WO2013114977A1 - Linear light source device, surface light-emitting device, and liquid crystal display device - Google Patents

Linear light source device, surface light-emitting device, and liquid crystal display device Download PDF

Info

Publication number
WO2013114977A1
WO2013114977A1 PCT/JP2013/050962 JP2013050962W WO2013114977A1 WO 2013114977 A1 WO2013114977 A1 WO 2013114977A1 JP 2013050962 W JP2013050962 W JP 2013050962W WO 2013114977 A1 WO2013114977 A1 WO 2013114977A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
source device
light source
emitting element
Prior art date
Application number
PCT/JP2013/050962
Other languages
French (fr)
Japanese (ja)
Inventor
小野 高志
三好 隆一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013114977A1 publication Critical patent/WO2013114977A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to a linear light source device, a surface light emitting device, and a liquid crystal display device.
  • the present invention relates to a linear light source device, a surface light emitting device, and a liquid crystal display device that use a plurality of light emitting elements and are used as a backlight of a liquid crystal display panel.
  • FIG. 19A is a perspective view of a conventional light source device 210
  • FIG. 19B is an exploded view showing a surface light emitting device 220 including the conventional light source device 210
  • FIG. 19C is a surface light emitting device.
  • FIG. 220 is a cross-sectional view in the width direction of a conventional light source device 210 at 220.
  • the light guide plate 203 protruding from one end of the light source 202, the light source device 210 provided facing the side surface of the light guide plate 203, the end of the light emitting surface of the light guide plate 203, and the light source device 210 from above. It is comprised from the 2nd reflective sheet (upper reflective sheet) 204 integrated so that it might cover.
  • the light source device 210 is provided in parallel with an elongated flat plate-like substrate 205 partially disposed on the lower surface of the protruding end of the light guide plate 203, and on the upper surface of the substrate 205 so as to be close to the side surface of the light guide plate 203.
  • a horizontally long rectangular parallelepiped cup 200, a light emitting element (not shown) housed in the cup 200, and a transparent light-transmitting resin sealing portion 201 filled in the cup 200 are provided.
  • a phosphor is mixed in the resin sealing portion 201.
  • the conventional light source device 210 as shown in FIG. 19 has a problem that it is difficult to reduce the thickness because the thickness of the cup 200 cannot be suppressed.
  • FIG. 20A is a perspective view of a linear light source device 310 (light source device) according to Patent Document 1
  • FIG. 20B is a cross-sectional view taken along the longitudinal direction of the linear light source device 310 according to Patent Document 1.
  • (c) is an exploded view of the surface light-emitting device 320 provided with the linear light source device 310 concerning patent document 1
  • (d) is the line concerning patent document 1 in the surface light-emitting device 320.
  • 6 is a cross-sectional view taken along the width direction of the light source device 310.
  • a linear light source device 310 includes an elongated flat plate-like substrate 305, a plurality of light emitting elements 306 on the substrate 305, and a plurality of light emitting elements 306. And a light-transmitting resin sealing portion 301.
  • the plurality of light emitting elements 306 are arranged at intervals in the longitudinal direction of the substrate 305, and the reflector 300 is disposed on both sides of each light emitting element 306 and alternately with each light emitting element 306. Has been.
  • the surface light emitting device 320 includes a linear light source device 310 provided along the side surface of the light guide plate 303, a first reflection sheet 302 having a rectangular shape in plan view, and a second reflection sheet 304 having an elongated strip shape. ing.
  • the linear light source device 310 according to Patent Document 1 has a problem that uneven luminance occurs when light is emitted with high luminance.
  • FIG. 21A is a perspective view of the linear light source device 410 according to Patent Document 2
  • FIG. 21B is a cross-sectional view taken along the longitudinal direction of the linear light source device 410 according to Patent Document 2.
  • (C) is an exploded view of a surface light emitting device 420 including a linear light source device 410 according to Patent Document 2.
  • a plurality of light emitting elements 406 are arranged at intervals from each other along the longitudinal direction of an elongated flat plate-like substrate 405.
  • a resin sealing layer 409 is formed so as to cover the light emitting element 406.
  • the resin sealing layer 409 includes a plane in which a first recess 407 existing between adjacent light emitting elements 406 and a second recess 408 formed immediately above the light emitting elements 406 are substantially parallel to the upper surface of the substrate 405. It is connected via the part 409a.
  • the first recess 407 and the second recess 408 have a V-shaped cross section along the longitudinal direction of the substrate 405.
  • a resin sealing portion 401 mixed with a phosphor is provided in the vicinity of the light emitting element 406. In this way, even when a desired color is emitted with high luminance, a linear light source device with less luminance unevenness, bright lines, and chromaticity unevenness can be provided.
  • the surface light-emitting device according to Patent Document 2 includes a linear light source device 410 provided along the side surface of the light guide plate 403 and a first rectangular shape in plan view.
  • the reflecting sheet 402 and the second reflecting sheet 404 in the form of an elongated strip are configured.
  • the liquid crystal display panel is installed on the upper surface (light emitting surface) side of the light guide plate 403.
  • the linear light source device according to Patent Documents 1 and 2 has an advantage that it can be made thinner because the cup 200 does not exist.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2004-235139 (published on August 19, 2004)” Japanese Patent Publication “JP 2009-021221 (published Jan. 29, 2009)”
  • the surface on which the reflection sheets 402 and 404 are provided is perpendicular to the upper surface of the substrate 405 as shown in FIG. For this reason, when the thickness of the linear light source device 410 is further reduced, the length in the width direction of the substrate 405 (the interval between the reflection sheets 402 and 404) becomes narrower, and the light emitting element 406, the first reflection sheet 402, and the first The number of light reflections between the two reflection sheets 404 increases.
  • the side surface (lateral surface) of the resin sealing layer 409 is generally formed by using dicing or the like, it has a rough surface shape having small irregularities on the surface. For this reason, when light from the light emitting element 406 is emitted from the resin sealing layer 409, reflected by the reflection sheets 402 and 404, and reentering the resin sealing layer 409, the side surface of the resin sealing layer 409 The unevenness causes scattering and absorption of the light.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a linear light source device and the like that can efficiently extract light even when the number of reflections of light increases. .
  • a linear light source device is a linear light source device that irradiates linear light from a plurality of light emitting elements arranged in a longitudinal direction on an elongated substrate, and in order to achieve the above object, A reflective member that reflects light from the light emitting element is provided at the end in the width direction of the upper surface of the substrate so as to face the light emitting element. On the substrate, the light emitting element, and the reflective member, A light-transmitting sealing member for sealing the light-emitting element is provided.
  • the light emitted from the light emitting element in the width direction of the substrate is first reflected by the reflecting member and then emitted from the sealing member. Therefore, the number of times that the light is emitted from the sealing member attached to the substrate, reflected by the reflection sheet, and reentered the sealing member can be reduced, and the light is scattered by the sealing member. And can reduce absorption. As a result, by further reducing the thickness of the linear light source device, the scattering and absorption of the light can be suppressed and the light can be extracted efficiently even if the number of times of light reflection increases.
  • the linear light source device is attached to the substrate because light emitted from the light emitting element in the width direction of the substrate is first reflected by the reflecting member and then emitted from the sealing member.
  • the number of times that the sealing member is emitted, reflected by the reflection sheet, and re-entered the sealing member can be reduced, and the scattering and absorption of light by the sealing member can be reduced. Play.
  • the scattering and absorption of the light can be suppressed and the light can be extracted efficiently even if the number of light reflections increases. Play.
  • FIG. 1 It is a perspective view of the linear light source device which is one Embodiment of this invention. It is sectional drawing which carried out the cross section of the said linear light source device along the longitudinal direction. It is a top view of the said linear light source device. It is sectional drawing which carried out the cross section of the said linear light source device along the width direction. It is a bottom view of the said linear light source device. It is the perspective view (upper figure) and top view (lower figure) of the light emitting element of the one form which is the light emitting element in the said linear light source device, and the edge part inclined, (a) is a longitudinal direction side and width direction (A) is a figure which respectively shows the case where the longitudinal direction side is inclined, when the side is inclined.
  • FIG. 1 It is an exploded view of a surface light emitting device using the linear light source device. It is sectional drawing of the width direction of the said surface emitting device. It is a perspective view of the printed board material which formed the reflecting plate in the manufacturing process of the said linear light source device. In the said manufacturing process, it is a perspective view of the printed board material in which the resin sealing layer was formed.
  • (A) is a schematic diagram which shows the locus
  • (B) is a schematic diagram showing a locus of light traveling in the longitudinal direction from the light emitting element in the linear light source device.
  • FIG. 5B is a schematic diagram showing a trajectory of light emitted upward from the light emitting element, and (b) is a top view from the light emitting element when the inclination angle is steeper than the critical angle of total reflection. It is a schematic diagram which shows the locus
  • the linear light source device it is a schematic diagram showing a trajectory of light traveling from the second concave portion to the longitudinal direction side
  • (a) is a schematic diagram showing a trajectory near the first concave portion
  • (b) It is a schematic diagram which shows the locus
  • (c) is a schematic diagram which shows the case where the light with a small inclination which advances to a longitudinal direction side does not totally reflect in a 1st recessed part.
  • D) is a schematic diagram showing a case where light having a small inclination traveling in the longitudinal direction side is totally reflected by the first recess.
  • FIG. 4D is a cross-sectional view of the surface light emitting device taken along the width direction of the linear light source device.
  • A) is the perspective view of the conventional linear light source device,
  • (b) is sectional drawing which followed the longitudinal direction of this linear light source device,
  • (c) is the said linear light source device.
  • FIG. In the said conventional linear light source device it is a schematic diagram which shows the locus
  • FIG. 1 is a perspective view of a linear light source device 11 according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the linear light source device 11 taken along the longitudinal direction.
  • FIG. 3 is a plan view of the linear light source device 11.
  • FIG. 4 is a cross-sectional view of the linear light source device 11 taken along the width direction.
  • FIG. 5 is a bottom view of the linear light source device 11.
  • the linear light source device 11 irradiates linear light.
  • the linear light source device 11 has an elongated flat plate (strip shape) substrate 13 as a wiring substrate, a plurality of light emitting elements 12, and the like.
  • a light-transmitting resin sealing portion (fluorescent portion) 14 (which may contain a phosphor), and a light-transmitting resin sealing layer (sealing member) 15 (preferably not including a phosphor);
  • the reflecting plate (reflecting member) 16 is mirror-finished, and includes a first reflecting sheet 17 and a second reflecting sheet 18 as reflecting members.
  • the linear light source device 11 is a long and thin plate-like substrate 13 and a plurality of light emitting elements 12 that are installed on the upper surface of the substrate 13 and formed in a row at regular intervals in the longitudinal direction of the substrate 13;
  • a reflection plate 16 formed in a layer shape so as to surround each of the plurality of light emitting elements 12 on the upper surface of the substrate 13, and a region in which the light emitting elements 12 are surrounded by the reflection plate 16 so as to cover the light emitting elements 12.
  • Resin sealing portion 14 filled with a conductive resin, a resin sealing layer 15 made of a translucent resin formed so as to cover the reflecting plate 16 and the resin sealing portion 14, and a substrate in the resin sealing layer 15 And reflection sheets 17 and 18 formed so as to cover both side surfaces of 13 width directions (hereinafter simply referred to as “width direction”).
  • the substrate 13 has an elongated flat plate shape (strip shape).
  • the substrate 13 has anode external connection terminals 51a and 51b for supplying electricity to the light emitting element 12, and cathode external connection terminals 52a and 52b. is doing. That is, the external connection terminals 51 a and 52 a are formed on the upper surface of the substrate 13, and the external connection terminals 51 b and 52 b are formed on the lower surface of the substrate 13.
  • the external connection terminals 51a and 52a on the upper surface of the substrate 13 and the external connection terminals 51b and 52b on the lower surface are respectively electrically connected via through holes (not shown).
  • an inexpensive linear light source device can be provided without using a multilayer substrate. Further, by providing the external connection terminals 51a, 52a, 51b, and 52b, efficient heat dissipation can be performed. Further, the external connection terminals are provided at both ends of the substrate 13 in the longitudinal direction, so that heat is uniformly dissipated from the longitudinal ends of the substrate 13, and the external connection terminals are provided only on one side of the substrate 13 in the longitudinal direction. The heat dissipation efficiency is higher than that of the case.
  • the plurality of light emitting elements 12 are arranged in parallel on the upper surface of the substrate 13 at intervals in the longitudinal direction of the substrate 13. That is, on the upper surface of the substrate 13, a plurality of light emitting elements 12 are arranged in a line at a predetermined interval along the longitudinal direction of the elongated flat plate-shaped (strip-shaped) substrate 13.
  • the light emitting element 12 is electrically connected to the external connection terminals 51a and 51b for the anode and the external connection terminals 52a and 52b for the cathode. Specifically, on the longitudinal side in the vicinity of the light emitting element 12, anode external connection terminals 51 a and 51 b or cathode external connection terminals 52 a and 52 b are electrically connected to positive electrode terminals (not shown). ) And negative electrode terminals (not shown).
  • the positive electrode terminal, the negative electrode terminal, and the light emitting element 12 are electrically connected.
  • the electrical connection of the light emitting element 12 may be configured such that the positive electrode terminal and the negative electrode terminal are bonded to the light emitting element 12 by wires according to the wiring pattern of the substrate 13.
  • the light emitting element 12 is made of an LED or the like. Examples of the light emitting element 12 include those using a known GaN compound semiconductor as a blue LED.
  • the light emitting element 12 is formed by laminating an n-type layer and a p-type layer on a transparent sapphire substrate, and an n-type electrode or a p-type electrode is formed on the upper surface of each of the n-type layer and the p-type layer. May be.
  • Each light emitting element 12 is covered with a translucent resin sealing portion 14.
  • the resin sealing part 14 what consists of an epoxy resin, a silicone resin, etc. which have high translucency may be used, for example.
  • a known phosphor preferably a granular phosphor may be mixed or dispersed in the resin constituting the resin sealing portion 14.
  • the resin sealing portion 14 is formed so as to cover the light emitting element 12 on the substrate 13. That is, the resin sealing portion 14 is formed in the vicinity of the light emitting element 12.
  • the resin sealing portion 14 has a form in which the opening portion of the reflection plate 16 provided with the light emitting element 12 is filled.
  • the periphery of the light emitting element 12 is surrounded by the reflecting plate 16, and the reflecting plate 16 spreads toward the emission direction of each light emitting element 12. It is inclined.
  • the resin sealing portion 14 may be filled in a concave portion that is formed in a shape of a truncated cone, a cylinder, a prism, a hemisphere, etc. with the light-emitting element 12 as the center.
  • the resin sealing layer 15 is formed so as to cover the reflection plate 16 and the resin sealing portion 14. That is, the resin sealing portion 14 that covers each light emitting element 12 and the resin sealing layer 15 that covers each resin sealing portion 14 constitute a region made of resin.
  • the resin sealing layer 15 is made of a resin having high translucency.
  • the basic resin material constituting the resin sealing layer 15 may be the same as the basic resin material constituting the resin sealing portion 14.
  • Examples of the highly translucent resin constituting the resin sealing layer 15 include translucent epoxy resins and silicone resins.
  • the resin sealing layer 15 includes a center of the light emitting element 12 and has a substantially plane symmetrical shape with respect to a plane whose normal direction is the longitudinal direction of the substrate 13.
  • the resin sealing layer 15 is formed with a first recess 20 that is a groove having a V-shaped cross section.
  • the first recess 20 is formed linearly in the width direction.
