WO2013117305A2 - Energiegewinnungssystem mit energiespeicher, verfahren zum betreiben eines energiegewinnungssystems - Google Patents

Energiegewinnungssystem mit energiespeicher, verfahren zum betreiben eines energiegewinnungssystems Download PDF

Info

Publication number
WO2013117305A2
WO2013117305A2 PCT/EP2013/000238 EP2013000238W WO2013117305A2 WO 2013117305 A2 WO2013117305 A2 WO 2013117305A2 EP 2013000238 W EP2013000238 W EP 2013000238W WO 2013117305 A2 WO2013117305 A2 WO 2013117305A2
Authority
WO
WIPO (PCT)
Prior art keywords
power
inverter
voltage
converter
solar generator
Prior art date
Application number
PCT/EP2013/000238
Other languages
English (en)
French (fr)
Other versions
WO2013117305A3 (de
Inventor
Sebastian Schiffmann
Josef Schmidt
Matthias Hauck
Christian Lampert
Daniel TRITSCHLER
Thomas Zöller
Original Assignee
Sew-Eurodrive Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sew-Eurodrive Gmbh & Co. Kg filed Critical Sew-Eurodrive Gmbh & Co. Kg
Priority to US14/376,707 priority Critical patent/US20150295412A1/en
Priority to AU2013218374A priority patent/AU2013218374B2/en
Priority to EP13703523.4A priority patent/EP2812973B1/de
Priority to CN201380008471.0A priority patent/CN104185936B/zh
Publication of WO2013117305A2 publication Critical patent/WO2013117305A2/de
Publication of WO2013117305A3 publication Critical patent/WO2013117305A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention relates to an energy recovery system with energy storage and a method for operating an energy recovery system.
  • the invention is therefore the object of an energy recovery system
  • the object is achieved in the energy recovery system with energy storage according to the features specified in claim 1 and in the method according to claim 5 or 9.
  • a solar generator in particular a module comprising solar cells
  • an inverter in particular at the Gleichstrom glovem connection, wherein the inverter is connected at its AC-side terminal to a consumer and / or an AC power in which a DC / DC converter is connected in parallel with the solar generator, in particular the module (s) comprising solar cells, in particular with its first one
  • DC-side terminal wherein the DC / DC converter is connected to an energy storage, in particular, which is connected to the second DC-side terminal of the DC / DC converter.
  • Inverter despite additional connected energy storage continues to work undisturbed. Because the working characteristics of the DC / DC converter are selectable so that, although the energy flow in or out of the energy storage is controllable. Nevertheless, finding the power maximum of the electrical energy generated by the solar generator in the same way from the MPP tracker, so maximum power point tracker, findable.
  • Inverter for feeding in the grid of the energy generated, with a
  • Energy storage can be retrofitted by the DC / DC converter is connected in parallel to the solar generator. Thus, then as needed energy from the solar generator via the DC / DC converter in the energy storage can be fed. Accordingly, energy from the energy storage can be supplied to the inverter if there is a corresponding need - for example, at night or too low illuminance of the solar generator.
  • Another advantage is therefore that existing photovoltaic systems can be retrofitted without device-specific knowledge about the respective photovoltaic inverter and without implementation of communication or data exchange to the existing system.
  • the solar generator in particular the solar cell comprehensive module, a film capacitor is connected in parallel.
  • the advantage here is that high-frequency voltage fluctuations can be buffered.
  • the energy store has a
  • Double-layer capacitor and / or consists of several interconnected double-layer capacitors and / or the energy storage device has an accumulator and / or a battery.
  • the advantage here is that very high capacity in
  • the inverter has an MPP tracker.
  • MPP tracker the maximum operating point of the
  • the inverter regulates the voltage associated with this operating point by making small voltages
  • a solar generator in particular one or more solar cells comprising modules
  • an inverter in particular at the Gleichstrom feltem connection, wherein the inverter at its AC-side terminal with a
  • the inverter Connected load and / or an AC mains, in particular wherein the inverter has an MPP tracker, wherein from an energy storage device via a DC / DC converter, electrical power is supplied to the inverter, wherein the inverter voltage applied to the inverter is detected and one of DC / DC converter to be supplied to the power line side connection of the inverter to be supplied power according to a characteristic curve,
  • Specifies the target power supplied to the injection current side connection of the inverter in particular by multiplying the voltage applied on the DC side by the current supplied by the DC / DC converter to the inverter, and the difference between the nominal power and the actual output of the DC / DC Converter is determined to be supplied to the inverter power, in particular with other factors such as operating mode, behavior of the MPP tracker of the inverter or the like, are taken into account.
  • the advantage here is that on the specification of the characteristic of the DC / DC converter from the Energy storage for the DC side connection of the inverter supplied or discharged therefrom amount of electrical power is controllable.
  • the characteristic curve represents such a relationship between power and DC-side voltage that after addition of the corresponding power-voltage characteristic of the solar generator that value of the voltage at which there is a maximum of power remains substantially unchanged.
  • the characteristic is so little variable that after addition of the corresponding power-voltage characteristic of the solar generator that value of the voltage at which a maximum of power is present, substantially
  • an inverter with MPP tracker detects the DC side input current and regulates the voltage at its DC side terminals to a maximum of power out, said power generating means, in particular solar generator, at its
  • a device is connected to the DC side terminal, which determines from the DC side detected voltage taking into account a nominal power and the current supplied by the device to the DC side terminal of the inverter actual current and the DC side of the inverter detects applied voltage and determines therefrom an actual power, which regulates the device to the desired power by determining a corresponding desired current and to regulate it, in particular wherein the characteristic curve depicts the dependence of the nominal power on the voltage applied to the DC side of the inverter, in particular wherein the characteristic curve can be changed by means of a primary control intervention.
  • the advantage here is that the DC / DC converter has a current regulator, the one
  • Power controller or a power determination means is superordinate, with a characteristic curve is used, by means of which the power management of
  • Energy storage is executable. This power management is independent of the mode of operation of the inverter including MPP tracker executable.
  • the characteristic is changed according to influencing variables, in particular stretched or compressed.
  • the sign of the characteristic curve depends on the operating mode, in particular removal of energy from or supply of energy into the energy store.
  • the advantage here is that by means of the sign, the removal or supply, so the direction of energy flow is controllable.
  • the characteristic curve has a substantially constant setpoint power value in a voltage range which corresponds to those respectively
  • Voltage includes, which is associated with the power maximum of the solar generator, in particular which is associated with the maximum power of the solar generator at all illuminance levels of the solar generator.
  • the characteristic curve has a locally minimal profile of the desired power values as a function of the voltage in a voltage range which includes the respective voltage value which is assigned to the maximum output of the solar generator, in particular which corresponds to the power maximum of the solar generator
  • FIG. 2 shows the consideration of the higher-order influencing variables on the
  • FIG. 3 shows the generation of a working characteristic of the system for the state of the energy output from the storage 4, in particular in daylight.
  • FIG. 4 shows the generation of a working characteristic of the system for the state of energy absorption in the storage 4, in particular in daylight.
  • FIG. 5 shows the generation of a working characteristic of the system for the state of the energy output from the storage 4, in particular at night.
  • FIG. 6 shows a first part and in FIG. 7 a further detail of FIG
  • the system has a solar generator 3 which, when irradiated with light, provides electrical energy, in particular in the form of a unipolar voltage, in particular DC voltage.
  • the solar generator 3 is connected to an inverter 2, whose particular single- or multi-phase AC output is connected to the corresponding network 1.
  • a DC / DC converter 5 is switched on, so that energy from an energy storage 4 to the inverter 2 can be fed.
  • consumers are also arranged as a load 6 at the AC output of the inverter 2.
  • variables which can be provided such as market price 23, load forecast 24, storage level 25, are stored in energy store 4
  • the output side current I is the DC / DC converter 5 and the output side voltage
  • U_ist U_S is detected and used to determine the actual power PJst.
  • a value is determined, which is like the target power P_Soll fed to a determination block, taking into account the behavior 21 of the MPP tracker and the Operating mode 22 and the voltage U_S a current setpoint l_Soll determined to the regulated by the DC / DC converter 5 to the parallel inverter 2 current is regulated out.
  • the power of the solar generator is shown as a function of voltage applied to the solar generator 3 voltage U_S in the left graph of Figure 3.
  • Search method of the MPP tracker found the optimum of performance or at least the operating point regulated to this optimum.
  • the power to be provided by the DC / DC converter 5 is determined according to a characteristic as a function of the voltage U_S.
  • Reference symbol 30 shows the primary control action on this characteristic curve. Because the characteristic is changed, in particular stretched in the ordinate direction, according to the procedure of Figure 2. Basically, the characteristic curves are similar in that they all rise steeply at a voltage U_S increasing from 0 to an almost constant range, from which they drop steeply again at high voltage U_S.
  • the almost constant range has a local maximum, which is set so that the associated voltage is less than or equal to all possible MPP voltages of the solar generator.
  • these methods ensure that in the event of a sudden sharp drop in the MPP voltage of the solar generator, e.g. because of a
  • the new MPP of the solar generator is always reliably detected.
  • the advantage is that with simultaneous feed, so power to the
  • the sum of the two characteristic curves leads to a characteristic whose maximum is arranged at substantially the same point. Therefore, the operation of the MPP tracker remains undisturbed. Because this continues to find by varying the voltage the operating point with the larger power generated by the solar generator.
  • FIG. 5 shows the state when the solar generator 3 is not illuminated, these then generating no electrical power.
  • the corresponding predetermined characteristic curve has a maximum, to which the MPP tracker hin Kunststofft and thus on the this given operating point.
  • the maximum is located at the optimum operating point of the DC / DC converter and / or the overall system.
  • the respective characteristic is stretched or compressed in each of the operating modes.
  • the characteristics used in the above three modes do not merge into each other by stretching or compression.
  • the characteristic of the second mode of operation has a different sign than the characteristic of the first mode.
  • Characteristic of the second mode no local maximum but a minimum, which is designed as a plateau.
  • the characteristic has a single pronounced extremum, so that the MPP tracker finds this operating point.
  • the inverter thus has a direct current connection to which the solar generator 3 and the DC / DC converter 5 are connected. He also has one
  • AC power connection where it is connected to the AC voltage network 1 and at least one consumer.
  • the inverter is implemented at its AC side terminal for a single-phase or a three-phase network.
  • the normalized characteristic according to FIG. 3, ie power consumption of the memory has a constant, in particular negative, course over the entire operating range of the solar generator and drops to zero at the edge of the working range.
  • the upstream control for determining P_soll ensures that the amount of the nominal value of the storage power P_setpoint is always below the current solar power.
  • the characteristic curve according to FIG. 4 that is to say for the power output of the memory with available PV power (day), has a virtually constant course over the entire operating range of the solar generator and drops to zero at the edge of the working range. In the almost constant range, there is a maximum which is set so that the
  • the system parameters are either measured by the energy storage system and / or specified during commissioning as parameters.
  • the selection of the respective characteristic curve is dependent on the operating mode, which results from the desired value of the storage power and the state of the solar generator (eg day / night).
  • a selection means operating mode-dependent selected characteristic and the applied solar voltage, a normalized power setpoint P_norm is determined, which is multiplied by a corrected power setpoint P_korr.
  • this means a stretching of the same, ie the primary actuating intervention.
  • the result P is divided by the applied solar voltage U_S and then limited.
  • the result I soll is given to the DC / DC converter as the current setpoint.
  • the tracking has the task of correcting possible deviations between nominal and actual storage capacity.
  • the time constant of the control element must be at least one order of magnitude higher than that of the MPPT in order to prevent mutual interference.
  • P_Korr is thus determined as the sum of P_Soll and the output signal P_after tracking.
  • This output signal P_nach is determined as the output signal of a control element, in particular PI control element, to which the difference between P_setpoint and the detected actual power P_lst is supplied on the input side, which is obtained by detecting the actual value of the output on the output side of the DC / DC converter current I actual and multiplication by
  • P_korr is used as the stretch factor for P_norm.
  • the setpoint current I_Soll is determined, which is specified for the DC / DC converter.
  • a rotary storage is used as energy storage, in which case instead of the DC / DC converter, a DC / AC converter is used, wherein the AC terminals AC are connected to the rotary memory.
  • a converter is to be understood as meaning either a DC / DC converter for an energy store, such as a capacitor, accumulator or battery, or a DC / AC converter for a rotary store.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

