WO2013115046A1 - Probe for measuring characteristics of solar cell - Google Patents
Probe for measuring characteristics of solar cell Download PDFInfo
- Publication number
- WO2013115046A1 WO2013115046A1 PCT/JP2013/051400 JP2013051400W WO2013115046A1 WO 2013115046 A1 WO2013115046 A1 WO 2013115046A1 JP 2013051400 W JP2013051400 W JP 2013051400W WO 2013115046 A1 WO2013115046 A1 WO 2013115046A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wire
- probe
- measuring
- solar cell
- surface electrode
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 127
- 239000007769 metal material Substances 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims description 130
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- 229910000906 Bronze Inorganic materials 0.000 claims description 10
- 239000010974 bronze Substances 0.000 claims description 10
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 238000007747 plating Methods 0.000 claims description 8
- 229910000570 Cupronickel Inorganic materials 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 229910001369 Brass Inorganic materials 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 239000010951 brass Substances 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims description 2
- 238000004873 anchoring Methods 0.000 abstract 2
- 210000004027 cell Anatomy 0.000 description 79
- 238000006243 chemical reaction Methods 0.000 description 9
- 210000005056 cell body Anatomy 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a characteristic measurement probe device used when measuring the output characteristics of a solar battery cell.
- Patent Document 1 As a prior art, a solar battery cell in which a plurality of needle-like pin probes biased by a compression coil spring are brought into contact with electrodes of a solar battery cell provided on the light receiving surface side to extract an output signal.
- an object of the present invention is to provide a solar battery cell in which the contact resistance to the electrode of the solar battery cell to be measured can be stably suppressed to a low level, and the irradiation of simulated sunlight to the light receiving surface is hardly interrupted. It is providing a probe apparatus for characteristic measurement.
- the probe device for measuring the characteristics of the solar battery cell comprises: a resilient first arched wire contact made of a conductive metal material; and at least one of the first wire contacts. And a fixed support for fixing the end.
- the first wire contact extends along the surface electrode of the solar cell to be measured and faces the light receiving surface of the solar cell, deforms when pressed against the surface electrode, and extends along the surface electrode And is configured to conduct.
- the arch-shaped first wire contactor is opposed to the light receiving surface of the solar cell along the surface electrode, deformed when pressed against the surface electrode and extended along the surface electrode for contact Conducts.
- the contact resistance of the probe device for characteristic measurement can be stably maintained low, and moreover, the shadow of the probe device for characteristic measurement does not occur on the light receiving surface of the solar battery cell, and the irradiation of simulated sunlight is almost blocked. Because it is no longer possible, characteristic measurement can be performed without substantially reducing the conversion efficiency of the solar battery cell.
- the fixed support is configured to fix both ends of the first wire contact.
- the fixed support is preferably configured to fix only one end of the first wire contact, and the other end of the first wire contact is preferably configured to be movable in the axial direction.
- the solar battery cell and the fixed support portion be configured to be relatively movable in order to change the distance between them.
- the first wire contactor is a current detection terminal, and further includes a second wire contactor that is a voltage detection terminal fixed to the fixed support portion so as to abut on both ends of the surface electrode. preferable.
- the first wire contact is a shared terminal for current detection and voltage detection.
- the first wire contact has a width smaller than the width of the surface electrode.
- the first wire contact is also preferably composed of a single conductive wire, a plurality of conductive wires twisted together, or a steel wire having conductive wires wound around it.
- the conductive wire is preferably made of a wire material of next bronze, bronze, brass, white copper, nickel white or copper, and it is also preferable that the surface of the wire is plated with gold or nickel.
- the contact resistance of the probe device for characteristic measurement can be stably kept low, and moreover, the shadow of the probe device for characteristic measurement does not occur on the light receiving surface of the solar battery cell, and the irradiation of simulated sunlight Can be almost uninterrupted, so that the characteristic measurement can be performed with almost no reduction in the conversion efficiency of the solar cell.
- FIG. 2 is a side view schematically showing configurations of a current measurement probe and a voltage measurement probe in the first embodiment. It is a perspective view which shows roughly the structure of the probe apparatus for characteristic measurement in the characteristic measuring device of a photovoltaic cell as 2nd Embodiment of this invention. It is a perspective view which shows roughly the structure of the probe apparatus for characteristic measurement in the characteristic measurement apparatus of a photovoltaic cell as 3rd Embodiment of this invention.
- FIG. 1 schematically shows the configuration of a probe device for characteristic measurement in the first embodiment of the present invention
- FIG. 2 schematically shows the configuration of a current measurement probe and a voltage measurement probe in the present embodiment.
- the probe device for characteristic measurement of the present embodiment is a device for performing measurement of output characteristics of a solar battery cell by a four-terminal method using a current measurement probe and a voltage measurement probe which are independent of each other.
- reference numeral 10 denotes a solar battery cell whose characteristics are to be measured
- 11 denotes a fixing base on which the solar battery cell 10 is fixed.
- the solar battery cell 10 is fixed on the fixed base 11 by vacuum or other mechanical means so that the back surface is in contact with the front surface of the fixed base 11, and the light receiving surface which is the surface is simulated from a solar simulator Sunlight is emitted approximately perpendicularly to the light receiving surface.
- the fixing base 11 is formed of a conductive metal plate and is mechanically fixed to and supported by the support member 12 shown in FIG.
- the support member 12 is fixed in the stationary position, and hence the fixed base 11 is also fixed in the stationary position.
- the fixing base 11 serves both as a back surface terminal electrically connected to the back surface electrode of the solar battery cell 10 and in conduction, and as a thermostatic panel cooling the solar battery cell 10 to keep the temperature constant.
- the back surface current terminal 13 and the back surface voltage terminal 14 are electrically connected in common to the fixed base 11.
- illustration is abbreviate
- the means for cooling the fixed base 11 is not shown.
- a cell body and two surface electrodes (bus bars) 10a in the example of the present embodiment for collecting the electromotive force of the cell body are formed on the light receiving surface of the solar battery cell 10.
- the two surface electrodes 10a extend linearly in parallel with one another.
- the current measurement probe 15 which is a current terminal for surface electrode and the voltage measurement probe 16 which is a voltage terminal for surface electrode are pushed to each surface electrode 10a. It is applied and conduction is made.
- the number of surface electrodes (bus bars) is three or more, the current measurement probe 15 and the voltage measurement probe 16 corresponding to the number are provided.
- the current measurement probe 15 corresponds to the first wire contact of the present invention, and is formed of a resilient arch-shaped wire formed of a conductive metal material.
- the current measurement probe 15 extends along the surface electrode 10a in a state of facing the light receiving surface of the solar battery cell 10, is in contact with the surface electrode 10a and is electrically connected, and both ends thereof are fixed. It is fixed by the support portion 17.
- the voltage measurement probe 16 corresponds to the second wire contact of the present invention, and is composed of a pair of elastic wires formed of a conductive metal material. One end of each of the voltage measurement probes 16 is in contact with and electrically connected to one end of the surface electrode 10 a of the solar battery cell 10, and the other end is fixed to the fixed support 17.
- the current measurement probe 15 and the voltage measurement probe 16 are configured by twisting three conductive wires of nickel and white copper with a diameter of 0.5 mm. By twisting together, the contact area with the surface electrode 10a becomes large.
- the current measurement probe 15 and the voltage measurement probe 16 may be a single conductive wire, two or more conductive wires twisted around each other, or conductive wires around the periphery. Composed of wound steel wire.
- a wire material of next bronze, bronze, brass, white copper or copper may be used, and further, a wire obtained by performing gold plating or nickel plating on the surface of the wire material may be used. Conductivity is further improved by performing such surface treatment.
- the widths of the current measurement probe 15 and the voltage measurement probe 16 are configured to be smaller than the width of the surface electrode 10 a of the solar battery cell 10.
- Each fixed support portion 17 is mechanically fixed to each connecting member 18, and the connecting member 18 is mechanically fixed to the groove 19a of the mounting frame 19 by a bolt 20 or the like.
- the bolt 20 and the like are configured to be movable along the groove 19a, thereby moving the connection member 18 and the fixed support portion 17 along the groove 19a to move the current measurement probe 15 and the voltage measurement probe 16 It can be accurately aligned on the center line of the surface electrode 10a.
- the mounting frame 19 is fixed to the vertical movement member 21, and the vertical movement member 21 is configured to be vertically movable with respect to the fixed column member 22. Thereby, the distance between the current measurement probe 15 and the voltage measurement probe 16 and the surface electrode 10 a of the solar battery cell 10 can be changed.
- the vertical movement member 21 is lowered to press the current measurement probe 15 against the surface electrode 10a to deform it so that the entire surface electrode 10a is electrically contacted.
- the voltage measurement probe 16 is electrically connected to a part of the surface electrode 10a to conduct. This makes it possible to measure the output of the solar battery cell 10.
- the display is abbreviate
- the current measurement probe 15 and the voltage measurement probe 16 are pressed onto the surface electrode 10a to be conductive, and the current measurement probe 15 extends over the entire surface electrode 10a. Since electrical contact is made, it is possible to obtain the same function as the multipoint contact state. That is, the contact resistance as the probe device for characteristic measurement can be stably kept low, and moreover, the shadow of these probes does not occur on the light receiving surface of the solar battery cell 10, and the irradiation of simulated sunlight is almost blocked. Therefore, the characteristic measurement can be performed without substantially reducing the conversion efficiency of the solar battery cell 10. Incidentally, the conversion efficiency was improved by 2.3% as compared with the conventional probe apparatus for characteristic measurement according to the present applicant.
- the attachment frame 19 to which the current measurement probe 15 and the voltage measurement probe 16 are attached can be moved up and down, and the fixing base 11 to which the solar battery cell 10 is fixed is stationary. It is obvious that it is good also as composition which 19 stands still and it is possible to raise and lower fixed stand 11 side.