  • the resin sealing layer 15 has a plurality of substantially isosceles trapezoids continuously separated in the longitudinal direction by being partitioned by the first recess 20 in the cross section in the thickness (thickness) direction ( They are arranged in parallel to the upper and lower bases of a substantially isosceles trapezoid.
  • the first deepest portion 20 a which is the deepest linear valley, has a uniform depth with respect to the surface of the resin sealing layer 15.
  • the first deepest portion 20 a is formed in a V-shaped groove parallel to the width direction of the substrate 13.
  • the first deepest portion 20a is near the reflector 16. That is, the first deepest portion 20 a has a depth of 4/5 to 2/3 of the thickness of the resin sealing layer 15.
  • the resin sealing layer 15 is a groove having a V-shaped cross section at the center of each isosceles trapezoidal shape (substantially directly above each light emitting element 12 (upward side)) in the cross section along the longitudinal direction.
  • a second recess 21 is formed.
  • the second recess 21 is formed linearly in the width direction.
  • the second deepest portion 21 a which is the deepest linear valley, has a uniform depth. That is, the first deepest part 20a and the second deepest part 21a are parallel.
  • the second deepest portion 21a is shallower than the first deepest portion 20a and is in the vicinity of the middle of the thickness of the resin sealing layer 15. That is, the second deepest portion 21a is formed with a depth of 1/2 to 2/3 of the thickness of the resin sealing layer 15. Moreover, it is preferable that the inclination angle of the side surface of the groove having the V-shaped cross section of the second recess is equal to or greater than the critical angle of total reflection of light traveling in the thickness direction of the substrate.
  • the first reflection sheet 17 is affixed to the end face on one side in the width direction of the substrate 13, the reflection plate 16, and the resin sealing layer 15.
  • the 2nd reflection sheet 18 is affixed on the end surface of the other side of the width direction of the board
  • the reflector 16 is formed continuously in the longitudinal direction of the substrate 13 so as to surround each of the plurality of light emitting elements 12. That is, it is formed in the longitudinal direction of the light emitting element 12 and the width direction of the light emitting element 12.
  • the reflecting plate 16 only needs to have a reflective surface, and is formed of a highly reflective specular reflector, diffuse reflector, or a combination of both.
  • the wavelength range of the light emitted from the light emitting element 12 and the wavelength range of the light emitted from the phosphor excited by the light from the light emitting element 12 are highly reflective. preferable.
  • the thickness of the reflector 16 (distance A in FIG. 4) is preferably 1/2 to 1/3 of the thickness of the resin sealing layer 15 (distance B in FIG. 4). Since the linear light source device 11 is obtained by cutting a substantially square printed board 40 (see FIG. 9) into a long and narrow square bar shape by dicing or the like, small irregularities are formed on the surface of the side surface of the resin sealing layer 15 and rough. It is faced.
  • the 1st reflective sheet 17 and the 2nd reflective sheet 18 are adhere
  • a mirror-finished reflecting plate 16 is provided, and the resin sealing layer 15 and the first reflecting sheet 18 are reduced by reducing the range in which the resin sealing layer 15 contacts the first reflecting sheet 17 and the second reflecting sheet 18. 17, the absorption of light generated between the second reflection sheets 18 can be suppressed, and improvement in light extraction efficiency can be expected.
  • the thickness of the reflection plate 16 is in the range of 1/2 to 1/3 with respect to the thickness of the resin sealing layer 15 (distance B). .
  • the reflective plate 16 is arranged at the end in the width direction of the upper surface of the substrate 13 so as to face the light emitting device 12 in order to reduce multiple scattering among the light emitting device 12, the first reflective sheet 17, and the second reflective sheet 18.
  • the reflector 16 may be disposed between the adjacent light emitting elements 12 in order to improve the close contact with the substrate 13.
  • FIGS. 6A and 6B are a perspective view (upper view) and a plan view (lower view), respectively, showing a light emitting element whose end is inclined.
  • the side surfaces in the longitudinal direction and the width direction are inclined with respect to the thickness direction of the substrate at the end (upper part) on the light emitting side of the light emitting element. It has a shape. With this shape, the light emitted from the light emitting element can be diffused into light that is directed upward, light that is inclined in the longitudinal direction, and light that is inclined in the width direction. That is, light can be diffused in advance by the light emitting element itself as compared with a light emitting element having a general shape.
  • the light emitting element shown in FIG. 6B has a shape in which the side surface in the longitudinal direction is inclined with respect to the thickness direction of the substrate at the end of the light emitting element on the light emitting side. With this shape, light can be diffused into light traveling upward and light inclined toward the longitudinal direction. That is, since the light inclined in the width direction of the substrate 13 can be suppressed as compared with the light emitting element of FIG. 6A, the light extraction efficiency of the linear light source device 11 can be further improved.
  • the inclination angle in the light emitting element shown in FIG. 6 (a) or (b) may be appropriately adjusted to an angle at which high light extraction efficiency can be obtained.
  • FIG. 7 is an exploded view of the surface light-emitting device 61 manufactured using the linear light source device 11 according to the present embodiment.
  • FIG. 8 is a cross-sectional view of the surface light emitting device 61 in the width direction.
  • the surface light emitting device 61 is provided along the first reflective sheet 17 having a rectangular shape in plan view, the flat light guide plate 62, and one side surface of the light guide plate 62.
  • the linear light source device 11 and an elongated strip-shaped second reflection sheet 18 are provided.
  • the first reflection sheet 17 is made of, for example, a mirror-like tape or a sheet-like member having a high light reflectance such as white. A region from the light guide plate 62 to the substrate 13 is covered by the first reflection sheet 17. For this reason, the light traveling from the linear light source device 11 toward the first reflection sheet 17 is reflected by the first reflection sheet 17 and returned to the light guide plate 62.
  • the light guide plate 62 is, for example, a transparent plate made of acrylic resin, polycarbonate resin, or the like and having a thickness of 0.2 to 1.0 mm.
  • the surface light-emitting device 61 can be a part of a liquid crystal display device. In that case, a liquid crystal display panel (not shown) that modulates light from the surface light emitting device 61 may be disposed on the side of the light guide plate 62 where the second reflective sheet 18 is formed.
  • the width in the width direction of the substrate 13 in the linear light source device 11 is larger than the thickness of the light guide plate 62, the shape of the light intake port of the light guide plate 62 is deformed toward the end surface, and the linear light source device is obtained.
  • 11 in the width direction of the substrate 13 may be made to coincide with the thickness of the end face of the light guide plate 62.
  • the linear light source device 11 is installed so that the longitudinal axis of the linear light source device 11 faces the side surface 63 of the light guide plate in parallel.
  • the shape of the side surface 63 facing the light emitting side surface (the surface of the resin sealing layer 15) of the linear light source device 11 is an uneven shape that matches the shape of the resin of the resin sealing layer 15. Also good. In this case, the light coupling efficiency between the light source unit and the light guide plate can be improved.
  • the second reflective sheet 18 may be made of the same material as the first reflective sheet 17. Due to the second reflection sheet 18, on one side surface of the linear light source device 11 (surface on which the first reflection sheet 17 is not formed), an area from the end of the light guide plate 62 to the substrate 13, that is, in the light guide plate 62. It is formed so that the end on the light emitting element 12 side is covered.
  • the first reflection sheet 17 and the second reflection sheet 18 By the first reflection sheet 17 and the second reflection sheet 18, the light of each light emitting element 12 emitted from both side surfaces (width direction) of the resin sealing layer 15 is transmitted between the light guide plate 62 and the linear light source device 11. Therefore, the light from each light emitting element 12 can be incident on the light guide plate 62 without being left behind.
  • FIG. 9 is a perspective view of the printed board 40 on which the reflector 16 according to the first embodiment is formed.
  • FIG. 10 is a perspective view of the printed board 40 on which the resin sealing layer 15 is further formed.
  • a wiring pattern is formed on a substantially square printed board 40 (process for forming a wiring pattern).
  • the printed board 40 include white glass BT (bismaleimide triazine) copper-clad laminate.
  • the reflector 16 is formed on the printed board 40 (step of forming the reflector).
  • the reflecting plate 16 is inclined so that the opening area becomes larger toward the emission direction (upward direction) of each light emitting element, and is made of a resin such as liquid crystal polymer (LCP) or polyphthalamide (PPA). And is formed by pasting the printed board 40 with an adhesive, or by directly molding the printed board 40.
  • LCP liquid crystal polymer
  • PPA polyphthalamide
  • the light emitting element 12 (not shown) is die-bonded to the mounting surface of the printed board 40 from the opening of the reflecting plate 16, wire-bonded, and electrically connected (step of installing the light emitting element).
  • a translucent resin containing a phosphor is applied (filled) to the opening of the reflecting plate 16 using a resin coating device (not shown) to form the resin sealing portion 14.
  • the translucent resin sealing portion 14 is formed, for example, by applying (filling) a resin in which a phosphor is dispersed in a silicone resin from the upper side of the light emitting element 12 and curing it (resin) Step of forming a sealing portion).
  • the translucent resin sealing layer 15 is formed in a region surrounded by the reflecting plate 16, the translucent resin sealing portion 14 including a phosphor, and a molding die. For example, it is formed by injecting and curing a silicone resin (step of forming a resin sealing layer).
  • the printed board 40 is cut into a rectangular bar shape by dicing to form an elongated strip-shaped substrate 13 (dicing step).
  • the light guide plate 62 is mounted, and the first reflection as a reflection member is provided on each of the substrate 13, the reflection plate 16, both sides of the resin sealing layer 15 in the width direction, and both sides of the light guide plate 62.
  • the sheet 17 and the second reflection sheet 18 By mounting the sheet 17 and the second reflection sheet 18, a surface light emitting device including the linear light source device 11 according to the present embodiment can be manufactured.
  • FIG. 11A is a schematic diagram showing a locus of light emitted from the light emitting element 12 to the width direction side in the linear light source device 11 according to the present embodiment.
  • FIG. 11B is a schematic diagram showing a trajectory of light traveling in the longitudinal direction from the light emitting element 12 in the linear light source device 11.
  • the mirror-finished reflector 16 is formed so as to surround the light emitting element 12.
  • the light emitted from the light emitting element 12 in the width direction is first reflected by the reflecting plate 16 and then emitted from the resin sealing layer 15. Therefore, it is possible to reduce the number of times that the light exits from the resin sealing layer 15, is reflected by the reflection sheets 17 and 18, and reenters the resin sealing layer 15.
  • the scattering and absorption of the light which arise by the unevenness
  • the scattering and absorption of the light can be suppressed and light can be extracted efficiently even if the number of times of light reflection increases.
  • the reflecting plate 16 is inclined so as to become wider toward the light emitting direction of the light emitting element 12. Therefore, multiple scattering can be reduced in the first reflection sheet 17 and the second reflection sheet 18. Furthermore, as shown in FIG. 11 (a), the light emitted from the light emitting element 12 with a large inclination in the width direction and the longitudinal direction can be inclined upward, and the light can be emitted more efficiently. Can do.
  • light emitted upward from the light emitting element 12 or the like travels efficiently in the longitudinal direction through the resin sealing layer 15 by the second recess 21 (waveguide). Light that travels in the longitudinal direction can be taken out from the first recess 20.
  • the light emitted upward from the light emitting element 12 is diffused into the light extracted from the first recess 20 and the light extracted from the second recess 21, that is, the light emission form of the linear light source device ( Luminance and bright line distribution) are diffused in the longitudinal direction, so that uneven bright lines and uneven brightness of emitted light can be made difficult to occur.
  • the phosphor concentration is slightly different in the manufacturing process. Color unevenness occurs in the emitted light.
  • the light emitted from one light emitting element 12 or the like and the light emitted from the other adjacent light emitting element 12 or the like can be mixed in the first recess 20. The light that has passed through the different resin sealing portions 14 can be mixed, and color unevenness can be further suppressed.
  • the linear light source device 11 As shown in FIG. 11, the light emitted from the light emitting element 12 or the resin due to the formation of the second recess 21.
  • the phosphor When the phosphor is dispersed in the sealing portion 14, the light emitted from the phosphor with the light from the light emitting element 12 can be efficiently totally reflected on the surface of the second recess 21. It is possible to suppress going out directly toward the upper side.
  • the light totally reflected on the surface of the second recess 21 is a plane connecting the second recess 21 and the first recess 20 inside the resin sealing layer 15 (the plane on the upper side of the resin sealing layer 15);
  • the light travels in the longitudinal direction by reflection (bending) and total reflection occurring between the reflector 16 and the reflector 16. And the light which progresses to a longitudinal direction side can be efficiently extracted from a 1st recessed part.
  • the amount of light exiting from the second recess 21 can be reduced, the amount of light traveling in the longitudinal direction can be increased, and the amount of light exiting from the first recess 20 can be reduced. Can be bigger.
  • the light distribution characteristics of light can be controlled, the luminance in the vicinity of the upper side of the light emitting element 12 that tends to be excessively bright can be suppressed, and two adjacent light emitting elements that are likely to have low luminance because there is no light emitting element
  • the luminance of the 12 intermediate regions can be improved by efficiently extracting light guided in the longitudinal direction. Therefore, it is possible to improve the uniformity in the longitudinal direction of the emission intensity at the emission end face of the linear light source device.
  • the light emitted from the second recess 21 is refracted (bent) by the second recess 21 and the light traveling direction deviates from the upper direction, so that the light distribution can be diffused in the longitudinal direction.
  • a reflection plate disposed with respect to the periphery of the light emitting element 12, and a resin sealing layer disposed so as to cover the plurality of light emitting elements and the reflection plate. 15 and the first concave portion and the second concave portion formed in the resin sealing layer 15 allow the light emitted from the adjacent phosphors to mix and suppress color unevenness.
  • the light emitting element 12 includes the reflecting plate 16 that is inclined so that the opening is widened.
  • the light can be efficiently emitted upward by the reflecting plate 16. That is, multiple scattering between the first reflection sheet 17 and the second reflection sheet 18 can be reduced, and light can be emitted efficiently.
  • the inclination angle of the inclined surface of the second recess 21 is inclined more than the critical angle ⁇ c of total reflection. That is, the second recess 21 has a form in which light emitted upward from the light emitting element 12 and the like is totally reflected in the longitudinal direction. That is, by making the inclination angle of the second recess larger than the critical angle ⁇ c of total reflection, the traveling direction of the light emitted upward from the light emitting element can be efficiently changed to the longitudinal direction side.
  • n the refractive index of the resin.
  • the refractive index has light wavelength dependency. Therefore, in this embodiment, the refractive index of the resin is considered based on the center wavelength (emission peak wavelength) of the light emitted from the light emitting element 12.
  • the refractive index n of the resin of the resin sealing layer 15 is 1.5, and the critical angle ⁇ c of total reflection is approximately 42 ° when calculated from the above equation. It becomes.
  • FIGS. 12A and 12B are schematic views showing the locus of light emitted upward from the light emitting element 12 in the linear light source device 11 according to the present embodiment.
  • FIG. 12A shows light emission when the inclination angle ⁇ of the surface of the second recess 21 is a gentle slope that is gentler than the critical angle ⁇ c of total reflection of light emitted upward from the light emitting element 12.
  • FIG. 6 is a diagram showing a trajectory of light emitted upward from an element 12.
  • light 502 is a locus of light emitted upward from the light emitting element 12
  • light 503 is on the surface of the second recess 21 (interface between the resin sealing layer 15 and the outside). It is a locus of light emitted to the outside after refraction.
  • FIG. 12B shows the case where the inclination angle ⁇ of the surface of the second recess 21 is steeper than the critical angle ⁇ c of total reflection of light emitted upward from the light emitting element 12.
