WO2013117005A1 - 白平衡调整方法 - Google Patents
白平衡调整方法 Download PDFInfo
- Publication number
- WO2013117005A1 WO2013117005A1 PCT/CN2012/071007 CN2012071007W WO2013117005A1 WO 2013117005 A1 WO2013117005 A1 WO 2013117005A1 CN 2012071007 W CN2012071007 W CN 2012071007W WO 2013117005 A1 WO2013117005 A1 WO 2013117005A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gray scale
- spectral
- gray
- value
- spectral stimulus
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000003595 spectral effect Effects 0.000 claims abstract description 155
- 241001270131 Agaricus moelleri Species 0.000 claims abstract description 21
- 239000003086 colorant Substances 0.000 claims abstract description 19
- 230000000638 stimulation Effects 0.000 claims description 12
- 230000004936 stimulating effect Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000021384 green leafy vegetables Nutrition 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/02—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/64—Circuits for processing colour signals
- H04N9/73—Colour balance circuits, e.g. white balance circuits or colour temperature control
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0666—Adjustment of display parameters for control of colour parameters, e.g. colour temperature
Definitions
- the present invention relates to the field of display adjustment, and in particular to a white balance adjustment method for a display device.
- the white field spectral stimulus value is mainly affected by the green spectral stimulus value
- the green spectral stimulus value in the white field of each gray scale is first exponentially changed with the gray scale (that is, the green brightness).
- the spectral stimuli of the greens in the white field are obtained by exponentially changing with the gray scale, and then the spectral stimulating values of the reds in the white field and the spectral stimuli of the blues in the white field are adjusted in accordance with the white field.
- the requirement of the spectral stimulus value of white is obtained to obtain the spectral stimulus value of each step of the white field and the spectral stimulus value of the blue of each order in the white field.
- the chromaticity fixing requirement of the full gray level of the white field may not be satisfied, thereby causing the adjusted The white field is not the same as expected.
- An object of the present invention is to provide a white balance adjustment method for adjusting the chromaticity of a white color point whose luminance changes exponentially with gray scale and fixed full gray scale, so as to solve the problem that the existing white balance adjustment method cannot satisfy the white field
- the fixed color requirement of the gray scale causes the technical problem of the adjusted white field to be different from the expected.
- the invention relates to a white balance adjustment method, which comprises the steps of:
- A. Obtain the maximum spectral stimulus values Xmax, Ymax, and Zmax of the tested panel on the color coordinate system, the minimum spectral stimulus values X0, Y0, and Z0 of the tested panel on the color coordinate system, and the gray scales of the red color of the tested panel.
- the changed polynomial functions fGX(l), fGY(l), fGZ(l); and the blue color of the panel to be tested according to the spectral stimulus values BXq, BYq, BZq of each gray scale of the blue of the panel to be tested A polynomial function fBX(n), fBY(n), fBZ(n) whose spectral stimulus value varies with the number of gray orders, where m, l, n are gray scale numbers;
- step D according to the fixed chromaticity value, the polynomial relationship between the spectral stimulus values of the white-field RGB three colors of each gray-scale and the spectral stimulus values of the red, green, and blue grayscales of each gray-scale is established as follows:
- Xs, Ys, Zs are the spectral stimulus values of the tested panel, and s is the grayscale number
- the step E includes steps
- Xs' fRX(m + ⁇ m) + fGX(l + ⁇ l) + fBX(n + ⁇ n);
- Ys' fRY(m + ⁇ m) + fGY(l + ⁇ l) + fBY(n + ⁇ n);
- Zs' fRZ(m + ⁇ m) + fGZ(l + ⁇ l) + fBZ(n + ⁇ n);
- ⁇ Y Ys'- Ys
- step E3 If ⁇ X, ⁇ Y, ⁇ Z does not meet the requirements, go to step E3;
- the step B is specifically calculating the spectral stimulation values Y1 to Ymax-1 of each intermediate gray scale according to Ymax and Y0 according to the following formula;
- E is a gamma value
- the gamma value ranges from 2.0 to 2.4
- t ranges from 1 to (max-1).
- the gamma value is 2.2.
- the chromaticity value of the highest gray level fixed in the step C is specifically that the chromaticity value of the white field of each gray level is equal to the chromaticity value of the white field of the maximum gray level, that is, :
- bp is the chromaticity value of each grayscale white field
- p is the grayscale number
- the polynomial functions fRX(m), fRY(m), fRZ(m), fGX(l), fGY(l), fGZ(l) in the step C, fBX(n), fBY(n), and fBZ(n) are cubic polynomial functions.
- the invention relates to a white balance adjustment method, which comprises the steps of:
- A. Obtain the maximum spectral stimulus values Xmax, Ymax, and Zmax of the tested panel on the color coordinate system, the minimum spectral stimulus values X0, Y0, and Z0 of the tested panel on the color coordinate system, and the gray scales of the red color of the tested panel.
- the changed polynomial functions fGX(l), fGY(l), fGZ(l); and the blue color of the panel to be tested according to the spectral stimulus values BXq, BYq, BZq of each gray scale of the blue of the panel to be tested A polynomial function fBX(n), fBY(n), fBZ(n) whose spectral stimulus value varies with the number of gray orders, where m, l, n are gray scale numbers;
- the step B is specifically calculating the spectral stimulation values Y1 to Ymax-1 of each intermediate gray scale according to Ymax and Y0 according to the following formula;
- E is a gamma value
- the gamma value ranges from 2.0 to 2.4
- t ranges from 1 to (max-1).
- the gamma value is 2.2.
- the chromaticity value of the highest gray level fixed in the step C is specifically that the chromaticity value of the white field of each gray level is equal to the chromaticity value of the white field of the maximum gray level, that is, :
- bp is the chromaticity value of each grayscale white field
- p is the grayscale number
- the polynomial functions fRX(m), fRY(m), fRZ(m), fGX(l), fGY(l), fGZ(l) in the step C, fBX(n), fBY(n), and fBZ(n) are cubic polynomial functions.
- the spectral stimulus values of the white field RGB three colors of each gray level and the red, green and blue colors of the gray scales are established.
- the polynomial relationship of spectral stimulus values is specifically:
- Xs, Ys, and Zs are the spectral stimulus values of the panel being tested, and s is the grayscale number.
- the step E includes the following steps:
- Xs' fRX(m + ⁇ m) + fGX(l + ⁇ l) + fBX(n + ⁇ n);
- Ys' fRY(m + ⁇ m) + fGY(l + ⁇ l) + fBY(n + ⁇ n);
- Zs' fRZ(m + ⁇ m) + fGZ(l + ⁇ l) + fBZ(n + ⁇ n);
- ⁇ Y Ys'- Ys
- step E3 If ⁇ X, ⁇ Y, ⁇ Z does not meet the requirements, go to step E3;
- the brightness adjusts the white field with the chromaticity of the white color point with the gray level exponentially changing and the fixed gray level, which solves the problem that the existing white balance adjustment method cannot meet the requirement of the chromaticity of the white field full gray level.