Energiegewinnungssystem mit Energiespeicher, Verfahren zum Betreiben eines Energiegewinnungssystems, wobei Solarzellen, insbesondere ein Solarzellen umfassendes Modul, mit einem Wechselrichter verbunden sind, insbesondere an dessen gleichstromseitigem Anschluss, wobei der Wechselrichter an seinem wechselspannungsseitigen Anschluss mit einem Verbraucher und/oder einem Wechselstromnetz verbunden ist, wobei den Solarzellen, insbesondere dem Solarzellen umfassenden Modul, ein DC/DC- Wandler parallel geschaltet ist, insbesondere mit dessen erstem gleichstromseitigen Anschluss, wobei der DC/DC-Wandler mit einem Energiespeicher verbunden ist, insbesondere der mit dem zweiten gleichstromseitigen Anschluss des DC/DC-Wandlers verbunden ist.

Description

Energiegewinnungssystem mit Energiespeicher, Verfahren zum Betreiben eines Energiegewinnungssystems
Beschreibung:
Die Erfindung betrifft ein Energiegewinnungssystem mit Energiespeicher und ein Verfahren zum Betreiben eines Energiegewinnungssystems.
Es ist allgemein bekannt, dass beleuchtete Solarzellen elektrische Energie in Form von Gleichstrom erzeugen, die einem Wechselrichter an dessen gleichstromseitigem Anschluss zuführbar ist.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Energiegewinnungssystem
weiterzubilden.
Erfindungsgemäß wird die Aufgabe bei dem Energiegewinnungssystem mit Energiespeicher nach den in Anspruch 1 und bei dem Verfahren nach Anspruch 5 oder 9 angegebenen Merkmalen gelöst. Wichtige Merkmale der Erfindung bei dem Energiegewinnungssystem mit Energiespeicher sind, dass ein Solargenerator, insbesondere ein Solarzellen umfassendes Modul, mit einem Wechselrichter verbunden ist, insbesondere an dessen gleichstromseitigem Anschluss, wobei der Wechselrichter an seinem wechselspannungsseitigen Anschluss mit einem Verbraucher und/oder einem Wechselstromnetz verbunden ist, wobei dem Solargenerator, insbesondere dem oder den Solarzellen umfassenden Modulen, ein DC/DC-Wandler parallel geschaltet ist, insbesondere mit dessen erstem
gleichstromseitigen Anschluss, wobei der DC/DC-Wandler mit einem Energiespeicher verbunden ist, insbesondere der mit dem zweiten gleichstromseitigen Anschluss des DC/DC-Wandlers verbunden ist.
Statt DC/DC-Wandler ist auch ein anderer Stromrichter verwendbar.
BESTÄTIGUNGSKOPIE Von Vorteil ist dabei, dass der Wechselrichter, insbesondere der MPP-Tracker des
Wechselrichters, trotz zusätzlich verbundenem Energiespeicher ungestört weiterarbeitet. Denn die Arbeitskennlinien des DC/DC-Wandlers sind derart wählbar, dass zwar der Energiefluss in oder aus dem Energiespeicher steuerbar ist. Trotzdem ist aber das Auffinden des Leistungs-Maximums der von dem Solargenerator erzeugten elektrischen Energie in gleicher weise vom MPP-Tracker, also Maximum Power Point Tracker, auffindbar.
Somit sind vorhandene Solaranlagen, welche einen Solargenerator und einen
Wechselrichter zur Netzeinspeisung der erzeugten Energie aufweisen, mit einem
Energiespeicher nachrüstbar, indem der DC/DC-Wandler parallel zu dem Solargenerator zugeschaltet wird. Somit ist dann nach Bedarf Energie von dem Solargenerator über den DC/DC-Wandler in den Energiespeicher einspeisbar. Entsprechend ist Energie aus dem Energiespeicher dem Wechselrichter zuführbar, wenn entsprechender Bedarf vorliegt - beispielsweise bei Nacht oder bei zu geringer Beleuchtungsstärke des Solargenerators.
Weiterer Vorteil ist also auch, dass bestehende Photovoltaikanlagen nachrüstbar sind ohne gerätespezifisches Wissen über den jeweiligen Photovoltaikwechselrichter und ohne Implementierung einer Kommunikation bzw. eines Datenaustausches zur bestehenden Anlage.
Bei einer vorteilhaften Ausgestaltung ist dem Solargenerator, insbesondere dem Solarzellen umfassenden Modul, ein Folienkondensator parallel geschaltet. Von Vorteil ist dabei, dass hochfrequente Spannungsschwankungen abpufferbar sind.
Bei einer vorteilhaften Ausgestaltung weist der Energiespeicher einen
Doppelschichtkondensator auf und/oder besteht aus mehreren miteinander verschalteten Doppelschichtkondensatoren und/oder der Energiespeicher weist einen Akkumulator und/oder eine Batterie auf. Von Vorteil ist dabei, dass sehr hohe Kapazitäten in
kostengünstiger Weise bei geringer Masse des Energiespeichers bereit stellbar sind.
Bei einer vorteilhaften Ausgestaltung weist der Wechselrichter einen MPP-Tracker auf. Von Vorteil ist dabei, dass der MPP-Tracker den Arbeitspunkt maximaler Leistung des
Solargenerators ansteuert. Somit ist auch bei schwankenden Betriebsbedingungen, wie Temperaturschwankungen und/oder Beleuchtungsstärke-Schwankungen, die maximale Leistungsausbeute bei dem Solargenerator erreichbar. Hierzu regelt der Wechselrichter auf die zu diesem Arbeitspunkt zugehörige Spannung hin, indem er kleine
Spannungsänderungen einsteuert und die sich daraufhin einstellende Leistung.bestimmt. Schrittweise wird dann die Spannung in diejenige Richtung verändert, in welcher die Leistung anwächst.
Wichtige Merkmale bei dem Verfahren zum Betreiben eines Energiegewinnungssystems, nach Anspruch 5 sind, dass ein Solargenerator, insbesondere ein oder mehrere Solarzellen umfassende Module, mit einem Wechselrichter verbunden ist, insbesondere an dessen gleichstromseitigem Anschluss, wobei der Wechselrichter an seinem wechselspannungsseitigen Anschluss mit einem
Verbraucher und/oder einem Wechselstromnetz verbunden ist, insbesondere wobei der Wechselrichter einen MPP-Tracker aufweist, wobei aus einem Energiespeicher über einen DC/DC-Wandler elektrische Energie dem Wechselrichter zugeführt wird, wobei am Wechselrichter gleichstromseitig anliegende Spannung erfasst wird und eine vom DC/DC-Wandler an den gieichstromseitigen Anschluss des Wechselrichters zu liefernde Soll- Leistung gemäß einer Kennlinie bestimmt wird,
Von Vorteil ist dabei, dass die Kennlinie derart wählbar ist, dass das Auffinden des
Arbeitspunktes mit der maximalen von dem Solargenerator erzeugten Leistung unverändert ermöglicht ist.
Bei einer vorteilhaften Ausgestaltung wird die vom DC/DC-Wandler an den