  • FIG. 4 is a schematic diagram showing a locus of light emitted upward from the light emitting element 12.
  • light 500 is a trajectory of light emitted upward from the light emitting element 12, and the light 501 is entirely on the surface of the second recess 21 (interface between the resin sealing layer 15 and the outside). This is a trajectory of light traveling in the longitudinal direction inside the resin sealing layer 15 after reflection.
  • the light 502 emitted from the light emitting element 12 in the axial direction is 2 Refracted on the surface of the recess 21 and deflected from above. A part of the light is emitted to the outside 503, and the brightness of the light directly emitted upward from the light emitting element 12 can be reduced. Further, the light is refracted by the second recess 21 and the traveling direction is deflected from the upward direction. be able to. Since the light emitted from the second recess 21 can be diffused in the longitudinal direction, the uniformity of the light emission intensity of the linear light source device 11 can be improved, and the unevenness of brightness and the unevenness of color can be suppressed.
  • the inclination angle ⁇ of the surface of the second recess 21 is large and the inclination angle ⁇ > ⁇ c
  • the light 500 emitted upward from the light emitting element 12 is At a larger rate
  • the light 501 is totally reflected by the slope of the second concave portion and travels upward in the resin sealing layer 15 from the upper side toward the longitudinal direction.
  • the uniformity of the light emission intensity of the linear light source device 11 can be improved, and the luminance unevenness and color unevenness can be further increased. Can be suppressed. Therefore, it is preferable that the inclination angle ⁇ of the surface of the second recess of the linear light source device according to the present embodiment is steeper than the critical angle ⁇ c of total reflection.
  • FIG. 13 is a schematic diagram showing a trajectory of light traveling from the second recess 21 to the longitudinal direction side in the linear light source device 11 according to the present embodiment.
  • FIG. 13A is a schematic diagram showing a trajectory in the vicinity of the first concave portion 20, and FIG. 13B is a schematic diagram showing a trajectory when the first concave portion 20 is not present, which is a comparative example of FIG.
  • (c) is a schematic diagram showing a case where light 602 having a small inclination ⁇ (i) traveling in the longitudinal direction side is not totally reflected by the first concave portion 20, and (d) is a diagram in the longitudinal direction side.
  • FIG. 6 is a schematic diagram showing a case where light 605 having a small inclination ⁇ (i) traveling toward the center is totally reflected by the first recess 20.
  • an intermediate region between two adjacent light emitting elements 12 is a region far from the light emitting element 12 and whose luminance tends to be low.
  • the light 600 guided in the longitudinal direction can be efficiently extracted as the light 601.
  • the light 605 is totally reflected on the side surface of the first recess 20, becomes light 606, and is reflected by the reflecting plate 16.
  • the path of light traveling in the longitudinal direction becomes light 607 having a large inclination with respect to the longitudinal direction, and is emitted from the side surface of the first recess 20.
  • the inclination angle ⁇ (i) of the side surface of the groove having the V-shaped cross section of the first recess 20 is smaller than the critical angle ⁇ c of total reflection.
  • the traveling light on the longitudinal direction side can be totally reflected, so that the re-incident can be prevented.
  • the light traveling in the longitudinal direction can be efficiently extracted from the first recess 20.
  • FIG. 14 is a perspective view of the linear light source device 111 according to the second embodiment.
  • FIG. 15 is a cross-sectional view of the linear light source device 111 taken along the longitudinal direction.
  • FIG. 16 is a plan view of the linear light source device 111.
  • FIG. 17 is a cross-sectional view of the linear light source device 111 taken along the width direction.
  • the linear light source device 111 according to the second embodiment is different from the linear light source device 11 according to the first embodiment in the structure of the reflector 116, and the other configurations are the same.
  • the periphery of the light emitting element 12 is surrounded by a reflecting plate 116, and the side surface of the reflecting plate 116 on the side facing the light emitting element 12 is inclined so that the opening area becomes larger toward the emission direction of each light emitting element 12.
  • the lower layer side surface 131 and the vicinity of the opening are formed by an upper layer side surface 132 having a rectangular recess shape formed by the lower layer side surface 131.
  • the upper layer side surface 132 is formed only on the longitudinal direction side.
  • the upper layer side surface 132 is formed in a step shape. That is, the upper layer side surface 132 has an angular columnar recess shape having a bottom surface wider than the opening surface of the recess formed by the lower layer side surface 131, and the side surface has no inclination.
  • the opening surface of the recess formed by the lower layer side surface 131 has a form included in the bottom frame of the columnar upper layer side surface 132.
  • the reflection plate 116 has a shape with a one-step recess formed by the lower layer side surface 131 and the upper layer side surface 132, and the resin sealing portion 14 is formed up to the upper end of the upper layer side surface 132. That is, as shown in FIG. 17, in the width direction of the substrate 13, a part of the resin sealing portion 14 is bonded to the first reflection sheet 17 and the second reflection sheet 18.
  • FIG. 18 is a perspective view of a printed board material on which a resin sealing layer according to this embodiment is formed.
  • the reflection plate 116 formed on the printed board 40 has a shape with a one-step recess. By setting it as such a shape, the resin which forms the resin sealing part 14 can be continuously apply
  • the resin can be applied (filled) linearly in the Y-axis direction (the width direction of the substrate 13) in FIG. Therefore, the complicated resin coating operation for forming the resin sealing portion 14 can be eliminated, and the coating time can be reduced.
  • the uniformity of the resin constituting the resin sealing portion can be improved between different linear light source devices, and a highly reliable linear light source device can be provided.
  • the other steps are the same as those in the first embodiment.
  • a light source device By replacing the linear light source devices 11 and 111 of the present invention described above with the linear light source device 410 described in the related art, a planar shape with small luminance unevenness and low light loss (low power consumption).
  • a light source device can be provided.
  • the linear light source device is a linear light source device that irradiates linear light from a plurality of light emitting elements arranged in a longitudinal direction on an elongated substrate, and is an upper surface of the substrate.
  • a reflection member that reflects light from the light emitting element is provided at an end in the width direction so as to face the light emitting element, and the light emitting element is provided on the substrate, the light emitting element, and the reflecting member.
  • a light-transmitting sealing member is provided for sealing.
  • the light emitted from the light emitting element in the width direction of the substrate is first reflected by the reflecting member and then emitted from the sealing member. Therefore, the number of times that the light is emitted from the sealing member attached to the substrate, reflected by the reflection sheet, and reentered the sealing member can be reduced, and the light is scattered by the sealing member. And can reduce absorption. As a result, by further reducing the thickness of the linear light source device, the scattering and absorption of the light can be suppressed and the light can be extracted efficiently even if the number of times of light reflection increases.
  • the reflective member may be provided in a region surrounding the light emitting element on the upper surface of the substrate. Further, the region surrounding the plurality of light emitting elements may be a region between the adjacent light emitting elements in addition to the region at the end in the width direction of the upper surface of the substrate. As the region where the reflecting member is provided becomes wider, the adhesion between the substrate and the reflecting member can be improved.
  • the reflective member has a thickness in a direction perpendicular to the top surface of the substrate, and is located in a region at an end portion in the width direction of the top surface of the substrate, rather than a reflective member formed in a region between adjacent light emitting elements. It is preferable that the formed reflecting member is thinner.
  • the resin is continuously applied along the line in the width direction passing through the light emitting element. (Injection) can be performed, and the production efficiency can be improved.
  • the reflecting member is inclined so as to reflect light directly reaching the light emitting element in the normal direction of the substrate. In this case, it is possible to further reduce the number of times the light is emitted from the sealing member, reflected by the reflection sheet, and re-entered the sealing member, and further reduces scattering and absorption of light by the sealing member. As a result, light can be extracted more efficiently.
  • the sealing member is provided between the light emitting elements adjacent to each other, and bends light guided into the sealing member so that part or all of the light is transmitted.
  • a first recess that guides the light to the outside, and a light that is emitted from the light emitting element in the normal direction of the upper surface of the substrate is bent, and a part or all of the light is guided into the sealing member. It is preferable to provide two recesses.
  • part or all of the light from the light emitting element is guided into the sealing member by the second recess. Accordingly, it is possible to suppress luminance that is directly emitted from the light emitting element and tends to be high.
  • part or all of the light guided into the sealing member is irradiated to the outside by the first recess. Accordingly, it is possible to increase the luminance that tends to decrease between adjacent light emitting elements. As a result, even when light is emitted with high luminance, uneven luminance and bright lines can be suppressed.
  • the 1st recessed part of the said sealing member totally reflects the light guided in the said longitudinal direction in the said sealing member. In this case, since it can prevent that the said light is irradiated from the longitudinal direction edge part of the said sealing member, the brightness
  • the second concave portion of the sealing member reflects all the light emitted from the light emitting element in the normal direction of the upper surface of the substrate. In this case, the high luminance light from the light emitting element can be prevented from being directly irradiated to the outside, and thus the luminance unevenness can be further suppressed.
  • an external connection terminal for supplying electricity to the plurality of light emitting elements is provided at an end portion in the longitudinal direction of the substrate. In this case, heat can be efficiently radiated from the longitudinal end of the substrate.
  • the sealing member includes a fluorescent material and includes a fluorescent portion that covers each of the light emitting elements.
  • chromaticity unevenness can be suppressed even when a desired color is emitted.
  • the light emitted from the sealing member can be set to an arbitrary chromaticity by appropriately selecting the type of phosphor and the concentration of the phosphor dispersed in the translucent resin.
  • the side surface in the longitudinal direction may be inclined with respect to the thickness direction of the substrate at the end of the light emitting element on the light emitting side.
  • the light emitted from the light emitting element can be diffused into light directed upward and light inclined toward the longitudinal direction. That is, light can be diffused in advance by the light emitting element itself as compared with a light emitting element having a general shape. Therefore, the light extraction efficiency of the linear light source device can be further improved.
  • the linear light source device As described above, in the linear light source device according to the present invention, the light emitted from the light emitting element in the width direction of the substrate is first reflected by the reflecting member and then emitted from the sealing member. Therefore, it can be applied to a light source of an arbitrary display device having a backlight, and is particularly suitable for a light source of a display device in a portable electronic device such as a mobile phone, a digital camera, or a portable game machine. .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Planar Illumination Modules (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Liquid Crystal (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Led Device Packages (AREA)

Abstract

A reflecting plate (16) for reflecting light from a light-emitting element (12) is provided, on the upper surface of an elongated substrate (13), in a region surrounding the light-emitting element (12). A light-transmissive resin-sealing layer (15) for sealing the light-emitting element (12) is provided on the substrate (13), the light-emitting element (12), and the reflecting plate (16).

Description

線状光源装置、面発光装置、および液晶表示装置Linear light source device, surface light emitting device, and liquid crystal display device
 本発明は、線状光源装置、面発光装置、および液晶表示装置に関する。特に、本発明は、複数の発光素子が用いられ、液晶表示パネルのバックライトとして使用される線状光源装置、面発光装置、および液晶表示装置に関する。 The present invention relates to a linear light source device, a surface light emitting device, and a liquid crystal display device. In particular, the present invention relates to a linear light source device, a surface light emitting device, and a liquid crystal display device that use a plurality of light emitting elements and are used as a backlight of a liquid crystal display panel.
 携帯電話機、デジタルカメラ等の携帯型電子機器における液晶表示装置に使用される従来の面発光装置として、例えば、図19に示すような発光ダイオード(以下、LEDと記す)を用いた面発光装置220が挙げられる。図19(a)は、従来の光源装置210の斜視図であり、(b)は、従来の光源装置210を備える面発光装置220を示す分解組立図であり、(c)は、面発光装置220における、従来の光源装置210の幅方向の断面図である。 As a conventional surface light-emitting device used for a liquid crystal display device in a portable electronic device such as a mobile phone or a digital camera, for example, a surface light-emitting device 220 using a light-emitting diode (hereinafter referred to as LED) as shown in FIG. Is mentioned. FIG. 19A is a perspective view of a conventional light source device 210, FIG. 19B is an exploded view showing a surface light emitting device 220 including the conventional light source device 210, and FIG. 19C is a surface light emitting device. FIG. 220 is a cross-sectional view in the width direction of a conventional light source device 210 at 220.
 図19(b)に示されるような面発光装置220では、幅広の第1反射シート(下反射シート)202と、第1反射シート202の上面に、その一側の端部が第1反射シート202の一側の端部から突出した導光板203と、導光板203の側面に対峙して設けられた光源装置210と、導光板203の発光面の端部、および、光源装置210を上方から覆うべく一体化された第2反射シート(上反射シート)204とから構成されている。 In the surface light emitting device 220 as shown in FIG. 19B, the wide first reflective sheet (lower reflective sheet) 202 and the upper surface of the first reflective sheet 202, one end thereof is the first reflective sheet. 202, the light guide plate 203 protruding from one end of the light source 202, the light source device 210 provided facing the side surface of the light guide plate 203, the end of the light emitting surface of the light guide plate 203, and the light source device 210 from above. It is comprised from the 2nd reflective sheet (upper reflective sheet) 204 integrated so that it might cover.
 光源装置210は、導光板203の突出した端部の下面にその一部が配された細長い平板形状の基板205と、基板205の上面に、導光板203の側面に近設すべく並設された横長の直方体形状のカップ200と、カップ200に収納された発光素子(図示せず)と、カップ200に充填された透明の光透過性の樹脂封止部201とを備えている。樹脂封止部201には、蛍光体が混入されている。 The light source device 210 is provided in parallel with an elongated flat plate-like substrate 205 partially disposed on the lower surface of the protruding end of the light guide plate 203, and on the upper surface of the substrate 205 so as to be close to the side surface of the light guide plate 203. A horizontally long rectangular parallelepiped cup 200, a light emitting element (not shown) housed in the cup 200, and a transparent light-transmitting resin sealing portion 201 filled in the cup 200 are provided. A phosphor is mixed in the resin sealing portion 201.
 しかしながら、図19で示されるような従来の光源装置210は、カップ200の厚さを抑えることができないため、薄型化が困難であるという課題が存在する。 However, the conventional light source device 210 as shown in FIG. 19 has a problem that it is difficult to reduce the thickness because the thickness of the cup 200 cannot be suppressed.
 そこで、カップ200が存在しない光源として、例えば、特許文献1に開示されているような線状光源装置がある。図20(a)は、特許文献1に係る線状光源装置310(光源装置)の斜視図であり、(b)は、特許文献1に係る線状光源装置310の長手方向に沿って断面した断面図であり、(c)は、特許文献1に係る線状光源装置310を備える面発光装置320の分解組立図であり、(d)は、面発光装置320における、特許文献1に係る線状光源装置310の幅方向に沿って断面した断面図である。 Therefore, as a light source in which the cup 200 does not exist, for example, there is a linear light source device as disclosed in Patent Document 1. 20A is a perspective view of a linear light source device 310 (light source device) according to Patent Document 1, and FIG. 20B is a cross-sectional view taken along the longitudinal direction of the linear light source device 310 according to Patent Document 1. It is sectional drawing, (c) is an exploded view of the surface light-emitting device 320 provided with the linear light source device 310 concerning patent document 1, (d) is the line concerning patent document 1 in the surface light-emitting device 320. 6 is a cross-sectional view taken along the width direction of the light source device 310. FIG.