- FIG. 3 schematically shows the configuration of a characteristic measurement probe device according to a second embodiment of the present invention.
- the characteristic measurement probe device of the present embodiment is an output characteristic measurement device of a solar battery cell that performs current measurement and voltage measurement using the common probe 35.
- the same reference numerals are used for the same components as in the embodiment of FIGS. 1 and 2 and the description is omitted.
- the common probe 35 used for both current measurement and voltage measurement is pressed against each surface electrode 10a to conduct.
- the common probe 35 corresponds to the first wire contact of the present invention, and is composed of a resilient arch-shaped wire formed of a conductive metal material.
- the common probe 35 extends along the front surface electrode 10a in a state of facing the light receiving surface of the solar battery cell 10, is in contact with the front surface electrode 10a and is electrically connected, and both ends thereof are fixed supporting portions It is fixed by 17.
- the common probe 35 is formed by twisting three conductive wires of nickel-plated copper having a diameter of 0.5 mm. By twisting together, the contact area with the surface electrode 10a becomes large.
- shared probe 35 is comprised of a single conductive wire, two or more conductive wires twisted around each other, or a steel wire having conductive wires wound around it. Ru.
- a wire material of next bronze, bronze, brass, white copper or copper may be used, and further, a wire obtained by performing gold plating or nickel plating on the surface of the wire material may be used. Conductivity is further improved by performing such surface treatment.
- the width of the common probe 35 is configured to be smaller than the width of the surface electrode 10 a of the solar battery cell 10.
- FIG. 4 schematically shows the configuration of a probe device for characteristic measurement in the third embodiment of the present invention
- FIG. 5 schematically shows the configuration of a current measurement probe and a voltage measurement probe in the present embodiment.
- the probe device for characteristic measurement of the present embodiment is a device for performing measurement of output characteristics of a solar battery cell by a four-terminal method using a current measurement probe and a voltage measurement probe which are independent of each other.
- FIG.4 and FIG.5 10 shows the photovoltaic cell which should measure a characteristic
- 11 has shown the fixing stand in which this photovoltaic cell 10 is fixed, respectively.
- the solar battery cell 10 is fixed on the fixed base 11 by vacuum or other mechanical means so that the back surface is in contact with the front surface of the fixed base 11, and the light receiving surface which is the surface is simulated from a solar simulator Sunlight is emitted approximately perpendicularly to the light receiving surface.
- the fixing base 11 is formed of a conductive metal plate and is mechanically fixed to and supported by a support member (not shown).
- the support member is, in this embodiment, fixed in the rest position, so that the fixed base 11 is also fixed in the rest position.
- the fixing base 11 serves both as a back surface terminal electrically connected to the back surface electrode of the solar battery cell 10 and in conduction, and as a thermostatic panel cooling the solar battery cell 10 to keep the temperature constant.
- a back electrode current terminal 13 and a back electrode voltage terminal 14 are electrically connected in common to the fixed base 11.
- illustration is abbreviate
- the means for cooling the fixed base 11 is not shown.
- a cell body and two surface electrodes (bus bars) 10a in the example of the present embodiment for collecting the electromotive force of the cell body are formed on the light receiving surface of the solar battery cell 10.
- the two surface electrodes 10a extend linearly in parallel with one another.
- the current measurement probe 45 which is a current terminal for surface electrode and the voltage measurement probe 46 which is a voltage terminal for surface electrode are pushed to each surface electrode 10a. It is applied and conduction is made.
- the number of surface electrodes (bus bars) is three or more, current measurement probes 45 and voltage measurement probes 46 corresponding to the number are provided.
- the current measurement probe 45 corresponds to the first wire contact of the present invention, and is composed of a resilient arch-shaped wire formed of a conductive metal material.
- the current measurement probe 45 extends along the surface electrode 10a in a state of facing the light receiving surface of the solar battery cell 10, is in contact with the surface electrode 10a and is electrically connected, and one end thereof is fixed A screw or the like is fixed to the support portion 47, and the other end is supported by the support portion 48 so as to be freely movable in the axial direction of the wire.
- the central portion of the current measurement probe 45 is brought into contact with the surface electrode 10a.
- the floating and the lateral displacement are absorbed by the axial movement, and can be uniformly brought into contact with the surface electrode 10a, whereby a better electrical connection can be obtained.
- the voltage measurement probe 46 corresponds to the second wire contact of the present invention, and is composed of an elastic wire made of a conductive metal material. One end of each of the voltage measurement probes 46 is in contact with and electrically connected to one end of the surface electrode 10 a of the solar battery cell 10, and the other end is fixed to a fixed support 49 by a screw or the like. In the present embodiment, only one voltage measurement probe 46 is provided for each surface electrode 10 a. Of course, a total of two voltage measurement probes 46 may be provided at both ends of each surface electrode 10a.
- the current measurement probe 45 and the voltage measurement probe 46 are configured by twisting three conductive wires of nickel and white copper with a diameter of 0.5 mm. By twisting together, the contact area with the surface electrode 10a becomes large.
- the current measurement probe 45 and the voltage measurement probe 46 may be a single conductive wire, two or more conductive wires twisted around each other, or conductive wires around the periphery. Composed of wound steel wire.
- a wire material of next bronze, bronze, brass, white copper or copper may be used, and further, a wire obtained by performing gold plating or nickel plating on the surface of the wire material may be used. Conductivity is further improved by performing such surface treatment.
- the widths of the current measurement probe 45 and the voltage measurement probe 46 are configured to be smaller than the width of the surface electrode 10 a of the solar battery cell 10.
- the fixed support portion 47 is detachably fixed to the connecting member 51 fixed to the mounting frame 50 by a bolt or the like (not shown).
- the connecting member 51 is, for example, a groove (not shown) in the width direction of the solar battery cell 10 formed between the strip-like plate members facing each other and fixed, and each fixing support portion 47 Is mechanically fixed to the groove of the connection member 51 by a bolt or the like.
- the bolt is configured to be movable along the groove, thereby moving the fixed support portion 47 along the groove to accurately align the current measurement probe 45 on the center line of the surface electrode 10a.
- the support portion 48 is detachably fixed to the connecting member 52 fixed to the mounting frame 50 by a bolt or the like (not shown).
- the connecting member 52 is, for example, a groove (not shown) in the width direction of the solar battery cell 10 formed between the two strip-like plate members facing each other and fixed, and each supporting portion 48 is It is mechanically fixed to the groove of the connection member 52 by a bolt or the like.
- the bolt is configured to be movable along the groove, so that the support portion 48 can be moved along the groove to accurately align the current measurement probe 45 on the center line of the surface electrode 10a. it can.
- the fixed support 49 is detachably fixed to a connecting member 53 fixed to the mounting frame 50 by a bolt or the like (not shown).
- the connecting member 53 is, for example, a groove (not shown) in the width direction of the solar battery cell 10 formed between the two strip-like plate members facing each other and fixed, and each fixing support portion 49 Is mechanically fixed to the groove of the connection member 53 by a bolt or the like.
- the bolt is configured to be movable along the groove, whereby the fixed support 49 is moved along the groove to accurately align the voltage measurement probe 46 on the center line of the surface electrode 10a. Can.
- the mounting frame 50 is fixed to the vertical movement member 54, and the vertical movement member 54 is configured to be able to move up and down in the vertical direction with respect to the fixed column member 55. As a result, the distance between the current measurement probe 45 and the voltage measurement probe 46 and the surface electrode 10 a of the solar battery cell 10 can be changed.
- the vertical movement member 54 is lowered to press the current measurement probe 45 against the surface electrode 10a to deform it so that the entire surface electrode 10a is electrically contacted.
- the voltage measurement probe 46 is electrically connected to a part of the surface electrode 10a to conduct. This makes it possible to measure the output of the solar battery cell 10.
- the display is abbreviate
- the current measurement probe 45 and the voltage measurement probe 46 are pressed onto the surface electrode 10a to conduct electricity, and the current measurement probe 45 extends over the entire surface electrode 10a. Since electrical contact is made, it is possible to obtain the same function as the multipoint contact state.
- only one end of the current measurement probe 45 is fixed, and the other end is movable in the axial direction. Misalignment can be absorbed by axial movement, and can be uniformly brought into contact with the surface electrode 10a, and a better electrical connection can be obtained.
- the contact resistance as the probe device for characteristic measurement can be stably kept lower, and moreover, the shadow of these probes does not occur on the light receiving surface of the solar battery cell 10, and the irradiation of simulated sunlight is almost blocked. Therefore, the characteristic measurement can be performed without substantially reducing the conversion efficiency of the solar battery cell 10.
- the mounting frame 50 to which the current measurement probe 45 and the voltage measurement probe 46 are attached can be moved up and down, and the fixing base 11 fixing the solar battery cell 10 is stationary. It is obvious that 50 may be stationary and the fixed base 11 may be moved up and down.
- the prior art characterization device For a 6 inch single crystal silicon solar cell with three surface electrodes (bus bars), the prior art characterization device with a plurality of needle-like probes in a single row array biased by a spring as described in US Pat.
- a characteristic measurement apparatus having the current measurement probe according to the first embodiment using a fixed strand, and an IV characteristic (a characteristic measurement apparatus using the current measurement probe according to the third embodiment using a single wire fixed only at one end
- the current-voltage characteristics) and the PV characteristics power-voltage characteristics
- a is an IV characteristic measured by the conventional characteristic measuring apparatus
- b is an IV characteristic measured by the characteristic measuring apparatus of the first embodiment
- c is the characteristic of the third embodiment.
- d PV characteristics measured by the prior art characteristics measuring device
- e PV characteristics measured by the characteristics measuring device of the first embodiment
- f third The PV characteristic measured by the characteristic measuring device of an embodiment is shown, respectively.
