WO2013115497A1 - 나노섬유 복합체 및 이의 제조방법 - Google Patents

나노섬유 복합체 및 이의 제조방법 Download PDF

Info

Publication number
WO2013115497A1
WO2013115497A1 PCT/KR2013/000169 KR2013000169W WO2013115497A1 WO 2013115497 A1 WO2013115497 A1 WO 2013115497A1 KR 2013000169 W KR2013000169 W KR 2013000169W WO 2013115497 A1 WO2013115497 A1 WO 2013115497A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
nanofibers
nanowires
nanofiber
nanofiber composite
Prior art date
Application number
PCT/KR2013/000169
Other languages
English (en)
French (fr)
Inventor
정광운
김소은
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2013115497A1 publication Critical patent/WO2013115497A1/ko

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62236Fibres based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62259Fibres based on titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers

Definitions

  • the present invention relates to nanofiber composites and gagejo methods having excellent crystal structure and optical properties, which can be applied to various electro-optical fields.
  • Electrospinning technology is used to produce inorganic fibers having diameters in the nano- or sub-micrometer units.
  • the positively charged polymer solution may be stretched by an electric field from the spinneret to the collector to finally form a nonwoven fabric in which nanometer-sized nanofibers are laminated to the collector.
  • the nanofibers produced by electrospinning have a diameter of several hundred nanometers, they may have a larger specific surface area per unit volume than the fibers produced by the conventional spinning method. Therefore, it is used for the filter which collects microparticles
  • a method for preparing inorganic nanofibers to date is known in that an organic-inorganic hybrid nanofiber is prepared by electrospinning a solution of a sol (SOl) prepared by mixing a metal alkoxide solution serving as a precursor and a polymer solution. Most of the methods for sintering a polymer that acts as a binder by heat treatment at a high temperature.
  • SOl sol
  • Korean Patent Publication No. 2006-0039354 discloses a spinning solution by adding a carbon nanotube having a carboxyl group to a mixture prepared by mixing an inorganic material sol or gel and a thermoplastic resin solution. There is disclosed a method of manufacturing hybrid nanofibers in a form in which a mixture of a thermoplastic resin and an inorganic material surrounds carbon nano-leuze by preparing and electrospinning the same.
  • Korean Patent Publication No. 2009-0054385 discloses a method for producing a Si0 2 -Ti0 2 -based composite inorganic fiber using electrospinning.
  • inorganic nanofibers having a disordered polycrystal structure of several nanometers are manufactured, they exhibit insufficient mechanical strength for commercialization. Also, in the polycrystalline nanofiber structure, electrons and photons are inefficient in moving speed. Therefore, the optoelectronic properties of metals or semiconductor materials cannot be maximized, so it is not suitable for use in sensors or dye-sensitized solar cells and devices that require fast response speed.
  • Ti0 2 titanium oxide
  • a method of manufacturing nanowires by hydrothermal reaction is a method of preparing a single crystal inorganic material at high temperature and high pressure by placing a teflon container containing an aqueous solution of a reaction product in a pressure vessel called an autoclave.
  • the morphology of the inorganic material can be adjusted to nano size such as nanowires, nanorods, and nanotubes.
  • the technology for producing monocrystalline forms by controlling the morphology of various inorganic metals such as zinc oxide, aluminum oxide, vanadium pentoxide, platinum oxide, nickel cobaltite, and the like using titanium hydrothermal reaction has been actively used. Is being studied.
  • a core-shell structure comprising a core comprising a single crystal inorganic nanowire, and a shell surrounding the core, the shell comprising inorganic nanofibers
  • the inorganic nanowires provide nanofiber composites arranged such that the longitudinal direction of the inorganic nanowires is parallel to the longitudinal direction of the nanofiber composite.
  • the inorganic nanowire may be selected from the group consisting of Ti0 2 , ZnO, Si0 2 , A1 2 0 3 , and Sn0 2 .
  • the inorganic nanowires may be selected from the group consisting of anatase Ti0 2 , ZnO, and Sn0 2 .
  • the inorganic nanowire may have a diameter of 30 to 70 nm and a length of 0.5 to 1 /.
  • the inorganic nanofibers may be epitaxially grown on the surface of the inorganic nanowires.
  • the inorganic nanofibers may be formed of Ti, Zn, Al, Sc, Cr, Mn, Fe, Co, Ni Cu, In, Sn, Y,
  • Transition metals such as Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sr, W or Cd; alkali; Alkaline earth metals; Metalloids such as Si; And it may include an oxide containing a metal element selected from the group consisting of, or a combination thereof.
  • the inorganic nanofiber may include a compound selected from the group consisting of Ti0 2 , ZnO, Si0 2 , Sn0 2, and mixtures thereof.
  • the nanofiber composite may have a diameter of 30nm to 250nm.
  • the nanofiber composite may include 300 to 500 parts by weight of inorganic nanofibers based on 100 parts by weight of inorganic nanowires.
  • the inorganic nanowire is Ti0 2 , ZnO, Si0 2 , A1 2 0 3 , and
  • Inorganic oxide selected from the group consisting of 3 ⁇ 40 2 , wherein the inorganic nanofiber is
  • Transitions such as Ti, Zn, Al, Sc, Cr, Mn, Fe, Co, Ni, Cu, In, Sn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sr, W or Cd metal; alkali; Alkaline earth metals; Metalloids such as Si; And an oxide containing a metal element selected from the group consisting of a combination thereof, or a mixture thereof, wherein the inorganic nanowires and the inorganic nanofibers may have different hetero-type core-shell structures. have.
  • the inorganic nanowire may include Ti0 2
  • the inorganic nanofiber may include ZnO.
  • preparing a composition for preparing an organic-inorganic hybrid nanofiber comprising a single crystal inorganic nanowire, an inorganic precursor, a polymer and a solvent; Preparing an organic-inorganic hybrid nanofiber by electrospinning the composition for preparing the organic-inorganic hybrid nanofiber; Collecting the radiated organic-inorganic hybrid nanofibers with a collector that rotates at a rotational speed of 100 rpm or more; And it provides a method for producing the nanofiber composite, comprising the step of heat-treating the organic-inorganic hybrid nanofibers.
  • the single crystal inorganic nanowires may be prepared by hydrothermal synthesis.
  • the inorganic precursor is Ti, Zn, Al, Sc, Cr, Mn, Fe, Co, Ni, Cu, In, Sn, Y,
  • Transition metals including Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sr, W and Cd; alkali; Alkaline earth metals; Metalloids including Si; And alkoxides, hydroxides, hydrates, hydrides, oxides, nitrides, nitrates, carbonates, sulfates, chlorides, and combinations thereof containing metal elements selected from the group consisting of combinations thereof. have.
  • the polymer may be a polyurethane, polyetherurethane, cellulose acetate, or cell. Loose Acetate Butyl, Salose Acetate Propionate, Polymethyl Methacrylate, Polymethylacrylate, Polyacrylic Copolymer, Polyvinylacetate, Polyvinylacetate Copolymer, Polyvinyl Alcohol, Polyperfuryl Alcohol , Polystyrene, polystyrene copolymer, polyethylene oxide, polypropylene oxide, polyethylene oxide copolymer, polypropylene oxide copolymer, polycarbonate, pulley vinyl chloride, polycaprolactone, polyvinylpyridone, poly 4vinyl It may be selected from the group consisting of pyridine, polyvinylidene fluoride, polyvinylidene fluoride copolymer, polyamide, polyacrylonitrile and combinations thereof.
  • the polymer may be one having a weight average molecular weight of 100,000 to l, 500,000 g / m.
  • the polymer may be included in the composition for preparing hybrid nanofibers in an amount of 150 to 300 parts by weight based on 100 parts by weight of the inorganic nanowire.
  • the organic-inorganic hybrid nanofiber manufacturing composition may further include an additive selected from the group consisting of surfactants, stabilizers, and mixtures thereof.
  • the electrospinning process may be performed under the application of a DC voltage of 5 to 30 kV.
  • Hybrid nanofibers spun in the electrospinning process may be collected in a collector rotating at a rotational speed of 100 rpm or more or 1000 to 1500 rpm or 1000 to 1200 rpin.
  • the heat treatment process may be performed at a temperature of 275 to 750 ° C.
  • the heat treatment process may be performed for 1 to 2 hours at a heating rate of 7 ° C / min to 20 ° C / min and 5 ° C / min to 20 ° C / min heat treatment under an atmospheric pressure condition Can be.
  • the nanofiber composite has excellent crystal structure and optical absorption properties, and may be applied to various electro-optic fields such as electrode materials and photocatalysts of solar cells.
  • FIG. 1 is a process diagram schematically showing a manufacturing process of a nanofiber composite according to an embodiment of the present invention.
  • FIG. 2 is a transmission electron microscope for the single crystal Ti0 2 nanowires prepared in Preparation Example 1.
  • FIG. 3 is a high-resolution transmission electron microscope (high-resolution TEM, HR-TEM) observation picture for the single crystal TK) 2 nanowires prepared in Preparation Example 1.
  • FIG. 4 shows [012] as a Fourier transformed selected area electron diffraction (SAED) image of the single crystal Ti0 2 nanowire prepared in Preparation Example 1.
  • SAED selected area electron diffraction
  • Example 5 is a scanning electron microscope (scanning electronic microscopy, SEM) of the organic-inorganic hybrid nanofibers obtained after the electrospinning in Example 1.
  • Example 6 is a TEM observation picture of the organic-inorganic hybrid nanofibers obtained after the electrospinning in Example 1.
  • FIG. 7 is a TEM image of the nanofiber composite prepared in Example 1.
  • FIG. 8 is a photograph showing the HR ⁇ TEM observation results of the left portion of the nanowire in FIG. 7.
  • FIG. 9 is a SAED pattern of FIG. 8.
  • FIG. 10 is a photograph showing HR—TEM observation results of the right side of the nanowire in FIG. 7.
  • FIG. 11 is a SAED pattern of FIG. 10.
  • FIG. 12 is a TEM photograph of the nanofiber composite prepared in Example 2.
  • FIG. 13 is a TEM photograph of the nanofiber composite prepared in Example 3.
  • FIG. 14 is a TEM observation picture of the nanofiber composite prepared in Example 1.
  • FIG. 14 is a TEM observation picture of the nanofiber composite prepared in Example 1.
  • FIG. 15 is a TEM observation picture of the Ti0 2 nanofibers of Comparative Example 1.
  • FIG. 16 is an enlarged image of a portion displayed in FIG. 15.
  • X-ray diffraction (XRD) pattern of the nanofiber composite of 1 is a graph showing the results of observation.
  • ⁇ 5i> 18 is prepared in Example 1 of the Ti0 2 nanowire, Comparative Example 1 of the Ti0 2 nanofibers and Examples
  • 1 is a graph showing the results of observing the UV-Vis absorbtion spectrum of the nanofiber composite.
  • nano refers to nanoscale and includes a size of 1 / D1 or less.
  • the term “diameter” refers to the length of the short axis passing through the center of the fiber, and the “length” means the length of the long axis passing through the center of the fiber.
  • organic polymer nanofibers produced by electrospinning have good processability due to the flexibility of the polymer, but due to the inherently weak physical properties of organic materials, they cannot be used for functional materials such as optical, electronic and magnetic materials.
  • inorganic nanofibers manufactured by electrospinning and sintering of organic-inorganic complexes are composed of disordered polycrystals of several nanometers, so that they have low mechanical strength and excellent electrical and optical properties. There are many limitations to be used for the type solar cell.
  • a single crystal inorganic nanowire having excellent physical properties, an inorganic precursor, and a polymer manufacturing composition are prepared using a polymer material having excellent workability, and the nanofiber is prepared by electrospinning and heat treatment.
  • the resulting nanofibers have a core-shell structure in which single crystal inorganic nanowires form a core and inorganic precursor-derived inorganic fibers epitaxially grow to form shells on the surface of the single crystal inorganic nanowires.
