorption est logé dans une enveloppe 2, comprenant généralement un fond inférieur et un fond supérieur avec des ouvertures pour le passage du flux gazeux (non représentés sur la Figure). Cette enveloppe peut faire partie intégrante de l'élément et rajoutée lors de la fabrication ou il peut s'agir de la virole d'un adsorbeur, l'élément étant logé dans cet adsorbeur. L'élément 1 est constitué d'une pluralité de modules (3, 4, 5...) installés en parallèle. De façon préférentielle, chaque module est constitué de plusieurs contacteurs disposés en série (1 1 , 12, 13...). Les sections 6 et 7 figurent les sections d'entrée et de sortie de l'élément 1. Le volume 17 représente le volume libre entre les modules.
Afin d'obtenir un ratio acceptable pour le volume mort gazeux, l'essentiel de ce volume 17 doit être rendu inaccessible au gaz.
Une première solution consiste à faire une double étanchéité 15 et 16, c'est-à-dire à chacune des extrémités de l'élément.
Une seconde solution consiste à réaliser une étanchéité d'un seul côté, de préférence en partie basse si l'élément est utilisé verticalement, et de remplir l'espace entre modules d'un garnissage limitant ou excluant la présence de gaz. Il peut s'agir d'un polymère ou d'un solide particulaire remplissant les vides. Le volume (18) à la périphérie peut être traité de façon analogue ou au contraire de façon différente si l'élément d'adsorption est introduit dans une virole. L'étanchéité au niveau de la paroi interne de l'enveloppe (2), pour éviter un passage préférentiel du flux gazeux à cet endroit, est réalisée par la simple pression de l'élément, supposée ici de forme circulaire, sur la paroi de l'enveloppe. Si nécessaire, cette étanchéité peut être améliorée par un quelconque des moyens connus (joints, soudure, collage, remplissage...)
Les figures 1 à 7 représentent schématiquement, de manière non exhaustive, les différents types de contacteurs. En effet, les contacteurs peuvent comprendre des canaux de différentes formes et de dimensions différentes. On distingue alors :
- les canaux rectangulaires d'épaisseur ep faible par rapport à leur largeur 1, c'est à dire avec 1 supérieur à 10 ep (figure 1);
- les canaux essentiellement carrés ou rectangulaires mais avec ep dans le même ordre de grandeur que la largeur 1 (figure 2) ;
- les canaux de forme intermédiaire, avec la grande dimension dans un rapport 1.5 à 10 par rapport à la petite dimension (ellipse, rectangle...) ;
- les canaux disposés en couronnes circulaires (figure 3) ;
- les canaux disposés en hélice (figure 4) ;
- les canaux circulaires (figure 5).
Le fluide peut également circuler dans l'espace libre laissé par des parois solides présentés sous forme de cylindres ou fibres (figure 6). Les parois solides peuvent également avoir la configuration « garnissage » comme utilisée en distillation (figure 7). Dans ce dernier cas, il est possible d'utiliser toutes les possibilités géométriques relatives aux dits garnissages en jouant sur les angles de pliage, l'orientation des passages par rapport à la verticale (contacteur supposé vertical), les dimensions des canaux...
De nombreuses configurations sont possibles car la géométrie des canaux est variée (triangle, trapèze, ellipse...). De façon générale, dans tous ces types de contacteurs, susceptibles d'être utilisés dans le cadre de l'invention, le fluide qui est préférentiellement un flux gazeux, circule dans des canaux présentant peu (ou pas) d'obstacle à l'écoulement et l'adsorbant est situé -ou constitue- la paroi des dits canaux.
A titre d'exemple, les documents EP 1 413 348, EP 1 121 981 et WO 2005/094987 décrivent des contacteurs à passages parallèles.