- the short circuit current density Jsc in Table 1 is a value obtained by dividing the short circuit current Isc by the area of the power generation portion of the solar cell, the short circuit current Isc is a current flowing between the terminals when the output terminal of the solar cell is shorted,
- the voltage Voc is the voltage between terminals when the output terminal of the solar cell is opened, and the maximum output Pmax is the solar cell with the maximum current ⁇ voltage among the IV characteristics between the short circuit current Isc and the open voltage Voc
- the maximum output operating current Ipm is the current when the output of the solar cell is maximum, the maximum output operating voltage Vpm is the voltage when the output of the solar cell is maximum, and the curve factor FF is the shorting of the maximum output Pmax A value divided by the product of the current Isc and the open circuit voltage Voc,
- the cell conversion efficiency Eff is a value obtained by dividing the maximum output Pmax by the radiant flux incident on the cell area of the solar cell, the irradiance Ir Is the irradi
- the cell measurement efficiency Eff is improved by 0.827% in the characteristic measurement device having the current measurement probe of the first embodiment in comparison with the characteristic measurement device of the prior art; In the characteristic measurement device having the current measurement probe of the embodiment, the cell conversion efficiency Eff is improved by 1.29%. Therefore, according to the characteristic measurement device having the current measurement probe of the present invention, the contact resistance can be stably kept lower, and moreover, the irradiation of the pseudo-sunlight is hardly blocked, so that the solar battery cell It can be seen that the characteristic measurement can be performed without substantially reducing the conversion efficiency of.
- the present invention is applicable to a measuring device such as a solar simulator provided with a characteristic measurement probe for extracting an electric signal from its current collecting electrode in a state where light is irradiated to a solar battery cell.
Landscapes
- Testing Of Individual Semiconductor Devices (AREA)
- Photovoltaic Devices (AREA)
- Measuring Leads Or Probes (AREA)
Abstract
This probe for measuring the characteristics of a solar cell is provided with: arch-shaped first wire contactors having elasticity, which are formed by a conductive metal material; and anchoring support parts for anchoring at least one end of the first wire contactors. The first wire contactors extend along the surface electrodes of a solar cell to be measured, and face the light-receiving surface of the solar cell, and are configured in such a manner as to deform and conduct along the surface electrodes when pressed against the surface electrodes.
Description
本発明は、太陽電池セルの出力特性を測定する際に用いる特性測定用プローブ装置に関する。
The present invention relates to a characteristic measurement probe device used when measuring the output characteristics of a solar battery cell.
太陽電池は、再生可能エネルギ源としてその重要性がますます高くなってきており、近年、その需要が大幅に増大している。このように需要の増大に伴って太陽電池が広く流通するに当たり、その出力特性を公正に測定し確認する技術が重要となってきている。
Solar cells are becoming increasingly important as a renewable energy source, and their demand has increased significantly in recent years. As such, with the increase in demand, when solar cells are widely distributed, techniques for measuring and confirming the output characteristics fairly have become important.
太陽電池セルの出力特性を測定する場合、実際の太陽光を使用することは天候などに影響されて特性変動が生じるため、ソーラシミュレータからの擬似太陽光を太陽電池セルに照射した状態で出力特性を測定することが行われる。このように、ソーラシミュレータを用いて太陽電池セルの出力特性を公正かつ正確に測定する場合にも、太陽電池セルの集電電極に電気的に接触する特性測定用プローブの接触抵抗が低くかつ安定していることが必要である。
When measuring the output characteristics of a solar battery cell, using actual sunlight is affected by the weather and the like to cause characteristic fluctuation. Therefore, the output characteristics in a state where the solar battery cell is irradiated with simulated sunlight from a solar simulator Measuring is done. As described above, even when the output characteristics of the solar battery cell are measured fairly and accurately using the solar simulator, the contact resistance of the characteristic measurement probe electrically contacting the collector electrode of the solar battery cell is low and stable. It is necessary to do.
特許文献1には、その従来技術として、受光面側に設けられた太陽電池セルの電極に圧縮コイルばねによって付勢される複数の針状のピンプローブを接触させて出力信号を取り出す太陽電池セルの特性測定装置が開示されている。
In Patent Document 1, as a prior art, a solar battery cell in which a plurality of needle-like pin probes biased by a compression coil spring are brought into contact with electrodes of a solar battery cell provided on the light receiving surface side to extract an output signal. An apparatus for measuring the characteristics of
特許文献1に開示されているごとき従来の特性測定装置では、太陽電池セルの受光面に設けられた集電電極に沿って一列に配列された複数の針状プローブが圧縮コイルばねによって付勢され、これら集電電極に電気的に接触することによって出力信号を低接触抵抗で取り出している。
In the conventional characteristic measuring apparatus as disclosed in Patent Document 1, a plurality of needle-like probes arranged in a line along a current collecting electrode provided on the light receiving surface of a solar battery cell are biased by a compression coil spring. The output signal is taken out with low contact resistance by making electrical contact with these collecting electrodes.
このように集電電極への接触抵抗を低く抑えかつ安定させるためには、針状プローブを押圧する圧縮コイルばねの弾性力に耐えるだけの強度及び大きさを有する支持部材を設ける必要があり、また、各プローブと電気的接続を行うワイヤを配線する必要がある。しかしながら、これら支持部材及び配線ワイヤはその寸法が大きくなることからその支持部材及び配線ワイヤにより照射される擬似太陽光の一部が遮られてしまい、太陽電池セル上にそれらの影が生じ、これが正確な光電変換特性の測定の大きな障害となっていた。
Thus, in order to keep contact resistance to the collecting electrode low and to be stable, it is necessary to provide a support member having a strength and a size sufficient to withstand the elastic force of the compression coil spring pressing the needle-like probe, In addition, it is necessary to wire a wire for making an electrical connection with each probe. However, the dimensions of these support members and wiring wires are increased, so that part of the simulated sunlight emitted by the support members and wiring wires is blocked, causing shadows of them on the solar cells, which It has been a major obstacle to the measurement of accurate photoelectric conversion characteristics.
従って本発明の目的は、測定すべき太陽電池セルの電極への接触抵抗を安定して低く抑えられ、かつ、その受光面への擬似太陽光の照射がほとんど遮られることのない太陽電池セルの特性測定用プローブ装置を提供することにある。
Therefore, an object of the present invention is to provide a solar battery cell in which the contact resistance to the electrode of the solar battery cell to be measured can be stably suppressed to a low level, and the irradiation of simulated sunlight to the light receiving surface is hardly interrupted. It is providing a probe apparatus for characteristic measurement.
本発明によれば、太陽電池セルの特性測定用プローブ装置は、導電性金属材料で形成された弾力性を有するアーチ形状の第1のワイヤ接触子と、この第1のワイヤ接触子の少なくとも1端を固定する固定支持部とを備えている。第1のワイヤ接触子は、測定すべき太陽電池セルの表面電極に沿って伸長すると共に太陽電池セルの受光面に対向しており、表面電極に押し当てられた際に変形し表面電極に沿って導通するように構成されている。
According to the present invention, the probe device for measuring the characteristics of the solar battery cell comprises: a resilient first arched wire contact made of a conductive metal material; and at least one of the first wire contacts. And a fixed support for fixing the end. The first wire contact extends along the surface electrode of the solar cell to be measured and faces the light receiving surface of the solar cell, deforms when pressed against the surface electrode, and extends along the surface electrode And is configured to conduct.
アーチ形状の第1のワイヤ接触子は、表面電極に沿って太陽電池セルの受光面に対向しており、表面電極に押し当てられた際に変形してその表面電極に沿って伸長して接触し導通する。その結果、特性測定用プローブ装置の接触抵抗を安定して低く保つことができ、しかも、太陽電池セルの受光面上に特性測定用プローブ装置の影が生ぜず、擬似太陽光の照射がほとんど遮られることがなくなるから、太陽電池セルの変換効率をほとんど低下させることなく特性測定を行うことができる。
The arch-shaped first wire contactor is opposed to the light receiving surface of the solar cell along the surface electrode, deformed when pressed against the surface electrode and extended along the surface electrode for contact Conducts. As a result, the contact resistance of the probe device for characteristic measurement can be stably maintained low, and moreover, the shadow of the probe device for characteristic measurement does not occur on the light receiving surface of the solar battery cell, and the irradiation of simulated sunlight is almost blocked. Because it is no longer possible, characteristic measurement can be performed without substantially reducing the conversion efficiency of the solar battery cell.
固定支持部は、第1のワイヤ接触子の両端を固定するように構成されていることが好ましい。
Preferably, the fixed support is configured to fix both ends of the first wire contact.
固定支持部は、前記第1のワイヤ接触子の一端のみを固定するように構成されており、第1のワイヤ接触子の他端はその軸方向に移動自在に構成されていることも好ましい。
The fixed support is preferably configured to fix only one end of the first wire contact, and the other end of the first wire contact is preferably configured to be movable in the axial direction.
太陽電池セルと固定支持部とは、両者の間隔を変化させるために相対的に移動可能に構成されていることが好ましい。
It is preferable that the solar battery cell and the fixed support portion be configured to be relatively movable in order to change the distance between them.
第1のワイヤ接触子は電流検出用端子であり、表面電極の両端部に当接するように固定支持部に固定された電圧検出用端子である第2のワイヤ接触子をさらに備えていることも好ましい。
The first wire contactor is a current detection terminal, and further includes a second wire contactor that is a voltage detection terminal fixed to the fixed support portion so as to abut on both ends of the surface electrode. preferable.
第1のワイヤ接触子は電流検出及び電圧検出の共用端子であることも好ましい。
It is also preferable that the first wire contact is a shared terminal for current detection and voltage detection.
第1のワイヤ接触子は、表面電極の幅より小さい幅を有していることも好ましい。
It is also preferred that the first wire contact has a width smaller than the width of the surface electrode.