  • the inorganic nanowires have a structure in which the longitudinal direction of the inorganic nanowires is arranged parallel to the longitudinal direction of the nanofiber composite, and thus exhibits excellent mechanical strength with improved crystallinity and anisotropy, thereby maximizing electrical and optical properties.
  • the present invention was found to be complete.
  • the nanofiber composite according to the embodiment of the present invention includes a core including single crystal inorganic nanowires and a shell surrounding the core and including inorganic nanofibers.
  • the inorganic nanowires are single crystals that improve the mechanical strength and crystallinity of the nanofiber composite.
  • the inorganic nanowires are arranged such that the length direction of the inorganic nanowires in the nanofiber composite is parallel to the length direction of the nanofiber composite.
  • the inorganic nanowires are oriented in one direction, thereby expressing anisotropy even in a large area, thereby maximizing an electro-optic effect due to anisotropy.
  • the inorganic nanowire may be formed of Ti0 2 , ZnO, Si0 2 , A1 2 0 3 , and Sn0 2 . It includes a compound selected, and preferably comprises a compound selected from the group consisting of anatase type Ti0 2 , ZnO and Sn0 2 having excellent optical properties.
  • the inorganic nanowires preferably have a diameter of 30 to 70 nm and a length of 0.5 to 1. If the diameter and length of the inorganic nanowire is out of the above range, there is a fear that the nanowire is not properly introduced into the fiber strand.
  • the inorganic nanofibers are formed by epitaxy growth on the surface of the inorganic nanowires.
  • the inorganic nanofibers may have a single crystal like inorganic nanowires to improve mechanical strength and crystallinity of the nanofiber composite.
  • the inorganic nanofibers may be formed of Ti, Zn, Al, Sc, Cr, Mn, Fe, Co, Ni, Cu, In, Sn, Y,
  • Transition metals such as Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sr, W or Cd; alkali; Alkaline earth metals; Metalloids such as Si; And an oxide containing a metal element selected from the group consisting of a combination thereof, or a mixture thereof, preferably Ti0 2 ,
  • the inorganic nanowire and the inorganic nanofiber may include the same material or may include different materials from each other.
  • the nanofiber composite according to the present invention may be a homo-type core-shell structured nanofiber of the same material of the single crystal inorganic nanowire and the inorganic nanofiber, or the composition of the single crystal inorganic nanowire and the inorganic nanoisland are different. It may also be a nanofiber of a hetero-type core-shell structure.
  • the finally prepared nanofiber composite has two inorganic materials having different components on one fiber strand to form a core-shell structure.
  • This improves the physicochemical properties and is more advantageous for electrooptical use.
  • the core-shell structured nanofiber composites made of materials with similar conduction band energy but with differences are the electrode materials for dye-sensitized solar cells and the recombination of optoelectronics that inhibit the efficiency of dye-sensitized solar cells. The recombination rate can be improved.
  • zinc oxide (ZnO) inorganic nanofibers containing the single crystal Ti0 2 nanowires may be manufactured.
  • the nanofiber composite may have a diameter of 30 to 250 nm, and 80 to
  • the diameter of the nanofiber composite is outside this range In some cases, the surface area per unit volume is not large, which is not preferable because there is a limit to improve the electro-optic properties or the mechanical strength may be insufficient.
  • the nanofiber composite is from 300 to 100 parts by weight of the inorganic nanowires
  • inorganic nanofibers it is preferred to include 500 parts by weight of inorganic nanofibers. If the content of the inorganic nanofibers to the inorganic nanowires out of the content range is too large, specifically, if the content exceeds 500 parts by weight, there is a possibility that the improvement of crystallinity of the final nanofiber composite may be insufficient, and conversely, the inorganic nanowires If the content of the inorganic nanofibers is too small, specifically less than 300 parts by weight of the nano-fibers due to agglomeration of the inorganic nanowires is difficult to manufacture the nanofibers is not preferable.
  • Nanofiber composite having the structure as described above comprises the steps of preparing a composition for producing a hybrid nanofiber comprising a single crystal inorganic nanowires, an inorganic water precursor, a polymer resin and a solvent; Preparing an organic-inorganic hybrid nanofiber by electrospinning the composition for preparing the organic-inorganic hybrid nanofiber; Collecting the spun organic-inorganic hybrid nanofibers with a collector that rotates at a rotation speed of 100 rpm or more; And it may be prepared by the method for producing a nanofiber composite comprising the step of heat-treating the organic-inorganic hybrid nanofibers.
  • FIG. 1 is a process diagram schematically showing a manufacturing process of a nanofiber composite according to an embodiment of the present invention. Hereinafter, each step will be described in detail with reference to FIG. 1.
  • composition 100 for preparing an organic-inorganic hybrid nanofiber including a single crystal inorganic nanowire, an inorganic precursor, a polymer, and a solvent is prepared (S1).
  • the composition 100 for preparing an organic-inorganic hybrid nanofiber may be prepared by mixing a single crystal inorganic nanowire, an inorganic precursor, a polymer, and a solvent according to a conventional method, and specifically, the polymer is dissolved in a solvent. It can be prepared by adding and mixing an inorganic nanowire and an inorganic precursor to one polymer solution. Inorganic water precursors may also be used in solution.
  • the inorganic nanowire is as described above.
  • the inorganic nanowires may be prepared by a hydrothermal method.
  • Preparation of inorganic nanowires by hydrothermal synthesis method can be carried out according to the conventional hydrothermal synthesis method without particular limitation, specifically, inorganic nanoparticles such as Ti0 2 , ZnO, Si0 2 , A1 2 0 3 , Sn0 2 , sodium hydroxide It may be carried out by dispersing in a strong base aqueous solution such as and then reacting at a high temperature.
  • the reaction can be carried out in an autoclave, the reaction temperature can be appropriately adjusted according to the type of inorganic nanoparticles used All. Specifically, reaction at a temperature of 150 to 200 t is preferable because it can be produced by morphology of nanowires.
  • Inorganic nanowires prepared through the hydrothermal reaction as described above are single crystals and have anisotropy.
  • inorganic nanowires have various lengths ranging from several nanometers to several micrometers, specifically, 0.5 to 3.5 mm 3, in which case the length of the inorganic nanowires is several tens of the diameters of the inorganic nanofibers produced at last.
  • the inorganic precursor is epitaxially grown on the surface of the inorganic nanowire during the sintering process to form inorganic nanofibers, Ti, Zn, Al, Sc, Cr, Mn, Fe, Co, Ni, Cu, In Transition metals such as, Sn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sr, W or Cd; alkali; Alkaline earth metals; Metalloids such as Si; And alkoxides, hydroxides, hydrates, hydrides, oxides, nitrides, nitrates, carbonates, sulfates, or chlorides containing a metal element selected from the group consisting of a combination thereof, one of these alone or two It can be used in combination of two or more kinds.
  • the silicon-containing alkoxide compound usable as a precursor of Si0 2 is selected from the group consisting of tetra (d- 4 alkyl) orthosilicates, silane compounds having 1 to 3 alkoxy groups, and mixtures thereof.
  • titanium-containing alkoxide compound usable as a precursor of titanium dioxide titanium d- 4 alkoxide such as titanium isopropoxide (Ti (0Pr) 4 ) may be used.
  • the inorganic precursor may be appropriately added in consideration of the content of the inorganic nanofibers in the nanofiber composite to be finally prepared, specifically, may be included as 350 to 450 parts by weight based on 100 parts by weight of inorganic nanowires, preferably Preferably it may be included in 350 to 400 parts by weight.
  • the polymer has affinity with inorganic nanowires, facilitates the dispersion of inorganic precursors, has a low decomposition temperature to facilitate carbonization in the sintering process, and is suitable to have a viscosity suitable for electrospinning. Preference is given to using thermoplastic or thermosetting polymers having a molecular weight.
  • the polymer may include polyurethane (PU), polyetherurethane, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, polymethyl methacrylate (PMMA), polymethyl Acrylate (PMA), polyacrylic copolymer, polyvinylacetate (PVAc), polyvinylacetate copolymer, polyvinyl alcohol (PVA), polyfuryl alcohol (PPFA), polystyrene (PS), polystyrene copolymer, polyethylene oxide (PE0), polypropylene oxide (PP0), polyethylene oxide copolymer, polypropylene oxide copolymer, polycarbonate (PC), polyvinylchloride (PVC), polycaprolactone (PCL), polyvinylpyrrolidone (( poly (vinyl pyrrol idone), PVP), poly (4-vinyl pyridine), P4VP), polyvinylidene fluoride (PVdF), polyvinylidene fluoride copo
  • Ti0 2 nanowires are used as inorganic nanowires
  • a polymer such as polyvinylpyridone or poly 4vinylpyridine which is hydrophilic in consideration of the hydrophilic properties of Ti0 2 nanowires.
  • the polymer is 100,000 to 100 to have a viscosity suitable for electrospinning
  • a weight average molecular weight of l, 500,000 g / m preferably a weight average molecular weight of 500,000 to l, 300,000 g / mol. If the weight average molecular weight of the polymer out of the above range is less than 100,000g / niol, the molecular chain is short and insufficient for the production of nanofibers, if it exceeds l, 500,000g / n) l, the polymer solution viscosity is increased to increase the thickness of the nanofibers Difficult to adjust fine, which is undesirable.
  • the polymer may be included in an amount of 150 to 300 parts by weight, and preferably 200 to 300 parts by weight, based on 100 parts by weight of the inorganic nanowire.
  • the content of the polymer is less than 150 parts by weight, the content of the inorganic nanowires is relatively high, which is difficult to prepare the nanofiber composite due to the agglomeration of the inorganic nanowires, and when the content of the inorganic nanowires exceeds 300 parts by weight. There is a difficulty in improving the crystallinity of the final nanofiber composite.
  • an alcohol or a mixed solvent of water and alcohol may be used.
  • the base alcohol lower alcohols such as ethanol and isopropanol (/ -PrOH) can be used.
  • an organic solvent such as dimethyl formamide (DMF), methylene chloride (MC), or the like may be used depending on the type of polymer used.
  • composition for preparing an organic-inorganic hybrid nanofiber is suitable for electrospinning
  • the solvent may be used in an amount such that the composition for preparing hybrid nanofibers has the viscosity.
  • composition for preparing hybrid nanofibers may further include an additive selected from the group consisting of stabilizers, surfactants, and mixtures thereof.
  • the stabilizer serves to stabilize the metal precursor material and control the sol-gel hydrolysis reaction.
  • Acetic acid (M), acetylacetone and their mixtures may be used as the stabilizer, and the stabilizer may be used in an amount of 2 to 3 parts by weight based on 1 part by weight of the inorganic precursor. Do.
  • the surfactant is to increase the dispersibility of the inorganic nanowires in the composition for producing hybrid nanofibers, linear alkylbenzene sulfonate, alpha olefin sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl ester
  • Anionic surfactants such as sulfate, sodium alkylsulfate, calcium alkylsulfate and alkylbenzene calcium sulfonate; Cationic surfactants such as dialkyldimethylammonium salts, imidazolium salts, alkyldimethylbenzylammonium salts and alkylmethylammonium bromide;
  • Nonionic surfactants such as polyoxyethylene alkyl ether, alkyl dimethylamine oxide, fatty acid alkanamide, alkyl polyglucoside and trioxyethylene alkyl polyphenyl ether;
  • Amphoteric surfactants such as an alkyl betaine
  • the surfactant may be included in an amount of 0.01 to 2 parts by weight based on 1 part by weight of the inorganic precursor, and preferably 1 to 2 parts by weight. have.