gieichstromseitigen Anschluss des Wechselrichters gelieferte Soll-Leistung bestimmt, insbesondere indem die gleichstromseitig anliegende Spannung mit dem vom DC/DC- Wandler an den Wechselrichter gelieferten Strom multipliziert wird, und aus der Differenz zwischen Soll-Leistung und Ist-Leistung der vom DC/DC-Wandler an den Wechselrichter zu liefernde Strom bestimmt wird, insbesondere wobei weitere Einflussgrößen, wie Betriebsart, Verhalten des MPP-Trackers des Wechselrichters oder dergleichen, berücksichtigt werden. Von Vorteil ist dabei, dass über die Vorgabe der Kennlinie des DC/DC-Wandlers die vom Energiespeicher zum gleichstromseitigen Anschluss des Wechselrichters zugeführte oder von dort abgeführte elektrische Leistungsmenge steuerbar ist.
Bei einer vorteilhaften Ausgestaltung stellt die Kennlinie einen derartigen Zusammenhang zwischen Leistung und gleichstromseitiger Spannung dar, dass nach Addition der entsprechenden Leistungs-Spannungs-Kennlinie des Solargenerators derjenige Wert der Spannung, bei dem ein Maximum an Leistung vorliegt, im Wesentlichen unverändert bleibt. Von Vorteil ist dabei, dass der die Arbeitsweise des MPP-Trackers im Wesentlichen ungestört verläuft, obwohl zusätzlich der DC/DC-Wandler parallel zu dem Solargenerators zugeschaltet ist.
Bei einer vorteilhaften Ausgestaltung ist die Kennlinie derart wenig veränderlich, dass nach Addition der entsprechenden Leistungs-Spannungs-Kennlinie des Solargenerators derjenige Wert der Spannung, bei dem ein Maximum an Leistung vorliegt, im Wesentlichen
unverändert bleibt, insbesondere so dass der MPP-Tracker auf dasselbe Leistungsmaximum des Solargenerators hinregelt, wie wenn kein Energiespeicher mit DC/DC-Wandler vorhanden wäre. Von Vorteil ist dabei, dass wiederum der die Arbeitsweise des MPP- Trackers im Wesentlichen ungestört verläuft, obwohl zusätzlich der DC/DC-Wandler parallel zu dem Solargenerator zugeschaltet ist.
Wichtige Merkmale bei dem Verfahren zum Betreiben eines Energieerzeugungssystems nach Anspruch 9 sind, dass ein Wechselrichter mit MPP-Tracker den gleichstromseitigen Eingangsstrom erfasst und die Spannung an seinem gleichstromseitigen Anschlussklemmen auf ein Maximum an Leistung hin regelt, wobei Energieerzeugungsmittel, insbesondere Solargenerator, an seinem
gleichstromseitigen Anschluss angeschlossen sind, wobei eine Vorrichtung an dem gleichstromseitigen Anschluss angeschlossen wird, welche aus der gleichstromseitig erfassten Spannung unter Berücksichtigung einer Kennlinie eine Soll-Leistung bestimmt und den von der Vorrichtung an den gleichstromseitigen Anschluss des Wechselrichters gelieferten Ist-Strom sowie die gleichstromseitig am Wechselrichter anliegende Spannung erfasst und daraus eine Ist-Leistung bestimmt, die die Vorrichtung auf die Soll-Leistung hinregelt, indem sie einen entsprechenden Soll-Strom bestimmt und darauf hinregelt, insbesondere wobei die Kennlinie die Abhängigkeit der Soll-Leistung von der gleichstromseitig am Wechselrichter anliegenden Spannung darstellt, insbesondere wobei die Kennlinie mittels eines primären Stelleingriffs veränderbar ist.
Von Vorteil ist dabei, dass der DC/DC-Wandler einen Stromregler aufweist, dem ein
Leistungsregler beziehungsweise ein Leistungsbestimmungsmittel übergeordnet ist, wobei eine Kennlinie verwendet wird, mittels welcher das Leistungsmanagement des
Energiespeichers ausführbar ist. Dabei ist dieses Leistungsmanagement unabhängig von der Arbeitsweise des Wechselrichters samt MPP Tracker ausführbar.
Bei einer vorteilhaften Ausgestaltung wird die Kennlinie entsprechend von Einflussgrößen verändert wird, insbesondere gedehnt oder gestaucht. Von Vorteil ist dabei, dass die
Ordinatenwerte mit einem Faktor abhängig von den Einflussgrößen multipliziert werden. Somit ist durch einfache Rechenoperationen ein Anpassen an Einflussgrößen ausführbar.
Bei einer vorteilhaften Ausgestaltung weist das Vorzeichen der Kennlinie abhängig von der Betriebsart, insbesondere Entnahme von Energie aus dem oder Zuführung von Energie in den Energiespeicher. Von Vorteil ist dabei, dass mittels des Vorzeichens die Entnahme oder Zuführung, also die Energieflussrichtung steuerbar ist.
Bei einer vorteilhaften Ausgestaltung weist die Kennlinie einen im Wesentlichen konstanten Soll-Leistungs-Wert auf in einem Spannungs-Bereich, welcher denjenigen jeweiligen
Spannungswert umfasst, welcher dem Leistungsmaximum des Solargenerators zugeordnet ist, insbesondere welcher dem Leistungsmaximum des Solargenerators zugeordnet ist bei allen Beleuchtungsstärken des Solargenerators. Von Vorteil ist dabei, dass eine flache Kennlinie in diesem Spannungsberiech bewirkt, dass der MPP-Tracker ungestört arbeitet.
Bei einer vorteilhaften Ausgestaltung weist die Kennlinie einen lokal minimalen Verlauf der Soll-Leistungs-Werte in Abhängigkeit von der Spannung auf in einem Spannungs-Bereich, welcher denjenigen jeweiligen Spannungswert umfasst, welcher dem Leistungsmaximum des Solargenerators zugeordnet ist, insbesondere welcher dem Leistungsmaximum des
Solargenerators zugeordnet ist bei allen Betriebsbedingungen, wie zulässigen Temperaturen und Beleuchtungsstärken, des Solargenerators. Von Vorteil ist dabei, dass mittels des lokalen Minimums der Leistungsfluss aus oder in den Energiespeicher entsprechend spannungsabhängig anpassbar ist. Weitere Vorteile ergeben sich aus den Unteransprüchen. Die Erfindung ist nicht auf die Merkmalskombination der Ansprüche beschränkt. Für den Fachmann ergeben sich weitere sinnvolle Kombinationsmöglichkeiten von Ansprüchen und/oder einzelnen
Anspruchsmerkmalen und/oder Merkmalen der Beschreibung und/oder der Figuren, insbesondere aus der Aufgabenstellung und/oder der sich durch Vergleich mit dem Stand der Technik stellenden Aufgabe.
Die Erfindung wird nun anhand von Abbildungen näher erläutert:
In der Figur i ist ein schematischer Aufbau eines erfindungsgemäßen dezentralen
Energiegewinnungssystems mit Energiespeicher 4 gezeigt.
In der Figur 2 ist die Berücksichtigung der übergeordneten Einflussgrößen auf die
Arbeitsweise des Energiespeichers 4 gezeigt.
In der Figur 3 ist die Erzeugung einer Arbeitskennlinie des Systems für den Zustand der Energieabgabe aus dem Speicher 4, insbesondere bei Tageslicht, gezeigt.