 図20(a)~(d)に示すように、特許文献1に係る線状光源装置310は、細長い平板形状の基板305と、基板305上の複数の発光素子306と、複数の発光素子306の間の反射板300と、光透過性の樹脂封止部301とを備える。複数の発光素子306は、基板305の長手方向に互いに間隔をおいて配置され、さらに、各発光素子306の両側に、且つ、各発光素子306と交互に位置するように反射板300が配設されている。 As shown in FIGS. 20A to 20D, a linear light source device 310 according to Patent Document 1 includes an elongated flat plate-like substrate 305, a plurality of light emitting elements 306 on the substrate 305, and a plurality of light emitting elements 306. And a light-transmitting resin sealing portion 301. The plurality of light emitting elements 306 are arranged at intervals in the longitudinal direction of the substrate 305, and the reflector 300 is disposed on both sides of each light emitting element 306 and alternately with each light emitting element 306. Has been.
 また、光透過性の樹脂封止材が、発光素子306が設けられた基板305の実装面と、発光素子306に隣り合う2つの反射板300の対向面とによって形成される凹状部に充填されて樹脂封止部301が形成されている。上記の面発光装置320は、導光板303の側面に沿って設けられた線状光源装置310と、平面視矩形状の第1反射シート302と、細長い帯状の第2反射シート304とから構成されている。しかしながら、特許文献1に係る線状光源装置310では、高輝度で発光した場合には、輝度ムラが生じるという課題が存在する。 In addition, a light-transmitting resin sealing material is filled in a concave portion formed by the mounting surface of the substrate 305 provided with the light emitting element 306 and the opposing surfaces of the two reflecting plates 300 adjacent to the light emitting element 306. Thus, a resin sealing portion 301 is formed. The surface light emitting device 320 includes a linear light source device 310 provided along the side surface of the light guide plate 303, a first reflection sheet 302 having a rectangular shape in plan view, and a second reflection sheet 304 having an elongated strip shape. ing. However, the linear light source device 310 according to Patent Document 1 has a problem that uneven luminance occurs when light is emitted with high luminance.
 そこで、導光板の輝度ムラを低減できる発光装置として、例えば、特許文献2に開示されている、線状光源装置410がある。図21(a)は、特許文献2に係る線状光源装置410の斜視図であり、(b)は、特許文献2に係る線状光源装置410の長手方向に沿って断面した断面図であり、(c)は、特許文献2に係る線状光源装置410を備える面発光装置420の分解組立図である。 Therefore, as a light-emitting device that can reduce luminance unevenness of the light guide plate, for example, there is a linear light source device 410 disclosed in Patent Document 2. FIG. 21A is a perspective view of the linear light source device 410 according to Patent Document 2, and FIG. 21B is a cross-sectional view taken along the longitudinal direction of the linear light source device 410 according to Patent Document 2. (C) is an exploded view of a surface light emitting device 420 including a linear light source device 410 according to Patent Document 2. FIG.
 図21(a)~(c)に示すように、特許文献2に係る線状光源装置では、複数の発光素子406が細長い平板形状の基板405の長手方向に沿って互いに間隔をおいて配設されている。また、発光素子406を被覆するように、樹脂封止層409が形成されている。樹脂封止層409は、隣接する発光素子406同士の間に存在する第1凹部407と、発光素子406の直上側に形成された第2凹部408とが、基板405の上面に略平行な平面部409aを介して連なっている。第1凹部407および第2凹部408は、基板405の長手方向に沿った断面がV字状である。 As shown in FIGS. 21A to 21C, in the linear light source device according to Patent Document 2, a plurality of light emitting elements 406 are arranged at intervals from each other along the longitudinal direction of an elongated flat plate-like substrate 405. Has been. Further, a resin sealing layer 409 is formed so as to cover the light emitting element 406. The resin sealing layer 409 includes a plane in which a first recess 407 existing between adjacent light emitting elements 406 and a second recess 408 formed immediately above the light emitting elements 406 are substantially parallel to the upper surface of the substrate 405. It is connected via the part 409a. The first recess 407 and the second recess 408 have a V-shaped cross section along the longitudinal direction of the substrate 405.
 図21(a)~(c)に示すように、発光素子406の近傍には蛍光体を混合させた樹脂封止部401を設置している。このようにして、所望の色を、高輝度で発光させた場合であっても、輝度ムラ、輝線、色度ムラが少ない線状光源装置を提供できる。 As shown in FIGS. 21A to 21C, a resin sealing portion 401 mixed with a phosphor is provided in the vicinity of the light emitting element 406. In this way, even when a desired color is emitted with high luminance, a linear light source device with less luminance unevenness, bright lines, and chromaticity unevenness can be provided.
 また、特許文献2に係る面発光装置は、特許文献1に係る面発光装置320と同様に、導光板403の側面に沿って設けられた線状光源装置410と、平面視矩形状の第1反射シート402と、細長い帯状の第2反射シート404とから構成されている。なお、液晶バックライト装置に面発光装置420を使用する場合には、導光板403の上面(光出射面)側に液晶表示パネルが設置される構成となる。 Similarly to the surface light-emitting device 320 according to Patent Document 1, the surface light-emitting device according to Patent Document 2 includes a linear light source device 410 provided along the side surface of the light guide plate 403 and a first rectangular shape in plan view. The reflecting sheet 402 and the second reflecting sheet 404 in the form of an elongated strip are configured. When the surface light emitting device 420 is used for the liquid crystal backlight device, the liquid crystal display panel is installed on the upper surface (light emitting surface) side of the light guide plate 403.
 バックライトの更なる薄型化に伴い、発光装置の更なる薄型化も必要である。特許文献1および2に係る線状光源装置は、従来の光源装置と比較し、カップ200が存在していないことから、より薄型化が可能であるという利点を有している。 As the backlight becomes thinner, it is necessary to make the light emitting device thinner. Compared with the conventional light source device, the linear light source device according to Patent Documents 1 and 2 has an advantage that it can be made thinner because the cup 200 does not exist.
日本国公開特許公報「特開2004-235139号(2004年8月19日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2004-235139 (published on August 19, 2004)” 日本国公開特許公報「特開2009-021221号(2009年1月29日公開)」Japanese Patent Publication “JP 2009-021221 (published Jan. 29, 2009)”
 特許文献2に係る線状光源装置410では、図22に示すように、反射シート402、404が設けられる面は、基板405の上面に対して垂直である。このため、線状光源装置410の更なる薄型化を進めた場合、基板405の幅方向の長さ(反射シート402、404の間隔)が狭くなり、発光素子406と第1反射シート402と第2反射シート404との間での光の反射回数が増大することになる。 In the linear light source device 410 according to Patent Document 2, the surface on which the reflection sheets 402 and 404 are provided is perpendicular to the upper surface of the substrate 405 as shown in FIG. For this reason, when the thickness of the linear light source device 410 is further reduced, the length in the width direction of the substrate 405 (the interval between the reflection sheets 402 and 404) becomes narrower, and the light emitting element 406, the first reflection sheet 402, and the first The number of light reflections between the two reflection sheets 404 increases.
 ところで、樹脂封止層409の側面(横方向の面)は、一般にダイシング等を用いて形成するため、表面に小さな凹凸を有する粗面状となっている。このため、発光素子406からの光が、樹脂封止層409から出射し、反射シート402、404にて反射して、樹脂封止層409に再入射する場合、樹脂封止層409の側面の上記凹凸により、上記光の散乱および吸収が発生することになる。 Incidentally, since the side surface (lateral surface) of the resin sealing layer 409 is generally formed by using dicing or the like, it has a rough surface shape having small irregularities on the surface. For this reason, when light from the light emitting element 406 is emitted from the resin sealing layer 409, reflected by the reflection sheets 402 and 404, and reentering the resin sealing layer 409, the side surface of the resin sealing layer 409 The unevenness causes scattering and absorption of the light.
 この問題点は、線状光源装置410の更なる薄型化を進めた場合、上述のように、反射シート402、404における光の反射回数が増大するので、特に顕著となり、効率よく光を取り出すことができないことになる。なお、特許文献1に係る線状光源装置310でも同様の問題が生じる。 This problem is particularly noticeable when the linear light source device 410 is further reduced in thickness because the number of times of reflection of light on the reflection sheets 402 and 404 increases as described above, and light is efficiently extracted. Will not be able to. A similar problem occurs in the linear light source device 310 according to Patent Document 1.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、光の反射回数が増大しても、効率よく光を取り出すことができる線状光源装置等を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a linear light source device and the like that can efficiently extract light even when the number of reflections of light increases. .
 本発明に係る線状光源装置は、細長の基板上の長手方向に配列された複数の発光素子から線状の光を照射する線状光源装置であって、上記目的を達成するために、上記基板の上面の幅方向端部に、上記発光素子からの光を反射する反射部材が、上記発光素子と対向するように設けられており、上記基板、上記発光素子、および上記反射部材上に、上記発光素子を封止する透光性の封止部材が設けられていることを特徴としている。 A linear light source device according to the present invention is a linear light source device that irradiates linear light from a plurality of light emitting elements arranged in a longitudinal direction on an elongated substrate, and in order to achieve the above object, A reflective member that reflects light from the light emitting element is provided at the end in the width direction of the upper surface of the substrate so as to face the light emitting element. On the substrate, the light emitting element, and the reflective member, A light-transmitting sealing member for sealing the light-emitting element is provided.
 上記の構成によれば、発光素子から基板の幅方向に出射した光は、まず、反射部材にて反射してから、封止部材から出射することになる。従って、上記光が、上記基板に取り付けられた封止部材から出射し、反射シートにて反射して、上記封止部材に再入射する回数を減らすことができ、上記封止部材による光の散乱および吸収を減らすことができる。その結果、線状光源装置の更なる薄型化を進めることにより、光の反射回数が増大しても、上記光の散乱および吸収を抑えることができ、効率よく光を取り出すことができる。 According to the above configuration, the light emitted from the light emitting element in the width direction of the substrate is first reflected by the reflecting member and then emitted from the sealing member. Therefore, the number of times that the light is emitted from the sealing member attached to the substrate, reflected by the reflection sheet, and reentered the sealing member can be reduced, and the light is scattered by the sealing member. And can reduce absorption. As a result, by further reducing the thickness of the linear light source device, the scattering and absorption of the light can be suppressed and the light can be extracted efficiently even if the number of times of light reflection increases.
 以上のように、本発明に係る線状光源装置は、発光素子から基板の幅方向に出射した光が、まず反射部材にて反射してから、封止部材から出射するので、上記基板に取り付けられた封止部材から出射し、反射シートにて反射して、上記封止部材に再入射する回数を減らすことができ、上記封止部材による光の散乱および吸収を減らすことができるという効果を奏する。その結果、線状光源装置の更なる薄型化を進めることにより、光の反射回数が増大しても、上記光の散乱および吸収を抑えることができ、効率よく光を取り出すことができるという効果を奏する。 As described above, the linear light source device according to the present invention is attached to the substrate because light emitted from the light emitting element in the width direction of the substrate is first reflected by the reflecting member and then emitted from the sealing member. The number of times that the sealing member is emitted, reflected by the reflection sheet, and re-entered the sealing member can be reduced, and the scattering and absorption of light by the sealing member can be reduced. Play. As a result, by further reducing the thickness of the linear light source device, the scattering and absorption of the light can be suppressed and the light can be extracted efficiently even if the number of light reflections increases. Play.
本発明の一実施形態である線状光源装置の斜視図である。It is a perspective view of the linear light source device which is one Embodiment of this invention. 上記線状光源装置を長手方向に沿って断面した断面図である。It is sectional drawing which carried out the cross section of the said linear light source device along the longitudinal direction. 上記線状光源装置の平面図である。It is a top view of the said linear light source device. 上記線状光源装置を幅方向に沿って断面した断面図である。It is sectional drawing which carried out the cross section of the said linear light source device along the width direction. 上記線状光源装置の下面図である。It is a bottom view of the said linear light source device. 上記線状光源装置における発光素子であって、端部が傾斜している一形態の発光素子の斜視図(上図)および平面図(下図)であり、(a)は長手方向側および幅方向側が傾斜している場合、(a)は長手方向側が傾斜している場合をそれぞれ示す図である。It is the perspective view (upper figure) and top view (lower figure) of the light emitting element of the one form which is the light emitting element in the said linear light source device, and the edge part inclined, (a) is a longitudinal direction side and width direction (A) is a figure which respectively shows the case where the longitudinal direction side is inclined, when the side is inclined. 上記線状光源装置を用いた面発光装置の分解組立図である。It is an exploded view of a surface light emitting device using the linear light source device. 上記面発光装置の幅方向の断面図である。It is sectional drawing of the width direction of the said surface emitting device. 上記線状光源装置の製造工程において、反射板を形成したプリント板材の斜視図である。It is a perspective view of the printed board material which formed the reflecting plate in the manufacturing process of the said linear light source device. 上記製造工程において、樹脂封止層を形成したプリント板材の斜視図である。In the said manufacturing process, it is a perspective view of the printed board material in which the resin sealing layer was formed. (a)は、上記線状光源装置において、発光素子から幅方向側に出射された光の軌跡を示す模式図である。(b)は、上記線状光源装置において、発光素子から長手方向に進行する光の軌跡を示す模式図である。(A) is a schematic diagram which shows the locus | trajectory of the light radiate | emitted from the light emitting element to the width direction side in the said linear light source device. (B) is a schematic diagram showing a locus of light traveling in the longitudinal direction from the light emitting element in the linear light source device. 上記線状光源装置において、発光素子から上方向に出射された光の軌跡を示す模式図であり、(a)は、傾斜角が、全反射の臨界角よりも緩い緩斜面になっている場合における、発光素子から上方向に出射された光の軌跡を示す模式図であり、(b)は、傾斜角が、全反射の臨界角よりも急傾斜になっている場合における、発光素子から上方向に出射された光の軌跡を示す模式図である。In the said linear light source device, it is a schematic diagram which shows the locus | trajectory of the light radiate | emitted upward from the light emitting element, (a) is a case where the inclination angle is a gentle slope gentler than the critical angle of total reflection FIG. 5B is a schematic diagram showing a trajectory of light emitted upward from the light emitting element, and (b) is a top view from the light emitting element when the inclination angle is steeper than the critical angle of total reflection. It is a schematic diagram which shows the locus | trajectory of the light radiate | emitted in the direction. 上記線状光源装置において、第2凹部から長手方向側へ進行する光の軌跡を示す模式図であり、(a)は、第1凹部付近の軌跡を示す模式図であり、(b)は、第1凹部および第2凹部の中間付近の軌跡を示す模式図であり、(c)は、長手方向側へ進行する傾きの小さい光が、第1凹部で全反射しなかった場合を示す模式図であり、(d)は、長手方向側へ進行する傾きの小さい光が、第1凹部で全反射した場合を示す模式図である。In the linear light source device, it is a schematic diagram showing a trajectory of light traveling from the second concave portion to the longitudinal direction side, (a) is a schematic diagram showing a trajectory near the first concave portion, (b), It is a schematic diagram which shows the locus | trajectory of intermediate | middle of a 1st recessed part and a 2nd recessed part, (c) is a schematic diagram which shows the case where the light with a small inclination which advances to a longitudinal direction side does not totally reflect in a 1st recessed part. (D) is a schematic diagram showing a case where light having a small inclination traveling in the longitudinal direction side is totally reflected by the first recess. 本発明の他の実施形態である線状光源装置の斜視図である。It is a perspective view of the linear light source device which is other embodiment of this invention. 上記線状光源装置を長手方向に沿って断面した断面図である。It is sectional drawing which carried out the cross section of the said linear light source device along the longitudinal direction. 上記線状光源装置の平面図である。It is a top view of the said linear light source device. 上記線状光源装置を幅方向に沿って断面した断面図である。It is sectional drawing which carried out the cross section of the said linear light source device along the width direction. 上記樹脂封止層を形成したプリント板材の斜視図である。It is a perspective view of the printed board material which formed the said resin sealing layer. (a)は、従来の光源装置の斜視図であり、(b)は、該光源装置を備える面発光装置を示す分解組立図であり、(c)は、該面発光装置における、上記光源装置の幅方向の断面図である。(A) is a perspective view of a conventional light source device, (b) is an exploded view showing a surface light emitting device including the light source device, and (c) is the light source device in the surface light emitting device. It is sectional drawing of the width direction. (a)は、従来の線状光源装置の斜視図であり、(b)は、該線状光源装置の長手方向に沿って断面した断面図であり、(c)は、上記線状光源装置を備える面発光装置の分解組立図であり、(d)は、該面発光装置における、上記線状光源装置の幅方向に沿って断面した断面図である。(A) is the perspective view of the conventional linear light source device, (b) is sectional drawing which followed the longitudinal direction of this linear light source device, (c) is the said linear light source device. FIG. 4D is a cross-sectional view of the surface light emitting device taken along the width direction of the linear light source device. (a)は、従来の線状光源装置の斜視図であり、(b)は、該線状光源装置の長手方向に沿って断面した断面図であり、(c)は、上記線状光源装置を備える面発光装置の分解組立図である。(A) is the perspective view of the conventional linear light source device, (b) is sectional drawing which followed the longitudinal direction of this linear light source device, (c) is the said linear light source device. FIG. 上記従来の線状光源装置において、発光素子から幅方向側に出射された光の軌跡を示す模式図である。In the said conventional linear light source device, it is a schematic diagram which shows the locus | trajectory of the light radiate | emitted from the light emitting element to the width direction side.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 〔実施形態1〕
 (1.線状光源装置11の基本構成)
 図1は、実施形態1に係る線状光源装置11の斜視図である。図2は、線状光源装置11を長手方向に沿って断面した断面図である。図3は、線状光源装置11の平面図である。また、図4は、線状光源装置11を幅方向に沿って断面した断面図である。また、図5は、線状光源装置11の下面図である。
Embodiment 1
(1. Basic configuration of the linear light source device 11)
FIG. 1 is a perspective view of a linear light source device 11 according to the first embodiment. FIG. 2 is a cross-sectional view of the linear light source device 11 taken along the longitudinal direction. FIG. 3 is a plan view of the linear light source device 11. FIG. 4 is a cross-sectional view of the linear light source device 11 taken along the width direction. FIG. 5 is a bottom view of the linear light source device 11.