- FIG. 1 is a flow chart of a preferred embodiment of a white balance adjustment method of the present invention.
- FIG. 1 is a flow chart showing a preferred embodiment of the white balance adjustment method of the present invention, the white balance adjustment method starting from:
- Step 101 Obtain a maximum spectral stimulus value (that is, a spectral stimulus value corresponding to the highest gray level) Xmax, Ymax, and Zmax of the tested panel on a color coordinate system (for example, CIE1931), and a minimum spectrum of the tested panel on the color coordinate system.
- a maximum spectral stimulus value that is, a spectral stimulus value corresponding to the highest gray level
- the stimulus value (that is, the spectral stimulus value corresponding to the lowest gray level) X0, Y0, and Z0, the spectral stimulus values RXq, RYq, RZq of each gray scale of the red (R) of the tested panel, and the green color of the tested panel (G)
- Step 102 calculate the spectral stimulation values Y1 to Ymax-1 of each intermediate gray level (that is, the gray level except the lowest gray level and the highest gray level) according to Ymax and Y0;
- Step 103 Fix the chromaticity value of the highest gray level, and set the spectral stimulus value of the red (R) of the tested panel according to the spectral stimulation values RXq, RYq, and RZq of each gray scale of the red (R) of the tested panel.
- the polynomial functions fRX(m), fRY(m), and fRZ(m) of the gray scale change; the panel to be tested is set according to the spectral stimulus values GXq, GYq, GZq of each gray scale of the green (G) of the panel to be tested.
- the polynomial functions fGX(l), fGY(l), fGZ(l) of the green (G) spectral stimulus values as a function of the gray level; and the spectral stimuli of the gray scales according to the blue (B) of the panel being tested The values BXq, BYq, BZq, set the polynomial functions fBX(n), fBY(n), fBZ(n) of the blue (B) spectral stimulus value of the tested panel as a function of the gray level, where m, l, n is the gray level number;
- Step 104 According to the chromaticity value fixed in the previous step, establish spectral stimulating values of the white field RGB three colors of each gray level and spectral stimuli of red (R), green (G), and blue (B) of each gray level. Polynomial relationship of values;
- Step 105 Calculate the gray scale number difference ⁇ m of the red spectral stimulus value in the white field of each gray scale according to the polynomial relationship described above, and the gray scale number of the green spectral stimulus value in the white field of each gray scale.
- Step 101 is specifically: obtaining a maximum spectral stimulation value X255, Y255, Z255, a minimum spectral stimulation value X0, Y0, Z0 of the tested panel by a measurement method, and then measuring each of 256 grayscales of the RGB three colors of the tested panel.
- the spectral stimulus value includes the spectral stimulus values RXq, RYq, RZq of each gray scale of the red, the spectral stimulus values GXq, GYq, GZq of each gray scale of the green, and the spectral stimulus values BXq, BYq, BZq of each gray scale of the blue Where q is the grayscale number and ranges from 0 to 255.
- Step 102 is specifically: according to the formula that the brightness changes exponentially with the gray scale, the spectral stimulus values Y1 to Y254 of each intermediate gray scale are calculated according to Y255 and Y0;
- Yt [(t/255)E*(Y255-Y0)]+Y0;
- E is the gamma value, generally between 2.0 and 2.4, where 2.2 is preferred, where t ranges from 1 to 254.
- Step 103 is specifically: fixing the chromaticity value of the highest gray level, so that the chromaticity value of the white field of each gray level is equal to the chromaticity value of the white field of the maximum gray level, that is:
- bp is the chromaticity value of each grayscale white field (for example, a255 and b255 are the chromaticity values of the highest grayscale), and p is the grayscale number, and the value ranges from 0 to 255.
- spectral stimulus values RXq, RYq, RZq of each gray scale of the red (R) of the tested panel a polynomial function of the spectral stimulus value of the red color of the tested panel as a function of the gray scale is set: fRX(m), fRY (m) and fRZ(m),
- spectral stimulus values GXq, GYq, GZq of each gray scale of the green (G) of the tested panel a polynomial function of the green spectral stimulus value of the tested panel as a function of the gray scale is set: fGX(l), fGY( l) and fGZ(l),
- spectral stimulus values BXq, BYq, BZq of each gray scale of the blue (B) of the tested panel a polynomial function of the spectral stimulus value of the blue color of the tested panel as a function of the gray scale is set: fBX(n), fBY(n) and fBZ(n),
- Step 104 is specifically to establish spectral stimulating values of the white field RGB three colors of each gray level and spectral stimuli of red (R), green (G), and blue (B) of each gray level according to the chromaticity values fixed in the previous step.
- Xs, Ys, and Zs are the spectral stimulus values of the panel being tested, and s is the grayscale number.
- Step 105 is specifically to preset the gray scale number difference ⁇ m of the red spectral stimulus value in the white field of each gray scale, the gray scale number difference ⁇ l of the green spectral stimulus value in the white field of each gray scale, and each The gray scale number difference ⁇ n of the blue spectral stimulus value in the white field of the gray scale, and ⁇ X, ⁇ Y, and ⁇ Z are calculated according to the following formula.
- Xs' fRX(m + ⁇ m) + fGX(l + ⁇ l) + fBX(n + ⁇ n);
- Ys' fRY(m + ⁇ m) + fGY(l + ⁇ l) + fBY(n + ⁇ n);
- Zs' fRZ(m + ⁇ m) + fGZ(l + ⁇ l) + fBZ(n + ⁇ n);
- ⁇ Y Ys'- Ys
- the white balance adjustment method of the invention adjusts the white balance of the white color point of the full gray scale while the brightness of the tested panel changes exponentially with the gray scale, thereby effectively solving the existing white balance adjustment method.