In der Figur 4 ist die Erzeugung einer Arbeitskennlinie des Systems für den Zustand der Energieaufnahme in den Speicher 4, insbesondere bei Tageslicht, gezeigt. In der Figur 5 ist die Erzeugung einer Arbeitskennlinie des Systems für den Zustand der Energieabgabe aus dem Speicher 4, insbesondere bei Nacht, gezeigt.
In der Figur 6 ist ein erster Teil und in der Figur 7 ein weiterer Ausschnitt eines
Kennlinienblocks gezeigt.
Wie in Figur 1 gezeigt, weist das System einen Solargenerator 3 auf, der bei Bestrahlung mit Licht elektrische Energie bereit stellt, insbesondere in Form einer unipolaren Spannung, insbesondere Gleichspannung. Der Solargenerator 3 ist an einen Wechselrichter 2 angeschlossen, dessen insbesondere ein- oder mehrphasiger Wechselstromausgang mit dem entsprechenden Netz 1 verbunden ist.
Parallel zu dem Solargenerator 3 ist ein DC/DC-Wandler 5 zugeschaltet, so dass Energie aus einem Energiespeicher 4 dem Wechselrichter 2 zuführbar ist. Netzseitig sind auch Verbraucher als Last 6 am Wechselstromausgang des Wechselrichters 2 angeordnet.
Wie in Figur 2 dargestellt, wird aus Einflussgrößen, wie Marktpreis 23, Lastprognose 24, Speicherstand 25, zur Verfügung stellbare, im Energiespeicher 4 gespeicherte
Energiemenge, lokaler Verbrauch 26, Solarleistung 27, Anforderungen 28 des Netzbetreibers oder einer übergeordneten Steuerung und/oder Wetterprognose 29, eine Soll-Leistung P_Soll bestimmt.
Der ausgangsseitige Strom I Ist des DC/DC-Wandlers 5 und die ausgangsseitige Spannung
U_ist = U_S wird erfasst und daraus die Ist-Leistung PJst bestimmt.
Aus der in einer Nachführung 20 bestimmten Differenz zwischen der Ist-Leistung PJst und der Soll-Leistung P_Soll wird ein Wert bestimmt, der ebenso wie die Soll-Leistung P_Soll einem Bestimmungsblock zugeführt wird, der unter Berücksichtigung des Verhaltens 21 des MPP-Trackers und der Betriebsart 22 sowie der Spannung U_S einen Strom-Sollwert l_Soll bestimmt, auf den der vom DC/DC-Wandler 5 an den parallel geschalteten Wechselrichter 2 gespeiste Strom hin geregelt wird.
Auf diese Weise wird, wie in Figur 3 gezeigt, ermöglicht, dass der MPP-Tracker ungestört durch den zusätzlich zu dem Solargenerator 3 verbundenen DC/DC-Wandler 5 den Punkt maximaler Leistung findet. Dabei verändert der MPP-Tracker die jeweils an dem
Solargenerator 3 anliegende Spannung U_S um einen kleinen Betrag und bestimmt aus dem daraus resultierenden erfassten Strom die momentane Leistung. Auf diese Weise wird die Spannung derart verändert, dass stets der Arbeitspunkt im Wesentlichen maximaler Leistung- für den Solargenerator 3 eingestellt wird.
Hierzu ist in dem linken Schaubild der Figur 3 die Leistung des Solargenerators als Funktion der an dem Solargenerator 3 anliegenden Spannung U_S gezeigt. Bei veränderten
Betriebsbedingungen, insbesondere geringerer Beleuchtungsstärke, gilt die punktierte Kennlinie statt der durchgezogene Kennlinie. In jedem Fall wird mit dem beschriebenen
Suchverfahren des MPP-Trackers das Optimum der Leistung gefunden oder zumindest der Betriebspunkt auf dieses Optimum hin geregelt.
Wie im mittleren Schaubild der Figur 3 gezeigt, wird die von dem DC/DC-Wandler 5 zur Verfügung zu stellende Leistung gemäß einer Kennlinie bestimmt in Abhängigkeit von der Spannung U_S. Mit Bezugszeichen 30 ist hierbei der primäre Stelleingriff auf diese Kennlinie dargestellt. Denn die Kennlinie wird verändert, insbesondere gedehnt in Ordinatenrichtung, gemäß dem Vorgehen nach Figur 2. Grundsätzlich ähneln sich dabei die Kennlinien, indem sie alle bei von 0 ansteigender Spannung U_S zunächst steil ansteigen auf einen fast konstanten Bereich, von dem aus sie bei hoher Spannung U_S wieder steil abfallen. Dabei hat der fast konstante Bereich ein lokales Maximum, welches so festgelegt ist, dass die dazugehörende Spannung kleiner gleich allen möglichen MPP-Spannungen des Solargenerators ist. Wichtig ist dabei, dass die Änderungen im fast konstanten Bereich geringer sind als die Änderungen in der Kennlinie der Solarzelle im gleichen Spannungsbereich, jedoch groß genug um vom MPP-Tracker erfasst zu werden, falls keine solare Leistung zur Verfügung steht. Somit bleibt bei der addierten Kennlinie das Maximum im Wesentlichen bei denselben Spannungswerten.
Darüber hinaus wird durch diese Verfahren sichergestellt, dass im Falle eines plötzlichen starken Abfalls der MPP-Spannung des Solargenerators, z.B. aufgrund einer
Wolkenabschattung, der neue MPP des Solargenerators immer sicher erkannt wird. Vorteil ist also, dass bei gleichzeitiger Einspeisung, also Leistungszufuhr an den
Wechselrichter, aus Solargenerator und Speicher, wie in Figur 3 dargestellt, sichergestellt ist, dass der MPP-Tracker nach einer Abschattung wieder auf einen Arbeitspunkt maximaler Leistung (MPP) unterhalb der aktuellen Solarspannung hinsteuert. Somit wird also je nach den Einflussgrößen eine entsprechende Kennlinie bestimmt und diese wiederum verwendet zur Bestimmung der momentanen zur Verfügung zu stellenden Soll-Leistung P.
Wie in Figur 3 gezeigt, führt die Summe aus den beiden genannten Kennlinien zu einer Kennlinie, deren Maximum an im Wesentlichen derselben Stelle angeordnet ist. Daher bleibt die Arbeitsweise des MPP-Trackers ungestört. Denn dieser findet weiterhin durch Variieren der Spannung den Arbeitspunkt mit der vom Solargenerator erzeugten größeren Leistung.
In Figur 4 sind für die Energieaufnahme in den Energiespeicher 4 bei Tag, also bei elektrische Leistung erzeugendem Solargenerator 3, die entsprechenden Kennlinien gezeigt. Auch hier bleibt die Arbeitsweise des MPP-Trackers ungestört.
In Figur 5 ist der Zustand bei nicht beleuchtetem Solargenerator 3 gezeigt, wobei diese dann keine elektrische Leistung erzeugen. Die entsprechend vorgegebene Kennlinie weist ein Maximum auf, auf welches der MPP-Tracker hinsteuert und somit auf den hierzu vorgegebenen Arbeitspunkt. Vorzugsweise ist das Maximum im optimalen Arbeitspunkt des DC/DC-Wandlers und/oder des Gesamtsystems angeordnet.
Wichtig ist also bei der Erfindung, dass durch das Vorgeben einer geeigneten Kennlinie aus einer durch den Primären Stelleingriff jeweils aktivierbaren Kennlinienschar die Arbeitsweise des MPP-Trackers ungestört bleibt im Vergleich zu nicht vorhandenem Energiespeicher 4 mit DC/DC-Wandler 5.