第1のワイヤ接触子は、単一の導電線、互いに撚り合わされた複数の導電線、又は周囲に導電線を巻回した鋼線から構成されていることも好ましい。この導電線は、隣青銅、青銅、黄銅、白銅、洋白銅又は銅の線材から構成されていること、さらに、この線材表面に金めっき又はニッケルめっきを施した線であることも好ましい。
The first wire contact is also preferably composed of a single conductive wire, a plurality of conductive wires twisted together, or a steel wire having conductive wires wound around it. The conductive wire is preferably made of a wire material of next bronze, bronze, brass, white copper, nickel white or copper, and it is also preferable that the surface of the wire is plated with gold or nickel.
本発明によれば、特性測定用プローブ装置の接触抵抗を安定して低く保つことができ、しかも、太陽電池セルの受光面上に特性測定用プローブ装置の影が生ぜず、擬似太陽光の照射がほとんど遮られることがなくなるから、太陽電池セルの変換効率をほとんど低下させることなく特性測定を行うことができる。
According to the present invention, the contact resistance of the probe device for characteristic measurement can be stably kept low, and moreover, the shadow of the probe device for characteristic measurement does not occur on the light receiving surface of the solar battery cell, and the irradiation of simulated sunlight Can be almost uninterrupted, so that the characteristic measurement can be performed with almost no reduction in the conversion efficiency of the solar cell.
図1は本発明の第1の実施形態における特性測定用プローブ装置の構成を概略的に示しており、図2は本実施形態における電流測定用プローブ及び電圧測定用プローブの構成を概略的に示している。本実施形態の特性測定用プローブ装置は、互いに独立した電流測定用プローブ及び電圧測定用プローブを利用して4端子法によって太陽電池セルの出力特性測定を行う装置である。
FIG. 1 schematically shows the configuration of a probe device for characteristic measurement in the first embodiment of the present invention, and FIG. 2 schematically shows the configuration of a current measurement probe and a voltage measurement probe in the present embodiment. ing. The probe device for characteristic measurement of the present embodiment is a device for performing measurement of output characteristics of a solar battery cell by a four-terminal method using a current measurement probe and a voltage measurement probe which are independent of each other.
図1及び図2において、10は特性を測定すべき太陽電池セル、11はこの太陽電池セル10が固定される固定台をそれぞれ示している。太陽電池セル10は、その裏面が固定台11の表面に当接するようにこの固定台11上に真空又は他の機械的手段によって固定されており、その表面である受光面にソーラシミュレータからの擬似太陽光が、受光面に略垂直に照射される。
1 and 2, reference numeral 10 denotes a solar battery cell whose characteristics are to be measured, and 11 denotes a fixing base on which the solar battery cell 10 is fixed. The solar battery cell 10 is fixed on the fixed base 11 by vacuum or other mechanical means so that the back surface is in contact with the front surface of the fixed base 11, and the light receiving surface which is the surface is simulated from a solar simulator Sunlight is emitted approximately perpendicularly to the light receiving surface.
固定台11は導電性の金属材料板から形成されており、図1に示す支持部材12に機械的に固着されて支持されている。支持部材12は、本実施形態においては、静止位置に固定されており、従って、固定台11も静止位置に固定されている。この固定台11は、太陽電池セル10の裏面電極に接触して導通する裏面端子の役割と、太陽電池セル10を一定温度に保つべく冷却する恒温パネルの役割とを兼用している。図2に示すように、この固定台11には、裏面電極用電流端子13及び裏面電極用電圧端子14が電気的に共通に接続されている。ただし、これら裏面電極用電流端子13及び裏面電極用電圧端子14から測定機器に接続される配線については、図示が省略されている。また、固定台11を冷却する手段についても図示が省略されている。
The fixing base 11 is formed of a conductive metal plate and is mechanically fixed to and supported by the support member 12 shown in FIG. In the present embodiment, the support member 12 is fixed in the stationary position, and hence the fixed base 11 is also fixed in the stationary position. The fixing base 11 serves both as a back surface terminal electrically connected to the back surface electrode of the solar battery cell 10 and in conduction, and as a thermostatic panel cooling the solar battery cell 10 to keep the temperature constant. As shown in FIG. 2, the back surface current terminal 13 and the back surface voltage terminal 14 are electrically connected in common to the fixed base 11. However, illustration is abbreviate | omitted about the wiring connected to a measurement apparatus from the electric current terminal 13 for back surface electrodes, and the voltage terminal 14 for back surface electrodes. Also, the means for cooling the fixed base 11 is not shown.
太陽電池セル10の受光面には、セル本体と、セル本体の起電力を集電する本実施形態の例では2つの表面電極(バスバー)10aとが形成されている。2つの表面電極10aは、互いに平行に直線状に伸長している。特性測定時には、図1及び図2に示すように、各表面電極10aに、表面電極用電流端子である電流測定用プローブ15と、表面電極用電圧端子である電圧測定用プローブ16とがそれぞれ押し当てられて導通がなされる。表面電極(バスバー)が3つ以上の場合は、その数に対応した電流測定用プローブ15及び電圧測定用プローブ16が設けられる。
On the light receiving surface of the solar battery cell 10, a cell body and two surface electrodes (bus bars) 10a in the example of the present embodiment for collecting the electromotive force of the cell body are formed. The two surface electrodes 10a extend linearly in parallel with one another. At the time of characteristic measurement, as shown in FIG. 1 and FIG. 2, the current measurement probe 15 which is a current terminal for surface electrode and the voltage measurement probe 16 which is a voltage terminal for surface electrode are pushed to each surface electrode 10a. It is applied and conduction is made. When the number of surface electrodes (bus bars) is three or more, the current measurement probe 15 and the voltage measurement probe 16 corresponding to the number are provided.
電流測定用プローブ15は、本発明の第1のワイヤ接触子に対応しており、導電性金属材料で形成された弾力性を有するアーチ形状のワイヤから構成されている。この電流測定用プローブ15は、太陽電池セル10の受光面に対向した状態でこの表面電極10aに沿って伸長し、この表面電極10aに当接して電気的に接続されており、その両端は固定支持部17によって固定されている。
The current measurement probe 15 corresponds to the first wire contact of the present invention, and is formed of a resilient arch-shaped wire formed of a conductive metal material. The current measurement probe 15 extends along the surface electrode 10a in a state of facing the light receiving surface of the solar battery cell 10, is in contact with the surface electrode 10a and is electrically connected, and both ends thereof are fixed. It is fixed by the support portion 17.
電圧測定用プローブ16は、本発明の第2のワイヤ接触子に対応しており、導電性金属材料で形成された弾力性を有する1対のワイヤから構成されている。各電圧測定用プローブ16の一端は太陽電池セル10の表面電極10aの一端部に当接して電気的に接続されており、その他端は固定支持部17に固定されている。
The voltage measurement probe 16 corresponds to the second wire contact of the present invention, and is composed of a pair of elastic wires formed of a conductive metal material. One end of each of the voltage measurement probes 16 is in contact with and electrically connected to one end of the surface electrode 10 a of the solar battery cell 10, and the other end is fixed to the fixed support 17.
これら電流測定用プローブ15及び電圧測定用プローブ16は、本実施形態では直径0.5mmの洋白銅の3本の導電線を互いに撚り合わして構成されている。撚り合わせることにより、表面電極10aとの接触面積が大きくなる。本実施形態の変更態様においては、電流測定用プローブ15及び電圧測定用プローブ16は、単一の導電線、互いに撚り合わされた2本若しくは4本以上の複数の導電線、又は周囲に導電線を巻回した鋼線から構成される。また、導電線としては、隣青銅、青銅、黄銅、白銅又は銅の線材が用いられ、さらにこれら線材の表面に金めっき又はニッケルめっきを施した線であっても良い。このような表面処理を行うことにより、導電性がより向上する。また、電流測定用プローブ15及び電圧測定用プローブ16の幅は、太陽電池セル10の表面電極10aの幅より小さい幅となるように構成されている。
In the present embodiment, the current measurement probe 15 and the voltage measurement probe 16 are configured by twisting three conductive wires of nickel and white copper with a diameter of 0.5 mm. By twisting together, the contact area with the surface electrode 10a becomes large. In a modification of this embodiment, the current measurement probe 15 and the voltage measurement probe 16 may be a single conductive wire, two or more conductive wires twisted around each other, or conductive wires around the periphery. Composed of wound steel wire. Further, as the conductive wire, a wire material of next bronze, bronze, brass, white copper or copper may be used, and further, a wire obtained by performing gold plating or nickel plating on the surface of the wire material may be used. Conductivity is further improved by performing such surface treatment. Further, the widths of the current measurement probe 15 and the voltage measurement probe 16 are configured to be smaller than the width of the surface electrode 10 a of the solar battery cell 10.
各固定支持部17は各連結部材18に機械的に固着されており、この連結部材18は、取り付け枠19の溝19aにボルト20等により機械的に固着されている。ボルト20等は、溝19aに沿って移動可能に構成されており、これにより、連結部材18及び固定支持部17を溝19aに沿って移動させて電流測定用プローブ15及び電圧測定用プローブ16を表面電極10aの中心線上に正確に位置合わせすることができる。
Each fixed support portion 17 is mechanically fixed to each connecting member 18, and the connecting member 18 is mechanically fixed to the groove 19a of the mounting frame 19 by a bolt 20 or the like. The bolt 20 and the like are configured to be movable along the groove 19a, thereby moving the connection member 18 and the fixed support portion 17 along the groove 19a to move the current measurement probe 15 and the voltage measurement probe 16 It can be accurately aligned on the center line of the surface electrode 10a.
取り付け枠19は上下移動部材21に固着されており、この上下移動部材21は固定柱部材22に対して上下方向に昇降可能に構成されている。これにより、電流測定用プローブ15及び電圧測定用プローブ16と太陽電池セル10の表面電極10aとの間隔を変化させることができる。
The mounting frame 19 is fixed to the vertical movement member 21, and the vertical movement member 21 is configured to be vertically movable with respect to the fixed column member 22. Thereby, the distance between the current measurement probe 15 and the voltage measurement probe 16 and the surface electrode 10 a of the solar battery cell 10 can be changed.