  • the electrospinning process is preferably performed under a DC voltage of 5 to 30kV. It is preferable that the electrospinning process is performed uniformly without beads in the fiber when the electrospinning process is performed under a DC voltage within the above range.
  • the spinning needle, the distance between the collector and the needle, the spinning speed, and the like are not particularly limited and may be appropriately selected.
  • a spinning needle may use 18 to 22 gauge needles made of stainless steel, and the distance between the collector and the needle may be adjusted to 5 to 30 cm.
  • spinning the composition at a spinning rate of 1 to 5 mL / hr upon electrospinning is preferred for reasons of conditions that are satisfactory to produce continuous thin nanofibers in nano units.
  • the spun organic-inorganic hybrid nanofibers are collected with a collector that rotates at a rotational speed lOOOOrpin or higher (S3).
  • a technique for orienting the inorganic nanowires in a selected direction is required.
  • This orientation technique uses a fluid channel to orient nanowires in a microfluidic channel, Langmuir-Blodgett orientation, blow-blown orientation, or electric field orientation.
  • the organic nanofibers having a larger diameter than the inorganic nanowires are used as channels in which the inorganic nanowires exist, and the rotation of the collector for collecting organic-inorganic hybrid nanofibers prepared after electrospinning
  • the speed to 100 rpm or more, preferably 1000 to 1200 rpm, the orientation of the single crystal inorganic nanowires can be simply controlled at a large area.
  • Anisotropic single crystal organic-inorganic hybrid nanofibers are prepared by the electrospinning process and the collecting process under the above conditions.
  • the wire 100b is arranged parallel to the longitudinal direction of the organic-inorganic hybrid nanofibers 200, wherein the diameter of the organic-inorganic hybrid nanofibers was 220 to 280nm.
  • a heat treatment process of carbonization or calcination that burns organic materials at a high temperature is performed (S4).
  • Crystallization of the inorganic precursor during the heat treatment is also performed at the same time.
  • the temperature during the heat treatment is preferably selected in consideration of the decomposition temperature of the polymer and the crystallization temperature of the inorganic material.
  • the heat treatment process is preferably performed at a temperature of 275 to 750 ° C.
  • the inorganic precursor may be epitaxially grown on the surface of the monocrystalline inorganic nanowires to form inorganic nanofibers having a uniform crystal structure advantageous for electro-optic applications.
  • epitaxial growth can be induced simply and easily. .
  • the heat treatment process is preferably performed at a temperature of 275 to 750 ° C and atmospheric pressure conditions, wherein the heating rate is 7 ° C / min to 20 ° C / min, and the heat treatment rate after heat treatment is preferably 5 ° C / min to 20 ° C / min.
  • the nanofiber composite according to the present invention includes single crystal inorganic nanowires.
  • titanium dioxide has a feature in which the crystal structure is phase-shifted from anatase to rutile at a specific temperature after heat treatment.
  • the heat treatment process is preferably carried out for 1 to 2 hours under the conditions of striking the temperature, pressure, heating / cooling rate range.
  • the heat treatment process is preferably carried out in an inert atmosphere such as nitrogen, argon.
  • the diameter and length of the fibers are significantly reduced by the carbonization of the polymer than before the heat treatment.
  • the organic-inorganic hybrid nanofibers before the heat treatment have a diameter of about 220 to 280 nm, whereas after carbonization, they vary from 80 nm to 250 nm depending on the sintering temperature.
  • the diameter of the fiber is determined by the molecular weight or concentration of the polymer, the viscosity of the polymer solution, the concentration of the inorganic precursor-containing solution, the spinning flow rate and the weight ratio of the inorganic nanowires. Depending on the optimization of these factors, it is preferable that the fiber obtained after the heat treatment has a diameter of 80 to 250nm.
  • the nanofiber composite 300 of the present invention prepared by the above production method contains a single crystal inorganic nanowire (100b) having excellent physical properties, and also the inorganic nanowire of the single crystal (100b).
  • the inorganic nanofibers 100c grown epitaxially on the surface it exhibits higher crystallinity and mechanical strength compared to the nanofibers of the polycrystalline structure prepared by the sol-gel method of the conventional metal precursor.
  • the inorganic nanowires contained in the nanofiber composite exhibit anisotropy by being oriented in one direction such that the longitudinal direction of the inorganic nanowire is parallel to the longitudinal direction of the nanofiber composite, resulting in significantly improved electrical and optical properties.
  • the nanofiber composite 300 of the present invention may have a length of several tens of meters compared to the nanowires that were limited to micro units because of excellent processability.
  • TiO 2 nanowires were prepared by a hydrothermal method.
  • the titanium dioxide powder (purity: 99.9%, diameter: lOOnm or less) for 24 hours and then dispersed in aqueous solution of sodium hydroxide 10M (80mL) placed in a Teflon vessel, 200 ° and place it in the autoclave C And then slowly cooled to room temperature.
  • the resulting product was washed several times with 0.1M aqueous hydrogen chloride solution and distilled water, and finally washed with pure ethanol to pH 6-7. After filtration it was dried for 6 hours in an oven at 70 ° C to obtain a single crystal ⁇ 0 2 nanowires.
  • DHDAB dihexadecyldimethylammonium bromide
  • organic-inorganic hybrid nanofibers prepared above were electrospun to prepare organic-inorganic hybrid nanofibers.
  • a 20 gauge needle made of stainless steel was used as the spinning needle, but a DC voltage was applied at a voltage of 15 kV.
  • the distance between the collector and the needle was set to 15 cm, and the flow rate of the spinning solution of the syringe pump was increased to 5 mL / hr.
  • the rotation speed of the cylindrical collector was adjusted to 1000 rpm to achieve fiber orientation.
  • the organic-inorganic hybrid nanofibers prepared after electrospinning were sintered at 500 ° C. and atmospheric pressure for 2 hours under a nitrogen atmosphere to prepare nanofiber composites. At this time, the heating rate and cooling rate were set to 7 ° C / min, respectively.
  • nanofiber composite was prepared in the same manner.
  • An inorganic nanofiber was prepared in the same manner as in Example 1, except that 10.0: 20.0: 4.7: 62.7 (weight ratio) was used.
  • Figure 2 is a TEM observation picture on a single crystalline Ti0 2 nanowires synthesized in Preparation Example 1
  • Figure 3 is an HR-TEM observation picture on the single crystal Ti0 2 nanowire
  • Figure 4 is the single crystal Ti0 2 nano
  • the SAED image for the wire represents the [010] zone.
  • Ti0 2 nanowires synthesized in Preparation Example 1 had a diameter of 50 cm 20 nm and a length of 2 cm 1.5. 3 and 4, Ti0 2 nanowires synthesized in Preparation Example 1 had anatase single crystal structure, and the crystal growth direction was [001].
  • FIG. 5 is a SEM photograph of organic-inorganic hybrid nanofibers obtained by electrospinning a composition for preparing organic-inorganic hybrid nanofibers containing Ti0 2 nanowires
  • FIG. 6 is a TEM of the organic-inorganic hybrid nanofibers. Observation picture. Scanning electron microscope observation results, as shown in Figure 5, it was confirmed that the organic-inorganic hybrid nanofibers obtained after the electrospinning has a diameter of 250 cm 80nm. In addition, as shown in Figure 6, it was confirmed that the single crystal inorganic nanowires having a length of 0.5 to 1.0 through the transmission electron microscope ' microscopic embedded in the middle of the organic-inorganic hybrid nanofibers parallel to the longitudinal direction of the nanofibers.
  • FIG. 7 is a TEM image of the nanofiber composite prepared in Example 1, FIG. 8 and FIG.
  • FIGS. 10 and 11 show the HR-TEM image of the right side of the nanowires in the nanofiber composite, respectively. It shows the SAED pattern.
  • the darker portion refers to the inorganic nanowire, from which the inorganic nanowire is located in the nanofiber composite, wherein the length of the inorganic nanowire is in the [001] direction parallel to the length of the nanofiber composite. You can check it.
  • the inorganic precursor included in each nanofiber grew epitaxially on the surface of the inorganic nanowires with single crystals. can confirm.
  • FIG. 12 is a TEM observation photograph of the nanofiber composite of Example 2 prepared by sintering an organic-inorganic hybrid nanofiber at 275 ° C.
  • FIG. 13 shows a nanoparticle of Example 3 prepared by sintering at 750 ° C.
  • TEM observation picture of the fiber composite Figure 14 is a TEM observation picture of the nanofiber composite of Example 1 prepared by sintering at 500 ° C.
  • the nanofiber composite of Example 2 prepared by sintering organic-inorganic hybrid nanofibers at 275 ° C. had a diameter of 130 ⁇ 30 nm, and sintered at 750 ° C.
  • Nanofiber composite of Example 3 prepared by the The nanofiber composite of Example 1 prepared by sintering at 500 ° C. had a diameter of 200 50 50 nm.
  • the diameter of organic-inorganic hybrid nanofibers after spinning was 250 nm 30 nm, the diameter of the fiber decreased during sintering. The decrease in diameter was larger at higher sintering temperature. This result is due to the crosslinking of the polymer contained in the organic-inorganic hybrid nanofibers and the mass transportation of the inorganic precursor during sintering.
  • Figure 15 is a TEM observation picture of Ti0 2 nanofibers of Comparative Example 1 prepared without the addition of Ti0 2 nanowire
  • Figure 16 is an enlarged image of the displayed portion in Figure 15.
  • the nanofibers prepared in Comparative Example 1 had a fiber diameter of 200 nm 50 nm similar to that of the nanofiber composite of Example 1 prepared at the same sintering temperature.
  • the nanofiber composite has a crystal structure according to the epitaxial growth of inorganic nanofibers from the surface of the single crystal inorganic nanowires contained in the composite, whereas the nanofiber prepared in Comparative Example 1 has a polycrystalline structure composed of small crystal grains of Ti0 2 . Indicated.
  • Ti0 2 is compared with the result of the XRD pattern Ti0 2 nanofibers of 1 prepared without addition of the nanowire, (c) is a XRD pattern of the resulting nanofiber composite material of Example 1 containing the Ti0 2 nanowires.
  • the nanofiber composite of Example 1 containing the single crystalline inorganic nanowires according to the present invention has a higher crystallinity than the single crystalline nanowires (Preparation Example 1). Although low, it was confirmed that the crystallinity was high compared to the nanofibers (Comparative Example 1) having a polycrystalline structure containing no nanowires.
  • ⁇ 163> exemplary one to compare the optical absorption properties of lead and the Ti0 2 nm prepared in Preparative Example 1, containing the Ti0 2 nanofibers and Ti0 2 nanowires of the comparative example 1 prepared without the addition of Ti0 2 nanowires
  • the UV-Vis absorbtion spectrum of the nanofiber composite of Example 1 was observed. The results are shown in FIG.
  • (b) is a UV-Vis absorption spectrum of the Ti0 2 nanofibers of Comparative Example 1 prepared without the addition of Ti0 2 nanowire
  • (c) is a nano-fiber composite of example 1 containing the Ti0 2 nanowires
  • the absorption spectrum of the nanofiber of Comparative Example 1 and the nanofiber composite of Example 1 is longer than that of the maximum absorption wavelength of Ti0 2 inorganic nanowire of Preparation Example 1. Red-shifted toward the results. However, the nanofiber composite of Example 1 showed relatively blue-shifted results compared to the nanofibers of Comparative Example 1 due to the size quantization effect. From these results, it can be seen that the nanofiber composite according to the present invention exhibits superior optical properties due to the anisotropy derived from the inorganic nanowires oriented to match the longitudinal direction of the composite in the composite.
  • the present invention can be used in industries of various electro-optical fields such as solar cell electrode materials and photocatalysts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Fibers (AREA)