 図1~図4に示すように、線状光源装置11は、線状の光を照射するものであり、配線基板としての細長い平板形状(短冊状)の基板13と、複数の発光素子12と、透光性の樹脂封止部(蛍光部)14(蛍光体を含んでいてもよい)と、透光性の樹脂封止層(封止部材)15(蛍光体を含まないほうが好ましい)と、鏡面加工された反射板(反射部材)16と、反射部材としての第1反射シート17および第2反射シート18とを備える構成である。 As shown in FIGS. 1 to 4, the linear light source device 11 irradiates linear light. The linear light source device 11 has an elongated flat plate (strip shape) substrate 13 as a wiring substrate, a plurality of light emitting elements 12, and the like. A light-transmitting resin sealing portion (fluorescent portion) 14 (which may contain a phosphor), and a light-transmitting resin sealing layer (sealing member) 15 (preferably not including a phosphor); The reflecting plate (reflecting member) 16 is mirror-finished, and includes a first reflecting sheet 17 and a second reflecting sheet 18 as reflecting members.
 すなわち、線状光源装置11は、細長い板状の基板13と、基板13の上面に設置され、基板13の長手方向に一定の間隔で列を成して形成された複数の発光素子12と、基板13の上面に、複数の発光素子12の各々を囲むように層状に形成された反射板16と、反射板16によって発光素子12が囲まれた領域を、発光素子12を覆うように透光性の樹脂を充填した樹脂封止部14と、反射板16および樹脂封止部14を覆うように形成された透光性の樹脂からなる樹脂封止層15と、樹脂封止層15における基板13の幅方向(以下、単に「幅方向」と称する)の両側面を覆うように形成された反射シート17・18と、を備える構成である。 That is, the linear light source device 11 is a long and thin plate-like substrate 13 and a plurality of light emitting elements 12 that are installed on the upper surface of the substrate 13 and formed in a row at regular intervals in the longitudinal direction of the substrate 13; A reflection plate 16 formed in a layer shape so as to surround each of the plurality of light emitting elements 12 on the upper surface of the substrate 13, and a region in which the light emitting elements 12 are surrounded by the reflection plate 16 so as to cover the light emitting elements 12. Resin sealing portion 14 filled with a conductive resin, a resin sealing layer 15 made of a translucent resin formed so as to cover the reflecting plate 16 and the resin sealing portion 14, and a substrate in the resin sealing layer 15 And reflection sheets 17 and 18 formed so as to cover both side surfaces of 13 width directions (hereinafter simply referred to as “width direction”).
 図1に示すように、基板13は、細長い平板形状(短冊状)の形態を有している。図1~図3および図5に示すように、基板13には、発光素子12に電気を供給するためのアノード用の外部接続端子51a、51b、およびカソード用の外部接続端子52a、52bが存在している。すなわち、基板13の上面に外部接続端子51a、52aが形成されており、基板13の下面に外部接続端子51b、52bが形成されている。ここで、基板13上面の外部接続端子51a、52aと、下面の外部接続端子51b、52bとは、それぞれ、スルーホール(図示せず)を介して電気的に接続されている。 As shown in FIG. 1, the substrate 13 has an elongated flat plate shape (strip shape). As shown in FIG. 1 to FIG. 3 and FIG. 5, the substrate 13 has anode external connection terminals 51a and 51b for supplying electricity to the light emitting element 12, and cathode external connection terminals 52a and 52b. is doing. That is, the external connection terminals 51 a and 52 a are formed on the upper surface of the substrate 13, and the external connection terminals 51 b and 52 b are formed on the lower surface of the substrate 13. Here, the external connection terminals 51a and 52a on the upper surface of the substrate 13 and the external connection terminals 51b and 52b on the lower surface are respectively electrically connected via through holes (not shown).
 上記構成にすることで多層基板を用いずに安価な線状光源装置を提供する事ができる。また、外部接続端子51a、52a、51b、52bを設けることにより、効率的な放熱が可能となる。さらに、外部接続端子が基板13の長手方向の両側の端部に設けられることで、基板13の長手方向の端から均一に放熱がなされ、基板13の長手方向の一方にのみ外部接続端子を設けた場合よりも放熱効率が高くなる。 With the above configuration, an inexpensive linear light source device can be provided without using a multilayer substrate. Further, by providing the external connection terminals 51a, 52a, 51b, and 52b, efficient heat dissipation can be performed. Further, the external connection terminals are provided at both ends of the substrate 13 in the longitudinal direction, so that heat is uniformly dissipated from the longitudinal ends of the substrate 13, and the external connection terminals are provided only on one side of the substrate 13 in the longitudinal direction. The heat dissipation efficiency is higher than that of the case.
 図2に示すように、複数の発光素子12は、基板13の上面において、基板13の長手方向に互いに間隔をおいて並設されている。すなわち、基板13の上面には、複数の発光素子12が、細長い平板形状(短冊状)の基板13の長手方向に沿って所定の間隔をおいて一列に設置されている。 As shown in FIG. 2, the plurality of light emitting elements 12 are arranged in parallel on the upper surface of the substrate 13 at intervals in the longitudinal direction of the substrate 13. That is, on the upper surface of the substrate 13, a plurality of light emitting elements 12 are arranged in a line at a predetermined interval along the longitudinal direction of the elongated flat plate-shaped (strip-shaped) substrate 13.
 発光素子12は、アノード用の外部接続端子51a、51b、カソード用の外部接続端子52a、52bと電気的に接続している。具体的に、発光素子12近傍の長手方向側には、アノード用の外部接続端子51a、51b、または、カソード用の外部接続端子52a、52bと、電気的に接続した正極の電極端子(図示せず)および負極の電極端子(図示せず)が存在している。 The light emitting element 12 is electrically connected to the external connection terminals 51a and 51b for the anode and the external connection terminals 52a and 52b for the cathode. Specifically, on the longitudinal side in the vicinity of the light emitting element 12, anode external connection terminals 51 a and 51 b or cathode external connection terminals 52 a and 52 b are electrically connected to positive electrode terminals (not shown). ) And negative electrode terminals (not shown).
 当該正極の電極端子および負極の電極端子と発光素子12とは、電気的に接続している。例えば、発光素子12の電気的接続は、基板13の配線パターンに従って、ワイヤによって正極の電極端子および負極の電極端子と発光素子12とボンディングする構成としても構わない。 The positive electrode terminal, the negative electrode terminal, and the light emitting element 12 are electrically connected. For example, the electrical connection of the light emitting element 12 may be configured such that the positive electrode terminal and the negative electrode terminal are bonded to the light emitting element 12 by wires according to the wiring pattern of the substrate 13.
 発光素子12は、LED等からなる。発光素子12としては、例えば、青色LEDとして公知のGaN系化合物半導体を利用したものが挙げられる。発光素子12は、透明のサファイア基板に、n型層およびp型層を積層し、n型層およびp型層のそれぞれの上面に、n型電極またはp型電極を形成されているものであってもよい。 The light emitting element 12 is made of an LED or the like. Examples of the light emitting element 12 include those using a known GaN compound semiconductor as a blue LED. The light emitting element 12 is formed by laminating an n-type layer and a p-type layer on a transparent sapphire substrate, and an n-type electrode or a p-type electrode is formed on the upper surface of each of the n-type layer and the p-type layer. May be.
 各発光素子12は、透光性の樹脂封止部14によって被覆されている。樹脂封止部14としては、例えば、高い透光性を有するエポキシ系樹脂、シリコーン系樹脂等からなるものであれば良い。さらに、樹脂封止部14を構成する樹脂中に周知の蛍光体(粒状蛍光体であることが好ましい)を混合または分散させていてもよい。 Each light emitting element 12 is covered with a translucent resin sealing portion 14. As the resin sealing part 14, what consists of an epoxy resin, a silicone resin, etc. which have high translucency may be used, for example. Furthermore, a known phosphor (preferably a granular phosphor) may be mixed or dispersed in the resin constituting the resin sealing portion 14.
 また、樹脂封止部14は、基板13上の発光素子12を被覆するように形成されている。すなわち、樹脂封止部14は、発光素子12の近傍に形成されている。図示の例では、樹脂封止部14は、発光素子12が設けられた反射板16の開口部を充填した形態となっている。 Further, the resin sealing portion 14 is formed so as to cover the light emitting element 12 on the substrate 13. That is, the resin sealing portion 14 is formed in the vicinity of the light emitting element 12. In the example shown in the drawing, the resin sealing portion 14 has a form in which the opening portion of the reflection plate 16 provided with the light emitting element 12 is filled.
 すなわち、図3および図4に示すように、上記発光素子12の周辺は、反射板16にて囲まれており、上記反射板16は、各発光素子12の出射方向に向かうにしたがって広がるように傾斜している。また、発光素子12を中心に、反射板16を円錐台、円柱、角柱、半球等の形状に開設した凹状部に樹脂封止部14を充填した形態であってもよい。 That is, as shown in FIG. 3 and FIG. 4, the periphery of the light emitting element 12 is surrounded by the reflecting plate 16, and the reflecting plate 16 spreads toward the emission direction of each light emitting element 12. It is inclined. Alternatively, the resin sealing portion 14 may be filled in a concave portion that is formed in a shape of a truncated cone, a cylinder, a prism, a hemisphere, etc. with the light-emitting element 12 as the center.
 樹脂封止層15は、反射板16および樹脂封止部14を覆うように形成されている。すなわち、各発光素子12を被覆する樹脂封止部14と、各樹脂封止部14を覆う樹脂封止層15とは、樹脂からなる領域を構成している。 The resin sealing layer 15 is formed so as to cover the reflection plate 16 and the resin sealing portion 14. That is, the resin sealing portion 14 that covers each light emitting element 12 and the resin sealing layer 15 that covers each resin sealing portion 14 constitute a region made of resin.
 樹脂封止層15は、高い透光性を有する樹脂からなる。樹脂封止層15を構成する樹脂の基本材料は、樹脂封止部14を構成する樹脂の基本材料と同一であってもよい。樹脂封止層15を構成する高い透光性を有する樹脂として、例えば、透光性のエポキシ樹脂やシリコーン樹脂等が挙げられる。 The resin sealing layer 15 is made of a resin having high translucency. The basic resin material constituting the resin sealing layer 15 may be the same as the basic resin material constituting the resin sealing portion 14. Examples of the highly translucent resin constituting the resin sealing layer 15 include translucent epoxy resins and silicone resins.
 樹脂封止層15は、発光素子12の中心を含み、基板13の長手方向を法線方向とする平面に対し、略面対称な形状となっている。 The resin sealing layer 15 includes a center of the light emitting element 12 and has a substantially plane symmetrical shape with respect to a plane whose normal direction is the longitudinal direction of the substrate 13.
 すなわち、樹脂封止層15には、断面V字状の溝である第1凹部20が形成されている。第1凹部20は、幅方向に直線状に形成されている。さらに、図2に示すように、樹脂封止層15は、厚さ(厚み)方向の断面において、第1凹部20によって、区切られて複数の略等脚台形を、長手方向に連続して(略等脚台形の上底および下底に対して平行に)並べた形態を有している。 That is, the resin sealing layer 15 is formed with a first recess 20 that is a groove having a V-shaped cross section. The first recess 20 is formed linearly in the width direction. Further, as shown in FIG. 2, the resin sealing layer 15 has a plurality of substantially isosceles trapezoids continuously separated in the longitudinal direction by being partitioned by the first recess 20 in the cross section in the thickness (thickness) direction ( They are arranged in parallel to the upper and lower bases of a substantially isosceles trapezoid.
 第1凹部20において、最も深い直線状の谷部である第1最深部20aは、樹脂封止層15の表面に対して均一な深さとなっている。第1最深部20aは、基板13の幅方向と平行なV字溝状に形成されている。なお、第1最深部20aは、反射板16近傍となっている。すなわち、第1最深部20aは、樹脂封止層15の厚さの4/5~2/3の深さとなっている。 In the first recess 20, the first deepest portion 20 a, which is the deepest linear valley, has a uniform depth with respect to the surface of the resin sealing layer 15. The first deepest portion 20 a is formed in a V-shaped groove parallel to the width direction of the substrate 13. The first deepest portion 20a is near the reflector 16. That is, the first deepest portion 20 a has a depth of 4/5 to 2/3 of the thickness of the resin sealing layer 15.
 さらに、樹脂封止層15には、長手方向に沿った断面において、各等脚台形の形状の中央部(各発光素子12の略直上(上方向側))に断面V字状の溝である第2凹部21が形成されている。第2凹部21は、幅方向に直線状に形成されている。第2凹部21において、最も深い直線状の谷部である第2最深部21aは、均一な深さとなっている。すなわち、第1最深部20aおよび第2最深部21aは平行となっている。 Further, the resin sealing layer 15 is a groove having a V-shaped cross section at the center of each isosceles trapezoidal shape (substantially directly above each light emitting element 12 (upward side)) in the cross section along the longitudinal direction. A second recess 21 is formed. The second recess 21 is formed linearly in the width direction. In the second recess 21, the second deepest portion 21 a, which is the deepest linear valley, has a uniform depth. That is, the first deepest part 20a and the second deepest part 21a are parallel.