太陽電池セル10の出力特性測定時は、上下移動部材21を下降させることにより、電流測定用プローブ15を表面電極10aに押し当てて変形させ、表面電極10a全体に渡って電気的に接触させて導通させると共に、電圧測定用プローブ16を表面電極10aの一部に電気的に接触させて導通させる。これにより、太陽電池セル10の出力を測定することが可能となる。なお、電流測定用プローブ15及び電圧測定用プローブ16から測定機器に接続される配線については、図1では表示が省略されている。
At the time of measuring the output characteristics of the solar battery cell 10, the vertical movement member 21 is lowered to press the current measurement probe 15 against the surface electrode 10a to deform it so that the entire surface electrode 10a is electrically contacted. At the same time, the voltage measurement probe 16 is electrically connected to a part of the surface electrode 10a to conduct. This makes it possible to measure the output of the solar battery cell 10. In addition, about the wiring connected to a measuring instrument from the probe 15 for current measurement, and the probe 16 for voltage measurements, the display is abbreviate | omitted in FIG.
以上説明したように、本実施形態によれば、電流測定用プローブ15及び電圧測定用プローブ16を表面電極10a上に押し当てて導通させ、しかも電流測定用プローブ15が表面電極10a全体に渡って電気的に接触させているため、多点接触状態と同等の機能を得ることができる。即ち、特性測定用プローブ装置としての接触抵抗を安定して低く保つことができ、しかも、太陽電池セル10の受光面上にこれらプローブの影が生ぜず、擬似太陽光の照射がほとんど遮られることがなくなるから、太陽電池セル10の変換効率をほとんど低下させることなく特性測定を行うことができる。因みに、本願出願人による従来の特性測定用プローブ装置に比して、変換効率が2.3%向上した。
As described above, according to the present embodiment, the current measurement probe 15 and the voltage measurement probe 16 are pressed onto the surface electrode 10a to be conductive, and the current measurement probe 15 extends over the entire surface electrode 10a. Since electrical contact is made, it is possible to obtain the same function as the multipoint contact state. That is, the contact resistance as the probe device for characteristic measurement can be stably kept low, and moreover, the shadow of these probes does not occur on the light receiving surface of the solar battery cell 10, and the irradiation of simulated sunlight is almost blocked. Therefore, the characteristic measurement can be performed without substantially reducing the conversion efficiency of the solar battery cell 10. Incidentally, the conversion efficiency was improved by 2.3% as compared with the conventional probe apparatus for characteristic measurement according to the present applicant.
なお、上述した実施形態は、電流測定用プローブ15及び電圧測定用プローブ16を取り付けた取り付け枠19が昇降可能であり太陽電池セル10を固定した固定台11が静止した構成としているが、取り付け枠19が静止し、固定台11側が昇降可能とした構成としても良いことは明らかである。
In the embodiment described above, the attachment frame 19 to which the current measurement probe 15 and the voltage measurement probe 16 are attached can be moved up and down, and the fixing base 11 to which the solar battery cell 10 is fixed is stationary. It is obvious that it is good also as composition which 19 stands still and it is possible to raise and lower fixed stand 11 side.
図3は本発明の第2の実施形態における特性測定用プローブ装置の構成を概略的に示している。本実施形態の特性測定用プローブ装置は、共用プローブ35を利用して電流測定及び電圧測定を行う太陽電池セルの出力特性測定装置である。本実施形態において、図1及び図2の実施形態の場合と同様の構成要素については、同一の参照番号を使用し説明を省略する。
FIG. 3 schematically shows the configuration of a characteristic measurement probe device according to a second embodiment of the present invention. The characteristic measurement probe device of the present embodiment is an output characteristic measurement device of a solar battery cell that performs current measurement and voltage measurement using the common probe 35. In this embodiment, the same reference numerals are used for the same components as in the embodiment of FIGS. 1 and 2 and the description is omitted.
本実施形態においては、特性測定時には、図3に示すように、各表面電極10aに、電流測定及び電圧測定の両方に用いられる共用プローブ35が押し当てられて導通がなされる。
In the present embodiment, at the time of characteristic measurement, as shown in FIG. 3, the common probe 35 used for both current measurement and voltage measurement is pressed against each surface electrode 10a to conduct.
共用プローブ35は、本発明の第1のワイヤ接触子に対応しており、導電性金属材料で形成された弾力性を有するアーチ形状のワイヤから構成されている。この共用プローブ35は、太陽電池セル10の受光面に対向した状態でこの表面電極10aに沿って伸長し、この表面電極10aに当接して電気的に接続されており、その両端は固定支持部17によって固定されている。
The common probe 35 corresponds to the first wire contact of the present invention, and is composed of a resilient arch-shaped wire formed of a conductive metal material. The common probe 35 extends along the front surface electrode 10a in a state of facing the light receiving surface of the solar battery cell 10, is in contact with the front surface electrode 10a and is electrically connected, and both ends thereof are fixed supporting portions It is fixed by 17.
共用プローブ35は、本実施形態では直径0.5mmの洋白銅の3本の導電線を互いに撚り合わして構成されている。撚り合わせることにより、表面電極10aとの接触面積が大きくなる。本実施形態の変更態様においては、共用プローブ35は、単一の導電線、互いに撚り合わされた2本若しくは4本以上の複数の導電線、又は周囲に導電線を巻回した鋼線から構成される。また、導電線としては、隣青銅、青銅、黄銅、白銅又は銅の線材が用いられ、さらにこれら線材の表面に金めっき又はニッケルめっきを施した線であっても良い。このような表面処理を行うことにより、導電性がより向上する。また、共用プローブ35の幅は、太陽電池セル10の表面電極10aの幅より小さい幅となるように構成されている。
In the present embodiment, the common probe 35 is formed by twisting three conductive wires of nickel-plated copper having a diameter of 0.5 mm. By twisting together, the contact area with the surface electrode 10a becomes large. In a variation of this embodiment, shared probe 35 is comprised of a single conductive wire, two or more conductive wires twisted around each other, or a steel wire having conductive wires wound around it. Ru. Further, as the conductive wire, a wire material of next bronze, bronze, brass, white copper or copper may be used, and further, a wire obtained by performing gold plating or nickel plating on the surface of the wire material may be used. Conductivity is further improved by performing such surface treatment. Further, the width of the common probe 35 is configured to be smaller than the width of the surface electrode 10 a of the solar battery cell 10.
以上述べた第2の実施形態におけるその他の構成及び作用効果は図1及び図2に示した第1の実施形態の場合と同様であるため、説明を省略する。
The other configurations and operational effects of the second embodiment described above are the same as those of the first embodiment shown in FIGS. 1 and 2, and thus the description thereof is omitted.
図4は本発明の第3の実施形態における特性測定用プローブ装置の構成を概略的に示しており、図5は本実施形態における電流測定用プローブ及び電圧測定用プローブの構成を概略的に示している。本実施形態の特性測定用プローブ装置は、互いに独立した電流測定用プローブ及び電圧測定用プローブを利用して4端子法によって太陽電池セルの出力特性測定を行う装置である。
FIG. 4 schematically shows the configuration of a probe device for characteristic measurement in the third embodiment of the present invention, and FIG. 5 schematically shows the configuration of a current measurement probe and a voltage measurement probe in the present embodiment. ing. The probe device for characteristic measurement of the present embodiment is a device for performing measurement of output characteristics of a solar battery cell by a four-terminal method using a current measurement probe and a voltage measurement probe which are independent of each other.
図4及び図5において、10は特性を測定すべき太陽電池セル、11はこの太陽電池セル10が固定される固定台をそれぞれ示している。太陽電池セル10は、その裏面が固定台11の表面に当接するようにこの固定台11上に真空又は他の機械的手段によって固定されており、その表面である受光面にソーラシミュレータからの擬似太陽光が、受光面に略垂直に照射される。
In FIG.4 and FIG.5, 10 shows the photovoltaic cell which should measure a characteristic, 11 has shown the fixing stand in which this photovoltaic cell 10 is fixed, respectively. The solar battery cell 10 is fixed on the fixed base 11 by vacuum or other mechanical means so that the back surface is in contact with the front surface of the fixed base 11, and the light receiving surface which is the surface is simulated from a solar simulator Sunlight is emitted approximately perpendicularly to the light receiving surface.
固定台11は導電性の金属材料板から形成されており、図示しない支持部材に機械的に固着されて支持されている。支持部材は、本実施形態においては、静止位置に固定されており、従って、固定台11も静止位置に固定されている。この固定台11は、太陽電池セル10の裏面電極に接触して導通する裏面端子の役割と、太陽電池セル10を一定温度に保つべく冷却する恒温パネルの役割とを兼用している。図5に示すように、この固定台11には、裏面電極用電流端子13及び裏面電極用電圧端子14が電気的に共通に接続されている。ただし、これら裏面電極用電流端子13及び裏面電極用電圧端子14から測定機器に接続される配線については、図示が省略されている。また、固定台11を冷却する手段についても図示が省略されている。
The fixing base 11 is formed of a conductive metal plate and is mechanically fixed to and supported by a support member (not shown). The support member is, in this embodiment, fixed in the rest position, so that the fixed base 11 is also fixed in the rest position. The fixing base 11 serves both as a back surface terminal electrically connected to the back surface electrode of the solar battery cell 10 and in conduction, and as a thermostatic panel cooling the solar battery cell 10 to keep the temperature constant. As shown in FIG. 5, a back electrode current terminal 13 and a back electrode voltage terminal 14 are electrically connected in common to the fixed base 11. However, illustration is abbreviate | omitted about the wiring connected to a measurement apparatus from the electric current terminal 13 for back surface electrodes, and the voltage terminal 14 for back surface electrodes. Also, the means for cooling the fixed base 11 is not shown.