La réalisation du contacteur lui-même, et plus particulièrement de l'ensemble support - paroi, se fait suivant diverses techniques qui peuvent par exemple se classer selon la façon dont l'adsorbant est intégré à la paroi. Dans le cas de « monolithe », l'adsorbant, éventuellement mélangé à un liant constitue directement la paroi des canaux (Figure 8).
Le calcul du volume d'adsorbant prendra en compte le liant dès lors que son pourcentage volume dépassera les 25%, pourcentage maximum habituel pour les adsorbants particulaires standards (billes, bâtonnets) comme indiqué précédemment.
Ainsi un monolithe ayant 40% de section de passage libre pour le gaz et 60% de section constituée par le solide, ce solide comprenant moitié- moitié phase active, /liant, on ne retiendra pour être homogène avec ce qui précède qu'un volume de liant égal à 25% du volume actif d'adsorbant.
Globalement, on aura donc 40% de la section libre pour le gaz, 37.5% pour l'adsorbant et 22.5% considéré comme inactif. Le ratio est alors un peu inférieur à 1.
Dans le cas plus général d'adsorbant « supporté », l'adsorbant 1 10 est fixé sur un support 1 11 , par exemple une feuille métallique, L'adhésion à la paroi peut se faire par l'intermédiaire du liant de l'adsorbant (dont le rôle est alors double : agglomération des micro particules d'adsorbants entre elles et fixation à la paroi) comme illustré dans la Figure 9 ou via une colle 120 spécifique (Figure 10). Le support aura généralement été traité pour faciliter l'adhésion, il peut être poreux par nature (membrane, tissu...) ; de nombreux matériaux peuvent être utilisés tels que des polymères, des céramiques, des métaux, du papier...
Le support de l'adsorbant peut être plié (avant ou après dépôt de la couche adsorbante) et cette feuille pliée elle-même enroulée autour d'un axe central. La figure 3 du document US 5 771 707 montre un tel arrangement. Dans le cas de plis de forme essentiellement triangulaire, la hauteur du triangle et sa base seront généralement comprises entre 0.5 et 5 mm.
L'adsorbant peut également être emprisonné. On trouve également deux sous groupes pour cette technique : « l'emprisonnement « peut être homogène, c'est-à-dire que les particules d'adsorbants 130 sont immobilisées par un réseau de fibres 131 fines et denses qui occupent tout le volume de la paroi (Figure 11). Un adhésif peut être ajouté pour renforcer la fixation. L'emprisonnement de particules d'adsorbant dans des réseaux de fibres a été utilisé dans la fabrication de masque à gaz. On notera cependant que dans ce dernier cas, l'air respiré traversait le milieu adsorbant alors que dans le cas envisagé ici, le flux gazeux longe la paroi contenant l'adsorbant. Selon un autre mode de réalisation, les particules d'adsorbants 140 sont maintenues entre 2 parois (141 ,142) poreuses au fluide (Figure 12). Dans ce cas également, un liant et /ou une colle peuvent être ajoutés pour améliorer si nécessaire le maintien des particules entre les parois poreuses.
Ces parois peuvent être de type métallique, polymères... Elles sont choisies de façon à pouvoir simultanément contenir les particules d'adsorbants et ne pas créer de résistance significative à la diffusion des molécules.
A titre d'exemple, les documents US 7 300 905 et US 5 120694 décrivent de façon non exhaustive ces technologies.
La Figure 13 représente la cellule de base, c'est-à-dire le plus petit élément qui permet de décrire la géométrie d'un contacteur à passage parallèle.