 なお、第2最深部21aは、第1最深部20aより浅く、樹脂封止層15の厚さの中間の近傍となっている。すなわち、第2最深部21aは、樹脂封止層15の厚さの1/2~2/3の深さで形成されている。また、第2凹部の断面V字状の溝の側面の傾斜角は、基板の厚さ方向に進行する光の全反射の臨界角以上である角度を有することが好ましい。 The second deepest portion 21a is shallower than the first deepest portion 20a and is in the vicinity of the middle of the thickness of the resin sealing layer 15. That is, the second deepest portion 21a is formed with a depth of 1/2 to 2/3 of the thickness of the resin sealing layer 15. Moreover, it is preferable that the inclination angle of the side surface of the groove having the V-shaped cross section of the second recess is equal to or greater than the critical angle of total reflection of light traveling in the thickness direction of the substrate.
 図4に示すように、第1反射シート17は、基板13、反射板16および樹脂封止層15の幅方向の一方の側の端面に貼り付けられている。一方、第2反射シート18は、基板13、反射板16および樹脂封止層15の幅方向の他方の側の端面に貼り付けられている。 As shown in FIG. 4, the first reflection sheet 17 is affixed to the end face on one side in the width direction of the substrate 13, the reflection plate 16, and the resin sealing layer 15. On the other hand, the 2nd reflection sheet 18 is affixed on the end surface of the other side of the width direction of the board | substrate 13, the reflecting plate 16, and the resin sealing layer 15. FIG.
 反射板16は、複数の発光素子12のそれぞれを取り囲むように基板13の長手方向に連続して形成されている。すなわち、発光素子12の長手方向および発光素子12の幅方向に形成されている。反射板16は、表面が反射性を有していれば良く、反射性の高い、鏡面反射体、拡散反射体またはそれらの両者の組み合わせによって形成されている。 The reflector 16 is formed continuously in the longitudinal direction of the substrate 13 so as to surround each of the plurality of light emitting elements 12. That is, it is formed in the longitudinal direction of the light emitting element 12 and the width direction of the light emitting element 12. The reflecting plate 16 only needs to have a reflective surface, and is formed of a highly reflective specular reflector, diffuse reflector, or a combination of both.
 特に、発光素子12より放出される光の波長範囲と、発光素子12からの光により励起された蛍光体から放出される光の波長範囲とにおいて高い反射性を有している構成であることが好ましい。 In particular, the wavelength range of the light emitted from the light emitting element 12 and the wavelength range of the light emitted from the phosphor excited by the light from the light emitting element 12 are highly reflective. preferable.
 また、反射板16の厚さ(図4における距離A)は樹脂封止層15の厚さ(図4における距離B)の1/2~1/3で構成されていることが好ましい。線状光源装置11は、略四角形のプリント板材40(図9参照)を、ダイシング等によって細長い角棒状に切断しているため、樹脂封止層15の側面の表面に小さな凹凸が形成され、粗面化されている。 The thickness of the reflector 16 (distance A in FIG. 4) is preferably 1/2 to 1/3 of the thickness of the resin sealing layer 15 (distance B in FIG. 4). Since the linear light source device 11 is obtained by cutting a substantially square printed board 40 (see FIG. 9) into a long and narrow square bar shape by dicing or the like, small irregularities are formed on the surface of the side surface of the resin sealing layer 15 and rough. It is faced.
 したがって、樹脂封止層15の側面に第1反射シート17、第2反射シート18を接着させ、幅方向への光を反射させる構成とした場合、樹脂封止層15の側面の表面が粗面化しているため、樹脂封止層15と、第1反射シート17、第2反射シート18間で、光が吸収される。 Therefore, when the 1st reflective sheet 17 and the 2nd reflective sheet 18 are adhere | attached on the side surface of the resin sealing layer 15, and it is set as the structure which reflects the light to the width direction, the surface of the side surface of the resin sealing layer 15 is rough. Therefore, light is absorbed between the resin sealing layer 15, the first reflection sheet 17, and the second reflection sheet 18.
 そこで、鏡面加工された反射板16を設け、樹脂封止層15と第1反射シート17、第2反射シート18とが接触する範囲を小さくすることによって、樹脂封止層15と第1反射シート17、第2反射シート18間で発生する光の吸収を抑制することが可能となり、光取り出し効率の改善が期待できる。特に、樹脂封止層15の厚さ(距離B)に対して、反射板16の厚さ(樹脂封止部14の厚さ)を1/2~1/3の範囲で形成することが好ましい。 Therefore, a mirror-finished reflecting plate 16 is provided, and the resin sealing layer 15 and the first reflecting sheet 18 are reduced by reducing the range in which the resin sealing layer 15 contacts the first reflecting sheet 17 and the second reflecting sheet 18. 17, the absorption of light generated between the second reflection sheets 18 can be suppressed, and improvement in light extraction efficiency can be expected. In particular, it is preferable that the thickness of the reflection plate 16 (thickness of the resin sealing portion 14) is in the range of 1/2 to 1/3 with respect to the thickness of the resin sealing layer 15 (distance B). .
 反射板16は、発光素子12、第1反射シート17、第2反射シート18間での多重散乱を低減するため、基板13の上面の幅方向端部に、発光素子12と対向するように配設すればよいが、基板13との密着を上げるため、隣接する発光素子12間においても反射板16を配設している。 The reflective plate 16 is arranged at the end in the width direction of the upper surface of the substrate 13 so as to face the light emitting device 12 in order to reduce multiple scattering among the light emitting device 12, the first reflective sheet 17, and the second reflective sheet 18. The reflector 16 may be disposed between the adjacent light emitting elements 12 in order to improve the close contact with the substrate 13.
 (1-1.発光素子12の構成)
 本実施形態において発光素子12としては従来公知の一般的な形状の発光素子を使用してもよいが、図6(a)または(b)に示すような形状の発光素子を使用してもよい。図6(a)または(b)は、ぞれぞれ、端部が傾斜している発光素子を示す斜視図(上図)および平面図(下図)である。
(1-1. Configuration of Light-Emitting Element 12)
In the present embodiment, a conventionally known light emitting element having a general shape may be used as the light emitting element 12, but a light emitting element having a shape as shown in FIG. 6A or 6B may be used. . FIGS. 6A and 6B are a perspective view (upper view) and a plan view (lower view), respectively, showing a light emitting element whose end is inclined.
 図6(a)に示される発光素子は、発光素子の光出射側の端部(上部)において、長手方向および幅方向の側面が、ぞれぞれ、基板の厚さ方向に対して傾斜している形状を有している。この形状により、発光素子から射出される光を、上方向に向かう光と、長手方向側に傾いた光と、幅方向側に傾いた光と、に拡散することができる。すなわち、一般的な形状の発光素子に比べて、発光素子自体で、光を予め拡散させることができる。 In the light emitting element shown in FIG. 6A, the side surfaces in the longitudinal direction and the width direction are inclined with respect to the thickness direction of the substrate at the end (upper part) on the light emitting side of the light emitting element. It has a shape. With this shape, the light emitted from the light emitting element can be diffused into light that is directed upward, light that is inclined in the longitudinal direction, and light that is inclined in the width direction. That is, light can be diffused in advance by the light emitting element itself as compared with a light emitting element having a general shape.
 また、図6(b)に示される発光素子は、発光素子の光出射側の端部において、長手方向の側面が、基板の厚さ方向に対して傾斜している形状を有している。この形状により、光は、上方向に向かう光と、長手方向側に傾いた光と、に拡散することができる。すなわち、図6(a)の発光素子に比べて、基板13の幅方向に傾いた光を抑えることができるため、線状光源装置11の光取り出し効率をさらに向上されることができる。 Further, the light emitting element shown in FIG. 6B has a shape in which the side surface in the longitudinal direction is inclined with respect to the thickness direction of the substrate at the end of the light emitting element on the light emitting side. With this shape, light can be diffused into light traveling upward and light inclined toward the longitudinal direction. That is, since the light inclined in the width direction of the substrate 13 can be suppressed as compared with the light emitting element of FIG. 6A, the light extraction efficiency of the linear light source device 11 can be further improved.
 図6(a)または(b)に示される発光素子における、傾斜角については、高い光取り出し効率が得られる角度に適宜調整すればよい。 The inclination angle in the light emitting element shown in FIG. 6 (a) or (b) may be appropriately adjusted to an angle at which high light extraction efficiency can be obtained.
 (2.面発光装置の基本構成)
 図7は、本実施形態に係る線状光源装置11を用いて作製した面発光装置61の分解組立図である。また、図8は、面発光装置61の幅方向の断面図である。
(2. Basic structure of surface emitting device)
FIG. 7 is an exploded view of the surface light-emitting device 61 manufactured using the linear light source device 11 according to the present embodiment. FIG. 8 is a cross-sectional view of the surface light emitting device 61 in the width direction.
 図7および図8に示すように、面発光装置61は、平面視矩形状の第1反射シート17と、平板状の導光板62と、導光板62の一方の側面に沿うように設けられた線状光源装置11と、細長い帯状の第2反射シート18とを備える。 As shown in FIGS. 7 and 8, the surface light emitting device 61 is provided along the first reflective sheet 17 having a rectangular shape in plan view, the flat light guide plate 62, and one side surface of the light guide plate 62. The linear light source device 11 and an elongated strip-shaped second reflection sheet 18 are provided.
 第1反射シート17は、例えば、鏡面状のテープ、または、白色等のような光反射率の高いシート状の部材からなる。第1反射シート17によって、導光板62から基板13までの領域が覆われている。このため、線状光源装置11から第1反射シート17側へ進行する光は第1反射シート17で反射されて導光板62の中に戻される。 The first reflection sheet 17 is made of, for example, a mirror-like tape or a sheet-like member having a high light reflectance such as white. A region from the light guide plate 62 to the substrate 13 is covered by the first reflection sheet 17. For this reason, the light traveling from the linear light source device 11 toward the first reflection sheet 17 is reflected by the first reflection sheet 17 and returned to the light guide plate 62.
 導光板62は、例えば、アクリル樹脂やポリカーボネイト樹脂等からなると共に、0.2~1.0mmの厚さを有する透明の板である。面発光装置61は、液晶表示装置の一部となり得る。その場合、導光板62において第2反射シート18が形成された側には、面発光装置61からの光を変調する液晶表示パネル(図示せず)が配置され得る。 The light guide plate 62 is, for example, a transparent plate made of acrylic resin, polycarbonate resin, or the like and having a thickness of 0.2 to 1.0 mm. The surface light-emitting device 61 can be a part of a liquid crystal display device. In that case, a liquid crystal display panel (not shown) that modulates light from the surface light emitting device 61 may be disposed on the side of the light guide plate 62 where the second reflective sheet 18 is formed.
 なお、線状光源装置11における基板13の幅方向の幅が、導光板62の厚さよりも大きい場合には、導光板62の光取り込み口の形状を端面に向かって変形させ、線状光源装置11の基板13の幅方向の幅を、導光板62の端面の厚さと一致させるようにしても良い。 When the width in the width direction of the substrate 13 in the linear light source device 11 is larger than the thickness of the light guide plate 62, the shape of the light intake port of the light guide plate 62 is deformed toward the end surface, and the linear light source device is obtained. 11 in the width direction of the substrate 13 may be made to coincide with the thickness of the end face of the light guide plate 62.
 線状光源装置11は、線状光源装置11の長手方向の軸線が導光板の側面63に平行に対峙するように設置されている。なお、導光板62において、線状光源装置11の発光側の面(樹脂封止層15の面)と対向する側面63の形状を、樹脂封止層15の樹脂の形状に合わせた凹凸形状としてもよい。この場合、光源部と導光板の光の結合効率を向上させることができる。 The linear light source device 11 is installed so that the longitudinal axis of the linear light source device 11 faces the side surface 63 of the light guide plate in parallel. In the light guide plate 62, the shape of the side surface 63 facing the light emitting side surface (the surface of the resin sealing layer 15) of the linear light source device 11 is an uneven shape that matches the shape of the resin of the resin sealing layer 15. Also good. In this case, the light coupling efficiency between the light source unit and the light guide plate can be improved.
 また、第2反射シート18は、第1反射シート17と同一の材質が使用されていてもよい。第2反射シート18によって、線状光源装置11の一方の側面(第1反射シート17が形成されていない面)において、導光板62の端部から基板13までの領域、すなわち、導光板62における発光素子12側の端部が覆われるように形成される。 Further, the second reflective sheet 18 may be made of the same material as the first reflective sheet 17. Due to the second reflection sheet 18, on one side surface of the linear light source device 11 (surface on which the first reflection sheet 17 is not formed), an area from the end of the light guide plate 62 to the substrate 13, that is, in the light guide plate 62. It is formed so that the end on the light emitting element 12 side is covered.
 第1反射シート17および第2反射シート18によって、樹脂封止層15の両側面(幅方向)から出射される各発光素子12の光を、導光板62と、線状光源装置11との隙間から漏れ無いように反射させることができて、各発光素子12からの光を余すことなく導光板62に入射できるよう構成となっている。 By the first reflection sheet 17 and the second reflection sheet 18, the light of each light emitting element 12 emitted from both side surfaces (width direction) of the resin sealing layer 15 is transmitted between the light guide plate 62 and the linear light source device 11. Therefore, the light from each light emitting element 12 can be incident on the light guide plate 62 without being left behind.
 (3.線状光源装置11の製造方法)
 実施形態1に係る線状光源装置の製造方法の一例を説明する。図9は、実施形態1に係る反射板16を形成したプリント板材40の斜視図である。図10は、さらに、樹脂封止層15を形成したプリント板材40の斜視図である。
(3. Manufacturing method of the linear light source device 11)
An example of the manufacturing method of the linear light source device according to the first embodiment will be described. FIG. 9 is a perspective view of the printed board 40 on which the reflector 16 according to the first embodiment is formed. FIG. 10 is a perspective view of the printed board 40 on which the resin sealing layer 15 is further formed.
 まず、略四角形のプリント板材40に配線パターンを形成する(配線パターンを形成する工程)。プリント板材40としては、例えば、白色のガラスBT(ビスマレイミドトリアジン)銅張積層基板等が挙げられる。 First, a wiring pattern is formed on a substantially square printed board 40 (process for forming a wiring pattern). Examples of the printed board 40 include white glass BT (bismaleimide triazine) copper-clad laminate.
 次に、図9に示すように、プリント板材40の上に、反射板16を形成する(反射板を形成する工程)。反射板16は、各発光素子の出射方向(上方向)に向かうにしたがって開口面積が大きくなるように傾斜していることを特徴とし、液晶ポリマ(LCP)、ポリフタルアミド(PPA)等の樹脂を用いて成形し、プリント板材40に接着剤で張り合わせる方法で、或いは、プリント板材40に直接成型する方法で形成する。 Next, as shown in FIG. 9, the reflector 16 is formed on the printed board 40 (step of forming the reflector). The reflecting plate 16 is inclined so that the opening area becomes larger toward the emission direction (upward direction) of each light emitting element, and is made of a resin such as liquid crystal polymer (LCP) or polyphthalamide (PPA). And is formed by pasting the printed board 40 with an adhesive, or by directly molding the printed board 40.
 次に、プリント板材40の実装面に、反射板16の開口部から、発光素子12(図示せず)をダイボンドし、ワイヤーボンディングを行い、電気的に接続する(発光素子を設置する工程)。 Next, the light emitting element 12 (not shown) is die-bonded to the mounting surface of the printed board 40 from the opening of the reflecting plate 16, wire-bonded, and electrically connected (step of installing the light emitting element).