- the technical problem of the adjusted white field and the expected gap caused by the fixed color requirement of the full gray scale of the white field cannot be satisfied.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Processing Of Color Television Signals (AREA)
Abstract
本发明涉及一种白平衡调整方法,包括获取最大及最小光谱刺激值以及红绿蓝各灰阶的光谱刺激值;计算Y的中间光谱刺激值;固定色度值,设定光谱刺激值随灰阶变化的函数;建立白场三色的光谱刺激值与色场的光谱刺激值的多项式关系;使用近似法得到白场中的三色的灰阶数。本发明亮度随灰阶呈指数变化,且固定白色色点的色度进行白场的调整。
Description
本发明涉及显示调整领域,特别是涉及一种显示装置的白平衡调整方法。
目前现有的显示装置,如液晶显示装置、等离子显示装置以及背投显示装置等,由于显示原理或硬件设计差异,所显示出来的白场色坐标都存在不同程度的差异。对于显示装置的白场色坐标差异,如不进行相应的白平衡调整,则不同显示装置之间的色彩显示效果就会具有较大的区别。因此在显示装置的生产过程中通常会进行白平衡追踪校正,以使每台显示装置显示的颜色趋于一致。
由于白色场光谱刺激值主要由绿色的光谱刺激值影响,因此一般进行白平衡调整时,会先以各灰阶的白色场中绿色的光谱刺激值随灰阶呈指数变化(也即绿色的亮度随灰阶呈指数变化)得到白色场中各阶的绿色的光谱刺激值,然后调整白色场中各阶的红色的光谱刺激值和白色场中各阶的蓝色的光谱刺激值符合白色场中白色的光谱刺激值的要求,从而得到白色场中各阶的红色的光谱刺激值和白色场中各阶的蓝色的光谱刺激值。而在调整白色场中各阶的红色的光谱刺激值和白色场中各阶的蓝色的光谱刺激值的过程中可能无法满足白色场全灰阶的色度固定的要求,从而造成调整后的白色场与预期有差距。
故,有必要提供一种白平衡调整方法,以解决现有技术所存在的问题。
本发明的目的在于提供一种亮度随灰阶呈指数变化且固定全灰阶的白色色点的色度进行调整的白平衡调整方法,以解决现有的白平衡调整方法因无法满足白色场全灰阶的色度固定的要求造成的调整后的白色场与预期有差距的技术问题。
本发明提供的技术方案如下:
本发明涉及一种白平衡调整方法,其中包括步骤:
A、获取被测试面板在色坐标系统上的最大光谱刺激值Xmax、Ymax以及Zmax,被测试面板在色坐标系统上的最小光谱刺激值X0、Y0以及Z0,被测试面板的红色的各灰阶的光谱刺激值RXq、RYq、RZq,被测试面板的绿色的各灰阶的光谱刺激值GXq、GYq、GZq以及被测试面板的蓝色的各灰阶的光谱刺激值BXq、BYq、BZq,其中q为灰阶数,X、Y、Z为被测试面板的光谱刺激值;
B、按照亮度随灰阶呈指数变化,根据Ymax以及Y0计算各中间灰阶的光谱刺激值Y1至Ymax-1;
C、固定最高灰阶的色度值,根据被测试面板的红色的各灰阶的光谱刺激值RXq、RYq、RZq,设定被测试面板的红色的光谱刺激值随灰阶数变化的多项式函数fRX(m)、fRY(m)、fRZ(m);根据被测试面板的绿色的各灰阶的光谱刺激值GXq、GYq、GZq,设定被测试面板的绿色的光谱刺激值随灰阶数变化的多项式函数fGX(l)、fGY(l)、fGZ(l);以及根据被测试面板的蓝色的各灰阶的光谱刺激值BXq、BYq、BZq,设定被测试面板的蓝色的光谱刺激值随灰阶数变化的多项式函数fBX(n)、fBY(n)、fBZ(n),其中m、l、n为灰阶数;
D、根据前述固定的色度值,建立各灰阶的白场RGB三色的光谱刺激值与各灰阶的红色、绿色以及蓝色的光谱刺激值的多项式关系;
E、使用近似法计算各灰阶的白场中红色的光谱刺激值的灰阶数差值△m、各灰阶的白场中绿色的光谱刺激值的灰阶数差值△l以及各灰阶的白场中蓝色的光谱刺激值的灰阶数差值△n,进而得到各灰阶的白场中的RGB三色的灰阶数m'、l'、n';
所述步骤D中根据固定的色度值,建立各灰阶的白场RGB三色的光谱刺激值与各灰阶的红色、绿色以及蓝色的光谱刺激值的多项式关系具体为:
Xs =amax*(Ys/bmax)= fRX(m)+ fGX(l)+ fBX(n);
Ys=[(s/max)E*(Ymax-Y0)]+Y0=fRY(m)+ fGY(l)+
fBY(n);
Zs=(1-amax-bmax)*( Ys/bmax)=fRZ(m)+ fGZ(l)+
fBZ(n);
其中Xs、Ys、Zs为被测试面板的光谱刺激值,s为灰阶数;
所述步骤E包括步骤
E1、预先设定各灰阶的白场中红色的光谱刺激值的灰阶数差值△m、各灰阶的白场中绿色的光谱刺激值的灰阶数差值△l以及各灰阶的白场中蓝色的光谱刺激值的灰阶数差值△n;
E2、根据下式计算△X、△Y以及△Z,
Xs’=fRX(m+△m)+ fGX(l+△l)+ fBX(n+△n);
Ys’ =fRY(m+△m)+ fGY(l+△l)+ fBY(n+△n);
Zs’ = fRZ(m+△m)+ fGZ(l+△l)+ fBZ(n+△n);
△X= Xs’- Xs;
△Y= Ys’- Ys;
△Z= Zs’- Zs;
如△X、△Y、△Z不符合要求,转到步骤E3;
如△X、△Y、△Z符合要求,转到步骤E4;
E3、将m'=m+△m、l'=l+△l、n'=n+△n代入下式:
求得新的△m、△l、△n,转到步骤E2;
E4、输出灰阶数s、m+△m、l+△l以及n+△n。
在本发明所述的白平衡调整方法中,所述步骤B具体为按以下公式,根据Ymax以及Y0计算各中间灰阶的光谱刺激值Y1至Ymax-1;
Yt=[(t/max)E*(Ymax-Y0)]+Y0,
其中E为伽马值,所述伽马值的范围为2.0-2.4,t的取值范围为1至(max-1)。
在本发明所述的白平衡调整方法中,所述伽马值为2.2。
在本发明所述的白平衡调整方法中,所述步骤C中固定最高灰阶的色度值具体为各灰阶的白场的色度值等于最大灰阶的白场的色度值,即:
ap=amax=Xmax/(Xmax+Ymax+Zmax),
bp=bmax=Ymax/(Xmax+Ymax+Zmax);
其中ap,bp为各灰阶白场的色度值,p为灰阶数。
在本发明所述的白平衡调整方法中,所述步骤C中的多项式函数fRX(m)、fRY(m)、fRZ(m)、fGX(l)、fGY(l)、fGZ(l)、fBX(n)、fBY(n)以及fBZ(n)为三次多项式函数。
本发明涉及一种白平衡调整方法,其中包括步骤:
A、获取被测试面板在色坐标系统上的最大光谱刺激值Xmax、Ymax以及Zmax,被测试面板在色坐标系统上的最小光谱刺激值X0、Y0以及Z0,被测试面板的红色的各灰阶的光谱刺激值RXq、RYq、RZq,被测试面板的绿色的各灰阶的光谱刺激值GXq、GYq、GZq以及被测试面板的蓝色的各灰阶的光谱刺激值BXq、BYq、BZq,其中q为灰阶数,X、Y、Z为被测试面板的光谱刺激值;
B、按照亮度随灰阶呈指数变化,根据Ymax以及Y0计算各中间灰阶的光谱刺激值Y1至Ymax-1;
C、固定最高灰阶的色度值,根据被测试面板的红色的各灰阶的光谱刺激值RXq、RYq、RZq,设定被测试面板的红色的光谱刺激值随灰阶数变化的多项式函数fRX(m)、fRY(m)、fRZ(m);根据被测试面板的绿色的各灰阶的光谱刺激值GXq、GYq、GZq,设定被测试面板的绿色的光谱刺激值随灰阶数变化的多项式函数fGX(l)、fGY(l)、fGZ(l);以及根据被测试面板的蓝色的各灰阶的光谱刺激值BXq、BYq、BZq,设定被测试面板的蓝色的光谱刺激值随灰阶数变化的多项式函数fBX(n)、fBY(n)、fBZ(n),其中m、l、n为灰阶数;