De gauche à droite, on trouve le canal 20, dans lequel circule le flux gazeux, d'épaisseur totale 2 epf, la membrane poreuse maintenant l'adsorbant 21 d'épaisseur epm, la couche d'adsorbant 22 d'épaisseur epads, une couche adhésive 23 d'épaisseur epc et la feuille support 24 d'épaisseur totale 2 eps. La cellule de base a donc pour dimension epf+epm+epads+epc+eps. Les ordres de grandeurs de ces épaisseurs sont par exemple :
• De 50 microns à 3 mm pour le canal, mettons 2 epf = 150 microns
• De 10 à 100 microns pour la membrane poreuse, si elle existe, mettons 25 microns et une porosité de 50%
· De 20 microns à 1 mm pour la couche d'adsorbants, mettons 150 microns
• De 5 à 500 microns pour la couche adhésive, si elle existe, mettons 10 microns
• De 5 microns à 1 mm pour la feuille support, si elle existe, mettons 2 eps= 100 microns.
La cellule de bas e aurait donc dans l ' exemple une épais seur de 3 1 0 microns (75+25+150+10+50).
La membrane poreuse, si elle existe, étant en relation directe avec le canal réservé au fluide, est intégrée à la section libre accessible au fluide, sa porosité étant prise en compte. Ici, le ratio serait donc de 150 divisé par (75+25/2), de l'ordre de 1.7
Dans l'élément d'adsorption selon l'invention, la largeur de l'espace laissé au fluide dans un canal (2epf) est de préférence inférieure à 2 fois l'épaisseur de la couche adsorbante epads (en cas de support) ou à l'épaisseur de ladite couche en cas d'absence de support. Dans le cadre de l'invention, les contacteurs installés en série peuvent avoir des caractéristiques différentes en particulier l'adsorbant déposé peut être différent d'un contacteur à un autre, par exemple 2 zéolites de nature différentes comme CaLSX et LiLSX ou l'épaisseur des couches peut être différente, par exemple plus mince pour le dernier des contacteurs d'une série pour en favoriser la cinétique.
Plus généralement, il peut s'agir de différences sur l'une quelconques des caractéristiques liées à la géométrie ou aux propriétés physiques, par exemple :
- densité, capacité calorifique, conductibilité thermique, éventuellement porosité de la feuille support;
- densité, capacité calorifique, conductibilité thermique, éventuellement porosité de la couche adhésive éventuelle;
- porosité totale, taille moyenne des macropores, densité des particules d'adsorbants, éventuellement dimension, porosité interne, capacité calorifique, conductibilité thermique ainsi que isothermes d'adsorption et de co-adsorption liant l'adsorbant et les molécules présentes dans le flux gazeux pour la couche adsorbante.
La présente invention a également pour objet un dispositif de séparation ou de purification d'un fluide comprenant au moins un élément d'adsorption selon l'invention.
Ce dispositif peut être utilisé plus spécialement :
- pour capturer le C02 contenu dans un flux gazeux ; ou
- dans une unité TSA dont l'étape d'adsorption est de durée inférieure ou égale à 30 minutes, préférentiellement d'environ 15 minutes ; ou
- dans un cycle PSA H2, PSA 02, VSA 02, PSA ou VSA C02.
Les adsorbants susceptibles d'être utilisés dans les contacteurs à passages parallèles sont ceux utilisés dans les unités de séparation ou purification de flux gazeux classiques. Le choix dépend de l'application. Il est possible dans un même contacteur d'utiliser successivement plusieurs adsorbants différents. On pourra citer les gels de silice, l'alumine activée éventuellement dopée, les charbons actifs, les zéolites de type divers (3A, 4A, 5A, type X, LSX, Y etc. éventuellement échangées...). Les zéolites sont généralement utilisées sous forme de microcristaux, voire de nano cristaux selon les procédés de synthèse. D'autres adsorbants, par exemple les charbons actifs, peuvent être concassés pour obtenir des particules de l'ordre du micron. L'invention va maintenant être décrite dans le cas d'un TSA (Température Swing Adsorption) destiné à retirer l'eau et l'essentiel du C02 d'un flux d'air sous moyenne pression.