 その後、蛍光体を含んだ透光性の樹脂を反射板16の開口部に、樹脂塗布装置(図示せず)を用いて塗布(充填)し、樹脂封止部14を形成する。透光性の樹脂封止部14は、例えば、シリコーン樹脂中に蛍光体を分散させた樹脂を、発光素子12の上方向側から塗布(充填)して、硬化させることで形成される(樹脂封止部を形成する工程)。 Thereafter, a translucent resin containing a phosphor is applied (filled) to the opening of the reflecting plate 16 using a resin coating device (not shown) to form the resin sealing portion 14. The translucent resin sealing portion 14 is formed, for example, by applying (filling) a resin in which a phosphor is dispersed in a silicone resin from the upper side of the light emitting element 12 and curing it (resin) Step of forming a sealing portion).
 さらに、図10に示すように、透光性の樹脂封止層15は、反射板16、蛍光体を含んだ透光性の樹脂封止部14、および、成型金型で囲まれた領域に、例えば、シリコーン樹脂を注入して硬化させることによって形成される(樹脂封止層を形成する工程)。 Further, as shown in FIG. 10, the translucent resin sealing layer 15 is formed in a region surrounded by the reflecting plate 16, the translucent resin sealing portion 14 including a phosphor, and a molding die. For example, it is formed by injecting and curing a silicone resin (step of forming a resin sealing layer).
 その後、図10に示すように、プリント板材40を、ダイシングによって細長く角棒状に切断して細長い短冊状の基板13を形成する(ダイシング工程)。 Thereafter, as shown in FIG. 10, the printed board 40 is cut into a rectangular bar shape by dicing to form an elongated strip-shaped substrate 13 (dicing step).
 さらに、図8に示すように、導光板62を装着し、基板13、反射板16、樹脂封止層15の幅方向の両面、導光板62の両側面それぞれに、反射部材としての第1反射シート17と、第2反射シート18と装着することで本実施形態に係る線状光源装置11を備えた面発光装置を製造できる。 Further, as shown in FIG. 8, the light guide plate 62 is mounted, and the first reflection as a reflection member is provided on each of the substrate 13, the reflection plate 16, both sides of the resin sealing layer 15 in the width direction, and both sides of the light guide plate 62. By mounting the sheet 17 and the second reflection sheet 18, a surface light emitting device including the linear light source device 11 according to the present embodiment can be manufactured.
 (4.線状光源装置11の主な作用効果)
 図11(a)は、本実施形態に係る線状光源装置11において、発光素子12から幅方向側に出射された光の軌跡を示す模式図である。図11(b)は、線状光源装置11において、発光素子12から長手方向に進行する光の軌跡を示す模式図である。
(4. Main effects of the linear light source device 11)
FIG. 11A is a schematic diagram showing a locus of light emitted from the light emitting element 12 to the width direction side in the linear light source device 11 according to the present embodiment. FIG. 11B is a schematic diagram showing a trajectory of light traveling in the longitudinal direction from the light emitting element 12 in the linear light source device 11.
 本実施形態に係る線状光源装置11によれば、鏡面加工された反射板16が発光素子12を囲むように形成されている。これにより、発光素子12から幅方向に出射した光は、まず、反射板16にて反射してから、樹脂封止層15から出射することになる。従って、上記光が、樹脂封止層15から出射し、反射シート17・18にて反射して、樹脂封止層15に再入射する回数を減らすことができる。これにより、反射シート17・18および樹脂封止層15の接着面である、樹脂封止層15の幅方向の側面における凹凸によって生じる光の散乱および吸収を抑えることができる。その結果、線状光源装置11の更なる薄型化を進めることにより、光の反射回数が増大しても、上記光の散乱および吸収を抑えることができ、効率よく光を取り出すことができる。 According to the linear light source device 11 according to the present embodiment, the mirror-finished reflector 16 is formed so as to surround the light emitting element 12. Thus, the light emitted from the light emitting element 12 in the width direction is first reflected by the reflecting plate 16 and then emitted from the resin sealing layer 15. Therefore, it is possible to reduce the number of times that the light exits from the resin sealing layer 15, is reflected by the reflection sheets 17 and 18, and reenters the resin sealing layer 15. Thereby, the scattering and absorption of the light which arise by the unevenness | corrugation in the side surface of the width direction of the resin sealing layer 15 which is an adhesive surface of the reflective sheets 17 and 18 and the resin sealing layer 15 can be suppressed. As a result, by further reducing the thickness of the linear light source device 11, the scattering and absorption of the light can be suppressed and light can be extracted efficiently even if the number of times of light reflection increases.
 また、反射板16は、発光素子12の光の出射方向に向かうにしたがって広くなるように傾斜している。そのため、第1反射シート17、第2反射シート18において多重散乱を低減させることができる。さらに、図11(a)に示すように、発光素子12から幅方向および長手方向側に大きく傾いて射出された光をより上方向側に傾けさせることができ、さらに効率よく光を出射させることができる。 Further, the reflecting plate 16 is inclined so as to become wider toward the light emitting direction of the light emitting element 12. Therefore, multiple scattering can be reduced in the first reflection sheet 17 and the second reflection sheet 18. Furthermore, as shown in FIG. 11 (a), the light emitted from the light emitting element 12 with a large inclination in the width direction and the longitudinal direction can be inclined upward, and the light can be emitted more efficiently. Can do.
 また、図11(b)に示すように、発光素子12等から上方向に発光された光は、第2凹部21によって効率的に、樹脂封止層15内を長手方向側へ進行(導波)する光とすることができ、長手方向側の進行する光を第1凹部20から取り出すことができる。 Further, as shown in FIG. 11B, light emitted upward from the light emitting element 12 or the like travels efficiently in the longitudinal direction through the resin sealing layer 15 by the second recess 21 (waveguide). Light that travels in the longitudinal direction can be taken out from the first recess 20.
 すなわち、発光素子12から上方向に発光された光は、第1凹部20から取り出される光と、第2凹部21から取り出される光と、に拡散され、すなわち、線状光源装置の発光の形態(輝度、輝線の分布)が、長手方向に拡散され、発光する光の輝線のムラや輝度のムラが生じ難くすることができる。 That is, the light emitted upward from the light emitting element 12 is diffused into the light extracted from the first recess 20 and the light extracted from the second recess 21, that is, the light emission form of the linear light source device ( Luminance and bright line distribution) are diffused in the longitudinal direction, so that uneven bright lines and uneven brightness of emitted light can be made difficult to occur.
 また、一般的に、樹脂封止部14の樹脂に蛍光体が分散されている場合には、製造工程において、蛍光体の濃度にわずかに差が出てくるため、樹脂封止部14から発光される光に色ムラが生じる。これに対し、本実施形態では、第1凹部20において、一方の発光素子12等から発光された光と、隣接する他方の発光素子12等から発光された光と、を混合させることができるので、異なる樹脂封止部14を通過してきた光を混合させることができ、色ムラをより抑制することができる。 In general, when the phosphor is dispersed in the resin of the resin sealing portion 14, the phosphor concentration is slightly different in the manufacturing process. Color unevenness occurs in the emitted light. On the other hand, in the present embodiment, the light emitted from one light emitting element 12 or the like and the light emitted from the other adjacent light emitting element 12 or the like can be mixed in the first recess 20. The light that has passed through the different resin sealing portions 14 can be mixed, and color unevenness can be further suppressed.
 以上をさらに詳しく説明すると、本実施形態に係る線状光源装置11によれば、図11に示すように、第2凹部21が形成されていることにより、発光素子12が発する光、または、樹脂封止部14に蛍光体が分散されている場合においては発光素子12からの光で蛍光体が発する光を、効率的に第2凹部21の表面で全反射させることができ、発光素子12の上方向側に向かって直接外に出て行くことを抑制できる。 The above will be described in more detail. According to the linear light source device 11 according to the present embodiment, as shown in FIG. 11, the light emitted from the light emitting element 12 or the resin due to the formation of the second recess 21. When the phosphor is dispersed in the sealing portion 14, the light emitted from the phosphor with the light from the light emitting element 12 can be efficiently totally reflected on the surface of the second recess 21. It is possible to suppress going out directly toward the upper side.
 第2凹部21の表面で全反射した光は、樹脂封止層15の内部において、第2凹部21と第1凹部20とを結ぶ平面(樹脂封止層15の上方向側の平面)と、反射板16と、の間で生じる反射(屈曲)および全反射によって、長手方向側へ進行する。そして、長手方向側に進行する光を、第1凹部から効率的に引き出すことができる。結果的に、第2凹部21から出て行く光の光量を小さくすることができ、長手方向側に進行する光の光量を大きくすることができ、第1凹部20から出て行く光の光量を大きくすることができる。 The light totally reflected on the surface of the second recess 21 is a plane connecting the second recess 21 and the first recess 20 inside the resin sealing layer 15 (the plane on the upper side of the resin sealing layer 15); The light travels in the longitudinal direction by reflection (bending) and total reflection occurring between the reflector 16 and the reflector 16. And the light which progresses to a longitudinal direction side can be efficiently extracted from a 1st recessed part. As a result, the amount of light exiting from the second recess 21 can be reduced, the amount of light traveling in the longitudinal direction can be increased, and the amount of light exiting from the first recess 20 can be reduced. Can be bigger.
 すなわち、光の配光特性を制御でき、過度に明るくなりやすい発光素子12の上方向側の近傍での輝度を抑制できると共に、発光素子が無いために輝度が低くなり易い隣接する2つの発光素子12の中間領域の輝度を、長手方向に導波する光を効率的に取り出すことで向上させることができる。したがって、線状光源装置の出射端面での発光強度の長手方向の均一性を向上させることができる。 That is, the light distribution characteristics of light can be controlled, the luminance in the vicinity of the upper side of the light emitting element 12 that tends to be excessively bright can be suppressed, and two adjacent light emitting elements that are likely to have low luminance because there is no light emitting element The luminance of the 12 intermediate regions can be improved by efficiently extracting light guided in the longitudinal direction. Therefore, it is possible to improve the uniformity in the longitudinal direction of the emission intensity at the emission end face of the linear light source device.
 さらに、第2凹部21から射出される光は、第2凹部21によって屈折(屈曲)し、光の進行方向が上方向からそれるため、光の分布を長手方向側に拡散することができる。 Furthermore, the light emitted from the second recess 21 is refracted (bent) by the second recess 21 and the light traveling direction deviates from the upper direction, so that the light distribution can be diffused in the longitudinal direction.
 したがって、この輝度の均一性の高い線状光源装置を、面発光装置に搭載することにより、当該面発光装置から高輝度の光を発光させたとしても、光の輝線ムラや輝度ムラが生じ難くすることができる。 Therefore, even if high-luminance light is emitted from the surface light-emitting device by mounting this linear light source device with high uniformity of brightness on the surface light-emitting device, light emission line unevenness and luminance unevenness hardly occur. can do.
 一方で、樹脂封止部14の樹脂に蛍光体が分散されている場合において、図20(a)~(c)に示すような、反射板と発光素子とが交互に配置された従来の線状光源装置では、反射板にて形成された凹部によって発光素子が独立しているため、隣接する発光素子12が発する光は混ざることができない。 On the other hand, in the case where the phosphor is dispersed in the resin of the resin sealing portion 14, a conventional line in which reflectors and light emitting elements are alternately arranged as shown in FIGS. 20 (a) to (c). In the light source device, since the light emitting elements are independent by the concave portions formed by the reflector, the light emitted from the adjacent light emitting elements 12 cannot be mixed.
 それに対し、本実施形態に係る線状光源装置11では、発光素子12の周囲に対して配設された反射板と、上記複数の発光素子および反射板を覆うように配置された樹脂封止層15と、樹脂封止層15に形成された第1凹部と第2凹部とにより、隣接する蛍光体が発する光が混ざり色ムラを抑制することが可能となる。 On the other hand, in the linear light source device 11 according to the present embodiment, a reflection plate disposed with respect to the periphery of the light emitting element 12, and a resin sealing layer disposed so as to cover the plurality of light emitting elements and the reflection plate. 15 and the first concave portion and the second concave portion formed in the resin sealing layer 15 allow the light emitted from the adjacent phosphors to mix and suppress color unevenness.
 (4-1.反射板16について)
 図11(a)に示すように、本実施形態では、発光素子12において、開口が広がるように傾斜した反射板16が存在するため、特に、幅方向で、発光素子12から出射された光が、反射板16によって、効率的に上方向側へ光を射出することができる。すなわち、第1反射シート17および第2反射シート18間での多重散乱を低減させ、効率よく光を出射させることができる。
(4-1. About the reflector 16)
As shown in FIG. 11A, in the present embodiment, the light emitting element 12 includes the reflecting plate 16 that is inclined so that the opening is widened. The light can be efficiently emitted upward by the reflecting plate 16. That is, multiple scattering between the first reflection sheet 17 and the second reflection sheet 18 can be reduced, and light can be emitted efficiently.
 (4-2.第2凹部21について)
 より具体的に、第2凹部21によって、発光素子12から上方向に発光する光を樹脂封止層15内で長手方向側へ進行(導波)する光とする原理について詳細に説明する。本実施形態に係る線状光源装置において、第2凹部21の斜面の傾斜角は、全反射の臨界角θc以上に傾いている。すなわち、第2凹部21は、発光素子12等から上方向に発光された光を長手方向側に全反射させる形態を有している。すなわち、第2凹部の傾斜角を全反射の臨界角θcより大きくすることにより、発光素子から上方向に出射される光の進行方向を、効率的に長手方向側に変えることができる。
(4-2. Second recess 21)
More specifically, the principle of using the second recess 21 to convert light emitted upward from the light emitting element 12 into light traveling (waveguided) in the longitudinal direction in the resin sealing layer 15 will be described in detail. In the linear light source device according to the present embodiment, the inclination angle of the inclined surface of the second recess 21 is inclined more than the critical angle θc of total reflection. That is, the second recess 21 has a form in which light emitted upward from the light emitting element 12 and the like is totally reflected in the longitudinal direction. That is, by making the inclination angle of the second recess larger than the critical angle θc of total reflection, the traveling direction of the light emitted upward from the light emitting element can be efficiently changed to the longitudinal direction side.
 ここで、線状光源装置の外部を大気として、樹脂部の境界面で生じる全反射について説明する。この場合、全反射の臨界角θcは、次の(1)式にて求められる。
n・sinθc=1・・・・(1)
(1)式において、nは、樹脂のもつ屈折率を表す。一般に、屈折率は、光波長依存性を有している。そこで、本実施形態において、樹脂の屈折率については、発光素子12から出射する光の中心波長(発光ピーク波長)に基づいて考えるとする。
Here, total reflection occurring on the boundary surface of the resin portion will be described with the outside of the linear light source device as the atmosphere. In this case, the critical angle θc of total reflection is obtained by the following equation (1).
n · sin θc = 1 (1)
In the formula (1), n represents the refractive index of the resin. In general, the refractive index has light wavelength dependency. Therefore, in this embodiment, the refractive index of the resin is considered based on the center wavelength (emission peak wavelength) of the light emitted from the light emitting element 12.
 例えば、発光素子として波長455nmの青色発光素子を用いた場合、樹脂封止層15の樹脂の屈折率nは1.5となり、全反射の臨界角θcを上式から計算すると概算して42°となる。 For example, when a blue light-emitting element having a wavelength of 455 nm is used as the light-emitting element, the refractive index n of the resin of the resin sealing layer 15 is 1.5, and the critical angle θc of total reflection is approximately 42 ° when calculated from the above equation. It becomes.
 図12(a)、(b)に基づいて、さらに具体的に説明する。図12(a)、(b)は、本実施形態に係る線状光源装置11において、発光素子12から上方向に出射された光の軌跡を示す模式図である。 More specific description will be given based on FIGS. 12 (a) and 12 (b). FIGS. 12A and 12B are schematic views showing the locus of light emitted upward from the light emitting element 12 in the linear light source device 11 according to the present embodiment.