D、根据前述固定的色度值,建立各灰阶的白场RGB三色的光谱刺激值与各灰阶的红色、绿色以及蓝色的光谱刺激值的多项式关系;
E、使用近似法计算各灰阶的白场中红色的光谱刺激值的灰阶数差值△m、各灰阶的白场中绿色的光谱刺激值的灰阶数差值△l以及各灰阶的白场中蓝色的光谱刺激值的灰阶数差值△n,进而得到各灰阶的白场中的RGB三色的灰阶数m'、l'、n'。
在本发明所述的白平衡调整方法中,所述步骤B具体为按以下公式,根据Ymax以及Y0计算各中间灰阶的光谱刺激值Y1至Ymax-1;
Yt=[(t/max)E*(Ymax-Y0)]+Y0,
其中E为伽马值,所述伽马值的范围为2.0-2.4,t的取值范围为1至(max-1)。
在本发明所述的白平衡调整方法中,所述伽马值为2.2。
在本发明所述的白平衡调整方法中,所述步骤C中固定最高灰阶的色度值具体为各灰阶的白场的色度值等于最大灰阶的白场的色度值,即:
ap=amax=Xmax/(Xmax+Ymax+Zmax),
bp=bmax=Ymax/(Xmax+Ymax+Zmax);
其中ap,bp为各灰阶白场的色度值,p为灰阶数。
在本发明所述的白平衡调整方法中,所述步骤C中的多项式函数fRX(m)、fRY(m)、fRZ(m)、fGX(l)、fGY(l)、fGZ(l)、fBX(n)、fBY(n)以及fBZ(n)为三次多项式函数。
在本发明所述的白平衡调整方法中,所述步骤D中根据固定的色度值,建立各灰阶的白场RGB三色的光谱刺激值与各灰阶的红色、绿色以及蓝色的光谱刺激值的多项式关系具体为:
Xs =amax*(Ys/bmax)= fRX(m)+ fGX(l)+ fBX(n);
Ys=[(s/max)E*(Ymax-Y0)]+Y0= fRY(m)+ fGY(l)+
fBY(n);
Zs=(1-amax-bmax)*(Ys/bmax)=fRZ(m)+ fGZ(l)+
fBZ(n);
其中Xs、Ys、Zs为被测试面板的光谱刺激值,s为灰阶数。
在本发明所述的白平衡调整方法中,所述步骤E包括以下步骤:
E1、预先设定各灰阶的白场中红色的光谱刺激值的灰阶数差值△m、各灰阶的白场中绿色的光谱刺激值的灰阶数差值△l以及各灰阶的白场中蓝色的光谱刺激值的灰阶数差值△n;
E2、根据下式计算△X、△Y以及△Z,
Xs’=fRX(m+△m)+ fGX(l+△l)+ fBX(n+△n);
Ys’ =fRY(m+△m)+ fGY(l+△l)+ fBY(n+△n);
Zs’ = fRZ(m+△m)+ fGZ(l+△l)+ fBZ(n+△n);
△X= Xs’- Xs;
△Y= Ys’- Ys;
△Z= Zs’- Zs;
如△X、△Y、△Z不符合要求,转到步骤E3;
如△X、△Y、△Z符合要求,转到步骤E4;
E3、将m'=m+△m、l'=l+△l、n'=n+△n代入下式:
求得新的△m、△l、△n,转到步骤E2;
E4、输出灰阶数s、m+△m、l+△l以及n+△n。
亮度随灰阶呈指数变化且固定全灰阶的白色色点的色度进行白场的调整,解决了现有的白平衡调整方法因无法满足白色场全灰阶的色度固定的要求造成的调整后的白色场与预期有差距的技术问题。
图1 为本发明的白平衡调整方法的优选实施例的流程图。
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。
本发明涉及一种白平衡调整方法,图1所示为本发明的白平衡调整方法的优选实施例的流程图,所述白平衡调整方法开始于:
步骤101、获取被测试面板在色坐标系统(例如CIE1931)上的最大光谱刺激值(也即对应最高灰阶的光谱刺激值)Xmax、Ymax以及Zmax,被测试面板在色坐标系统上的最小光谱刺激值(也即对应最低灰阶的光谱刺激值)X0、Y0以及Z0,被测试面板的红色(R)的各灰阶的光谱刺激值RXq、RYq、RZq,被测试面板的绿色(G)的各灰阶的光谱刺激值GXq、GYq、GZq以及被测试面板的蓝色(B)的各灰阶的光谱刺激值BXq、BYq、BZq,其中q为灰阶数,X、Y、Z为被测试面板的光谱刺激值;
步骤102、按照亮度会随灰阶呈指数变化的原理,根据Ymax以及Y0计算各中间灰阶(也即最低灰阶与最高灰阶除外的灰阶)的光谱刺激值Y1至Ymax-1;
步骤103、固定最高灰阶的色度值,根据被测试面板的红色(R)的各灰阶的光谱刺激值RXq、RYq、RZq,设定被测试面板的红色(R)的光谱刺激值随灰阶数变化的多项式函数fRX(m)、fRY(m)、fRZ(m);根据被测试面板的绿色(G)的各灰阶的光谱刺激值GXq、GYq、GZq,设定被测试面板的绿色(G)的光谱刺激值随灰阶数变化的多项式函数fGX(l)、fGY(l)、fGZ(l);以及根据被测试面板的蓝色(B)的各灰阶的光谱刺激值BXq、BYq、BZq,设定被测试面板的蓝色(B)的光谱刺激值随灰阶数变化的多项式函数fBX(n)、fBY(n)、fBZ(n),其中m、l、n为灰阶数;
步骤104、根据前步骤所固定的色度值,建立各灰阶的白场RGB三色的光谱刺激值与各灰阶的红色(R)、绿色(G)以及蓝色(B)的光谱刺激值的多项式关系;
步骤105、根据上述的多项式关系,使用近似法计算各灰阶的白场中红色的光谱刺激值的灰阶数差值△m、各灰阶的白场中绿色的光谱刺激值的灰阶数差值△l以及各灰阶的白场中蓝色的光谱刺激值的灰阶数差值△n,进而得到各灰阶的白场中的RGB三色的灰阶数m'、l'、n'。
下面将以256个灰阶(也即max=255)为例详细说明每个步骤:
步骤101具体为,通过测量的方法获取被测试面板的最大光谱刺激值X255、Y255、Z255,最小光谱刺激值X0、Y0、Z0,然后测量被测试面板的RGB三色的各256个灰阶的光谱刺激值,包括红色的各灰阶的光谱刺激值RXq、RYq、RZq,绿色的各灰阶的光谱刺激值GXq、GYq、GZq,蓝色的各灰阶的光谱刺激值BXq、BYq、BZq,其中q为灰阶数,取值范围为0-255。
步骤102具体为,按以下亮度随灰阶呈指数变化的公式,根据Y255以及Y0计算各中间灰阶的光谱刺激值Y1至Y254;
Yt=[(t/255)E*(Y255-Y0)]+Y0;
其中E为伽马值(gamma),一般在2.0-2.4之间,这里优选为2.2,这里t的取值范围为1-254。
步骤103具体为,固定最高灰阶的色度值,使各灰阶的白场的色度值等于最大灰阶的白场的色度值,即:
ap=a255=X255/(X255+Y255+Z255),
bp=b255=Y255/(X255+Y255+Z255);
其中ap,bp为各灰阶白场的色度值(例如a255和b255为最高灰阶的色度值),p为灰阶数,取值范围为0-255。
随后根据被测试面板的红色(R)的各灰阶的光谱刺激值RXq、RYq、RZq,设定被测试面板的红色的光谱刺激值随灰阶数变化的多项式函数:fRX(m)、fRY(m)以及fRZ(m),
其中fRX(m)为根据RXq(q=0…255)设定的以m为变量的多项式函数,fRY(m)为根据RYq(q=0…255)设定的以m为变量的多项式函数,fRZ(m)为根据RZq(q=0…255)设定的以m为变量的多项式函数;
根据被测试面板的绿色(G)的各灰阶的光谱刺激值GXq、GYq、GZq,设定被测试面板的绿色的光谱刺激值随灰阶数变化的多项式函数:fGX(l)、fGY(l)以及fGZ(l),
其中fGX(l)为根据GXq(q=0…255)设定的以l为变量的多项式函数,fGY(l)为根据GYq(q=0…255)设定的以l为变量的多项式函数,fGZ(l)为根据GZq(q=0…255)设定的以l为变量的多项式函数;