L'unité comprend 2 adsorbeurs comme celui représenté sur la Figure 16.
Le cycle utilisé est un cycle classique comportant une étape d'adsorption à 5 bar abs et à température ambiante qui permet de produire de l'air sec et décarbonaté. Pendant ce temps, le second adsorbeur est en régénération. La particularité du cycle est que les étapes d'adsorption et de régénération ne durent que 10 minutes. L'utilisation de contacteurs permet de conserver des zones de transfert de masse réduite et d'utiliser l'essentiel de l'adsorbant à l'équilibre.
Chaque adsorbeur comprend un élément d'adsorption 1 selon l'invention logé dans une enveloppe 2 comprenant une virole 8 et des fonds 9, 10.
Les éléments 13, 14, 15 représentent les tubulures d'entrée/sortie.
L'élément d'adsorption est constitué d'une pluralité de modules 3, 4..., chacun des modules étant formé de 2 contacteurs en série 11 et 12 séparés par un espaceur de type croisillon 16 évitant un bouchage éventuel des passages réservés à l'air. Les 2 contacteurs et l'espaceur central sont assemblés en un seul module rendu étanche vers l'extérieur par l'enveloppe 19. Les différents modules sont supportés par la plaque de fond 6, elle-même fixée à la virole. L'étanchéité à l'extrémité inférieure se fait par l'intermédiaire d'un système de joint 20 classique. Ici, la plaque supérieure 7 a seulement un rôle de guide maintenant en place les divers modules. L'espace entre les modules 17 est rempli d'un matériau isolant thermique 18 de sorte que le volume libre résiduel est inférieur à 35%.
L'espace entre modules représente environ 25% du volume de l'élément. En prenant en compte le volume libre des modules, on arrive à un système présentant un volume offert au gaz de l'ordre de 30%, ce qui est comparable - et même plus faible- que ce que l'on trouve avec des lits d'adsorbants classiques.
En adsorption, l'air humide 31 rentre en partie basse, est séché et décarbonaté et sort 32 par une des tubulures en partie supérieure. Après 10 minutes de fonctionnement, l'adsorbeur est dépressurisé puis le gaz de régénération 33 est introduit en tête d'adsorbeur. Ce gaz est chauffé via l'échangeur 34 à une température de l'ordre de 150°C. Chaque adsorbeur comporte son propre réchauffeur situé à proximité de l'élément adsorbant, ceci afin de minimiser l'inertie thermique.
Le matériau isolant 18 a le double rôle d'isoler l'élément de la virole (à la périphérie) et de diminuer le volume mort tout en limitant l'inertie thermique.
Moyennant éventuellement de légères modifications, le dispositif selon l'invention peut être utilisé dans divers procédés PSA tels que les PSA H2 devant produire de l'hydrogène à haute pureté, le déballastage en C02par PSA ou VSA, les PSA/ VSA 02.
Le dispositif selon l'invention est particulièrement adapté à la capture du C02 dans les flux gazeux basse pression, de l'ordre de 0,8 à 2 bar absolus. En effet, des études ont montré qu'une des parts importante dans le coût de la capture du C02 dans les flux gazeux basse pression était la consommation énergétique liée à la perte de charge dans le procédé de capture.
On notera que dans les systèmes régénérables, c'est également la diminution de la perte de charge pendant la régénération qui peut-être le moteur pour le choix d'adsorbeurs à contacteurs à passages parallèles.