太陽電池セル10の受光面には、セル本体と、セル本体の起電力を集電する本実施形態の例では2つの表面電極(バスバー)10aとが形成されている。2つの表面電極10aは、互いに平行に直線状に伸長している。特性測定時には、図4及び図5に示すように、各表面電極10aに、表面電極用電流端子である電流測定用プローブ45と、表面電極用電圧端子である電圧測定用プローブ46とがそれぞれ押し当てられて導通がなされる。表面電極(バスバー)が3つ以上の場合は、その数に対応した電流測定用プローブ45及び電圧測定用プローブ46が設けられる。
On the light receiving surface of the solar battery cell 10, a cell body and two surface electrodes (bus bars) 10a in the example of the present embodiment for collecting the electromotive force of the cell body are formed. The two surface electrodes 10a extend linearly in parallel with one another. At the time of characteristic measurement, as shown in FIG. 4 and FIG. 5, the current measurement probe 45 which is a current terminal for surface electrode and the voltage measurement probe 46 which is a voltage terminal for surface electrode are pushed to each surface electrode 10a. It is applied and conduction is made. When the number of surface electrodes (bus bars) is three or more, current measurement probes 45 and voltage measurement probes 46 corresponding to the number are provided.
電流測定用プローブ45は、本発明の第1のワイヤ接触子に対応しており、導電性金属材料で形成された弾力性を有するアーチ形状のワイヤから構成されている。この電流測定用プローブ45は、太陽電池セル10の受光面に対向した状態でこの表面電極10aに沿って伸長し、この表面電極10aに当接して電気的に接続されており、その一端は固定支持部47にねじ等で固定されており、他端はワイヤの軸方向に自由に移動可能に支持部48によって支持されている。このように本実施形態においては、電流測定用プローブ45は、その一端のみが固定され、他端が軸方向に移動自在となっているため、表面電極10aに接触させた際に、その中央部の浮きや左右方向のずれが軸方向の移動によって吸収され、均一に表面電極10aに接触させることができ、より良好な電気的接続を得ることができる。
The current measurement probe 45 corresponds to the first wire contact of the present invention, and is composed of a resilient arch-shaped wire formed of a conductive metal material. The current measurement probe 45 extends along the surface electrode 10a in a state of facing the light receiving surface of the solar battery cell 10, is in contact with the surface electrode 10a and is electrically connected, and one end thereof is fixed A screw or the like is fixed to the support portion 47, and the other end is supported by the support portion 48 so as to be freely movable in the axial direction of the wire. As described above, in the present embodiment, since only one end of the current measurement probe 45 is fixed and the other end is movable in the axial direction, the central portion of the current measurement probe 45 is brought into contact with the surface electrode 10a. The floating and the lateral displacement are absorbed by the axial movement, and can be uniformly brought into contact with the surface electrode 10a, whereby a better electrical connection can be obtained.
電圧測定用プローブ46は、本発明の第2のワイヤ接触子に対応しており、導電性金属材料で形成された弾力性を有するワイヤから構成されている。各電圧測定用プローブ46の一端は太陽電池セル10の表面電極10aの一端部に当接して電気的に接続されており、その他端は固定支持部49にねじ等で固定されている。本実施形態においては、電圧測定用プローブ46は、各表面電極10aについて1つのみ設けられている。もちろん、電圧測定用プローブ46を各表面電極10aについてその両端部に計2つ設けても良い。
The voltage measurement probe 46 corresponds to the second wire contact of the present invention, and is composed of an elastic wire made of a conductive metal material. One end of each of the voltage measurement probes 46 is in contact with and electrically connected to one end of the surface electrode 10 a of the solar battery cell 10, and the other end is fixed to a fixed support 49 by a screw or the like. In the present embodiment, only one voltage measurement probe 46 is provided for each surface electrode 10 a. Of course, a total of two voltage measurement probes 46 may be provided at both ends of each surface electrode 10a.
これら電流測定用プローブ45及び電圧測定用プローブ46は、本実施形態では直径0.5mmの洋白銅の3本の導電線を互いに撚り合わして構成されている。撚り合わせることにより、表面電極10aとの接触面積が大きくなる。本実施形態の変更態様においては、電流測定用プローブ45及び電圧測定用プローブ46は、単一の導電線、互いに撚り合わされた2本若しくは4本以上の複数の導電線、又は周囲に導電線を巻回した鋼線から構成される。また、導電線としては、隣青銅、青銅、黄銅、白銅又は銅の線材が用いられ、さらにこれら線材の表面に金めっき又はニッケルめっきを施した線であっても良い。このような表面処理を行うことにより、導電性がより向上する。また、電流測定用プローブ45及び電圧測定用プローブ46の幅は、太陽電池セル10の表面電極10aの幅より小さい幅となるように構成されている。
In the present embodiment, the current measurement probe 45 and the voltage measurement probe 46 are configured by twisting three conductive wires of nickel and white copper with a diameter of 0.5 mm. By twisting together, the contact area with the surface electrode 10a becomes large. In a modification of this embodiment, the current measurement probe 45 and the voltage measurement probe 46 may be a single conductive wire, two or more conductive wires twisted around each other, or conductive wires around the periphery. Composed of wound steel wire. Further, as the conductive wire, a wire material of next bronze, bronze, brass, white copper or copper may be used, and further, a wire obtained by performing gold plating or nickel plating on the surface of the wire material may be used. Conductivity is further improved by performing such surface treatment. Further, the widths of the current measurement probe 45 and the voltage measurement probe 46 are configured to be smaller than the width of the surface electrode 10 a of the solar battery cell 10.
固定支持部47は取り付け枠50に固着されている連結部材51に図示しないボルト等で脱着可能に固定されている。この連結部材51は、例えば2枚のストリップ状板部材を対向させて固定することによって間に、太陽電池セル10の幅方向の溝(図示なし)を形成したものであり、各固定支持部47は、この連結部材51の溝にボルト等により機械的に固定される。ボルトは、この溝に沿って移動可能に構成されており、これにより、固定支持部47を溝に沿って移動させて電流測定用プローブ45を表面電極10aの中心線上に正確に位置合わせすることができる。また、支持部48は取り付け枠50に固着されている連結部材52に図示しないボルト等で脱着可能に固定されている。この連結部材52は、例えば2枚のストリップ状板部材を対向させて固定することによって間に、太陽電池セル10の幅方向の溝(図示なし)を形成したものであり、各支持部48は、この連結部材52の溝にボルト等により機械的に固定される。ボルトは、この溝に沿って移動可能に構成されており、これにより、支持部48を溝に沿って移動させて電流測定用プローブ45を表面電極10aの中心線上に正確に位置合わせすることができる。
The fixed support portion 47 is detachably fixed to the connecting member 51 fixed to the mounting frame 50 by a bolt or the like (not shown). The connecting member 51 is, for example, a groove (not shown) in the width direction of the solar battery cell 10 formed between the strip-like plate members facing each other and fixed, and each fixing support portion 47 Is mechanically fixed to the groove of the connection member 51 by a bolt or the like. The bolt is configured to be movable along the groove, thereby moving the fixed support portion 47 along the groove to accurately align the current measurement probe 45 on the center line of the surface electrode 10a. Can. The support portion 48 is detachably fixed to the connecting member 52 fixed to the mounting frame 50 by a bolt or the like (not shown). The connecting member 52 is, for example, a groove (not shown) in the width direction of the solar battery cell 10 formed between the two strip-like plate members facing each other and fixed, and each supporting portion 48 is It is mechanically fixed to the groove of the connection member 52 by a bolt or the like. The bolt is configured to be movable along the groove, so that the support portion 48 can be moved along the groove to accurately align the current measurement probe 45 on the center line of the surface electrode 10a. it can.
固定支持部49は取り付け枠50に固着されている連結部材53に図示しないボルト等で脱着可能に固定されている。この連結部材53は、例えば2枚のストリップ状板部材を対向させて固定することによって間に、太陽電池セル10の幅方向の溝(図示なし)を形成したものであり、各固定支持部49は、この連結部材53の溝にボルト等により機械的に固定される。ボルトは、この溝に沿って移動可能に構成されており、これにより、固定支持部49を溝に沿って移動させて電圧測定用プローブ46を表面電極10aの中心線上に正確に位置合わせすることができる。
The fixed support 49 is detachably fixed to a connecting member 53 fixed to the mounting frame 50 by a bolt or the like (not shown). The connecting member 53 is, for example, a groove (not shown) in the width direction of the solar battery cell 10 formed between the two strip-like plate members facing each other and fixed, and each fixing support portion 49 Is mechanically fixed to the groove of the connection member 53 by a bolt or the like. The bolt is configured to be movable along the groove, whereby the fixed support 49 is moved along the groove to accurately align the voltage measurement probe 46 on the center line of the surface electrode 10a. Can.
取り付け枠50は上下移動部材54に固着されており、この上下移動部材54は固定柱部材55に対して上下方向に昇降可能に構成されている。これにより、電流測定用プローブ45及び電圧測定用プローブ46と太陽電池セル10の表面電極10aとの間隔を変化させることができる。
The mounting frame 50 is fixed to the vertical movement member 54, and the vertical movement member 54 is configured to be able to move up and down in the vertical direction with respect to the fixed column member 55. As a result, the distance between the current measurement probe 45 and the voltage measurement probe 46 and the surface electrode 10 a of the solar battery cell 10 can be changed.
太陽電池セル10の出力特性測定時は、上下移動部材54を下降させることにより、電流測定用プローブ45を表面電極10aに押し当てて変形させ、表面電極10a全体に渡って電気的に接触させて導通させると共に、電圧測定用プローブ46を表面電極10aの一部に電気的に接触させて導通させる。これにより、太陽電池セル10の出力を測定することが可能となる。なお、電流測定用プローブ45及び電圧測定用プローブ46から測定機器に接続される配線については、図4では表示が省略されている。
At the time of measuring the output characteristics of the solar battery cell 10, the vertical movement member 54 is lowered to press the current measurement probe 45 against the surface electrode 10a to deform it so that the entire surface electrode 10a is electrically contacted. At the same time, the voltage measurement probe 46 is electrically connected to a part of the surface electrode 10a to conduct. This makes it possible to measure the output of the solar battery cell 10. In addition, about the wiring connected to a measurement apparatus from the probe 45 for current measurement, and the probe 46 for voltage measurements, the display is abbreviate | omitted in FIG.