根据被测试面板的蓝色(B)的各灰阶的光谱刺激值BXq、BYq、BZq,设定被测试面板的蓝色的光谱刺激值随灰阶数变化的多项式函数:fBX(n)、fBY(n)以及fBZ(n),
其中fBX(n)为根据BXq(q=0…255)设定的以n为变量的多项式函数,fBY(n)为根据BYq(q=0…255)设定的以n为变量的多项式函数,fBZ(n)为根据BZq(q=0…255)设定的以n为变量的多项式函数;
其中m、l、n为灰阶数,fRX(m)、fRY(m)、fRZ(m)、fGX(l)、fGY(l)、fGZ(l)、fBX(n)、fBY(n)以及fBZ(n)优选为三次多项式函数,例如fRX(m)=c*m3+d*m2+e*m+f,其中c、d、e、f为常量。
步骤104具体为根据前步骤固定的色度值,建立各灰阶的白场RGB三色的光谱刺激值与各灰阶的红色(R)、绿色(G)以及蓝色(B)的光谱刺激值的多项式关系:
Xs =a255*(Ys/b255)= fRX(m)+ fGX(l)+ fBX(n);
Ys=[(s/255)E*(Y255-Y0)]+Y0= fRY(m)+ fGY(l)+
fBY(n);
Zs=(1-a255-b255)*(Ys/b255)= fRZ(m)+ fGZ(l)+
fBZ(n);
其中Xs、Ys、Zs为被测试面板的光谱刺激值,s为灰阶数。
步骤105具体为预先设定各灰阶的白场中红色的光谱刺激值的灰阶数差值△m、各灰阶的白场中绿色的光谱刺激值的灰阶数差值△l以及各灰阶的白场中蓝色的光谱刺激值的灰阶数差值△n,根据下式计算△X、△Y以及△Z,
Xs’=fRX(m+△m)+ fGX(l+△l)+ fBX(n+△n);
Ys’ =fRY(m+△m)+ fGY(l+△l)+ fBY(n+△n);
Zs’ = fRZ(m+△m)+ fGZ(l+△l)+ fBZ(n+△n);
△X= Xs’- Xs;
△Y= Ys’- Ys;
△Z= Zs’- Zs;
如△X、△Y、△Z不符合要求(即在设定的差值接受范围外),则通过下述的近似法,将m'=m+△m、l'=l+△l、n'=n+△n代入下式即:
求得新的△m、△l、△n,重新计算△X=Xs’-Xs是否满足要求,以此类推△Y、△Z是否满足要求,直至△X, △Y,
△Z全部符合要求为止。如△X、△Y、△Z符合要求(即在设定的差值接受范围内),则停止运算,输出灰阶数s及m+△m、l+△l、n+△n。这样灰阶数s从254逐一减小直到s=0,计算各个灰阶数的△m、△l以及△n,从而得到各灰阶(灰阶数为s)的白场中的RGB三色的灰阶数m'、l'、n'。
本发明的白平衡调整方法在被测试面板的亮度随灰阶呈指数变化的同时固定全灰阶的白色色点的色度进行白平衡的调整,有效的解决了现有的白平衡调整方法因无法满足白色场全灰阶的色度固定的要求造成的调整后的白色场与预期有差距的技术问题。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
Claims (12)
- 一种白平衡调整方法,其中包括步骤:A、获取被测试面板在色坐标系统上的最大光谱刺激值Xmax、Ymax以及Zmax,被测试面板在色坐标系统上的最小光谱刺激值X0、Y0以及Z0,被测试面板的红色的各灰阶的光谱刺激值RXq、RYq、RZq,被测试面板的绿色的各灰阶的光谱刺激值GXq、GYq、GZq以及被测试面板的蓝色的各灰阶的光谱刺激值BXq、BYq、BZq,其中q为灰阶数,X、Y、Z为被测试面板的光谱刺激值;B、按照亮度随灰阶呈指数变化,根据Ymax以及Y0计算各中间灰阶的光谱刺激值Y1至Ymax-1;C、固定最高灰阶的色度值,根据被测试面板的红色的各灰阶的光谱刺激值RXq、RYq、RZq,设定被测试面板的红色的光谱刺激值随灰阶数变化的多项式函数fRX(m)、fRY(m)、fRZ(m);根据被测试面板的绿色的各灰阶的光谱刺激值GXq、GYq、GZq,设定被测试面板的绿色的光谱刺激值随灰阶数变化的多项式函数fGX(l)、fGY(l)、fGZ(l);以及根据被测试面板的蓝色的各灰阶的光谱刺激值BXq、BYq、BZq,设定被测试面板的蓝色的光谱刺激值随灰阶数变化的多项式函数fBX(n)、fBY(n)、fBZ(n),其中m、l、n为灰阶数;D、根据前述固定的色度值,建立各灰阶的白场RGB三色的光谱刺激值与各灰阶的红色、绿色以及蓝色的光谱刺激值的多项式关系;E、使用近似法计算各灰阶的白场中红色的光谱刺激值的灰阶数差值△m、各灰阶的白场中绿色的光谱刺激值的灰阶数差值△l以及各灰阶的白场中蓝色的光谱刺激值的灰阶数差值△n,进而得到各灰阶的白场中的RGB三色的灰阶数m'、l'、n';所述步骤D中根据固定的色度值,建立各灰阶的白场RGB三色的光谱刺激值与各灰阶的红色、绿色以及蓝色的光谱刺激值的多项式关系具体为:Xs =amax*(Ys/bmax)= fRX(m)+ fGX(l)+ fBX(n);Ys=[(s/max)E*(Ymax-Y0)]+Y0=fRY(m)+ fGY(l)+ fBY(n);Zs=(1-amax-bmax)*( Ys/bmax)=fRZ(m)+ fGZ(l)+ fBZ(n);其中Xs、Ys、Zs为被测试面板的光谱刺激值,s为灰阶数;所述步骤E包括步骤E1、预先设定各灰阶的白场中红色的光谱刺激值的灰阶数差值△m、各灰阶的白场中绿色的光谱刺激值的灰阶数差值△l以及各灰阶的白场中蓝色的光谱刺激值的灰阶数差值△n;E2、根据下式计算△X、△Y以及△Z,Xs’=fRX(m+△m)+ fGX(l+△l)+ fBX(n+△n);Ys’ =fRY(m+△m)+ fGY(l+△l)+ fBY(n+△n);Zs’ = fRZ(m+△m)+ fGZ(l+△l)+ fBZ(n+△n);△X= Xs’- Xs;△Y= Ys’- Ys;△Z= Zs’- Zs;如△X、△Y、△Z不符合要求,转到步骤E3;如△X、△Y、△Z符合要求,转到步骤E4;E3、将m'=m+△m、l'=l+△l、n'=n+△n代入下式:求得新的△m、△l、△n,转到步骤E2;E4、输出灰阶数s、m+△m、l+△l以及n+△n。
- 根据权利要求1所述的白平衡调整方法,其中所述步骤B具体为按以下公式,根据Ymax以及Y0计算各中间灰阶的光谱刺激值Y1至Ymax-1;Yt=[(t/max)E*(Ymax-Y0)]+Y0,其中E为伽马值,所述伽马值的范围为2.0-2.4,t的取值范围为1至(max-1)。
- 根据权利要求2所述的白平衡调整方法,其中所述伽马值为2.2。
- 根据权利要求1所述的白平衡调整方法,其中所述步骤C中固定最高灰阶的色度值具体为各灰阶的白场的色度值等于最大灰阶的白场的色度值,即:ap=amax=Xmax/(Xmax+Ymax+Zmax),bp=bmax=Ymax/(Xmax+Ymax+Zmax);其中ap,bp为各灰阶白场的色度值,p为灰阶数。
- 根据权利要求1所述的白平衡调整方法,其中所述步骤C中的多项式函数fRX(m)、fRY(m)、fRZ(m)、fGX(l)、fGY(l)、fGZ(l)、fBX(n)、fBY(n)以及fBZ(n)为三次多项式函数。