Abstract

본 발명은 나노섬유 복합체 및 그 제조방법에 관한 것으로, 상기 나노섬유 복합체는 단결정 무기 나노와이어를 포함하는 코어, 및 상기 코어를 둘러싸며, 무기 나노섬유를 포함하는 쉘을 포함한다. 본 발명에 따른 나노섬유 복합체는 우수한 결정구조 및 광학적 흡수 성질을 가져, 태양전지의 전극재료, 광촉매 등 다양한 전기광학적 분야에 적용될 수 있다.

Description

【명세서】
【발명의 명칭】
나노섬유 복합체 및 이의 제조방법
【기술분야】
<1> 본 발명은 우수한 결정구조 및 광학적 성질을 가져 다양한 전기광학 분야에 적용가능한 나노섬유 복합체 및 그쎄조방법에 관한 것이다.
【배경기술】
<2> 나노 단위 또는 서브마이크로미터 단위의 지름을 갖는 무기섬유를 제조하기 위해 전기방사 기술이 이용된다. 전기방사 기술에 따르면 양으로 대전된 고분자 용 액을 방사구로부터 수집기까지 전기장에 의해 연신하여 최종적으로 나노미터 크기 의 나노섬유들이 수집기에 적층된 부직포를 형성함으로써 나노섬유를 제조할 수 있 다. 전기방사법을 통해 제작된 나노섬유들은 수백 나노 크기의 직경을 갖기 때문에 기존의 방사법에 의해 제작된 섬유에 비해 단위 부피 당 넓은 비표면적을 가질 수 있다. 따라서 대기나 수질 중의 미립자를 포집하는 필터용이나 표면에서 반웅하는 고체 촉매의 지지체, 또는 군사적인 목적의 강력 보강재 등에 웅용되고 있다.
<3> 현재까지 알려진 무기 나노섬유의 제조방법으로는, 전구체 역할을 하는 금속 알콕사이드 용액과 고분자 용액을 흔합하여 제조한 졸 (SOl)상의 용액을 전기방사하 여 유무기 하이브리드 나노섬유를 제조한 후 고온에서 열처리하여 바인더 역할을 하는 고분자를 소결시키는 방법이 대부분이다.
<4> 일례로 한국특허공개 제 2006-0039354호에는 무기물질 졸 (sol) 또는 겔 (gel) 과 열가소성 수지 용액을 흔합하여 제조한 흔합액에 카르복실기가 도입된 카본나노 튜브를 첨가하여 방사용액을 제조하고, 이를 전기방사함으로써 열가소성 수지와 무 기물질의 흔합물이 카본나노류브를 감싸고 있는 형태의 하이브리드 나노섬유를 제 조하는 방법이 개시되어 있다.
<5> 또한 한국특허공개 제 2009-0054385호에는 전기방사를 이용하여 Si02-Ti02계 복합무기섬유를 제조하는 방법이 개시되어 있다.
<6> 하지만 상기 방법들에 따르면 수 나노미터 크기의 무질서한 다결정 구조의 무기 나노섬유가 제조되기 때문에, 상용화하기에는 불충분한 기계적 강도를 보인 다ᅳ 또한 다결정 나노섬유 구조에서는 전자와 광자의 이동속도가 비효율적이므로 금속 또는 반도체 물질의 광전자 특성을 극대화할 수 없어 빠른 웅답속도를 요구하 는 센서나 염료감응형 태양 전지 및 디바이스에 웅용되기에는 한계가 있다ᅳ
<7> 한편, 광촉매, 백색안료, 센서 및 오염물질 제거 필터와 염료감응형 태양전 지에서 염료를 흡착하는 역할 등으로 많이 쓰이는 이산화티타늄 (titanium oxide, Ti02) 나노 입자를 수열 (hydrothermal) 반웅을 통해 이방성을 갖는 나노와이어의 모 폴로지로 제조하는 연구가 활발히 진행되어 왔다.
<8> 수열반웅에 의한 나노와이어 제조방법은 오토클레이브 (autoclave)라고 불리 는 압력 용기에 수용액 상태의 반웅물을 포함한 테플론 용기를 넣고 고온 고압 상 태에서 단결정의 무기물을 제조하는 방법으로, 온도, 압력, 용액 농도 등의 조절을 통해 무기물의 모폴로지를 나노와이어, 나노로드, 나노튜브 등의 나노 사이즈로 조 절할 수 있다. 현재까지 수열 반웅을 이용하여 이산화티타늄 뿐만 아니라 산화아 연, 산화알루미늄, 오산화바나듐, 산화 백금, 니켈 코발타이트 등의 다양한 무기 금속물질의 모폴로지를 나노 단위로 조절하여 단결정 형태로 제조하는 기술이 활발 히 연구되고 있다.
【발명의 상세한 설명】
【기술적 과제】
< > 본 발명은 우수한 결정구조 및 광학적 흡수 성질을 가져 다양한 전기광학 분 야에 적용가능한 나노섬유 복합체 및 그 제조방법을 제공하는 것을 목적으로 한다. 【기술적 해결방법】
<K)> 상기 목적을 달성하기 위하여, 본 발명의 일 구현예에 따르면, 단결정 무기 나노와이어를 포함하는 코어, 및 상기 코어를 둘러싸며, 무기 나노섬유를 포함하는 쉘을 포함하는 코어-쉘 구조를 가지며, 상기 무기 나노와이어는 무기 나노와이어의 길이방향이 나노섬유 복합체의 길이 방향에 평행하도록 배열된 나노섬유 복합체를 제공한다.
<π> 상기 무기 나노와이어는 Ti02, ZnO, Si02, A1203, 및 Sn02로 이루어진 군에서 선택될 수 있다.
<12> 상기 무기 나노와이어는 아나타이즈형 (anatase) Ti02, ZnO 및 Sn02로 이루어 진 군에서 선택되는 것일 수 있다.
<13> 상기 무기 나노와이어는 30 내지 70nm의 직경 및 0.5 내지 1/ 의 길이를 갖 는 것일 수 있다.
<14> 상기 무기 나노섬유는 무기 나노와이어의 표면에서 에픽택시 성장한 것일 수 있다.
<15> 상기 무기 나노섬유는 Ti, Zn, Al, Sc, Cr, Mn, Fe, Co, Ni Cu, In, Sn, Y,
Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sr, W 또는 Cd과 같은 전이금속; 알칼리 금속; 알칼리토류 금속; Si 등의 준금속; 및 이들의 조합으로 이루어진 군에서 선택되는 금속원소를 함유하는 산화물, 또는 이들의 흔합물을 포함할 수 있다.
<16> 상기 무기 나노섬유는 Ti02, ZnO, Si02, Sn02 및 이들의 흔합물로 이루어진 군에서 선택되는 화합물을 포함할 수 있다.
<|7> 상기 나노섬유 복합체는 30nm 내지 250nm의 직경을 가질 수 있다.
<18> 상기 나노섬유 복합체는 무기 나노와이어 100중량부에 대하여 300 내지 500 중량부의 무기 나노섬유를 포함할 수 있다.
<19> 상기 나노섬유 복합체는 상기 무기 나노와이어가 Ti02, ZnO, Si02, A1203, 및
¾02로 이루어진 군에서 선택되는 무기산화물을 포함하고, 상기 무기 나노섬유가
Ti, Zn, Al , Sc, Cr, Mn, Fe, Co, Ni , Cu, In, Sn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sr, W 또는 Cd과 같은 전이금속; 알칼리 금속; 알칼리토류 금속; Si 등의 준금속; 및 이들의 조합으로 이루어진 군에서 선택되는 금속원소를 함유하는 산화 물, 또는 이들의 흔합물을 포함하며, 상기 무기 나노와이어와 무기 나노섬유는 서 로 상이한 헤테로 타입의 코어-쉘 구조를 갖는 것일 수 있다.
<20> 상기 나노섬유 복합체에 있어서, 상기 무기 나노와이어는 Ti02를 포함하고, 무기 나노섬유는 ZnO를 포함하는 것일 수 있다.
<21> 본 발명의 다른 일 구현예에 따르면, 단결정 무기 나노와이어, 무기물 전구 체, 고분자 및 용매를 포함하는 유무기 하이브리드 나노섬유 제조용 조성물을 제조 하는 단계; 상기 유무기 하이브리드 나노섬유 제조용 조성물을 전기방사하여 유무 기 하이브리드 나노섬유를 제조하는 단계; 상기 방사된 유무기 하이브리드 나노섬 유를 회전속도 lOOOrpm 이상으로 회전하는 수집기로 수집하는 단계 ; 및 상기 유무 기 하이브리드 나노섬유를 열처리하는 단계를 포함하는, 상기 나노섬유 복합체의 제조방법을 제공한다.
<22> 상기 단결정 무기 나노와이어는 수열합성법에 의해 제조될 수 있다.
<23> 상기 무기물 전구체는 Ti, Zn, Al, Sc, Cr, Mn, Fe, Co, Ni , Cu, In, Sn, Y,
Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sr, W 및 Cd를 포함하는 전이금속; 알칼리 금속; 알칼리토류 금속; Si를 포함하는 준금속; 및 이들의 조합으로 이루어진 군에서 선 택되는 금속원소를 함유하는 알콕사이드, 수산화물, 수화물, 수소화물, 산화물, 질 화물, 질산염, 탄산염, 황산염, 염화물 및 이들의 흔합물로 이루어진 군에서 선택 되는 것일 수 있다.
<24> 상기 고분자는 폴리우레탄, 폴리에테르우레탄, 셀를로오스 아세테이트, 셀를 로오스 아세테이트 부틸레이트, 샐를로오스 아세테이트 프로피오네이트, 폴리메틸 메타크릴레이트, 폴리메틸아크릴레이트, 폴리아크릴 공중합체, 폴리비닐아세테이 트, 폴리비닐아세테이트 공중합체, 폴리비닐알콜, 폴리퍼퓨릴알콜, 폴리스티렌, 폴 리스티렌 공중합체, 폴리에틸렌 옥사이드, 폴리프로필렌옥사이드, 폴리에틸렌옥사 이드 공중합체, 폴리프로필렌옥사이드 공중합체, 폴리카보네이트, 풀리비닐클로라 이드, 폴리카프로락톤, 폴리비닐피를리돈, 폴리 4비닐피리딘, 폴리비닐리덴플루오라 이드, 폴리비닐리덴플루오라이드 공중합체, 폴리아마이드, 폴리아크릴로니트릴 및 이들의 흔합물로 이루어진 군에서 선택될 수 있다.
<25> 상기 고분자는 100,000 내지 l,500,000g/m 의 중량평균 분자량을 갖는 것일 수 있다.
<26> 상기 고분자는 무기 나노와이어 100중량부에 대하여 150 내지 300중량부의 함량으로 하이브리드 나노섬유 제조용 조성물에 포함될 수 있다.
<27> 상기 유무기 하이브리드 나노섬유 제조용 조성물은 계면활성제, 안정화제 및 이들의 흔합물로 이루어진 군에서 선택되는 첨가제를 더 포함할수 있다.
<28> 상기 전기 방사 공정은 5 내지 30 kV의 직류전압 인가 하에 수행될 수 있다.
<29> 상기 전기 방사 공정에서 방사된 하이브리드 나노섬유가 회전속도 lOOOrpm 이상 또는 1000 내지 1500rpm 또는 1000 내지 1200rpin으로 회전하는 수집기에 수집 될 수 있다.
<3()> 상기 열처리 공정은 275 내지 750°C의 온도에서 수행될 수 있다.
<3i> 상기 열처리 공정은 대기의 압력 조건하에서 7°C/min 내지 20°C/min의 가열 속도 및 5°C/min 내지 20°C/min열처리 후 넁각 속도로 1 내지 2시간 동안 수행될 수 있다.
<32> 기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
【유리한 효과】
<33> 상기 나노섬유 복합체는 우수한 결정구조 및 광학적 흡수 성질을 가져, 태양 전지의 전극재료, 광촉매 등 다양한 전기광학 분야에 적용될 수 있다.
【도면의 간단한 설명】
<34> 도 1은 본 발명의 일 구현예에 따른 나노섬유 복합체의 제조 공정을 개략적 으로 나타낸 공정도이다.
<35> 도 2는 제조예 1에서 제조한 단결정 Ti02 나노와이어에 대한 투과전자현미경
(transmission electronic microscopy, TEM) 관찰 사진이다 . <36> 도 3는 제조예 1에서 제조한 단결정 TK)2 나노와이어에 대한 고분해능 투과 전자현미경 (high-resolution TEM, HR— TEM) 관찰사진이다.
<37> 도 4는 제조예 1에서 제조한 단결정 Ti02 나노와이어에 대한 푸리에 변환 제 한시야전자회절 (four ier transformed selected area electron di f f racion, SAED) 이미지로 [01이존을 나타낸다.
<38> 도 5는 실시예 1에서 전기방사 후 얻어진 유무기 하이브리드 나노섬유에 대 한 주사전자현미경 (scanning electronic microscopy, SEM) 관찰사진이다.
<39> 도 6는 실시예 1에서 전기방사 후 얻어진 유무기 하이브리드 나노섬유에 대 한 TEM 관찰 사진이다.
<40> 도 7는 실시예 1에서 제조한 나노섬유 복합체의 TEM 이미지이다.
<4i> 도 8는 상기 도 7에서 나노와이어를 기준으로 좌측부에 대한 HRᅳ TEM 관찰 결 과를 나타낸 사진이고,
<42> 도 9는 상기 도 8에 대한 SAED 패턴이다.
<43> 도 10는 상기 도 7에서 나노와이어를 기준으로 우측부에 대한 HR— TEM 관찰 결과를 나타낸 사진이다.
<44> 도 11는 상기 도 10에 대한 SAED패턴이다.
<45> 도 12는 실시예 2에서 제조한 나노섬유 복합체의 TEM 관찰사진이다.
<46> 도 13는 실시예 3에서 제조한 나노섬유 복합체의 TEM 관찰사진이다.
<47> 도 14는 실시예 1에서 제조한 나노섬유 복합체의 TEM 관찰사진이다.
<48> 도 15는 비교예 1의 Ti02 나노섬유의 TEM 관찰 사진이다.
<49> 도 16는 상기 도 15 중에 표시된 부분의 확대된 이미지이다.
<50> 도 17은 제조예 1의 Ti02 나노와이어, 비교예 1의 Ti02 나노섬유 및 실시예
1의 나노섬유 복합체의 X선 회절 (X— ray diffraction, XRD) 패턴을 관찰한 결과를 나타낸 그래프이다.