Claims

Revendications
1. Elément d'adsorption pour l'épuration ou la séparation d'un fluide, comprenant :
- M modules ((3), (4), (5)...) en parallèle, avec M > 2, chaque module étant espacé du module voisin par un volume (17) et comprenant au moins 1 contacteur à passages parallèles,
- une section d'entrée (6), et
- une section de sortie (7), et
caractérisé en ce que le ratio du volume d'adsorbant compris dans les M modules sur le volume libre accessible au fluide, entre la section d'entrée et la section de sortie du dit élément, est supérieur à 0.75.
2. Elément selon la revendication 1, caractérisé en ce que le fluide est un flux gazeux.
3. Elément selon l'une des revendications 1 ou 2, caractérisé en ce que chaque module comprend au moins 2 contacteurs à passages parallèles disposés en série dans le sens du trajet du fluide à adsorber.
4. Elément selon l'une des revendications 1 à 3, caractérisé en ce que chaque module présente des parois étanches.
5. Elément selon l'une des revendications 1 à 4, caractérisé en ce que les sections d'entrée et de sortie présentent entre chaque module des éléments d'étanchéité.
6. Elément selon l'une des revendications 1 à 5, caractérisé en ce que le volume (17) est au moins partiellement rempli par un garnissage limitant ou excluant la présence d'un flux gazeux.
7. Elément selon l'une des revendications 1 à 6, caractérisé en ce que les modules sont essentiellement cylindriques.
8. Elément selon l'une des revendications 1 à 7, caractérisé en ce que les contacteurs comprennent un matériau adsorbant fixé sur une feuille support plissée, ladite feuille étant enroulée en spirale seule ou associée à une feuille plane.
9. Elément selon l'une des revendications 1 à 8, caractérisé en ce que les contacteurs comprennent un matériau adsorbant fixé sur une feuille enroulée en une spirale dont les passages sont maintenus ouverts par des espaceurs.
10. Elément selon l'une des revendications 1 à 9, caractérisé en ce que l'épaisseur du matériau adsorbant est inférieur à 500 microns, de préférence inférieure à 250 microns.
11. Dispositif de séparation ou de purification d'un fluide comprenant au moins un élément d'adsorption selon l'une des revendications 1 à 10.
12. Utilisation d'un dispositif selon la revendication 11 pour sécher, décarbonater ou arrêter des impuretés secondaires d'un flux gazeux.
13. Utilisation d'un dispositif selon la revendication 1 1 pour capturer le C02 contenu dans un flux gazeux.
14. Utilisation d'un dispositif selon la revendication 11 dans une unité TSA dont l'étape d'adsorption est de durée inférieure ou égale à 30 minutes, préférentiellement d'environ 15 minutes.
15. Utilisation d'un dispositif selon la revendication 11 dans un cycle PSA H2, PSA 02 ou VSA 02.
PCT/FR2012/052876 2012-02-07 2012-12-11 Adsorbeur constitué de plusieurs contacteurs à passage parallèles WO2013117827A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1251117A FR2986440B1 (fr) 2012-02-07 2012-02-07 Adsorbeur constitue de plusieurs contacteurs a passage paralleles
FR1251117 2012-02-07

Publications (1)

Publication Number Publication Date
WO2013117827A1 true WO2013117827A1 (fr) 2013-08-15

Family

ID=47505250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052876 WO2013117827A1 (fr) 2012-02-07 2012-12-11 Adsorbeur constitué de plusieurs contacteurs à passage parallèles

Country Status (2)

Country Link
FR (1) FR2986440B1 (fr)
WO (1) WO2013117827A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3725391A1 (fr) 2019-04-18 2020-10-21 Climeworks AG Dispositif de capture de co2 de l'air à haut rendement et son procédé de fonctionnement
CN112121592A (zh) * 2020-09-06 2020-12-25 安徽昊源化工集团有限公司 一种便于大型空分卧式分子筛吸附器装填吸附剂的方法
US11739506B2 (en) 2021-02-05 2023-08-29 General Electric Company Water recovery system including integrated contactor with thermally-enhanced recovery
WO2023247481A1 (fr) 2022-06-24 2023-12-28 Climeworks Ag Dispositif de capture directe d'air
WO2023247482A1 (fr) 2022-06-24 2023-12-28 Climeworks Ag Dispositif de capture directe d'air
EP4427833A1 (fr) 2023-03-08 2024-09-11 Climeworks AG Dispositif de capture d'air direct
WO2024184330A1 (fr) 2023-03-08 2024-09-12 Climeworks Ag Dispositif de capture directe d'air
WO2024184329A1 (fr) 2023-03-08 2024-09-12 Climeworks Ag Dispositif de capture directe d'air

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015185434A1 (fr) * 2014-06-03 2015-12-10 Climeworks Ag Dispositif de capture d'air direct