- 一种白平衡调整方法,其中包括步骤:A、获取被测试面板在色坐标系统上的最大光谱刺激值Xmax、Ymax以及Zmax,被测试面板在色坐标系统上的最小光谱刺激值X0、Y0以及Z0,被测试面板的红色的各灰阶的光谱刺激值RXq、RYq、RZq,被测试面板的绿色的各灰阶的光谱刺激值GXq、GYq、GZq以及被测试面板的蓝色的各灰阶的光谱刺激值BXq、BYq、BZq,其中q为灰阶数,X、Y、Z为被测试面板的光谱刺激值;B、按照亮度随灰阶呈指数变化,根据Ymax以及Y0计算各中间灰阶的光谱刺激值Y1至Ymax-1;C、固定最高灰阶的色度值,根据被测试面板的红色的各灰阶的光谱刺激值RXq、RYq、RZq,设定被测试面板的红色的光谱刺激值随灰阶数变化的多项式函数fRX(m)、fRY(m)、fRZ(m);根据被测试面板的绿色的各灰阶的光谱刺激值GXq、GYq、GZq,设定被测试面板的绿色的光谱刺激值随灰阶数变化的多项式函数fGX(l)、fGY(l)、fGZ(l);以及根据被测试面板的蓝色的各灰阶的光谱刺激值BXq、BYq、BZq,设定被测试面板的蓝色的光谱刺激值随灰阶数变化的多项式函数fBX(n)、fBY(n)、fBZ(n),其中m、l、n为灰阶数;D、根据前述固定的色度值,建立各灰阶的白场RGB三色的光谱刺激值与各灰阶的红色、绿色以及蓝色的光谱刺激值的多项式关系;E、使用近似法计算各灰阶的白场中红色的光谱刺激值的灰阶数差值△m、各灰阶的白场中绿色的光谱刺激值的灰阶数差值△l以及各灰阶的白场中蓝色的光谱刺激值的灰阶数差值△n,进而得到各灰阶的白场中的RGB三色的灰阶数m'、l'、n'。
- 根据权利要求6所述的白平衡调整方法,其中所述步骤B具体为按以下公式,根据Ymax以及Y0计算各中间灰阶的光谱刺激值Y1至Ymax-1;Yt=[(t/max)E*(Ymax-Y0)]+Y0,其中E为伽马值,所述伽马值的范围为2.0-2.4,t的取值范围为1至(max-1)。
- 根据权利要求7所述的白平衡调整方法,其中所述伽马值为2.2。
- 根据权利要求6所述的白平衡调整方法,其中所述步骤C中固定最高灰阶的色度值具体为各灰阶的白场的色度值等于最大灰阶的白场的色度值,即:ap=amax=Xmax/(Xmax+Ymax+Zmax),bp=bmax=Ymax/(Xmax+Ymax+Zmax);其中ap,bp为各灰阶白场的色度值,p为灰阶数。
- 根据权利要求6所述的白平衡调整方法,其中所述步骤C中的多项式函数fRX(m)、fRY(m)、fRZ(m)、fGX(l)、fGY(l)、fGZ(l)、fBX(n)、fBY(n)以及fBZ(n)为三次多项式函数。
- 根据权利要求6所述的白平衡调整方法,其中所述步骤D中根据固定的色度值,建立各灰阶的白场RGB三色的光谱刺激值与各灰阶的红色、绿色以及蓝色的光谱刺激值的多项式关系具体为:Xs =amax*(Ys/bmax)= fRX(m)+ fGX(l)+ fBX(n);Ys=[(s/max)E*(Ymax-Y0)]+Y0=fRY(m)+ fGY(l)+ fBY(n);Zs=(1-amax-bmax)*( Ys/bmax)=fRZ(m)+ fGZ(l)+ fBZ(n);其中Xs、Ys、Zs为被测试面板的光谱刺激值,s为灰阶数。
- 根据权利要求6所述的白平衡调整方法,其中所述步骤E包括步骤E1、预先设定各灰阶的白场中红色的光谱刺激值的灰阶数差值△m、各灰阶的白场中绿色的光谱刺激值的灰阶数差值△l以及各灰阶的白场中蓝色的光谱刺激值的灰阶数差值△n;E2、根据下式计算△X、△Y以及△Z,Xs’=fRX(m+△m)+ fGX(l+△l)+ fBX(n+△n);Ys’ =fRY(m+△m)+ fGY(l+△l)+ fBY(n+△n);Zs’ = fRZ(m+△m)+ fGZ(l+△l)+ fBZ(n+△n);△X= Xs’- Xs;△Y= Ys’- Ys;△Z= Zs’- Zs;如△X、△Y、△Z不符合要求,转到步骤E3;如△X、△Y、△Z符合要求,转到步骤E4;E3、将m'=m+△m、l'=l+△l、n'=n+△n代入下式:求得新的△m、△l、△n,转到步骤E2;E4、输出灰阶数s、m+△m、l+△l以及n+△n。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/503,649 US8698855B2 (en) | 2012-02-07 | 2012-02-10 | White balance adjusting method |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012100264212A CN102542962B (zh) | 2012-02-07 | 2012-02-07 | 白平衡调整方法 |
| CN201210026421.2 | 2012-02-07 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2013117005A1 true WO2013117005A1 (zh) | 2013-08-15 |
Family
ID=46349740
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2012/071007 WO2013117005A1 (zh) | 2012-02-07 | 2012-02-10 | 白平衡调整方法 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US8698855B2 (zh) |
| CN (1) | CN102542962B (zh) |
| WO (1) | WO2013117005A1 (zh) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103928012A (zh) * | 2014-04-15 | 2014-07-16 | 深圳市华星光电技术有限公司 | 显示装置的白平衡调整方法 |
| US9542876B2 (en) | 2014-04-28 | 2017-01-10 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Method of obtaining luminance and chromaticity of white in RGBW display device using RGB display device |
| CN113137930A (zh) * | 2021-04-25 | 2021-07-20 | 西南石油大学 | 一种泡沫液膜薄化的可视化与定量测定方法 |
Families Citing this family (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102903343B (zh) * | 2012-09-26 | 2014-10-15 | 苏州佳世达电通有限公司 | 快速调整色温方法 |
| CN103021367B (zh) * | 2012-12-18 | 2014-11-26 | 四川长虹电器股份有限公司 | 一种显示器件彩色色度的自适应调整方法 |
| JP6292897B2 (ja) * | 2014-01-23 | 2018-03-14 | キヤノン株式会社 | 表示制御装置、制御方法、および、プログラム |
| US10217438B2 (en) * | 2014-05-30 | 2019-02-26 | Apple Inc. | User interface and method for directly setting display white point |
| CN104125444B (zh) * | 2014-07-23 | 2016-01-20 | 歌尔声学股份有限公司 | 一种led电视白平衡调整算法的实现方法及系统 |
| CN104282284B (zh) * | 2014-10-24 | 2016-08-24 | 武汉精测电子技术股份有限公司 | 一种液晶屏的白平衡调节方法 |
| CN105306917B (zh) * | 2015-10-22 | 2017-08-25 | 深圳市华星光电技术有限公司 | 低灰阶白平衡控制方法、控制系统及显示器 |