<5i> 도 18은 제조예 1의 Ti02 나노와이어, 비교예 1의 Ti02 나노섬유 및 실시예
1의 나노섬유 복합체의 자외선-가시광선 흡수 스펙스럼 (UV-Vis absorbtion spectrum)을 관찰한 결과를 나타낸 그래프이다.
<52> ,
【발명의 실시를 위한 형태】
<53> 이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제 시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항 의 범주에 의해 정의될 뿐이다.
<54> 본 명세서에 기재된 용어 "나노" 란 나노 스케일을 의미하며 , 1 /D1 이하의 크기를 포함한다.
<55> 본 명세서에 기재된 용어 "직경 " 이란, 섬유의 중심을 지나는 단축의 길이 를 의미하고, "길이" 란 섬유의 중심을 지나는 장축의 길이를 의미한다.
<56> 전기 방사를 통해 제조되는 유기 고분자 나노섬유는 고분자의 유연성으로 가 공성은 좋지만, 유기 소재라는 본래의 취약한 물리적 성질 때문에 광, 전자, 자기 적 등의 기능성 소재에 웅용되기에는 한계가 있었다. 또한 유무기 흔합물의 전기방 사와 소결을 통해 제조되는 무기 나노섬유는 수 나노미터의 무질서한 다결정으로 이루어져 있어 기계적 강도가 낮을 뿐만 아니라 전기적, 광학적 특성이 우수하지 않아 빠른 응답속도를 요구하는 센서나 염료감응형 태양전지 등에 웅용하기에는 한 계점이 많다.
<57> 이에 대해 본 발명에서는 우수한 물리적 성질을 갖는 단결정의 무기 나노와 이어와 무기물 전구체, 그리고 우수한 가공성을 갖는 고분자 물질을 이용하여 섬유 제조용 조성물을 제조하고, 이를 전기방사 및 열처리하여 나노섬유를 제조하였으 며, 그 결과로 제조된 나노섬유가 단결정 무기 나노와이어가 코어를 형성하고 상기 단결정 무기 나노와이어의 표면에서 무기물 전구체 유래 무기 섬유가 에피택시 성 장하여 쉘을 형성하는 코어-쉘 구조를 갖는 동시에 상기 무기 나노와이어는 무기 나노와이어의 길이방향이 나노섬유 복합체의 길이 방향에 평행하도록 배열된 구조 를 가짐으로써, 개선된 결정성 및 이방성과 함께 우수한 기계적 강도를 나타내며, 이로써 극대화된 전기적, 광학적 특성을 나타냄을 알아내고 본 발명을 완성하였다.
<58>
<59> *즉, 본 발명의 일 구현예에 따른 나노섬유 복합체는 단결정 무기 나노와이 어 (nanowire)를 포함하는 코어, 및 상기 코어를 둘러싸며, 무기 나노섬유를 포함하 는 쉘을 포함한다.
<60> 상기 무기 나노와이어는 단결정으로 나노섬유 복합체의 기계적 강도 및 결정 성을 개선시킨다.
<61> 또한, 상기 무기 나노와이어는 나노섬유 복합체 내에서 무기 나노와이어의 길이방향이 나노섬유 복합체의 길이 방향에 평행하도록 배열되어 있다. 이와 같이 상기 무기 나노와이어가 일 방향으로 배향됨으로써 대면적에서도 이방성을 발현하 여 이방성에 의한 전기광학적 효과를 극대화할 수 있다
<62> 상기 무기 나노와이어는 Ti02, ZnO, Si02, A1203, 및 Sn02로 이루어진 군에서 선택되는 화합물을 포함하며, 바람직하게는 우수한 광학적 특성을 갖는 아나타이즈 형 Ti02, ZnO 및 Sn02로 이루어진 군에서 선택되는 화합물을 포함한다.
<63> 상기 무기 나노와이어는 30 내지 70nm의 직경 및 0.5 내지 1 의 길이를 갖 는 것이 바람직하다. 무기 나노와이어의 직경 및 길이가 상기 범위를 벗어날 경우 섬유 가닥에 나노와이어가 적절하게 도입되지 않을 우려가 있다.
<64> 상기 무기 나노섬유는 상기 무기 나노와이어의 표면에서 에피택시 성장되어 형성된다. 그 결과 상기 무기 나노섬유는 무기 나노와이어와 같이 단결정을 가져 나노섬유 복합체의 기계적 강도 및 결정성을 개선시킬 수 있다.
<65> 상기 무기 나노섬유는 Ti, Zn, Al, Sc, Cr, Mn, Fe, Co, Ni , Cu, In, Sn, Y,
Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sr, W 또는 Cd과 같은 전이금속; 알칼리 금속; 알칼리토류 금속; Si 등의 준금속; 및 이들의 조합으로 이루어진 군에서 선택되는 금속원소를 함유하는 산화물 또는 이들의 흔합물을 포함하며, 바람직하게는 Ti02,
ZnO, Si02, Sn02 및 이들의 흔합물로 이루어진 군에서 선택되는 화합물을 포함하고, 보다 바람직하게는 Ti02를 포함한다.
<66> 상기 무기 나노와이어와 무기 나노섬유는 동일한 물질을 포함할 수도 있고, 서로 상이한 물질을 포함할 수도 있다. 이에 따라 본 발명에 따른 나노섬유 복합체 는 상기 단결정 무기 나노와이어와 무기 나노섬유의 구성 물질이 동일한 호모 타입 의 코어-쉘 구조의 나노섬유일 수도 있고, 단결정 무기 나노와이어와 무기 나노섬 유의 조성이 상이한 헤테로 타입의 코어-쉘 구조의 나노섬유일 수도 있다.
<67> 단결정 무기 나노와이어와 무기물 전구체의 조성을 달리하여 나노섬유 복합 체를 제조할 경우, 최종적으로 제조된 나노섬유 복합체는 하나의 섬유 가닥에 성분 이 다른 두 가지 무기 물질이 코어-쉘 구조를 형성함으로써 물리화학적 성질을 향 상시켜, 전기광학적 웅용에 보다 유리하다. 특히, 전도띠 에너지가 비슷하지만 차 이가 있는 물질을 사용하여 제조된 코어-쉘 구조의 나노섬유 복합체는 염료감응형 태양전지용 전극재료로 웅용시 염료감웅형 태양전지의 효율을 저해하는 광전자의 재결합 및 재결합 속도를 개선시킬 수 있다.
<68> 구체적으로, 단결정 무기 나노와이어를 Ti02 나노와이어로 하고 무기물 전구 체로서 산화아연을 사용할 경우, 단결정 Ti02 나노와이어를 함유한 산화아연 (ZnO) 무기 나노섬유가 제조될 수 있다.
<69> 상기 나노섬유 복합체는 30 내지 250nm의 직경을 가질 수 있으며, 80 내지
250nm의 직경을 갖는 것이 바람직하다. 나노섬유 복합체의 직경이 상기 범위를 벗 어날 경우 단위 부피 당 표면적이 넓지 않아 전기광학적 성질을 개선시키는데 한계 가 있거나 기계적 강도가 불충분할 우려가 있으므로 바람직하지 않다.
<70> 또한 상기 나노섬유 복합체는 무기 나노와이어 100중량부에 대하여 300 내지
500중량부의 무기 나노섬유를 포함하는 것이 바람직하다. 상기 함량 범위를 벗어나 무기 나노와이어에 대한 무기 나노섬유의 함량이 지나치게 많은 경우, 구체적으로 500중량부를 초과하는 경우 최종 나노섬유 복합체의 결정성 개선이 불충분할 우려 가 있어 바람직하지 않고, 반대로 무기 나노와이어에 대한 무기 나노섬유의 함량이 지나치게 작은 경우, 구체적으로 300중량부 미만인 경우 무기 나노와이어의 뭉침 현상에 의하여 나노섬유의 제조가 어려워져 바람직하지 않다.
<71> 상기와 같은 구조를 갖는 나노섬유 복합체는 단결정 무기 나노와이어, 무기 물 전구체, 고분자 수지 및 용매를 포함하는 하이브리드 나노섬유 제조용 조성물을 제조하는 단계; 상기 유무기 하이브리드 나노섬유 제조용 조성물을 전기방사하여 유무기 하이브리드 나노섬유를 제조하는 단계; 상기 방사된 유무기 하이브리드 나 노섬유를 회전속도 lOOOrpm 이상으로 회전하는 수집기로 수집하는 단계 ; 및 상기 유무기 하이브리드 나노섬유를 열처리하는 단계를 포함하는 나노섬유 복합체의 제 조방법에 의해 제조될 수 있다.
<72> 도 1은 본 발명의 일 구현예에 따른 나노섬유 복합체의 제조 공정을 개략적 으로 나타낸 공정도이다. 도 1을 참조하여 이하에서 각 단계별로 상세히 설명한다 .
<73> 먼저, 단결정 무기 나노와이어, 무기물 전구체, 고분자 및 용매를 포함하는 유무기 하이브리드 나노섬유 제조용 조성물 (100)을 제조한다 (S1).
<74> 상기 유무기 하이브리드 나노섬유 제조용 조성물 (100)은 통상의 방법에 따라 단결정 무기 나노와이어, 무기물 전구체, 고분자 및 용매를 흔합함으로써 제조될 수 있는데, 구체적으로는, 고분자를 용매에 용해시켜 제조한 고분자 용액에 무기 나노와이어 및 무기물 전구체를 첨가하여 흔합함으로써 제조할 수 있다. 이때 무기 물 전구체 또한 용액 상으로 사용될 수도 있다.
<75> 상기 무기 나노와이어는 앞서 설명한 바와 같다.
<76> 상기 무기 나노와이어는 수열합성법 (hydrothermal method)에 의해 제조될 수 있다. 수열합성법에 의한 무기 나노와이어의 제조는 특별한 제한 없이 통상의 수열 합성법에 따라 수행될 수 았으며, 구체적으로는 Ti02, ZnO, Si02, A1203, Sn02 등의 무기물 나노입자를 수산화나트륨 등의 강염기 수용액 중에 분산시킨 후 고온에서 반응시킴으로써 수행될 수 있다. 상기 반웅은 오토클레이브 중에서 실시될 수 있으 며, 반응시 온도는 사용되는 무기물 나노입자의 종류에 따라 적절히 조절할 수 있 다. 구체적으로는 150 내지 200t의 온도에서 반웅시키는 것이 나노와이어의 모폴 로지로 제조할 수 있어 바람직하다. 상기와 같은 수열 반웅을 통해 제조된 무기 나 노와이어는 단결정이며, 이방성을 갖는다.
<77> 통상 무기 나노와이어는 수 나노미터에서 수 마이크로미터까지 구체적으로 는 0.5 내지 3.5卿의 다양한 길이를 갖는데, 이 경우 무기 나노와이어의 길이가 최 종 제조되는 무기 나노섬유 직경의 수십 배가 되므로, 무기 나노와이어를 무기 나 노섬유 내에 원활하게 도입시키기 위해서는 최적 길이를 갖도록 기계적인 힘으로 무기 나노와이어의 길이 방향에 수직하게 절단하는 공정을 실시하는 것이 바람직하 다ᅳ 이에 따라 상기 무기 나노와이어는 30 내지 70nm의 직경 및 0.5 내지 의 길 이의 나노와이어 모폴로지를 갖는 것이 바람직하다.
<78> 상기 무기물 전구체는 이후 소결 공정시 무기 나노와이어 표면에서 에픽택시 성장을 하여 무기 나노섬유를 형성하는 것으로, Ti, Zn, Al, Sc, Cr, Mn, Fe, Co, Ni, Cu, In, Sn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sr, W 또는 Cd과 같은 전이 금속; 알칼리 금속; 알칼리토류 금속; Si 등의 준금속; 및 이들의 조합으로 이루어 진 군에서 선택되는 금속원소를 함유하는 알콕사이드, 수산화물, 수화물, 수소화 물, 산화물, 질화물, 질산염, 탄산염, 황산염 , 또는 염화물을 사용할 수 있으며, 이들 중 1종 단독으로 또는 2종 이상 흔합하여 사용할 수 있다.
<79> 일례로, Si02,의 전구체로서 사용가능한 실리콘 함유 알콕사이드 화합물로는 테트라 (d-4알킬)오르토실리케이트, 1 내지 3개의 알콕시기를 갖는 실란계 화합물 및 이들의 흔합물로 이루어진 군으로부터 선택되는 것을 사용할 수 있으며, 구체적 으로는 테트라에틸오르토실리케이트 (tetraethyl orthosi 1 icate, TE0S) , 테트라메틸 오르토실리케이트 (tetramethyl orthosi 1 icate, TM0S), 테트라부틸오르토실리케이트 (tetrabutyl orthosi 1 icate, TB0S) 및 이들의 흔합물로 이루어진 군에서 선택되는 것을 사용할 수 있다.
<80> 또한, 이산화티타늄의 전구체로서 사용가능한 티타늄 -함유 알콕사이드 화합 물로는 티타늄 이소프로폭사이드 (titanium isopropoxide, Ti(0Pr)4) 등의 티타늄 d-4알콕사이드를 사용할 수 있다.
<81> 상기 무기물 전구체는 최종 제조되는 나노섬유 복합체에서의 무기 나노섬유 의 함량을 고려하여 적절히 첨가될 수 있는데, 구체적으로는 무기 나노와이어 100 중량부에 대하여 350 내지 450중량부로 포함될 수 있으며, 바람직하게는 350 내지 400중량부로 포함될 수 있다. <82>
<83> *상기 고분자로는 무기 나노와이어와 친화성을 가지고, 무기물 전구체의 분 산을 용이하도록 하며, 이후 소결 공정에서 탄화가 용이하도록 낮은 분해온도를 가 지며, 전기방사에 적합한 점도를 갖도록 적절한 분자량을 갖는 열가소성 또는 열경 화성 고분자를 사용하는 것이 바람직하다 .
<84> 상기 고분자로는 폴리우레탄 (PU), 폴리에테르우레탄, 셀롤로오스 아세테이 트, 셀를로오스 아세테이트 부틸레이트, 셀를로오스 아세테이트 프로피오네이트, 폴리메틸메타크릴레이트 (PMMA), 폴리메틸아크릴레이트 (PMA), 폴리아크릴 공중합체, 폴리비닐아세테이트 (PVAc), 폴리비닐아세테이트 공중합체, 폴리비닐알콜 (PVA), 폴 리퍼퓨릴알콜 (PPFA), 폴리스티렌 (PS), 폴리스티렌 공중합체, 폴리에틸렌 옥사이드 (PE0) , 폴리프로필렌옥사이드 (PP0), 폴리에틸렌옥사이드 공중합체, 폴리프로필렌옥 사이드 공중합체, 폴리카보네이트 (PC), 폴리비닐클로라이드 (PVC), 폴리카프로락톤 (PCL) , 폴리비닐피롤리돈 ((poly (vinyl pyrrol idone) , PVP), 폴리 4비닐피리딘 (poly(4-vinyl pyridine), P4VP), 폴리비닐리덴플루오라이드 (PVdF), 폴리비닐리덴 플루오라이드 공중합체, 폴리아마이드, 폴리아크릴로니트릴 및 이들의 흔합물로 이 루어진 군에서 선택되는 것을 사용할 수 있다.