Somit ist also ein bestehendes System ohne Energiespeicher 4 und DC/DC-Wandler 5 nachrüstbar, wobei das bisherige System ungestört weiterarbeitet. Durch Vorgabe einer Kennlinie für die Leistungsbestimmung des DC/DC-Wandlers, die die Kennlinie des
Solargenerators 3 qualitativ nicht verändert, findet der MPP-Tracker weiterhin den optimalen Arbeitspunkt. Bei beleuchtetem Solargenerator 3 und Energieabgabe aus dem Energiespeicher 4, also erster Betriebsart, oder bei unbeleuchtetem Solargenerator 3 und Energieaufnahme in den Energiespeicher 4, also dritter Betriebsart oder bei beleuchtetem Solargenerator 3 und Energieabgabe des Energiespeichers 4, also zweiter Betriebsart werden jeweils
verschiedenartige Kennlinien verwendet. Abhängig von dem primären Stelleingriff 30 wird bei jeder der Betriebsarten die jeweilige Kennlinie gedehnt oder gestaucht. Jedoch gehen die bei den genannten drei Betriebsarten verwendeten Kennlinien nicht durch Dehnung oder Stauchung ineinander über. Insbesondere weist die Kennlinie der zweiten Betriebsart ein anderes Vorzeichen auf als die Kennlinie der ersten Betriebsart. Außerdem weist die
Kennlinie der zweiten Betriebsart kein lokales Maximum auf sondern ein Minimum, welches als Plateau ausgeführt ist. Bei der dritten Betriebsart weist die Kennlinie ein einziges ausgeprägtes Extremum auf, so dass der MPP-Tracker diesen Betriebspunkt findet.
Der Wechselrichter weist also einen Gleichstromanschluss auf, an dem der Solargenerator 3 und der DC/DC-Wandler 5 angeschlossen sind. Außerdem weist er einen
Wechselstromanschluss auf, an dem er mit dem Wechselspannungsnetz 1 und zumindest einem Verbraucher verbunden ist.
Vorzugsweise ist der Wechselrichter an seinem Wechselstromseitigen Anschluss für ein einphasiges oder ein dreiphasiges Netz ausgeführt. Die normierte Kennlinie nach Figur 3, also Leistungsaufnahme des Speichers, hat über den gesamten Arbeitsbereich des Solargenerators einen konstanten, insbesondere negativen, Verlauf und fällt am Rand des Arbeitsbereiches auf null ab. Die vorgelagerte Steuerung zur Bestimmung von P_soll sorgt dafür, dass der Betrag des Sollwertes der Speicherleistung P_soll stets unterhalb der aktuellen Solarleistung liegt.
Die Kennlinie nach Figur 4, also zur Leistungsabgabe des Speichers bei vorhandener PV- Leistung (Tag), hat über den gesamten Arbeitsbereich des Solargenerators einen nahezu konstanten Verlauf und fällt am Rand des Arbeitsbereiches auf null ab. Im nahezu konstanten Bereich existiert ein Maximum, welches so festgelegt ist, dass die
dazugehörende Spannung kleiner gleich allen möglichen MPP-Spannungen des
Solargenerators ist. Die Kennlinie nach Figur 5, also zur Leistungsabgabe des Speichers ohne vorhandene PV- Leistung (Nacht), hat ein ausgeprägtes Maximum bei der Spannung U_S, welche sich nach dem Arbeitspunkt der höchsten Effizienz des Gesamtsystems richtet.
Der Verlauf der Kennlinien der Figuren 3, 4 und 5 wird unter Berücksichtigung der zeitlich nicht veränderlichen Systemparameter bestimmt, wie in Figur 6 und 7 gezeigt:
- Spannungsschrittweitenverhalten des MPPT
- Auflösung der Leistungsmessung des MPPT
Spannungsbereich des Solargenerators
Spannungsbereich des MPPT
Die Systemparameter werden entweder messtechnisch durch das Energiespeichersystem erfasst und/oder bei Inbetriebnahme als Parameter vorgegeben.
Wie in Figur 6 und Figur 7 gezeigt, erfolgt die Auswahl der jeweiligen Kennlinie abhängig von der Betriebsart, die sich aus dem Sollwert der Speicherleistung und dem Zustand des Solargenerators (z.B. Tag / Nacht) ergibt. Mit der mitteils eines Auswahlmittels Betriebsart-abhänigig-gewählten Kennlinie und der anliegenden Solarspannung wird ein normierter Leistungssollwert P_norm ermittelt, der mit einem korrigierten Leistungssollwert P_korr multipliziert wird. Bezüglich der Kennlinie bedeutet dies ein Strecken derselben, also den Primären Stelleingriff. Das Ergebnis P wird durch die anliegende Solarspannung U_S dividiert und anschließend begrenzt. Das Resultat I soll wird dem DC/DC-Wandler als Stromsollwert vorgegeben. Die Nachführung hat die Aufgabe mögliche Abweichungen zwischen Soll und Ist- Speicherleistung auszuregeln. Dabei muss die Zeitkonstante des Regelgliedes mindestens eine Größenordnung über der des MPPT liegen, um eine gegenseitige Beeinflussung zu verhindern.
P_Korr wird also als Summe von P_Soll und dem Ausgangssignal P_nach der Nachführung bestimmt. Dieses Ausgangssignal P_nach wird als Ausgangssignal eines Regelgliedes, insbesondere Pl-Regelgliedes, bestimmt dem eingangsseitig die Differenz zwischen P_Soll und der erfassten Istleistung P_lst zugeführt wird, die durch Erfassen des Istwertes des ausgangsseitig am DC/DC-Wandler austretenden Stromes I Ist und Multiplikation mit der
Spannung U_S bestimmt wird.
P_korr wird als Streckungsfaktor für P_norm verwendet.
Durch Division des durch die Multiplikation von P_norm und P_korr bestimmten Wertes P durch U_S und nachfolgende Begrenzung des Divisionsergebnisses wird der Sollstrom l_Soll bestimmt, welcher dem DC/DC-Wandler vorgegeben wird.
Bei einem weiteren erfindungsgemäßen Ausführungsbeispiel wird als Energiespeicher ein Rotationsspeicher verwendet, wobei dann statt des DC/DC-Wandlers ein DC/AC-Wandler verwendet wird, wobei die Wechselstromanschlüsse AC mit dem Rotationsspeicher verbunden sind. Der Einfachheit halber soll deshalb in dieser Schrift unter einem Stromrichter entweder ein DC/DC-Wandler für einen Energiespeicher, wie Kondensator, Akkumulator oder Batterie, oder ein DC/AC-Wandler für einen Rotationsspeicher verstanden werden.
Bezugszeichenliste
1 Netz
2 Wechselrichter mit MPP-Tracker
3 Solargenerator, insbesondere ein oder mehrere Solarzellen umfassende Module
4 Energiespeicher
5 DC/DC-Wandler
6 Last, Verbraucher
20 Nachführung
21 Verhalten des MPP-Trackers
22 Betriebsart
23 Marktpreis
24 Lastprognose
25 Speicherstand, zur Verfügung stellbare, im Energiespeicher 4 gespeicherte Energiemenge
26 lokaler Verbrauch
27 Solarleistung P_Soll
28 Anforderungen des Netzbetreibers oder einer übergeordneten Steuerung
29 Wetterprognose
30 primärer Stelleingriff
P_Soll Soll-Leistung
PJst Ist-Leistung
l_Soll Soll-Strom
IJst Ist-Strom
U_S Solarspannung
P Speicherleistung
P_S Solarleistung
P_Ges Gesamtleistung