| CN105282531B (zh) | 2015-11-11 | 2017-08-25 | 深圳市华星光电技术有限公司 | 控制低灰阶白平衡的方法及装置 |
| CN105304062B (zh) * | 2015-11-18 | 2018-01-26 | 合一智能科技(深圳)有限公司 | 液晶显示屏的色度调节方法和装置 |
| CN105427788B (zh) * | 2015-12-31 | 2018-03-27 | 武汉天马微电子有限公司 | 自动校调显示装置亮度和色度的方法及系统 |
| CN106023929B (zh) * | 2016-07-20 | 2018-08-24 | 深圳市华星光电技术有限公司 | 显示装置的白平衡调整方法及其系统 |
| CN106373527B (zh) * | 2016-11-11 | 2018-09-07 | 武汉精测电子集团股份有限公司 | 一种最高及最低灰阶的gamma及色温自动调节方法 |
| CN106604024B (zh) * | 2016-12-14 | 2018-07-17 | 北京集创北方科技股份有限公司 | 图像数据处理方法及其装置 |
| CN107665677B (zh) * | 2017-08-16 | 2018-10-12 | 惠科股份有限公司 | 一种显示装置的白平衡调整方法和显示装置 |
| CN107665676B (zh) * | 2017-08-16 | 2018-10-12 | 惠科股份有限公司 | 一种显示装置的白平衡调整方法和显示装置 |
| CN108039143B (zh) * | 2017-12-06 | 2021-02-02 | 京东方科技集团股份有限公司 | 一种伽马电路调整的方法及装置 |
| CN108711396B (zh) * | 2018-05-30 | 2020-03-31 | 京东方科技集团股份有限公司 | 像素数据的处理方法及处理装置、显示装置及显示方法 |
| CN111696479B (zh) * | 2019-03-13 | 2021-08-10 | 北京小米移动软件有限公司 | 色域调节方法及装置 |
| CN110428777B (zh) * | 2019-08-14 | 2021-01-22 | 京东方科技集团股份有限公司 | 一种显示模组的显示校正方法和装置 |
| US11729876B2 (en) * | 2020-09-18 | 2023-08-15 | Guangzhou Haoyang Electronic Co., Ltd. | Unified color control method for multi-color light |
| CN112820248B (zh) * | 2021-02-07 | 2023-01-10 | 峰米(北京)科技有限公司 | 一种白平衡调整方法、系统、存储介质和电子设备 |
| CN112819908B (zh) * | 2021-02-20 | 2022-11-22 | 歌尔光学科技有限公司 | 白坐标的调整方法、装置、显示器和存储介质 |
| CN115941916B (zh) * | 2021-08-04 | 2024-06-18 | 广州视源电子科技股份有限公司 | 校正数据的确定方法、显示屏的校正方法与确定装置 |
| CN116486729A (zh) * | 2023-04-13 | 2023-07-25 | 北京欧铼德微电子技术有限公司 | 显示校准方法及装置、芯片、电子设备和存储介质 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1665311A (zh) * | 2004-03-05 | 2005-09-07 | 乐金电子(沈阳)有限公司 | 视频设备的灰度系数调整装置 |
| CN101193316A (zh) * | 2006-11-21 | 2008-06-04 | 安凯(广州)软件技术有限公司 | 一种自适应白平衡校正方法 |
| US20080259402A1 (en) * | 2007-04-17 | 2008-10-23 | Jonathan Yen | System and method for image white balance adjustment |
| CN101350885A (zh) * | 2008-09-02 | 2009-01-21 | 熊猫电子集团有限公司 | 平板电视灰度系数曲线及白平衡自动调试的方法 |
| CN101860765A (zh) * | 2009-04-13 | 2010-10-13 | 鸿富锦精密工业(深圳)有限公司 | 白平衡调整方法 |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6611249B1 (en) * | 1998-07-22 | 2003-08-26 | Silicon Graphics, Inc. | System and method for providing a wide aspect ratio flat panel display monitor independent white-balance adjustment and gamma correction capabilities |
| TW594822B (en) * | 2003-01-29 | 2004-06-21 | Chunghwa Picture Tubes Ltd | Plasma display panel with gray level white balance device |
| US7508961B2 (en) * | 2003-03-12 | 2009-03-24 | Eastman Kodak Company | Method and system for face detection in digital images |
| JP2006129456A (ja) * | 2004-10-01 | 2006-05-18 | Canon Inc | 画像表示装置の補正データ生成方法及び画像表示装置の製造方法 |
| JP2007065192A (ja) * | 2005-08-30 | 2007-03-15 | Canon Inc | 画像処理方法及び画像処理装置並びにプログラム |
| TWI336587B (en) * | 2007-06-12 | 2011-01-21 | Etron Technology Inc | Color calibrating method for setting target gamma curves of target display device |
| US20100020193A1 (en) * | 2008-07-28 | 2010-01-28 | Texas Instruments Incorporated | Method and apparatus for white balance |
| TWI435141B (zh) * | 2009-12-21 | 2014-04-21 | Integrated Digital Tech Inc | 具有內嵌元件之液晶面板裝置及其設計方法 |
| CN102237025B (zh) * | 2010-04-22 | 2013-08-21 | 冠捷投资有限公司 | 一种用于显示器色彩校正的查找表产生方法 |