<85> 일례로 Ti02 나노와이어를 무기 나노와이어로 사용하는 경우, Ti02 나노와이 어의 친수성 성질을 고려하여 친수성인 폴리비닐피를리돈이나 폴리 4비닐피리딘과 같은 고분자를 사용하는 것이 바람직하다.
<86> 상기 고분자는 전기방사에 적합한 점도를 갖도록 100,000 내지
l,500,000g/m 의 중량평균 분자량, 바람직하게는 500,000 내지 l,300,000g/mol의 중량평균분자량을 갖는 것이 좋다. 상기 범위를 벗어나 고분자의 중량평균 분자량 이 100,000g/niol 미만인 경우 분자사슬이 짧아 나노섬유 제조에 불충분하며, l,500,000g/n )l을 초과하는 경우에는 고분자 용액 점도가 높아져 나노섬유의 두께 를 가늘게 조절하기에 어려움이 있어 바람직하지 않다.
<87> 상기 고분자는 무기 나노와이어 100중량부에 대하여 150 내지 300중량부로 포함될 수 있으며, 바람직하게는 200 내지 300중량부로 포함될 수 있다. 상기 고분 자의 함량이 150중량부 미만인 경우 상대적으로 무기 나노와이어의 함량이 많아서 무기 나노와이어의 뭉침현상에 의해 나노섬유 복합체의 제조에 어려움이 있고, 300 중량부를 초과하는 경우에는 무기 나노와이어의 함량이 적어 최종 나노섬유 복합체 의 결정성 개선에 어려움이 있다.
<88> 상기 용매로는 알코올 또는 물과 알코올의 혼합용매를 사용할 수 있으며, 상 기 알코올로는 에탄올, 이소프로판올 (/-PrOH) 등과 같은 저급 알코올을 사용할 수 있다. 상기 용매 외에 사용되는 고분자의 종류에 따라 다이메틸품아마이드 (dimethyl formamide, DMF), 메틸렌 클로라이드 (methylene chloride, MC) 등과 같은 유기용매가 사용될 수도 있다.
<89> 상기 유무기 하이브리드 나노섬유 제조용 조성물은 전기 방사에 적합하도록
150 내지 300cPs의 점도를 갖는 것이 바람직하다. 이에 따라 상기 용매는 하이브리 드 나노섬유 제조용 조성물이 상기 점도를 갖도록 하는 양으로 사용될 수 있다.
<90> 상기 하이브리드 나노섬유 제조용 조성물은 안정화제 , 계면활성제 및 이들의 흔합물로 이루어진 군에서 선택되는 첨가제를 더 포함할 수도 있다.
< i> 상기 안정화제는 금속 전구체 물질을 안정화시키고 졸-겔 가수분해 반응을 조절하는 역할을 한다. 상기 안정화제로는 아세트산 (acetic acid, M), 아세틸아세 톤 (acetylacetone) 및 이들의 흔합물 등을 사용할 수 있으며, 상기 안정화제는 무 기물 전구체 1중량부에 대하여 2 내지 3중량부로 사용되는 것이 바람직하다.
<%> 상기 계면활성제 (surfactant)는 하이브리드 나노섬유 제조용 조성물 중 무기 나노와이어의 분산성을 높이는 역할을 하는 것으로, 직쇄 알킬벤젠설폰산염, 알파 올레핀설폰산염, 알킬황산에스테르염, 폴리옥시에틸렌알킬에스테르황산염, 소듐알 킬설페이트 (sodium alkylsulfate), 칼슘알킬설페이트 (calcium alkylsulfate), 알킬 벤젠칼슘설포네이트 (alkylbenzene calcium sulfonate) 등의 음이온 계면활성제; 디 알킬디메틸암모늄염, 이미다졸리움염, 알킬디메틸벤질암모늄염, 알킬메틸암모늄브 로마이드 등의 양이온 계면활성제; 폴리옥시에틸렌알킬에테르, 알킬디메틸아민옥사 이드, 지방산 알칸을아미드, 알킬폴리글루코사이드, 트리옥시에틸렌알킬폴리페닐에 테르 등의 비이온성 계면활성제; 알킬베테인, 알킬설포베테인 등의 양쪽성 계면활 성제 등을 들 수 있으며, 이들 중 1종 단독으로 또는 2종 이상을 흔합하여 사용할 수 있다.
<93> 바람직하게는 디핵사데실디메틸암모늄 브로마이드
( d i hexadecy 1 d i me t hy 1 ammon i urn bromide, DHDAB) , 핵사데실트리메틸암모늄 브로마이 드 (hexadecyltrimethylairaionium bromide, HTAB)등을 사용할 수 있다. 무기 나노와 이어가 뭉침 없이 고분자 내에서 높은 분산성을 나타내도록 하기 위해서는 상기 계 면활성제는 무기물 전구체 1중량부에 대하여 0.01 내지 2중량부로 포함될 수 있으 며, 바람직하게는 1 내지 2 중량부로 포함될 수 있다.
< 4> 상기와 같은 조성을 갖는 유무기 하이브리드 나노섬유 제조용 조성물에서의 구성성분들의 균일한 분산을 위해 전기 방사 공정에 앞서 초음파처리 등의 흔합 공 정을 실시하는 것이 바람직하다.
<95> 다음으로, 상기에서 제조된 유무기 하이브리드 나노섬유 제조용 조성물 (100)
을 전기방사기를 이용하여 전기 방사하여 유무기 하이브리드 나노섬유 (200)를 제조 한다 (S2).
<96> 상기 전기 방사 공정은 5 내지 30kV의 직류전압 인가하에서 수행되는 것이 바람직하다. 상기 범위 내의 직류전압 하에서 전기 방사 공정이 수행될 때 섬유 중 간에 비드 없이 균일하게 제조되어 바람직하다.
<97> 이외 방사 바늘, 수집기와 바늘 사이의 거리, 방사속도 등의 방사 조건은 특 별히 한정되지 않으며, 적절히 선택하여 사용될 수 있다. 바람직하게는 방사바늘로 는 스테인라스 스틸 재질의 18 내지 22게이지 (gauge) 바늘을 사용할 수 있으며, 수 집기와 바늘 사이의 거리는 5 내지 30cm로 조절하는 것이 바람직하다. 또한, 또한 전기 방사시 조성물을 1 내지 5mL/hr의 방사속도로 방사하는 것이 나노 단위의 연 속적인 얇은 나노섬유를 제조하기에 충족한 조건의 이유에서 바람직하다.
<98> 다음으로, 상기 방사된 유무기 하이브리드 나노섬유를 회전속도 lOOOrpin 이 상으로 회전하는 수집기로 수집한다 (S3).
<99> 단결정의 이방성을 갖는 무기 나노와이어를 도입하여 대면적에서도 한쪽 방 향으로 배향되도록 하기 위해서는 무기 나노와이어를 선택된 방향으로 배향시키는 기술이 필요하다. 이러한 배향 기술로 유체 채널을 이용하여 마이크로유체 채널에 서 나노와이어를 흐르게 하여 배향시키는 방법, 랭뮤어-블로젯 (Langmuir-Blodgett) 배향법, 블로잉 버블 (bubble-blown) 배향법, 전기장을 이용한 배향법 등을 이용할 수 있으나, 본 발명에서는 무기 나노와이어 보다 넓은 직경을 갖는 유기 나노섬유 를 무기 나노와이어가 존재하는 채널로 이용하여, 전기방사 후 제조된 유무기 하이 브리드 나노섬유를 수집하는 수집기의 회전속도를 lOOOrpm 이상, 바람직하게는 1000 내지 1200rpm으로 조절함으로써 간단히 단결정 무기 나노와이어의 배향성을 대면적에서 간단히 제어할 수 있다.
<100> 상기와 같은 조건에서의 전기 방사 공정 및 수집 공정에 의해 배향된 이방성 의 단결정 유무기 하이브리드 나노섬유가 제조된다.
:101: 전기방사 및 수집 공정후 수득된 유무기 하이브리드 나노섬유 (200)를 주사전 자현미경 관찰 결과, 무기물 전구체, 고분자, 용매 및 선택적으로 기타 첨가제를 포함하는 유기나노섬유 (100a) 내에 무기 나노와이어 (100b)가 유무기 하이브리드 나 노섬유 (200)의 길이 방향에 평행하게 배열되어 있으며 이때 유무기 하이브리드 나 노섬유의 직경은 220 내지 280nm이었다. <I02> 전기 방사 및 수집 공정을 통해 제조된 유무기 하이브리드 나노섬유로부터 무기물로만 이루어진 나노섬유로 얻기 위해 유기물을 고온에서 태워버리는 탄화 또 는 소결 (calcination)의 열처리 공정을 실시한다 (S4).
<103> 상기 열처리시 무기물 전구체의 결정화 또한 동시에 이루어진다. 이에 따라 상기 열처리시 온도는 고분자의 분해 온도와 무기물의 결정화 온도를 고려하여 선 택되는 것이 바람직한데, 구체적으로는 275 내지 750°C의 온도에서 열처리 공정이 수행되는 것이 바람직하다. 상기 범위 내에서 실시될 때 단결정의 무기 나노와이어 표면에서 무기물 전구체가 에픽택시 (epitaxy) 성장하여 전기광학적 응용에 유리한 균일한 결정 구조를 갖는 무기 나노섬유를 형성할 수 있다.
<|04> 상기한 바와 같이 본 발명에서는 화학 증기 증착 (chemical vapor
deposition, CVD)이나 분자선 에픽택시 (molecular beam epitaxy, MBE) 등의 종래 에픽택시 방법의 수행시 요구되는 고가의 장비없이 열처리시의 조건을 최적화함으 로써 간단하고 용이하게 에픽택시 성장을 유도할 수 있다.
<105> 무기물 전구체의 에픽택시 성장이 보다 효율적으로 일어날 수 있도록 하기 위해서는, 상기 열처리 공정은 275 내지 750°C의 온도 및 대기의 압력 조건하에서 수행하는 것이 바람직하며, 이때 가열 속도는 7°C/min 내지 20°C/min로 하고, 열처 리 후 넁각 속도는 5°C/min 내지 20°C/min로 하는 것이 바람직하다.
<106> 본 발명에 따른 나노섬유 복합체는 단결정의 무기 나노와이어를 포함한다.
일례로 아나타이즈 (anatase) 타입의 Ti02 나노와이어를 사용하는 경우, 일반적으로 이산화티타늄은 열처리 후 특정 온도에서 결정구조가 아나타이즈 (anatase)상에서 루타일 (rutile)상으로 상전이되는 특징이 있는데, 광학적 웅용분야에 널리 쓰이기 에 적합한 아나타이즈 결정구조를 유지하면서 무기물 전구체가 이상적인 결정구조 로 자라나게 하기 위해서는 열처리 시간을 함께 최적화하여 열처리 공정을 수행하 는 것이 보다 바람직하다. 이에 따라 상기 열처리 공정은 상기 온도, 압력, 가열 / 넁각 속도 범위를 층족하는 조건하에서 1 내지 2시간 수행되는 것이 바람직하다.
<1 7> 또한, 상기 열처리 공정은 질소, 아르곤 등의 불활성 분위기하에서 수행되는 것이 바람직하다 .
<108> 열처리 후에는 고분자의 탄화에 의해 열처리 전보다 섬유의 직경 및 길이가 이 현저하게 줄어든다. 열처리전 유무기 하이브리드 나노섬유의 직경은 약 220 내 지 280nm인데 반해, 탄화 후에는 소결 온도에 따라 80nm 내지 250nm로 다양하게 된 다. 섬유의 직경은 고분자의 분자량 또는 농도에 의해 정해지는 고분자 용액의 점 도, 무기물 전구체 함유 용액의 농도, 방사유량 속도 및 무기 나노와이어의 중량비 에 따라 크게 달라질 수 있는데, 이들 요인들을 최적화하여 열처리후 수득되는 섬 유가 80 내지 250nm의 직경을 갖는 것이 바람직하다.
<|09> 상기와 같은 제조방법에 의해 제조된 본 발명의 나노섬유 복합체 (300)는 우 수한 물리적 성질을 갖는 단결정 무기 나노와이어 (100b)을 함유하고, 또한 상기 단 결정의 무기 나노와이어 (100b) 표면에서 에픽택시 성장한 무기 나노섬유 (100c)를 포함함으로써, 종래 금속물질 전구체의 졸―겔 방법에 의해 제조되는 다결정 구조의 나노섬유에 비해 높은 결정성 및 기계적 강도를 나타낸다. 또한, 나노섬유 복합체 내에 포함된 무기 나노와이어가 무기 나노와이어의 길이방향이 나노섬유 복합체의 길이 방향에 평행하도록 일 방향으로 배향됨으로써 이방성을 발현하고, 그 결과로 현저히 개선된 전기적, 광학적 특성을 나타내어 염료감웅형 태양전지용 전극재료, 광촉매 등으로 유용하게 사용될 수 있다. 또한 본 발명의 나노섬유 복합체 (300)는 우수한 가공성을 가져 마이크로 단위로 제한되었던 나노와이어에 비해 수십 미터의 길이를 가질 수 있다.
<iio> 이하ᅳ 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
<ιιι> 제조예 1: 단결정 Ti02 나노와이어의 제조
<Π2> 수열방법 (hydrothermal method)에 의해 Ti02 나노와이어를 제조하였다.
<| |3> 상세하게는, 이산화티타늄 파우더 (순도: 99.9%, 지름: lOOnm 이하)를 10M의 수산화나트륨 수용액 (80mL)에 분산시켜 테플론 용기에 넣은 후, 오토클레이브에 넣 고 200°C에서 24시간 동안 유지시킨 후 상온에서 천천히 냉각하였다. 결과로 수득 된 생성물을 0.1M의 염화수소 수용액과 증류수로 여러 번 씻어낸 후 최종적으로 순 수한 에탄올로 씻어내어 pH가 6 내지 7이 되도록 하였다. 여과 후 70°C 오븐에서 6 시간 동안 건조시켜 단결정 Τί02 나노와이어를 수득하였다.