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120694A (en) 1989-07-28 1992-06-09 Uop Method of coating aluminum substrates with solid adsorbent
US5771707A (en) 1997-01-16 1998-06-30 Venmar Ventilation Inc. Unitary heat exchanger for the air-to-air transfer of water vapor and sensible heat
US6051050A (en) * 1997-12-22 2000-04-18 Questor Industries Inc. Modular pressure swing adsorption with energy recovery
EP1121981A2 (fr) 2000-02-01 2001-08-08 Nissan Motor Co., Ltd. Catalyseur pour la purification de gaz d'échappement de démarrage à froid
US6692626B2 (en) 2000-04-20 2004-02-17 Questair Technologies Inc. Adsorbent laminate structures
EP1413348A1 (fr) 2002-08-13 2004-04-28 Air Products And Chemicals, Inc. Matériau adsorbant sous forme de feuille pour dispositifs de mise en contact à courants parallèles
WO2005094987A1 (fr) 2004-03-23 2005-10-13 Calgon Carbon Corporation Matiere adsorbante composite faconnee
US7300905B2 (en) 2001-01-05 2007-11-27 Questair Technologies Inc. Methods for their manufacture of adsorbent
US20080282888A1 (en) * 2007-05-18 2008-11-20 Deckman Harry W Temperature swing adsorption of CO2 from flue gas using a parallel channel contractor
WO2011137398A1 (fr) * 2010-04-30 2011-11-03 Peter Eisenberger Système et procédé de capture et de séquestration de dioxyde de carbone

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120694A (en) 1989-07-28 1992-06-09 Uop Method of coating aluminum substrates with solid adsorbent
US5771707A (en) 1997-01-16 1998-06-30 Venmar Ventilation Inc. Unitary heat exchanger for the air-to-air transfer of water vapor and sensible heat
US6051050A (en) * 1997-12-22 2000-04-18 Questor Industries Inc. Modular pressure swing adsorption with energy recovery
EP1121981A2 (fr) 2000-02-01 2001-08-08 Nissan Motor Co., Ltd. Catalyseur pour la purification de gaz d'échappement de démarrage à froid
US6692626B2 (en) 2000-04-20 2004-02-17 Questair Technologies Inc. Adsorbent laminate structures
US7300905B2 (en) 2001-01-05 2007-11-27 Questair Technologies Inc. Methods for their manufacture of adsorbent
EP1413348A1 (fr) 2002-08-13 2004-04-28 Air Products And Chemicals, Inc. Matériau adsorbant sous forme de feuille pour dispositifs de mise en contact à courants parallèles
WO2005094987A1 (fr) 2004-03-23 2005-10-13 Calgon Carbon Corporation Matiere adsorbante composite faconnee
US20080282888A1 (en) * 2007-05-18 2008-11-20 Deckman Harry W Temperature swing adsorption of CO2 from flue gas using a parallel channel contractor
WO2011137398A1 (fr) * 2010-04-30 2011-11-03 Peter Eisenberger Système et procédé de capture et de séquestration de dioxyde de carbone

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
REZAEI F ET AL: "Structured adsorbents in gas separation processes", SEPARATION AND PURIFICATION TECHNOLOGY, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 70, no. 3, 12 January 2010 (2010-01-12), pages 243 - 256, XP026811524, ISSN: 1383-5866, [retrieved on 20091014] *
RUTHVEN; THAERON, GAS SEP. PURIF., vol. 10, 1996, pages 63