Claims

Patentansprüche:
1. Energiegewinnungssystem mit Energiespeicher, wobei ein Solargenerator, insbesondere ein oder mehrere Solarzellen umfassende Module, mit einem Wechselrichter verbunden sind, insbesondere an dessen gleichstromseitigem Anschluss, wobei der Wechselrichter an seinem wechselspannungsseitigen Anschluss mit einem Verbraucher und/oder einem Wechselstromnetz verbunden ist, dadurch gekennzeichnet, dass dem Solargenerator ein Stromrichter parallel geschaltet ist, insbesondere mit dessen erstem gleichstromseitigen Anschluss,
wobei der Stromrichter mit einem Energiespeicher verbunden ist, insbesondere der mit dem zweiten gleichstromseitigen Anschluss des Stromrichters verbunden ist.
2. Energiegewinnungssystem nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass
der Stromrichter ein DC/DC-Wandler für einen Energiespeicher ist oder dass der Stromrichter ein DC/AC-Wandler für einen Rotationsspeicher ist, insbesondere wobei der Rotationsspeicher einen elektromechanischen Energiewandler umfasst, insbesondere eine motorisch oder generatorisch betreibbare Elektromaschine.
3. Energiegewinnungssystem nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass
dem Solargenerator ein Folienkondensator parallel geschaltet ist.
4. Energiegewinnungssystem nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass
der Energiespeicher einen Doppelschichtkondensator aufweist und/oder aus mehreren miteinander verschalteten Doppelschichtkondensatoren besteht und/oder dass der Energiespeicher einen Akkumulator und/oder eine Batterie aufweist.
5. Energiegewinnungssystem nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass
der Wechselrichter einen MPP-Tracker aufweist.
6. Verfahren zum Betreiben eines Energiegewinnungssystems, insbesondere nach mindestens einem der vorangegangenen Ansprüche, wobei dem Solargenerator, insbesondere einem oder mehreren Solarzellen umfassenden Modulen, mit einem Wechselrichter verbunden sind, insbesondere an dessen
gleichstromseitigem Anschluss, wobei der Wechselrichter an seinem wechselspannungsseitigen Anschluss mit einem Verbraucher und/oder einem Wechselstromnetz verbunden ist, insbesondere wobei der Wechselrichter einen MPP-Tracker aufweist, dadurch gekennzeichnet, dass aus einem Energiespeicher über einen Stromrichter elektrische Energie dem Wechselrichter zugeführt wird, wobei am Wechselrichter gleichstromseitig anliegende Spannung erfasst wird und eine vom Stromrichter an den gleichstromseitigen Anschluss des Wechselrichters zu liefernde Soll- Leistung gemäß einer Kennlinie bestimmt wird,
7. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
die vom Stromrichter an den gleichstromseitigen Anschluss des Wechselrichters gelieferte Soll-Leistung bestimmt wird, insbesondere indem die gleichstromseitig anliegende Spannung mit dem vom Stromrichter an den Wechselrichter gelieferten Strom multipliziert wird, und aus der Differenz zwischen Soll-Leistung und Ist-Leistung der vom Stromrichter an den Wechselrichter zu liefernde Strom bestimmt wird, insbesondere wobei weitere
Einflussgrößen, wie Betriebsart, Verhalten des MPP-Trackers des Wechselrichters oder dergleichen, berücksichtigt werden.
8. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
die Kennlinie einen derartigen Zusammenhang zwischen Leistung und gleichstromseitiger Spannung darstellt, dass nach Addition der entsprechenden Leistungs-Spannungs-Kennlinie des Solargenerators derjenige Wert der Spannung, bei dem ein Maximum an Leistung vorliegt, im Wesentlichen unverändert bleibt.
9. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
die Kennlinie derart wenig veränderlich ist, dass nach Addition der entsprechenden
Leistungs-Spannungs-Kennlinie des Solargenerators derjenige Wert der Spannung, bei dem ein Maximum an Leistung vorliegt, im Wesentlichen unverändert bleibt, insbesondere so dass der MPP-Tracker auf dasselbe Leistungsmaximum des Solargenerators hinregelt, wie wenn kein Energiespeicher mit Stromrichter vorhanden wäre.
10. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
die Kennlinie ein Maximum in demjenigen Spannungsbereich aufweist, aus denjenigen
Spannungswerten gebildet ist, die jeweils zu einem Arbeitspunkt mit maximaler Leistung des Solargenerators in Abhängigkeit von der Spannung gehören, wobei hierbei alle .
Betriebsbedingungen, insbesondere Temperatur und Beleuchtungsstärke berücksichtigt werden.
11. Verfahren zum Betreiben eines Energieerzeugungssystems, wobei ein Wechselrichter mit MPP-Tracker den gleichstromseitigen Eingangsstrom erfasst und die Spannung an seinem gleichstromseitigen Anschlussklemmen auf ein Maximum an Leistung hin regelt, wobei Energieerzeugungsmittel, insbesondere Solarzellen, an seinem gleichstromseitigen Anschluss angeschlossen sind, dadurch gekennzeichnet, dass eine Vorrichtung an dem gleichstromseitigen Anschluss angeschlossen wird, welche aus der gleichstromseitig erfassten Spannung unter Berücksichtigung einer Kennlinie eine Soll- Leistung bestimmt und den von der Vorrichtung an den gleichstromseitigen Anschluss des Wechselrichters gelieferten Ist-Strom sowie die gleichstromseitig am Wechselrichter anliegende Spannung erfasst und daraus eine Ist-Leistung bestimmt, die die Vorrichtung auf die Soll-Leistung hinregelt, indem sie einen entsprechenden Soll-Strom bestimmt und darauf hinregelt, insbesondere wobei die Kennlinie die Abhängigkeit der Soll-Leistung von der
gleichstromseitig am Wechselrichter anliegenden Spannung darstellt, insbesondere wobei die Kennlinie mittels eines primären Stelleingriffs veränderbar ist.
12. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
die Kennlinie entsprechend von Einflussgrößen verändert wird, insbesondere gedehnt oder gestaucht wird, insbesondere in Ordinatenrichtung.
13. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
das Vorzeichen der Kennlinie abhängig von der Betriebsart, insbesondere Entnahme von Energie aus dem oder Zuführung von Energie in den Energiespeicher.
14. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
die Kennlinie einen im Wesentlichen konstanten Soll-Leistungs-Wert aufweist in einem Spannungs-Bereich, welcher denjenigen jeweiligen Spannungswert umfasst, welcher dem Leistungsmaximum des Solargenerators zugeordnet ist, insbesondere welcher dem
Leistungsmaximum des Solargenerators zugeordnet ist bei allen Betriebsbedingungen, insbesondere zulässigen Temperaturen und/oder Beleuchtungsstärken, des Solargenerators.
15. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
die Kennlinie einen lokal minimalen Verlauf der Soll-Leistungs-Werte in Abhängigkeit von der Spannung aufweist in einem Spannungs-Bereich, welcher denjenigen jeweiligen
Spannungswert umfasst, welcher dem Leistungsmaximum des Solargenerators zugeordnet ist, insbesondere welcher dem Leistungsmaximum des Solargenerators zugeordnet ist bei allen Beleuchtungsstärken des Solargenerators.
PCT/EP2013/000238 2012-02-07 2013-01-28 Energiegewinnungssystem mit energiespeicher, verfahren zum betreiben eines energiegewinnungssystems WO2013117305A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/376,707 US20150295412A1 (en) 2012-02-07 2013-01-28 Energy production system with energy store and method for operating an energy production system
AU2013218374A AU2013218374B2 (en) 2012-02-07 2013-01-28 Energy harvesting system with energy accumulator and method for operating an energy harvesting system
EP13703523.4A EP2812973B1 (de) 2012-02-07 2013-01-28 Energiegewinnungssystem mit energiespeicher, verfahren zum betreiben eines energiegewinnungssystems
CN201380008471.0A CN104185936B (zh) 2012-02-07 2013-01-28 具有蓄能器的能量获取系统,用于运行能量获取系统的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012002185.2 2012-02-07
DE102012002185.2A DE102012002185B4 (de) 2012-02-07 2012-02-07 Energiegewinnungssystem mit Energiespeicher, Verfahren zum Betreiben eines Energiegewinnungssystems