| US8890904B2 (en) * | 2011-12-14 | 2014-11-18 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | White balance adjusting method |
-
2012
- 2012-02-07 CN CN2012100264212A patent/CN102542962B/zh not_active Expired - Fee Related
- 2012-02-10 US US13/503,649 patent/US8698855B2/en active Active
- 2012-02-10 WO PCT/CN2012/071007 patent/WO2013117005A1/zh active Application Filing
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1665311A (zh) * | 2004-03-05 | 2005-09-07 | 乐金电子(沈阳)有限公司 | 视频设备的灰度系数调整装置 |
| CN101193316A (zh) * | 2006-11-21 | 2008-06-04 | 安凯(广州)软件技术有限公司 | 一种自适应白平衡校正方法 |
| US20080259402A1 (en) * | 2007-04-17 | 2008-10-23 | Jonathan Yen | System and method for image white balance adjustment |
| CN101350885A (zh) * | 2008-09-02 | 2009-01-21 | 熊猫电子集团有限公司 | 平板电视灰度系数曲线及白平衡自动调试的方法 |
| CN101860765A (zh) * | 2009-04-13 | 2010-10-13 | 鸿富锦精密工业(深圳)有限公司 | 白平衡调整方法 |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103928012A (zh) * | 2014-04-15 | 2014-07-16 | 深圳市华星光电技术有限公司 | 显示装置的白平衡调整方法 |
| US9414036B2 (en) | 2014-04-15 | 2016-08-09 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | White balance adjustment method for a display device |
| US9542876B2 (en) | 2014-04-28 | 2017-01-10 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Method of obtaining luminance and chromaticity of white in RGBW display device using RGB display device |
| CN113137930A (zh) * | 2021-04-25 | 2021-07-20 | 西南石油大学 | 一种泡沫液膜薄化的可视化与定量测定方法 |
| CN113137930B (zh) * | 2021-04-25 | 2022-02-01 | 西南石油大学 | 一种泡沫液膜薄化的可视化与定量测定方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| US8698855B2 (en) | 2014-04-15 |
| US20130201224A1 (en) | 2013-08-08 |
| CN102542962B (zh) | 2013-11-20 |
| CN102542962A (zh) | 2012-07-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2013117005A1 (zh) | 白平衡调整方法 | |
| CN101866641B (zh) | 影像的色彩调整方法 | |
| WO2013127092A1 (zh) | 一种斜视角图像的模拟方法及装置 | |
| WO2013086717A1 (zh) | 白平衡调整方法 | |
| WO2010024344A1 (ja) | 画質調整装置、画質調整方法、及び画質調整プログラム | |
| WO2016095239A1 (zh) | 一种图像显示方法、图像显示装置及显示器件 | |
| WO2016183859A1 (zh) | 一种灰阶补偿方法 | |
| KR20040067955A (ko) | 화상 처리 시스템, 프로젝터 및 화상 처리 방법 | |
| JPH05223642A (ja) | 測色方法及びその装置 | |
| CN103761948A (zh) | 白平衡调试方法和装置以及显示器的显示方法和装置 | |
| WO2022032777A1 (zh) | 画面显示调节方法、存储介质及显示设备 | |
| WO2016076497A1 (ko) | 메타 데이터에 기초하여 영상을 디스플레이하는 방법 및 디바이스, 그에 따른 기록매체 | |
| CN106023886A (zh) | 一种led逐点亮色度校正方法和系统 | |
| WO2021194036A1 (en) | Method and system for customizing camera parameters | |
| WO2017061691A1 (ko) | 디스플레이장치 및 그 제어방법 | |
| CN104021746A (zh) | 一种图像检测的方法及装置 | |
| WO2021020670A1 (en) | Electronic device and control method thereof | |
| WO2018128308A1 (ko) | 디스플레이 패널의 무라 보정방법 | |
| JP2011034044A (ja) | 表示装置の輝度均一性を改善する校正方法及び関連装置 | |
| WO2013127093A1 (zh) | 一种斜视角图像的模拟方法及装置 | |
| WO2023013944A1 (en) | Content creative intention preservation under various ambient color temperatures | |
| CN109348205B (zh) | 一种白平衡调整方法和装置 | |
| WO2016129796A1 (ko) | 컬러 테이블 생성 장치, 카메라 영상 보정/제어 장치 및 그 방법 | |
| CN109410889B (zh) | 一种白平衡调整方法、装置及电子设备 | |
| CN110782834B (zh) | 显示补偿方法、装置、显示面板及系统 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 13503649 Country of ref document: US |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12868171 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 12868171 Country of ref document: EP Kind code of ref document: A1 |