以上説明したように、本実施形態によれば、電流測定用プローブ45及び電圧測定用プローブ46を表面電極10a上に押し当てて導通させ、しかも電流測定用プローブ45が表面電極10a全体に渡って電気的に接触させているため、多点接触状態と同等の機能を得ることができる。特に本実施形態では、電流測定用プローブ45の一端のみが固定され、他端が軸方向に移動自在となっているため、表面電極10aに接触させた際に、その中央部の浮きや左右方向のずれが軸方向の移動によって吸収され、均一に表面電極10aに接触させることができ、より良好な電気的接続を得ることができる。即ち、特性測定用プローブ装置としての接触抵抗を安定してより低く保つことができ、しかも、太陽電池セル10の受光面上にこれらプローブの影が生ぜず、擬似太陽光の照射がほとんど遮られることがなくなるから、太陽電池セル10の変換効率をほとんど低下させることなく特性測定を行うことができる。
As described above, according to the present embodiment, the current measurement probe 45 and the voltage measurement probe 46 are pressed onto the surface electrode 10a to conduct electricity, and the current measurement probe 45 extends over the entire surface electrode 10a. Since electrical contact is made, it is possible to obtain the same function as the multipoint contact state. In the present embodiment, in particular, only one end of the current measurement probe 45 is fixed, and the other end is movable in the axial direction. Misalignment can be absorbed by axial movement, and can be uniformly brought into contact with the surface electrode 10a, and a better electrical connection can be obtained. That is, the contact resistance as the probe device for characteristic measurement can be stably kept lower, and moreover, the shadow of these probes does not occur on the light receiving surface of the solar battery cell 10, and the irradiation of simulated sunlight is almost blocked. Therefore, the characteristic measurement can be performed without substantially reducing the conversion efficiency of the solar battery cell 10.
なお、上述した実施形態は、電流測定用プローブ45及び電圧測定用プローブ46を取り付けた取り付け枠50が昇降可能であり太陽電池セル10を固定した固定台11が静止した構成としているが、取り付け枠50が静止し、固定台11側が昇降可能とした構成としても良いことは明らかである。
In the embodiment described above, the mounting frame 50 to which the current measurement probe 45 and the voltage measurement probe 46 are attached can be moved up and down, and the fixing base 11 fixing the solar battery cell 10 is stationary. It is obvious that 50 may be stationary and the fixed base 11 may be moved up and down.
3つの表面電極(バスバー)を有する6インチの単結晶シリコン太陽電池セルについて、特許文献1に記載されたばねによって付勢される一列配列の複数の針状プローブを有する従来技術の特性測定装置、両端固定のより線による第1の実施形態の電流測定用プローブを有する特性測定装置、一端のみ固定の単線による第3の実施形態の電流測定用プローブを有する特性測定装置を用いてI-V特性(電流電圧特性)及びP-V特性(電力電圧特性)を実際に測定した。表1はその測定条件及び測定結果を示しており、図6は実際に測定したI-V特性及びP-V特性を示している。ただし、図6において、aは従来技術の特性測定装置によって測定したI-V特性、bは第1の実施形態の特性測定装置によって測定したI-V特性、cは第3の実施形態の特性測定装置によって測定したI-V特性、dは従来技術の特性測定装置によって測定したP-V特性、eは第1の実施形態の特性測定装置によって測定したP-V特性、fは第3の実施形態の特性測定装置によって測定したP-V特性をそれぞれ示している。また、表1における短絡電流密度Jscは短絡電流Iscを太陽電池セルの発電部分の面積で除した値、短絡電流Iscは太陽電池セルの出力端子を短絡したときのその端子間を流れる電流、開放電圧Vocは太陽電池セルの出力端子を開放したときのその端子間電圧、最大出力Pmaxは短絡電流Isc及び開放電圧Vocの間のI-V特性の中で電流×電圧が最大となる太陽電池セルの出力、最大出力動作電流Ipmは太陽電池セルの出力が最大となるときの電流、最大出力動作電圧Vpmは太陽電池セルの出力が最大となるときの電圧、曲線因子FFは最大出力Pmaxを短絡電流Isc及び開放電圧Vocの積で除した値、セル変換効率Effは最大出力Pmaxを太陽電池セルのセル面積に入射する放射束で除した値、放射照度Irrは照射光の放射照度であり、その単位Sunは1Sun=1000W/m2である。
For a 6 inch single crystal silicon solar cell with three surface electrodes (bus bars), the prior art characterization device with a plurality of needle-like probes in a single row array biased by a spring as described in US Pat. A characteristic measurement apparatus having the current measurement probe according to the first embodiment using a fixed strand, and an IV characteristic (a characteristic measurement apparatus using the current measurement probe according to the third embodiment using a single wire fixed only at one end The current-voltage characteristics) and the PV characteristics (power-voltage characteristics) were actually measured. Table 1 shows the measurement conditions and the measurement results, and FIG. 6 shows the actually measured IV characteristics and PV characteristics. However, in FIG. 6, a is an IV characteristic measured by the conventional characteristic measuring apparatus, b is an IV characteristic measured by the characteristic measuring apparatus of the first embodiment, and c is the characteristic of the third embodiment. IV characteristics measured by the measuring device, d: PV characteristics measured by the prior art characteristics measuring device, e: PV characteristics measured by the characteristics measuring device of the first embodiment, f: third The PV characteristic measured by the characteristic measuring device of an embodiment is shown, respectively. In addition, the short circuit current density Jsc in Table 1 is a value obtained by dividing the short circuit current Isc by the area of the power generation portion of the solar cell, the short circuit current Isc is a current flowing between the terminals when the output terminal of the solar cell is shorted, The voltage Voc is the voltage between terminals when the output terminal of the solar cell is opened, and the maximum output Pmax is the solar cell with the maximum current × voltage among the IV characteristics between the short circuit current Isc and the open voltage Voc The maximum output operating current Ipm is the current when the output of the solar cell is maximum, the maximum output operating voltage Vpm is the voltage when the output of the solar cell is maximum, and the curve factor FF is the shorting of the maximum output Pmax A value divided by the product of the current Isc and the open circuit voltage Voc, the cell conversion efficiency Eff is a value obtained by dividing the maximum output Pmax by the radiant flux incident on the cell area of the solar cell, the irradiance Ir Is the irradiance of irradiation light, the unit Sun is 1Sun = 1000W / m 2.
表1及び図6より、従来技術の特性測定装置に比して第1の実施形態の電流測定用プローブを有する特性測定装置はセル変換効率Effが0.827%向上しており、第3の実施形態の電流測定用プローブを有する特性測定装置はセル変換効率Effが1.29%向上している。従って、本発明の電流測定用プローブを有する特性測定装置によれば、接触抵抗を安定してより低く保つことができ、しかも、擬似太陽光の照射がほとんど遮られることがなくなるから、太陽電池セルの変換効率をほとんど低下させることなく特性測定できることが分かる。
From Table 1 and FIG. 6, the cell measurement efficiency Eff is improved by 0.827% in the characteristic measurement device having the current measurement probe of the first embodiment in comparison with the characteristic measurement device of the prior art; In the characteristic measurement device having the current measurement probe of the embodiment, the cell conversion efficiency Eff is improved by 1.29%. Therefore, according to the characteristic measurement device having the current measurement probe of the present invention, the contact resistance can be stably kept lower, and moreover, the irradiation of the pseudo-sunlight is hardly blocked, so that the solar battery cell It can be seen that the characteristic measurement can be performed without substantially reducing the conversion efficiency of.
以上述べた実施形態は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。
The embodiments described above are all illustrative of the present invention and not limiting, and the present invention can be practiced in various other variations and modifications. Accordingly, the scope of the present invention is to be defined only by the appended claims and their equivalents.
本発明は、太陽電池セルに光照射した状態でその集電電極から電気信号を取り出す特性測定用プローブを備えた、例えばソーラシミュレータ等の測定機器に適用可能である。
INDUSTRIAL APPLICABILITY The present invention is applicable to a measuring device such as a solar simulator provided with a characteristic measurement probe for extracting an electric signal from its current collecting electrode in a state where light is irradiated to a solar battery cell.
10 太陽電池セル
10a 表面電極
11 固定台
12 支持部材
13 裏面電極用電流端子
14 裏面電極用電圧端子
15、45 電流測定用プローブ
16、46 電圧測定用プローブ
17、47、48、49 固定支持部
18、51、52、53 連結部材
19、50 取り付け枠
19a 溝
20 ボルト
21、54 上下移動部材
22、55 固定柱部材
35 共用プローブ DESCRIPTION OFSYMBOLS 10 solar battery cell 10a front surface electrode 11 fixed base 12 support member 13 back surface current terminal 14 back surface voltage terminal 15, 45 current measurement probe 16, 46 voltage measurement probe 17, 47, 48, 49 fixed support portion 18 , 51, 52, 53 Connecting member 19, 50 Mounting frame 19a Groove 20 bolt 21, 54 Vertically moving member 22, 55 Fixed column member 35 Common probe
10a 表面電極
11 固定台
12 支持部材
13 裏面電極用電流端子
14 裏面電極用電圧端子
15、45 電流測定用プローブ
16、46 電圧測定用プローブ
17、47、48、49 固定支持部
18、51、52、53 連結部材
19、50 取り付け枠
19a 溝
20 ボルト
21、54 上下移動部材
22、55 固定柱部材
35 共用プローブ DESCRIPTION OF
Claims (10)
- 導電性金属材料で形成された弾力性を有するアーチ形状の第1のワイヤ接触子と、該第1のワイヤ接触子の少なくとも1端を固定する固定支持部とを備えており、前記第1のワイヤ接触子は、測定すべき太陽電池セルの表面電極に沿って伸長すると共に該太陽電池セルの受光面に対向しており、該表面電極に押し当てられた際に変形し該表面電極に沿って導通するように構成されていることを特徴とする太陽電池セルの特性測定用プローブ装置。 A first arched wire contact made of a conductive metal material and having a resilient shape, and a fixed support for fixing at least one end of the first wire contact, The wire contact extends along the surface electrode of the solar cell to be measured and is opposite to the light receiving surface of the solar cell, and deforms along the surface electrode when pressed against the surface electrode. A probe device for measuring the characteristics of a solar battery cell, which is configured to conduct electricity.