Publications (2)

Publication Number Publication Date
WO2013117305A2 true WO2013117305A2 (de) 2013-08-15
WO2013117305A3 WO2013117305A3 (de) 2014-06-26

Family

ID=47683683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/000238 WO2013117305A2 (de) 2012-02-07 2013-01-28 Energiegewinnungssystem mit energiespeicher, verfahren zum betreiben eines energiegewinnungssystems

Country Status (6)

Country Link
US (1) US20150295412A1 (de)
EP (1) EP2812973B1 (de)
CN (1) CN104185936B (de)
AU (1) AU2013218374B2 (de)
DE (1) DE102012002185B4 (de)
WO (1) WO2013117305A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2933895A1 (de) * 2014-04-14 2015-10-21 Pho2ris GmbH & Co. KG Regelverfahren und System mit einem Wechselrichter, einer Gleichstromquelle und einer weiteren Gleichstromquelle oder einer Gleichstromsenke

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013112077B4 (de) * 2013-11-04 2020-02-13 Sma Solar Technology Ag Verfahren zum Betrieb einer Photovoltaikanlage mit Energiespeicher und bidirektionaler Wandler für den Anschluss eines Energiespeichers
DE102015008305A1 (de) * 2015-06-29 2016-12-29 Karlsruher Institut für Technologie Energiemanagementsystem für ein Energieerzeugungssystem
GB2541431A (en) * 2015-08-19 2017-02-22 Power Flow Energy Ltd On-grid battery storage system
DE102016007598A1 (de) * 2016-06-21 2017-12-21 Karlsruher Institut für Technologie Energiemanagementeinheit, Energieversorgungssystem und Energiemanagementverfahren
CN108233421B (zh) 2018-02-05 2020-09-08 华为技术有限公司 光伏发电系统和光伏输电方法
KR102518182B1 (ko) * 2018-02-14 2023-04-07 현대자동차주식회사 친환경 차량용 컨버터 제어장치 및 방법
JP6993300B2 (ja) * 2018-07-18 2022-02-04 ニチコン株式会社 蓄電システム
JP7127741B2 (ja) * 2019-06-20 2022-08-30 東芝三菱電機産業システム株式会社 直流直流変換システムおよび太陽光発電システム
BE1028418B1 (nl) * 2020-06-22 2022-02-01 Futech Bvba Werkwijze en apparaat voor winnen van een gevraagd vermogen uit een energieopslagmiddel