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3725391A1 (fr) 2019-04-18 2020-10-21 Climeworks AG Dispositif de capture de co2 de l'air à haut rendement et son procédé de fonctionnement
WO2020212146A1 (fr) 2019-04-18 2020-10-22 Climeworks Ag Dispositif de capture d'air direct à haut débit pour capturer du co2 à partir d'air et son procédé de fonctionnement
US11944932B2 (en) 2019-04-18 2024-04-02 Climeworks Ag High throughput direct air capture device and method of its operation
CN112121592A (zh) * 2020-09-06 2020-12-25 安徽昊源化工集团有限公司 一种便于大型空分卧式分子筛吸附器装填吸附剂的方法
US11739506B2 (en) 2021-02-05 2023-08-29 General Electric Company Water recovery system including integrated contactor with thermally-enhanced recovery
WO2023247481A1 (fr) 2022-06-24 2023-12-28 Climeworks Ag Dispositif de capture directe d'air
WO2023247482A1 (fr) 2022-06-24 2023-12-28 Climeworks Ag Dispositif de capture directe d'air
US11944931B2 (en) 2022-06-24 2024-04-02 Climeworks Ag Direct air capture device
EP4427833A1 (fr) 2023-03-08 2024-09-11 Climeworks AG Dispositif de capture d'air direct
WO2024184330A1 (fr) 2023-03-08 2024-09-12 Climeworks Ag Dispositif de capture directe d'air
WO2024184329A1 (fr) 2023-03-08 2024-09-12 Climeworks Ag Dispositif de capture directe d'air

Also Published As

Publication number Publication date
FR2986440B1 (fr) 2015-04-24
FR2986440A1 (fr) 2013-08-09

Similar Documents

Publication Publication Date Title
WO2013117827A1 (fr) Adsorbeur constitué de plusieurs contacteurs à passage parallèles
EP2501459A1 (fr) Procede de purification d'un flux gazeux mettant en uvre un contacteur a passages paralleles presentant une conservation de ses performances
AU2012223552B2 (en) Gas purification process utilizing engineered small particle adsorbents
AU2008254961B2 (en) Temperature swing adsorption of CO2 from flue gas utilizing heat from compression
EP2129449B1 (fr) Procédé et installation de purification ou de séparation utilisant plusieurs adsorbeurs décalés en phase
EP1338324A2 (fr) Utilisation d'un adsorbant sous forme de mousse solide pour la purification ou la séparation de gaz
US9308486B2 (en) Method of using a structured adsorbent bed for capture of CO2 from low pressure and low pressure concentration sources
EP1240939A2 (fr) Absorbant a transfert de matière améliore pour procédé VSA ou PSA
SA111320418B1 (ar) نظام وطريقة لاحتجاز ثاني أكسيد الكربون وتنحية أيوناته
CA2743951A1 (fr) Adsorbeurs radiaux monolits en serie
WO2016016543A1 (fr) Adsorbeur avec secheur rotatif
CN114222619A (zh) 制造高填充率复合吸附体床层的方法、包括床层的吸附器和使用吸附器的基于吸附的气体分离
US20150136316A1 (en) Method of manufacturing a structured adsorbent bed for capture of co2 from low pressure and low concentration sources
WO2020169901A1 (fr) Installation et procédé de séparation des gaz de l'air à basse pression
WO2020169899A1 (fr) Procédé et installation de purification d'un flux gazeux de débit élevé
FR2992573A1 (fr) Assemblage de modules d'adsorbants structures
FR2988623A1 (fr) Reduction des volumes morts d'un adsorbeur pour adsorption d'un flux gazeux
EP2704815A1 (fr) Adsorbeur comprenant des contacteurs à passages parallèles avec isolation intégrée
FR2974520A1 (fr) Adsorbeur en position horizontale
WO2013156697A1 (fr) « adsorbeur radial comportant un lit d'adsorbant structuré»
FR3059911A3 (fr) Systeme de traitement d'un fluide comprenant un volume actif en configuration radiale
FR2967083A1 (fr) Procede de purification d'un flux gazeux mettant en œuvre un contacteur a passages paralleles dans un cycle psa super-rapide
BE1010684A6 (fr) Procede de purification du gaz carbonique genere par des procedes industriels adaptes, notamment par fermentation, et structures purificatrices employees a cet effet.
EP3274073B1 (fr) Procédé de production d'oxygène par vpsa
RU2799338C1 (ru) Способ изготовления композитного адсорбирующего слоя с высокой плотностью упаковки, адсорбер, содержащий его, и разделение газов на основе адсорбции с применением адсорбера

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12810388

Country of ref document: EP

Kind code of ref document: A1