<114>
<ii5> 실시예 1: 단결정 Ti02 나노와이어를 함유한 나노섬유 복합체의 제조
<ii6> 분자량이 1,300,000 g/mol인 폴리비닐피를리돈 (poly(vinyl pyrrol i done) ,
PVP)을 에탄올 (EtOH)에 7중량 %로 고르게 용해시킨 후, 상기 제조예 1에서 제조된 단결정 나노와이어를 첨가하였다. 이때 상기 제조예 1에서 제조된 단결정 나노와이 어를 막자사발을 이용하여 기계적인 힘으로 갈아 마이크로 단위 길이의 나노와이어 를 길이방향에 수직하게 분쇄하여 나노와이어의 길이를 0.5 내지 로 조절하였 다.
<117> 결과로 수득된 고분자 용액에 단결정 나노와이어의 고른 분산을 위하여 계면 활성제로서 디핵사데실디메틸아모늄 브로마이드 (dihexadecyldimethylammonium bromide, DHDAB)를 소량 첨가하고 적정 시간동안 초음파처리 하였다. 이어서 상기 고분자 용액에 이산화티타늄의 전구체로서 티타늄이소프로폭사이드 (titanium isopropoxide, Ti(0'Pr)4)와 안정화제로서 아세트산 (acetic acid)을 첨가하고 초음 파 처리를 하여 유무기 하이브리드 나노섬유 제조용 조성물을 제조하였다. 최종 제 조된 유무기 하이브리드 나노섬유 제조용 조성물은 Ti(0'Pr)4/Ti02나노와이어
/DHDAB/AA/PVP/EtOH을 10.0: 2.4: 0.34: 20.0: 4.7: 62.7의 중량비로 포함하였다.
<118> 상기에서 제조된 유무기 하이브리드 나노섬유 제조용 조성물을 전기방사하여 유무기 하이브리드 나노섬유를 제조하였다.
<119> 전기 방사시, 방사 바늘로는 스테인리스 스틸 재질의 20 게이지 바늘을 사용 하였으몌 전압은 15kV로 직류전압을 인가하였다. 수집기와 바늘 사이의 거리는 15cm로 설정하였으몌 실린지 펌프의 방사용액의 유량은 5mL/hr로 밀어주었다. 또 한, 원통형인 수집기의 회전속도를 1000rpm으로 조절하여 섬유의 배향을 도모하였 다.
<120> 전기방사 후 제조된 유무기 하이브리드 나노섬유를 질소분위기 하에서 2시간 동안 500°C 및 대기 압력에서 소결시켜 나노섬유 복합체를 제조하였다. 이때 가열 속도 및 냉각속도는 각각 7°C/min으로 하였다.
<121>
<122> 실시예 2 및 3
<123> 유무기 하이브리드 나노섬유의 소결온도에 따른 결정성 및 광학적 성질을 비 교하기 위해, 유무기 하이브리드 나노섬유를 275°C 및 75CTC에서 각각 소결하는 것 을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 나노섬유 복합체를 제조하였다.
<124>
<125> 실시예 4
<126> 무기물 전구체로서 산화아연 (ZnO)를 사용하는 것을 제외하고는 상기 실시예
1에서와 동일한 방법으로 실시하여, Ti02 나노 와이어의 코어 -ZnO 쉘의 헤테로 타입 코어-쉘 구조의 나노섬유 복합체를 제조하였다. <I27>
<I28> 비교예 1
<I29> 단결정 Ti02 나노와이어의 도입 효과를 비교하기 위해 단결정 Ti02 나노와이 어를 포함하지 않는 전기방사용 조성물 (Ti(0'Pr)4/M/PVP/EtOH를
10.0:20.0:4.7 :62.7의 중량비)을 사용하는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 실시하여 무기 나노섬유를 제조하였다.
<130>
<131> 시험예 1: 구조적 특징 평가
<132> (1) 단결정 Ti02 나노와이어의 구조적 특징 평가
<133> 상기 제조예 1에서 제조한 단결정 Ti02 나노와이어를 투과전자현미경
(transmission electronic microscopy, TEM) , 고분해능 투과전자현미경 (high— resolution TEM, HR-TEM) 및 푸리에 변환 제한시야전자회절 (four ier transformed selected area electron diffracion, SAED)을 통해 관찰하였다. 그 결과를 도 2 및 도 3에 각각 나타내었다.
<134> 도 2는 제조예 1에서 합성한 단결정 Ti02 나노와이어에 대한 TEM 관찰 사진 이고, 도 3는 상기 단결정 Ti02 나노와이어에 대한 HR-TEM 관찰 사진이며, 도 4는 상기 단결정 Ti02 나노와이어에 대한 SAED 이미지로 [010]존을 나타낸다.
<135> 도 2의 결과로부터, 제조예 1에서 합성한 Ti02 나노와이어는 50士 20nm의 직 경 및 2士 1.5 의 길이를 가짐을 확인하였다. 또한, 도 3 및 도 4로부터, 제조예 1에서 합성된 Ti02 나노와이어는 anatase형의 단결정 구조를 가지며, 결정 성장 방 향이 [001]방향임을 확인하였다.
<136>
<137> (2) Ti02 유무기 하이브리드 나노섬유의 구조적 특징 평가
<138> 상기 실시예 1에서 제조한 Ti02 유무기 하이브리드 나노섬유를 주사현미경
(scanning electron microscopy, SEM)과 투과전자현미경을 통하여 관찰하였다. 그 결과를 도 5 및 도 6에 각각 나타내었다.
<139> 도 5는 Ti02 나노와이어를 함유한 유무기 하이브리드 나노섬유 제조용 조성 물을 전기방사하여 얻어진 유무기 하이브리드 나노섬유에 대한 SEM 관찰 사진이고, 도 6는 상기 유무기 하이브리드 나노섬유에 대한 TEM 관찰 사진이다. <140> 주사전자현미경 관찰 결과, 도 5에 나타난 바와 같이, 전기방사 후 얻어진 유무기 하이브리드 나노섬유는 250士 80nm의 직경을 가짐을 확인하였다. 또한, 도 6에 나타난 바와 같이, 투과전자현'미경을 통하여 0.5 내지 1.0 의 길이를 갖는 단 결정 무기 나노와이어가 유무기 하이브리드 나노섬유 중간에 나노섬유의 길이방향에 평행하게 박혀 있음을 확인하였다.
<141>
<142> (3) 나노섬유 복합체의 구조적 특징 평가
<143> 상기 실시예 1에서 제조한 단결정 Ti02 나노와이어를 함유한 나노섬유 복합 체에 대해 TEM과 HR-TEM을 이용하여 나노섬유 복합체 내에서의 단결정 나노와이어 와 그 경계면을 관찰하였다. 그 결과를 도 7 내지 도 9에 나타내었다.
<|44> 도 7는 실시예 1에서 제조한 나노섬유 복합체의 TEM 이미지이고, 도 8 및 도
9는 각각 상기 나노섬유 복합체 내 나노와이어를 기준으로 좌측의 HR-TEM 이미지와 SAED패턴을 나타낸 것이며, 도 10 및 도 11는 각각 상기 나노섬유 복합체 내 나노 와이어를 기준으로 우측의 HR-TEM 이미지와 SAED패턴을 나타낸 것이다.
<145> 도 7에서 어두운 부분이 무기 나노와이어를 의미하며, 이로부터 무기 나노와 이어가 나노섬유 복합체 내에 위치하고 있으며, 무기 나노와이어의 길이가 나노섬 유 복합체의 길이와 평행한 [001]방향임을 확인할 수 있다. 또한, 도 8 내지 도 11 의 HR-TEM 및 SAED 분석 결과 유무기 하이브리드 나노섬유에 대한 열처리 과정에 서 나노섬유마다 포함된 무기물 전구체가 단결정인 무기 나노와이어의 표면에서 에 픽택시 (epitaxy) 성장하였음을 확인할 수 있다.
<146>
<147> (4) 소결온도에 따른 나노섬유 복합체의 구조적 특징 변화 평가
<148> 소결온도에 따른 나노섬유 복합체의 결정 구조 변화를 관찰하기 위하여, 상 기 실시예 1 내지 3에서 제조한 나노섬유 복합체를 TEM으로 관찰하고, 그 결과를 도 12 내지 도 14에 나타내었다.
<149> 도 12는 유무기 하이브리드 나노섬유를 275°C에서 소결시켜 제조한 실시예 2 의 나노섬유 복합체에 대한 TEM 관찰사진이고, 도 13는 750°C에서 소결시켜 제조한 실시예 3의 나노섬유 복합체에 대한 TEM 관찰사진이며, 도 14는 500°C에서 소결시 켜 제조한 실시예 1의 나노섬유 복합체에 대한 TEM 관찰사진이다.
<|50> 도 12 내지 도 14에 나타난 바와 같이, 유무기 하이브리드 나노섬유를 275°C 에서 소결시켜 제조한 실시예 2의 나노섬유 복합체는 130土 30nm의 직경을 나타내 었으며, 750°C에서 소결시켜 제조한 실시예 3의 나노섬유 복합체는 80土 50nm의 직 경을, 500°C에서 소결시켜 제조한 실시예 1의 나노섬유 복합체는 200士 50nm의 직 경을 나타내었다. 방사 직 후 유무기 하이브리드 나노섬유의 직경이 250士 30nm임 을 고려하며 소결동안에 섬유의 직경이 감소하였음을 알 수 있으며, 직경의 감소 정도는 소결온도가 높을수록 컸다. 이 같은 결과는 소결 동안에 유무기 하이브리드 나노섬유 중에 포함된 고분자의 가교 및 무기물 전구체의 물질이동 (mass transportation)에 따른 것이다.
<151>
<152> (5) 무기 나노섬유의 구조적 특징 평가
<i53> Ti02 나노와이어를 첨가하지 않고 제조된 비교예 1의 Ti02 나노섬유를 TEM로 관찰하고, 그 결과를 도 15 및 도 16에 나타내었다.
<154> 도 15는 Ti02 나노와이어를 첨가하지 않고 제조된 비교예 1의 Ti02 나노섬유 의 TEM관찰사진이고, 도 16는 도 15중에 표시된 부분의 확대된 이미지이다.
<155> 도 15 및 도 16의 결과로부터, 비교예 1에서 제조된 나노섬유는 동일한 소결 온도에서 제조된 실시예 1의 나노섬유 복합체와 유사한 200士 50nm의 섬유직경을 가졌으나, 실시예 1의 나노섬유 복합체는 복합체내 포함된 단결정 무기 나노와이어 표면으로부터의 무기 나노섬유의 에피텍셜 성장에 따른 결정구조를 갖는 반면, 비 교예 1에서 제조된 나노섬유는 Ti02의 작은 결정 입자들로 이루어진 다결정 구조를 나타내었다.
<156>
<157> 시험예 2: 결정성 평가
<158> 결정성을 비교하기 위하여 상기 제조예 1에서 제조된 Ti02 나노와이어, Ti02
나노와이어를 첨가하지 않고 제조된 비교예 1의 Ti02 나노섬유 및 Ti02 나노와이어 를 함유한 실시예 1의 나노섬유 복합체를 XRD 관찰하였다. 그 결과를 도 17에 나타 내었다.
<159> 도 17에서 (a)는 제조예 1의 Ti02 나노와이어의 XRD 패턴 결과이고, (b)는
Ti02 나노와이어를 첨가하지 않고 제조된 비교에 1의 Ti02 나노섬유의 XRD 패턴 결 과이며, (c)는 Ti02 나노와이어를 함유한 실시예 1의 나노섬유 복합체의 XRD 패턴 결과이다.
<160> 도 17에 나타난 바와 같이, 본 발명에 따른 단결정 무기 나노와이어를 함유 한 실시예 1의 나노섬유 복합체는, 단결정 나노와이어 (제조예 1)만의 결정성보다는 낮지만, 나노와이어를 포함하지 않는 다결정구조의 나노섬유 (비교예 1)에 비해서는 높은 결정성을 나타냄을 확인할 수 있었다.
<161>
<162> 시험예 3: 광학적 흡수성 평가
<163> 광학적 흡수 성질을 비교하기 위하여 상기 제조예 1에서 제조된 Ti02 나노와 이어, Ti02 나노와이어를 첨가하지 않고 제조된 비교예 1의 Ti02 나노섬유 및 Ti02 나노와이어를 함유한 실시예 1의 나노섬유 복합체에 대해 자외선-가시광선 흡수 스 펙스럼 (UV-Vis absorbtion spectrum)을 관찰하였다. 그 결과를 도 18에 나타내었 다.
<164> 도 18에서 (a)는 제조예 1의 Ti02 나노와이어의 UV-Vis 흡수 스펙트럼이고,
(b)는 Ti02 나노와이어를 첨가하지 않고 제조된 비교예 1의 Ti02 나노섬유의 UV-Vis 흡수 스펙트럼이며, (c)는 Ti02 나노와이어를 함유한 실시예 1의 나노섬유 복합체의
UV-Vis 흡수 스펙트럼이다.
<165> 도 18에 나타난 바와 같이, 제조예 1의 Ti02 무기 나노와이어의 최대 흡수파 장과 비교하여, 비교예 1의 나노섬유와 실시예 1의 나노섬유 복합체의 흡수 스펙트 럼은 보다 긴 파장쪽으로 레드-시프트 (red-shift)된 결과를 나타내었다. 그러나, 실시예 1의 나노섬유 복합체는 사이즈 양자화 효과 (size quantization effect)로 인해 비교예 1의 나노섬유에 비해 상대적으로 블루-시프트된 결과를 나타내었다. 이 같은 결과로부터 본 발명에 따른 나노섬유 복합체가 복합체내 복합체의 길이방 향에 일치하도록 배향된 무기 나노와이어로부터 유도된 이방성으로 인해 보다 우수 한 광학적 특성을 나타냄을 알 수 있다.
<166> 이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발 명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
【산업상 이용가능성】
<167> 본 발명은 태양전지의 전극재료, 광촉매 등 다양한 전기광학 분야의 산업에 이용가능하다 .
<168>