- 前記固定支持部は、前記第1のワイヤ接触子の両端を固定するように構成されていることを特徴とする請求項1に記載の太陽電池セルの特性測定用プローブ装置。 The probe apparatus for measuring the characteristics of a solar cell according to claim 1, wherein the fixed support is configured to fix both ends of the first wire contactor.
- 前記固定支持部は、前記第1のワイヤ接触子の一端のみを固定するように構成されており、該第1のワイヤ接触子の他端はその軸方向に移動自在に構成されていることを特徴とする請求項1に記載の太陽電池セルの特性測定用プローブ装置。 The fixed support portion is configured to fix only one end of the first wire contact, and the other end of the first wire contact is configured to be movable in the axial direction. The probe apparatus for characteristic measurement of the photovoltaic cell according to claim 1 characterized by the above-mentioned.
- 前記太陽電池セルと前記固定支持部とは、両者の間隔を変化させるために相対的に移動可能に構成されていることを特徴とする請求項1に記載の太陽電池セルの特性測定用プローブ装置。 The probe device for measuring the characteristics of a solar cell according to claim 1, wherein the solar cell and the fixed support are configured to be movable relative to each other in order to change the distance between the two. .
- 前記第1のワイヤ接触子は電流検出用端子であり、前記表面電極の両端部に当接するように前記固定支持部に固定された電圧検出用端子である第2のワイヤ接触子をさらに備えていることを特徴とする請求項1に記載の太陽電池セルの特性測定用プローブ装置。 The first wire contactor is a current detection terminal, and further includes a second wire contactor that is a voltage detection terminal fixed to the fixed support portion so as to abut on both ends of the surface electrode. The probe device for measuring the characteristics of the solar battery cell according to claim 1.
- 前記第1のワイヤ接触子は電流検出及び電圧検出の共用端子であることを特徴とする請求項1に記載の太陽電池セルの特性測定用プローブ装置。 The probe device for measuring the characteristics of a solar cell according to claim 1, wherein the first wire contact is a common terminal for current detection and voltage detection.
- 前記第1のワイヤ接触子は、前記表面電極の幅より小さい幅を有していることを特徴とする請求項1に記載の太陽電池セルの特性測定用プローブ装置。 The probe device for measuring the characteristics of a solar cell according to claim 1, wherein the first wire contactor has a width smaller than the width of the surface electrode.
- 前記第1のワイヤ接触子は、単一の導電線、互いに撚り合わされた複数の導電線、又は周囲に導電線を巻回した鋼線から構成されていることを特徴とする請求項1に記載の太陽電池セルの特性測定用プローブ装置。 The said 1st wire contactor is comprised from the steel wire which wound the conductive wire around the single conductive wire, the several conductive wire twisted together mutually, or, It is characterized by the above-mentioned. Probe device for measuring the characteristics of solar cells.
- 前記導電線は、隣青銅、青銅、黄銅、白銅、洋白銅又は銅の線材から構成されていることを特徴とする請求項8に記載の太陽電池セルの特性測定用プローブ装置。 The probe apparatus for measuring the characteristics of a solar cell according to claim 8, wherein the conductive wire is made of a wire material of next bronze, bronze, brass, white copper, nickel white or copper.
- 前記導電線は、前記線材表面に金めっき又はニッケルめっきを施した線であることを特徴とする請求項9に記載の太陽電池セルの特性測定用プローブ装置。 10. The probe apparatus for measuring the characteristics of a solar cell according to claim 9, wherein the conductive wire is a wire obtained by performing gold plating or nickel plating on the surface of the wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013556348A JP5722466B2 (en) | 2012-02-03 | 2013-01-24 | Probe device for measuring characteristics of solar cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012021880 | 2012-02-03 | ||
JP2012-021880 | 2012-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013115046A1 true WO2013115046A1 (en) | 2013-08-08 |
Family
ID=48905088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/051400 WO2013115046A1 (en) | 2012-02-03 | 2013-01-24 | Probe for measuring characteristics of solar cell |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5722466B2 (en) |
TW (1) | TW201339582A (en) |
WO (1) | WO2013115046A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014215132A (en) * | 2013-04-24 | 2014-11-17 | 共進電機株式会社 | Bar type probe and measuring device for solar battery cell |
JP2015524647A (en) * | 2012-07-20 | 2015-08-24 | パサン エス アー | Test equipment |
JP2016086573A (en) * | 2014-10-28 | 2016-05-19 | 日置電機株式会社 | Property measurement method for solar panel, and device therefor |
CN108206671A (en) * | 2018-02-10 | 2018-06-26 | 泰州隆基乐叶光伏科技有限公司 | A kind of MBB solar cell tests platform |
CN111106798A (en) * | 2020-03-02 | 2020-05-05 | 陕西众森电能科技有限公司 | Solar cell module electrical property test lead device |
FR3097385A1 (en) * | 2019-06-17 | 2020-12-18 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | DEVICE AND METHOD FOR LOCAL ELECTRICAL CHARACTERIZATION OF PHOTOVOLTAIC CELLS |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN216870763U (en) * | 2022-01-25 | 2022-07-01 | 宁德时代新能源科技股份有限公司 | Sampling device, battery and consumer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006118983A (en) * | 2004-10-21 | 2006-05-11 | Sharp Corp | Measurement fixture for solar battery cell |
JP2008071989A (en) * | 2006-09-15 | 2008-03-27 | Shin Etsu Handotai Co Ltd | Inspecting device for solar battery electrode, and inspecting method |
-
2013
- 2013-01-24 WO PCT/JP2013/051400 patent/WO2013115046A1/en active Application Filing
- 2013-01-24 JP JP2013556348A patent/JP5722466B2/en active Active
- 2013-01-29 TW TW102103301A patent/TW201339582A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006118983A (en) * | 2004-10-21 | 2006-05-11 | Sharp Corp | Measurement fixture for solar battery cell |
JP2008071989A (en) * | 2006-09-15 | 2008-03-27 | Shin Etsu Handotai Co Ltd | Inspecting device for solar battery electrode, and inspecting method |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015524647A (en) * | 2012-07-20 | 2015-08-24 | パサン エス アー | Test equipment |
US10181817B2 (en) | 2012-07-20 | 2019-01-15 | Pasan Sa | Testing device |
JP2014215132A (en) * | 2013-04-24 | 2014-11-17 | 共進電機株式会社 | Bar type probe and measuring device for solar battery cell |
JP2016086573A (en) * | 2014-10-28 | 2016-05-19 | 日置電機株式会社 | Property measurement method for solar panel, and device therefor |
CN108206671A (en) * | 2018-02-10 | 2018-06-26 | 泰州隆基乐叶光伏科技有限公司 | A kind of MBB solar cell tests platform |
CN108206671B (en) * | 2018-02-10 | 2024-04-09 | 泰州隆基乐叶光伏科技有限公司 | MBB solar cell testboard |
FR3097385A1 (en) * | 2019-06-17 | 2020-12-18 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | DEVICE AND METHOD FOR LOCAL ELECTRICAL CHARACTERIZATION OF PHOTOVOLTAIC CELLS |
CN111106798A (en) * | 2020-03-02 | 2020-05-05 | 陕西众森电能科技有限公司 | Solar cell module electrical property test lead device |
Also Published As
Publication number | Publication date |
---|---|
TW201339582A (en) | 2013-10-01 |
JP5722466B2 (en) | 2015-05-20 |
JPWO2013115046A1 (en) | 2015-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013115046A1 (en) | Probe for measuring characteristics of solar cell | |
JP4866954B2 (en) | Sample table for solar cell measurement | |
US10181817B2 (en) | Testing device | |
KR20140080493A (en) | Measurement jig for solar battery and method for measuring output of solar battery cell | |
JP2006118983A (en) | Measurement fixture for solar battery cell | |
CN107911080B (en) | Testing device for electrical performance of solar cell | |
KR20140019804A (en) | Systems and methods for making atleast a detachable electrical contact with atleast a photovoltaic device | |
CN104124919A (en) | Rodlike probe and measuring device used for solar cell unit | |
JP6204152B2 (en) | Solar cell output measuring jig and solar cell output measuring method | |
CN102540037A (en) | Tester for solar cell | |
CN207782755U (en) | A kind of MBB solar cell tests platform | |
KR200455080Y1 (en) | Probe unit for solar cell inspection | |
CN114696744A (en) | Solar cell test equipment | |
CN201945665U (en) | Tester for solar cell | |
JP2012256734A (en) | Selection method, solar cell module manufacturing method, and evaluation device | |
CN217213055U (en) | Solar cell testing device | |
CN210270100U (en) | Flash and EL test auxiliary tool for photovoltaic module | |
CN206402192U (en) | Crystal silicon solar batteries built-in testing device | |
CN208656721U (en) | Solar cell testing device | |
CN108206671B (en) | MBB solar cell testboard | |
CN206442353U (en) | Crystal silicon solar batteries built-in testing device | |
CN221728298U (en) | Solar cell testing device | |
CN216873162U (en) | Kelvin test tool for power test | |
CN216016827U (en) | Electric voltage component testing tool for card inner frame | |
CN208173553U (en) | A kind of test structure of solar cell piece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13743921 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013556348 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13743921 Country of ref document: EP Kind code of ref document: A1 |