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636931A (en) * 1985-06-28 1987-01-13 Shikoku Denryoku Kabushiki Kaisha Photovoltaic power control system
JP3697121B2 (ja) * 1998-10-15 2005-09-21 キヤノン株式会社 太陽光発電装置およびその制御方法
JP4585774B2 (ja) * 2003-03-07 2010-11-24 キヤノン株式会社 電力変換装置および電源装置
US8102144B2 (en) * 2003-05-28 2012-01-24 Beacon Power Corporation Power converter for a solar panel
US6949843B2 (en) * 2003-07-11 2005-09-27 Morningstar, Inc. Grid-connected power systems having back-up power sources and methods of providing back-up power in grid-connected power systems
US20060132102A1 (en) * 2004-11-10 2006-06-22 Harvey Troy A Maximum power point tracking charge controller for double layer capacitors
US7411308B2 (en) * 2005-02-26 2008-08-12 Parmley Daniel W Renewable energy power systems
JP5208374B2 (ja) * 2006-04-18 2013-06-12 シャープ株式会社 系統連系パワーコンディショナおよび系統連系電源システム
US8373312B2 (en) * 2008-01-31 2013-02-12 General Electric Company Solar power generation stabilization system and method
WO2009155445A2 (en) * 2008-06-18 2009-12-23 Premium Power Corporation Integrated renewable energy generation and storage systems and associated methods
TWI375380B (en) * 2008-12-23 2012-10-21 Richtek Technology Corp Power system with temperature compensation control
US8598741B2 (en) * 2008-12-23 2013-12-03 Samsung Electro-Mechanics Co, Ltd. Photovoltaic and fuel cell hybrid generation system using single converter and single inverter, and method of controlling the same
US8222765B2 (en) * 2009-02-13 2012-07-17 First Solar, Inc. Photovoltaic power plant output
CN101841256A (zh) * 2009-03-19 2010-09-22 孔小明 一种太阳能发电最大功率点跟踪控制方法
CN102422242A (zh) * 2009-04-30 2012-04-18 夏普株式会社 控制设备和控制方法
JP5344759B2 (ja) * 2009-09-30 2013-11-20 パナソニック株式会社 配電システム
KR101036098B1 (ko) * 2009-12-04 2011-05-19 삼성에스디아이 주식회사 최대 전력점 추종 컨버터 및 그 방법
KR101156533B1 (ko) * 2009-12-23 2012-07-03 삼성에스디아이 주식회사 에너지 저장 시스템 및 이의 제어 방법
US9142960B2 (en) * 2010-02-03 2015-09-22 Draker, Inc. Constraint weighted regulation of DC/DC converters
DE102010000350B4 (de) * 2010-02-10 2023-10-05 Adkor Gmbh Energieversorgungssystem mit regenerativer Stromquelle und Verfahren zum Betrieb eines Energieversorgungssystems
US8618456B2 (en) * 2010-02-16 2013-12-31 Western Gas And Electric Company Inverter for a three-phase AC photovoltaic system
KR101097266B1 (ko) * 2010-02-26 2011-12-21 삼성에스디아이 주식회사 전력 저장 시스템 및 그 제어방법
US8358031B2 (en) * 2010-02-26 2013-01-22 General Electric Company System and method for a single stage power conversion system
US8320142B2 (en) * 2010-03-01 2012-11-27 Transistor Devices, Inc. Low output voltage converter utilizing distributed secondary circuits
DE102010016138A1 (de) * 2010-03-25 2011-09-29 Refu Elektronik Gmbh Solarwechselrichter für erweiterten Einstrahlungswertebereich und Betriebsverfahren
KR101113508B1 (ko) * 2010-05-06 2012-02-29 성균관대학교산학협력단 태양광 pcs 일체형 양방향 배터리 충방전 시스템 및 방법
EP2614576B1 (de) * 2010-09-10 2018-10-10 Sew-Eurodrive GmbH & Co. KG Lokales energieverteilungssystem mit einem zwischenkreis
GB2487368B (en) * 2011-01-18 2012-12-05 Enecsys Ltd Inverters
US20130030587A1 (en) * 2011-07-29 2013-01-31 General Electric Company System and method for power curtailment in a power network
US9484746B2 (en) * 2012-01-17 2016-11-01 Infineon Technologies Austria Ag Power converter circuit with AC output

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2933895A1 (de) * 2014-04-14 2015-10-21 Pho2ris GmbH & Co. KG Regelverfahren und System mit einem Wechselrichter, einer Gleichstromquelle und einer weiteren Gleichstromquelle oder einer Gleichstromsenke
JP2015204747A (ja) * 2014-04-14 2015-11-16 フォツーリス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトPho2ris GmbH & Co. KG インバータと直流電源と別の直流ソース又は直流シンクを備えたシステム及び制御方法
EP2933895B1 (de) 2014-04-14 2018-10-31 AmbiBox GmbH Regelverfahren und System mit einem Wechselrichter, einer Gleichstromquelle und einer weiteren Gleichstromquelle oder einer Gleichstromsenke
US10243395B2 (en) 2014-04-14 2019-03-26 Ambibox Gmbh Control method and system with an inverter, a direct current source, and an additional direct current source or a direct current sink

Also Published As

Publication number Publication date
EP2812973A2 (de) 2014-12-17
CN104185936A (zh) 2014-12-03
WO2013117305A3 (de) 2014-06-26
DE102012002185B4 (de) 2019-11-07
EP2812973B1 (de) 2018-04-11
AU2013218374A1 (en) 2014-09-04
DE102012002185A1 (de) 2013-08-08
AU2013218374B2 (en) 2015-09-10
US20150295412A1 (en) 2015-10-15
CN104185936B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
EP2812973B1 (de) Energiegewinnungssystem mit energiespeicher, verfahren zum betreiben eines energiegewinnungssystems
DE102014203074A1 (de) Photovoltaik-Leistungserzeugungssystem, Steuerungsverfahren und Steuerungsprogramm für ein Photovoltaik-Leistungserzeugungssystem
EP3195442B1 (de) Verfahren und vorrichtung zum betrieb eines neben einem netzbildner und mindestens einer last an ein begrenztes wechselstromnetz angeschlossenen kraftwerks fluktuierender leistungsfähigkeit
EP1995656A1 (de) Verfahren zur Leistungsanpassung
DE102018105483A1 (de) Verfahren zum Betrieb einer Energieerzeugungsanlage und Wechselrichter für eine Energieerzeugungsanlage
EP3149826B1 (de) Verfahren und vorrichtung zum betrieb eines elektrischen energiespeichersystems
EP2951903B1 (de) Verfahren und wechselrichter zur leistungsverteilung über mehrere, gemeinsam an einen gleichspannungseingang eines dc/ac-wandlers angeschlossene gleichstromquellen
EP2826121A1 (de) Verfahren zum steuern einer anordnung zum einspeisen elektrischen stroms in ein versorgungsnetz
WO2011154306A2 (de) Elektrischer energiespeicher und verfahren zum regeln eines solchen energiespeichers
DE112007000197T5 (de) Photovoltaik-Wechselrichter
DE102012106466A1 (de) Steuerung von Betriebsmitteln über Beeinflussung der Netzspannung
DE102010047652A1 (de) Photovoltaikanlage mit Wechselrichterbetrieb in Abhängigkeit der Netzspannung
DE112021007351T5 (de) Verfahren und Vorrichtung zur Steuerung eines Wechselstrom- und Gleichstrom-Mikronetzes
EP2641322A1 (de) Energieversorgungssystem mit einem multiphasenmatrixumrichter und verfahren zum betrieb desselben
DE102014101809B4 (de) Verfahren zur Steuerung einer regenerativen Energieerzeugungsanlage und Regenerative Energieerzeugungsanlage
WO2019034571A1 (de) Verfahren und vorrichtung zur erfassung einer maximalen anlagenleistung einer photovoltaikanlage
WO2015039802A1 (de) Verfahren zur rechnergestützten steuerung einer oder mehrerer regenerativer energieerzeugungsanlagen in einem elektrischen stromnetz
DE102010007484A1 (de) Steuerung für Fotovoltaik-Anlagen
EP2355170A2 (de) Steuerung für Fotovoltaik-Anlagen
WO2017001030A1 (de) Energiemanagementsystem für ein energieerzeugungssystem
DE102015122640B4 (de) Steuerungseinrichtung zum Steuern eines Hybrid-Systems
DE102014004973A1 (de) Energieerzeugungs-Steuerungssystem, Verfahren und nichtflüchtiges computerlesbares Speichermedium desselben
WO2017220198A1 (de) Energiemanagementeinheit, energieversorgungssystem und energiemanagementverfahren
DE102012002601A1 (de) Energieerzeugungsanlage mit kostengünstigem Energiespeichersystem
EP3961839A1 (de) Vorrichtung und verfahren zur asymmetrischen leistungsabfallregelung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14376707

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013703523

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013218374

Country of ref document: AU

Date of ref document: 20130128

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13703523

Country of ref document: EP

Kind code of ref document: A2