Claims

【청구의 범위】
【청구항 11
단결정 무기 나노와이어를 포함하는 코어, 및
상기 코어를 둘러싸며, 무기 나노섬유를 포함하는 쉘을 포함하는 코어—쉘 구 조를 가지몌
상기 무기 나노와이어는 무기 나노와이어의 길이방향이 나노섬유 복합체의 길이 방 향에 평행하도록 배열된 나노섬유 복합체.
【청구항 2]
제 1항에 있어서,
상기 무기 나노와이어는 Ti02, ZnO, Si02, A1203, 및 Sn02로 이루어진 군에서 선택되 는 것인 나노섬유 복합체.
【청구항 3]
제 1항에 있어서, - 상기 무기 나노와이어는 아나타이즈형 (anatase) Ti02, ZnO 및 Sn02로 이루어진 군에 서 선택되는 것인 나노섬유 복합체.
【청구항 4】
제 1항에 있어서,
상기 무기 나노와이어는 30 내지 70nm의 직경 및 0.5 내지 1/m의 길이를 갖는 것인 나노섬유 복합체 .
【청구항 5]
제 1항에 있어서,
상기 무기 나노섬유는 무기 나노와이어의 표면에서 에픽택시 성장한 것인 나노섬유 복합체 .
【청구항 6】
제 1항에 있어서,
상기 무기 나노섬유는 Ti, Zn, Al, Sc, Cr, Mn, Fe, Co, Ni, Cu, In, Sn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sr, W 또는 Cd과 같은 전이금속; 알칼리 금속; 알칼 리토류 금속; Si 등의 준금속; 및 이들의 조합으로 이루어진 군에서 선택되는 금속 원소를 함유하는 산화물 또는 이들의 흔합물을 포함하는 것인 나노섬유 복합체 .
【청구항 7】 ᅳ
제 1항에 있어서, 상기 무기 나노섬유는 Ti02, ZnO, Si02, Sn02 및 이들의 흔합물로 이루어진 군에서 선택되는 것인 나노섬유 복합체.
【청구항 8】
제 1항에 있어서,
상기 나노섬유 복합체는 30nm 내지 250nm의 직경을 갖는 것인 나노섬유 복합체.
【청구항 9】
제 1항에 있어서,
상기 나노섬유 복합체는 무기 나노와이어 100중량부에 대하여 300 내지 500중량부 의 무기 나노섬유를 포함하는 것인 나노섬유 복합체.
【청구항 10]
거 U항에 있어서,
상기 나노섬유 복합체는 상기 무기 나노와이어가 Ti02, ZnO, Si02, A1203, 및 Sn02로 이루어진 군에서 선택되는 무기산화물을 포함하고, 상기 무기 나노섬유가 Ti, Zn, Al, Sc, Cr, Mn, Fe, Co, Ni , Cu, In, Sn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, kg, Sr, W 또는 Cd과 같은 전이금속; 알칼리 금속; 알칼리토류 금속; Si 등의 준금속; 및 이들의 조합으로 이루어진 군에서 선택되는 금속원소를 함유하는 산화물, 또는 이들의 흔합물을 포함하며, 상기 무기 나노와이어와 무기 나노섬유는 서로 상이한 헤테로 타입의 코어-쉘 구조를 갖는 것인 나노섬유 복합체.
【청구항 11]
저 U항에 있어서,
상기 무기 나노와이어는 Ti02를 포함하고, 무기 나노섬유는 ZnO를 포함하는 것인 나 노섬유 복합체 .
【청구항 12]
단결정 무기 나노와이어, 무기물 전구체, 고분자 및 용매를 포함하는 유무기 하이브리드 나노섬유 제조용 조성물을 제조하는 단계;
상기 유무기 하이브리드 나노섬유 제조용 조성물을 전기방사하여 유무기 하 이브리드 나노섬유를 제조하는 단계;
상기 방사된 유무기 하이브리드 나노섬유를 회전속도 lOOOrpm 이상으로 회전 하는 수집기로 수집하는 단계 ;
상기 수집된 유무기 하이브리드 나노섬유를 열처리하는 단계
를 포함하는 게 1항에 따른 나노섬유 복합체의 제조방법 .
【청구항 13】
제 11항에 있어서,
상기 무기 나노와이어는 수열합성법에 의해 제조되는 것인 나노섬유 복합체의 제조 방법.
【청구항 14】
제 11항에 있어서,
상기 무기물 전구체는 Ti, Zn, Al, Sc, Cr, Mn, Fe, Co, Ni, Cu, In, Sn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sr, W 및 Cd를 포함하는 전이금속; 알칼리 금속; 알 칼리토류 금속; Si를 포함하는 준금속; 및 이들의 조합으로 이루어진 군에서 선택 되는 금속원소를 함유하는 알콕사이드, 수산화물, 수화물, 수소화물, 산화물, 질화 물, 질산염, 탄산염, 황산염, 염화물 및 이들의 흔합물로 이루어진 군에서 선택되 는 것인 나노섬유 복합체의 제조방법.
【청구항 15】
제 11항에 있어서,
상기 고분자는 폴리우레탄, 폴리에테르우레탄, 셀롤로오스 아세테이트, 샐를로오스 아세테이트 부틸레이트, 셀롤로오스 아세테이트 프로피오네이트, 폴리메틸메타크릴 레이트, 폴리메틸아크릴레이트, 폴리아크릴 공중합체, 폴리비닐아세테이트, 폴리비 닐아세테이트 공중합체, 폴리비닐알콜, 폴리퍼퓨릴알콜, 폴리스티렌, 폴리스티렌 공증합체, 폴리에틸렌 옥사이드 폴리프로필렌옥사이드, 폴리에틸렌옥사이드 공중 합체, 폴리프로필렌옥사이드 공중합체, 폴리카보네이트, 폴리비닐클로라이드, 풀리 카프로락톤, 폴리비닐피를리돈, 폴리 4비닐피리딘, 폴리비닐리덴플루오라이드, 폴리 비닐리덴플루오라이드 공중합체, 폴리아마이드, 폴리아크릴로니트릴 및 이들의 흔 합물로 이루어진 군에서 선택되는 것인 나노섬유 복합체의 제조방법.
【청구항 16】
제 11항에 있어서,
상기 고분자는 100,000 내지 l,500,000g/ii )l의 중량평균 분자량을 갖는 것인 나노 섬유 복합체의 제조방법 .
【청구항 17]
제 11항에 있어서,
상기 고분자는 무기 나노와이어 100중량부에 대하여 150 내지 300중량부의 함량으 로 상기 하이브리드 나노섬유 제조용 조성물에 포함되는 것인 나노섬유 복합체의 제조방법.
【청구항 18】
제 11항에 있어서,
상기 유무기 하이브리드 나노섬유 제조용 조성물은 계면활성제, 안정화제 및 이들 의 흔합물로 이루어진 군에서 선택되는 첨가제를 더 포함하는 것인 나노섬유 복합 체의 제조방법 .
【청구항 19]
제 11항에 있어서,
상기 전기 방사 공정은 5 내지 30kV의 직류전압 인가 하에 수행되는 것인 나노섬유 복합체의 제조방법 .
【청구항 20】
제 11항에 있어서,
상기 방사된 하이브리드 나노섬유의 수집 공정에서, 방사된 하이브리드 나노섬유가 회전속도 1000 내지 1200rpm 이상으로 회전하는 수집기에 수집되는 것인 나노섬유 복합체의 제조방법.
【청구항 21】
제 11항에 있어서,
상기 열처리 공정은 275 내지 750°C의 온도에서 수행되는 것인 나노섬유 복합체의 제조방법 .
【청구항 22】
제 11항에 있어서,
상기 열처리 공정은 대기의 압력 조건하에서 7°C/min 내지 20°C/min의 가열 속도 및 5°C/min 내지 20°C/min열처리 후 넁각 속도로 1 내지 2시간 동안 수행되는 것인 나노섬유 복합체의 제조방법.
PCT/KR2013/000169 2012-02-03 2013-01-09 나노섬유 복합체 및 이의 제조방법 WO2013115497A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0011437 2012-02-03
KR1020120011437A KR101349293B1 (ko) 2012-02-03 2012-02-03 나노섬유 복합체 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2013115497A1 true WO2013115497A1 (ko) 2013-08-08

Family

ID=48905489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000169 WO2013115497A1 (ko) 2012-02-03 2013-01-09 나노섬유 복합체 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR101349293B1 (ko)
WO (1) WO2013115497A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101627318B1 (ko) * 2015-01-26 2016-06-03 덕산하이메탈(주) 코어-쉘 나노와이어를 포함하는 투광성 전극 및 이를 이용한 유기발광소자
KR101644185B1 (ko) * 2015-01-26 2016-08-03 덕산하이메탈(주) 코어-쉘 나노와이어의 합성방법 및 이를 통해 제조된 코어-쉘 나노와이어 및 이를 포함하는 투광성 전극 및 유기발광소자
KR101682024B1 (ko) * 2015-01-26 2016-12-12 덕산하이메탈(주) 메탈 나노와이어 및 이의 합성방법과 이를 통해 제조된 메탈 나노와이어를 포함하는 투광성 전극 및 유기발광소자
KR101777975B1 (ko) * 2016-08-30 2017-09-26 고려대학교 산학협력단 나노섬유-나노선 복합체 및 그 제조방법
KR102361428B1 (ko) * 2018-11-26 2022-02-10 고려대학교 산학협력단 전기화학적 수처리용 전극소재 및 그 제조방법
KR102224146B1 (ko) * 2020-02-04 2021-03-05 한국해양대학교 산학협력단 탄소나노튜브-탄소나노섬유 복합체의 제조방법 및 이에 의해 제조되는 탄소나노튜브-탄소나노섬유 복합체
KR20220013827A (ko) 2020-07-27 2022-02-04 삼성전자주식회사 알칼리 금속 및 귀금속이 기능화된 금속산화물 반도체 나노섬유 기반 가스센서용 부재 및 그 제조방법
KR102611793B1 (ko) * 2021-03-18 2023-12-08 한국기계연구원 상시 구동이 가능한 광촉매 마스크 및 이의 제조방법
KR102587553B1 (ko) * 2021-12-01 2023-10-12 한국생산기술연구원 전기방사법을 이용한 나노서브넷 구조를 가진 여과용 부직포 제조 방법 및 그 부직포

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080084193A (ko) * 2007-03-15 2008-09-19 삼성전자주식회사 메조세공 템플릿을 이용한 나노 구조체의 대량 제조방법 및그에 의해 제조된 나노 구조체
KR100981733B1 (ko) * 2008-02-19 2010-09-14 한국전자통신연구원 근접장 전기방사법을 이용한 정렬된 나노 구조체의 제조방법
KR20100134554A (ko) * 2007-12-28 2010-12-23 위니베르시테 데 라 메디테란 엑스마르세이유 2 하이브리드 나노복합체
KR101072476B1 (ko) * 2008-12-19 2011-10-11 연세대학교 산학협력단 코어-쉬스 구조의 나노파이버 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968728B1 (ja) * 2006-04-03 2007-08-29 独立行政法人国際農林水産業研究センター バッファーチャンバー方式ガス収支測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080084193A (ko) * 2007-03-15 2008-09-19 삼성전자주식회사 메조세공 템플릿을 이용한 나노 구조체의 대량 제조방법 및그에 의해 제조된 나노 구조체
KR20100134554A (ko) * 2007-12-28 2010-12-23 위니베르시테 데 라 메디테란 엑스마르세이유 2 하이브리드 나노복합체
KR100981733B1 (ko) * 2008-02-19 2010-09-14 한국전자통신연구원 근접장 전기방사법을 이용한 정렬된 나노 구조체의 제조방법
KR101072476B1 (ko) * 2008-12-19 2011-10-11 연세대학교 산학협력단 코어-쉬스 구조의 나노파이버 제조방법

Also Published As

Publication number Publication date
KR20130090260A (ko) 2013-08-13
KR101349293B1 (ko) 2014-01-16

Similar Documents

Publication Publication Date Title
KR101349293B1 (ko) 나노섬유 복합체 및 이의 제조방법
Xia et al. Formation mechanism of porous hollow SnO 2 nanofibers prepared by one-step electrospinning.
Mahapatra et al. Synthesis of ultra-fine α-Al2O3 fibers via electrospinning method
CN108138367B (zh) 纳米纤维-纳米线复合物及其生产方法
Nuansing et al. Structural characterization and morphology of electrospun TiO2 nanofibers
KR100666477B1 (ko) 산화티타늄 나노로드 및 그의 제조방법
Araújo et al. TiO2/ZnO hierarchical heteronanostructures: Synthesis, characterization and application as photocatalysts
CN101235556A (zh) 一种制备钙钛矿型稀土复合氧化物超长纳米纤维的方法
CN1569623A (zh) 纳米金属或金属氧化物均布于碳纳米管表面的复合材料制备
KR20110072805A (ko) 나노섬유 및 그 제조방법
Tao et al. A facile method to prepare ZrC nanofibers by electrospinning and pyrolysis of polymeric precursors
CN102515245A (zh) 一种溶剂热可控合成纳米氧化锌的方法
Kim et al. Electrospinning fabrication and characterization of poly (vinyl alcohol)/waterborne polyurethane/montmorillonite nanocomposite nanofibers
Muangban et al. Effects of precursor concentration on crystalline morphologies and particle sizes of electrospun WO3 nanofibers
Chen et al. Advanced functional nanofibers: strategies to improve performance and expand functions
Ghosh et al. Bi-component inorganic oxide nanofibers from gas jet fiber spinning process
Liu et al. Fabrication and photocatalytic properties of flexible BiOI/SiO2 hybrid membrane by electrospinning method
Nain et al. Polymeric nanofiber composites with aligned ZnO nanorods
Tunç et al. Preparation of gadolina stabilized bismuth oxide doped with boron via electrospinning technique
Gouma et al. Electrospun single-crystal MoO3 nanowires for biochemistry sensing probes
Tian et al. Hierarchical aligned ZnO nanorods on surface of PVDF/Fe2O3 nanofibers by electrospinning in a magnetic field
KR100990216B1 (ko) 전기방사에 의한 유기 또는 무기 나노입자의 제조방법 및 그에 의한 유기 또는 무기 나노입자
KR101227087B1 (ko) 아나타제형 tio2 나노구조체의 형태 제어 방법
Lu et al. Preparation and characterization of hollow In 2 O 3/Co 3 O 4 heterostructured microribbons by electrospinning process
Zhang et al. Formation of the modified ultrafine anatase TiO 2 nanoparticles using the nanofiber as a microsized reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13744159

Country of ref document: EP

Kind code of ref document: A1