 図12(a)は、第2凹部21の表面の傾斜角θが、発光素子12から上方向に射出された光の全反射の臨界角θcよりも緩い緩斜面になっている場合における、発光素子12から上方向に出射された光の軌跡を示す図である。図12(a)において、光502は、発光素子12から上方向に射出された光の軌跡であり、光503は、第2凹部21の表面(樹脂封止層15と外部との界面)で屈折後外部側に出射する光の軌跡である。 FIG. 12A shows light emission when the inclination angle θ of the surface of the second recess 21 is a gentle slope that is gentler than the critical angle θc of total reflection of light emitted upward from the light emitting element 12. FIG. 6 is a diagram showing a trajectory of light emitted upward from an element 12. In FIG. 12A, light 502 is a locus of light emitted upward from the light emitting element 12, and light 503 is on the surface of the second recess 21 (interface between the resin sealing layer 15 and the outside). It is a locus of light emitted to the outside after refraction.
 また、図12(b)は、第2凹部21の表面の傾斜角θが、発光素子12から上方向に射出された光の全反射の臨界角θcよりも急傾斜になっている場合における、発光素子12から上方向に出射された光の軌跡を示す模式図である。図12(b)において、光500は、発光素子12から上方向に出た光の軌跡であり、光501は、第2凹部21の表面(樹脂封止層15と外部との界面)で全反射後、樹脂封止層15の内部を長手方向側に進行する光の軌跡である。 FIG. 12B shows the case where the inclination angle θ of the surface of the second recess 21 is steeper than the critical angle θc of total reflection of light emitted upward from the light emitting element 12. FIG. 4 is a schematic diagram showing a locus of light emitted upward from the light emitting element 12. In FIG. 12B, light 500 is a trajectory of light emitted upward from the light emitting element 12, and the light 501 is entirely on the surface of the second recess 21 (interface between the resin sealing layer 15 and the outside). This is a trajectory of light traveling in the longitudinal direction inside the resin sealing layer 15 after reflection.
 図12(a)に示すように、第2凹部21の表面の傾斜角θが小さく、傾斜角θ<θcである場合には、発光素子12から軸上方向に放出される光502は、第2凹部21の表面で屈折を受けて、上方向からそれる。一部は外部に射出される光503となり、発光素子12から上方向に直接出射される光の輝度を低減することができる上、第2凹部21による屈折を受けて進行方向を上方向からそらせることができる。第2凹部21から射出される光を長手方向に拡散することができるため、線状光源装置11の発光強度の均一性を高めることができ、輝度のムラ、色ムラを抑制することができる。 As shown in FIG. 12A, when the inclination angle θ of the surface of the second recess 21 is small and the inclination angle θ <θc, the light 502 emitted from the light emitting element 12 in the axial direction is 2 Refracted on the surface of the recess 21 and deflected from above. A part of the light is emitted to the outside 503, and the brightness of the light directly emitted upward from the light emitting element 12 can be reduced. Further, the light is refracted by the second recess 21 and the traveling direction is deflected from the upward direction. be able to. Since the light emitted from the second recess 21 can be diffused in the longitudinal direction, the uniformity of the light emission intensity of the linear light source device 11 can be improved, and the unevenness of brightness and the unevenness of color can be suppressed.
 一方、図12(b)に示すように、第2凹部21の表面の傾斜角θが大きく、傾斜角θ>θcである場合には、発光素子12から上方向に放出される光500は、より大きな割合で、第2凹部の斜面で全反射を受けて上方向から樹脂封止層15の内部を長手方向側に進行する光501となる。これにより、第2凹部から射出される光の分布を長手方向により拡散することができるため、線状光源装置11の発光強度のより均一性を高めることができ、輝度のムラ、色ムラをより抑制することができる。したがって、本実施形態に係る線状光源装置の第2凹部の表面の傾斜角θは全反射の臨界角θcよりも急傾斜になっていることが好ましい。 On the other hand, as shown in FIG. 12B, when the inclination angle θ of the surface of the second recess 21 is large and the inclination angle θ> θc, the light 500 emitted upward from the light emitting element 12 is At a larger rate, the light 501 is totally reflected by the slope of the second concave portion and travels upward in the resin sealing layer 15 from the upper side toward the longitudinal direction. Thereby, since the distribution of the light emitted from the second concave portion can be diffused in the longitudinal direction, the uniformity of the light emission intensity of the linear light source device 11 can be improved, and the luminance unevenness and color unevenness can be further increased. Can be suppressed. Therefore, it is preferable that the inclination angle θ of the surface of the second recess of the linear light source device according to the present embodiment is steeper than the critical angle θc of total reflection.
 (4-3.第1凹部20について)
 次に、樹脂封止層15内で長手方向側へ進行する光を第1凹部20から効率的に引き出す原理について、図13(a)~(d)を用いて説明する。図13は、本実施形態に係る線状光源装置11において、第2凹部21から長手方向側へ進行する光の軌跡を示す模式図である。
(4-3. About the first recess 20)
Next, the principle of efficiently extracting the light traveling in the longitudinal direction in the resin sealing layer 15 from the first recess 20 will be described with reference to FIGS. 13 (a) to (d). FIG. 13 is a schematic diagram showing a trajectory of light traveling from the second recess 21 to the longitudinal direction side in the linear light source device 11 according to the present embodiment.
 図13(a)は、第1凹部20付近の軌跡を示す模式図であり、(b)は、(a)の比較例であり、第1凹部20が存在しない場合の軌跡を示す模式図であり、(c)は、長手方向側へ進行する傾きα(i)の小さい光602が、第1凹部20で全反射しなかった場合を示す模式図であり、(d)は、長手方向側へ進行する傾きα(i)の小さい光605が、第1凹部20で全反射した場合を示す模式図である。 FIG. 13A is a schematic diagram showing a trajectory in the vicinity of the first concave portion 20, and FIG. 13B is a schematic diagram showing a trajectory when the first concave portion 20 is not present, which is a comparative example of FIG. And (c) is a schematic diagram showing a case where light 602 having a small inclination α (i) traveling in the longitudinal direction side is not totally reflected by the first concave portion 20, and (d) is a diagram in the longitudinal direction side. FIG. 6 is a schematic diagram showing a case where light 605 having a small inclination α (i) traveling toward the center is totally reflected by the first recess 20.
 図13(b)に示すように、本実施形態において、発光素子12から遠く輝度が低くなり易い領域である、隣接する2つの発光素子12の中間領域(2つの第2凹部21の中間付近)に、図13(a)に示すように、第1凹部20が存在する場合、長手方向に導波する光600を、光601として効率的に取り出すことができる。 As shown in FIG. 13B, in the present embodiment, an intermediate region between two adjacent light emitting elements 12 (near the middle between the two second recesses 21), which is a region far from the light emitting element 12 and whose luminance tends to be low. In addition, as shown in FIG. 13A, when the first recess 20 is present, the light 600 guided in the longitudinal direction can be efficiently extracted as the light 601.
 一方、図13(c)に示すように、長手方向側へ進行する光の進路の長手方向に対する傾きα(i)が小さい場合、光602は、第1凹部20の一方の側面から射出され、光603となるが、第1凹部20の他方の側面に再入射し、光604となる。 On the other hand, as shown in FIG. 13C, when the inclination α (i) with respect to the longitudinal direction of the path of light traveling in the longitudinal direction is small, the light 602 is emitted from one side surface of the first recess 20; Light 603 is incident on the other side surface of the first recess 20 and becomes light 604.
 そこで、図13(d)に示すように、傾斜角θ(i)を小さくすることで、光605は、第1凹部20の側面で全反射し、光606となり、反射板16で反射することで、長手方向側へ進行する光の進路が、長手方向に対して大きな傾きの光607となり、第1凹部20の側面から射出される。 Therefore, as shown in FIG. 13D, by reducing the inclination angle θ (i), the light 605 is totally reflected on the side surface of the first recess 20, becomes light 606, and is reflected by the reflecting plate 16. Thus, the path of light traveling in the longitudinal direction becomes light 607 having a large inclination with respect to the longitudinal direction, and is emitted from the side surface of the first recess 20.
 すなわち、第1凹部20の断面V字状の溝の側面の傾斜角θ(i)は、全反射の臨界角θcより小さい角度を有することがより好ましい。 That is, it is more preferable that the inclination angle θ (i) of the side surface of the groove having the V-shaped cross section of the first recess 20 is smaller than the critical angle θc of total reflection.
 そうすることで、長手方向側の進行する光のうち、より傾きの少ない長手方向側の進行する光を、全反射させることができるため、上記再入射を防ぐことができる。結果として、長手方向側の進行する光を効率的に第1凹部20から取り出すことができる。 By doing so, among the traveling light on the longitudinal direction side, the traveling light on the longitudinal direction side with less inclination can be totally reflected, so that the re-incident can be prevented. As a result, the light traveling in the longitudinal direction can be efficiently extracted from the first recess 20.
 〔実施形態2〕
 次に、本発明の他の実施形態について説明する。なお、上記実施形態で説明した構成と同様の機能を有する構成には同一の符号を付して、その説明を省略する。
[Embodiment 2]
Next, another embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the structure which has the function similar to the structure demonstrated in the said embodiment, and the description is abbreviate | omitted.
 (1.線状光源装置111の基本構成)
 図14は、実施形態2に係る線状光源装置111の斜視図である。図15は、線状光源装置111を長手方向に沿って断面した断面図である。図16は線状光源装置111の平面図である。また、図17は、線状光源装置111を幅方向に沿って断面した断面図である。
(1. Basic configuration of the linear light source device 111)
FIG. 14 is a perspective view of the linear light source device 111 according to the second embodiment. FIG. 15 is a cross-sectional view of the linear light source device 111 taken along the longitudinal direction. FIG. 16 is a plan view of the linear light source device 111. FIG. 17 is a cross-sectional view of the linear light source device 111 taken along the width direction.
 図14に示すように、実施形態2に係る線状光源装置111は、実施形態1に係る線状光源装置11に比べて、反射板116の構造が異なり、その他の構成は同様である。 As shown in FIG. 14, the linear light source device 111 according to the second embodiment is different from the linear light source device 11 according to the first embodiment in the structure of the reflector 116, and the other configurations are the same.
 発光素子12の周辺は、反射板116にて囲まれており、反射板116の発光素子12と向かい合う側の側面は、各発光素子12の出射方向に向かうにしたがって開口面積が大きくなるように傾斜している下層側面131と、開口部付近は、下層側面131によって形成される角状の凹部形状をしている上層側面132からなっている。 The periphery of the light emitting element 12 is surrounded by a reflecting plate 116, and the side surface of the reflecting plate 116 on the side facing the light emitting element 12 is inclined so that the opening area becomes larger toward the emission direction of each light emitting element 12. The lower layer side surface 131 and the vicinity of the opening are formed by an upper layer side surface 132 having a rectangular recess shape formed by the lower layer side surface 131.
 図15および図17に示すように、上層側面132は、長手方向側のみに形成されている。また、上層側面132は、段状に形成されている。すなわち、上層側面132は、下層側面131により形成される凹部の開口面より広い底面を有する角状で柱状の凹部形状となっており、側面は傾斜を有さない。下層側面131により形成される凹部の開口面は、柱状の形状の上層側面132の底面の枠内に含まれる形態を有する。 15 and FIG. 17, the upper layer side surface 132 is formed only on the longitudinal direction side. The upper layer side surface 132 is formed in a step shape. That is, the upper layer side surface 132 has an angular columnar recess shape having a bottom surface wider than the opening surface of the recess formed by the lower layer side surface 131, and the side surface has no inclination. The opening surface of the recess formed by the lower layer side surface 131 has a form included in the bottom frame of the columnar upper layer side surface 132.
 反射板116は、下層側面131および上層側面132により、一段凹部を施した形状であり、上層側面132の上方向の端部まで、樹脂封止部14が形成されている。すなわち、図17に示すように、基板13の幅方向で、樹脂封止部14の一部は第1反射シート17および第2反射シート18と接着する形態となっている。 The reflection plate 116 has a shape with a one-step recess formed by the lower layer side surface 131 and the upper layer side surface 132, and the resin sealing portion 14 is formed up to the upper end of the upper layer side surface 132. That is, as shown in FIG. 17, in the width direction of the substrate 13, a part of the resin sealing portion 14 is bonded to the first reflection sheet 17 and the second reflection sheet 18.
 (2.線状光源装置111の製造方法)
 実施形態2では、反射板を形成する工程において、プリント板材40上に、図18に示すような形状の反射板116を形成する。図18は、本実施形態に係る樹脂封止層を形成したプリント板材の斜視図である。
(2. Manufacturing method of linear light source device 111)
In the second embodiment, in the step of forming the reflection plate, the reflection plate 116 having a shape as shown in FIG. 18 is formed on the printed board material 40. FIG. 18 is a perspective view of a printed board material on which a resin sealing layer according to this embodiment is formed.
 図18に示すように、プリント板材40上に形成された反射板116は、一段凹部を施した形状としている。このような形状とすることで、反射板116がなす複数の凹状部に、樹脂封止部14を形成する樹脂を連続的に塗布する(流し込む)ことができる。 As shown in FIG. 18, the reflection plate 116 formed on the printed board 40 has a shape with a one-step recess. By setting it as such a shape, the resin which forms the resin sealing part 14 can be continuously apply | coated (pour) into the several concave part which the reflecting plate 116 makes.
 すなわち、図18のY軸方向(基板13の幅方向)に向かって直線状に線引きにて樹脂を塗布(充填)することができる。そのため、樹脂封止部14を形成するための複雑な樹脂塗布動作を無くし、塗布時間を削減することができる。 That is, the resin can be applied (filled) linearly in the Y-axis direction (the width direction of the substrate 13) in FIG. Therefore, the complicated resin coating operation for forming the resin sealing portion 14 can be eliminated, and the coating time can be reduced.
 また、異なる線状光源装置同士で樹脂封止部を構成する樹脂の均一性を向上させることができ、信頼性の高い線状光源装置を提供することができる。なお、その他の工程は実施形態1と同様な工程である。 Further, the uniformity of the resin constituting the resin sealing portion can be improved between different linear light source devices, and a highly reliable linear light source device can be provided. The other steps are the same as those in the first embodiment.
 なお、本発明は、上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 Note that the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention.
 以上にて説明した本願発明の線状光源装置11、111を、従来技術にて説明した線状光源装置410に置き換えることによって、輝度むらの小さく、光損失の少ない(低消費電力の)面状光源装置を提供することができる。 By replacing the linear light source devices 11 and 111 of the present invention described above with the linear light source device 410 described in the related art, a planar shape with small luminance unevenness and low light loss (low power consumption). A light source device can be provided.
 以上のように、本発明に係る線状光源装置は、細長の基板上の長手方向に配列された複数の発光素子から線状の光を照射する線状光源装置であって、上記基板の上面の幅方向端部に、上記発光素子からの光を反射する反射部材が、上記発光素子と対向するように設けられており、上記基板、上記発光素子、および上記反射部材上に、上記発光素子を封止する透光性の封止部材が設けられている。 As described above, the linear light source device according to the present invention is a linear light source device that irradiates linear light from a plurality of light emitting elements arranged in a longitudinal direction on an elongated substrate, and is an upper surface of the substrate. A reflection member that reflects light from the light emitting element is provided at an end in the width direction so as to face the light emitting element, and the light emitting element is provided on the substrate, the light emitting element, and the reflecting member. A light-transmitting sealing member is provided for sealing.
 上記の構成によれば、発光素子から基板の幅方向に出射した光は、まず、反射部材にて反射してから、封止部材から出射することになる。従って、上記光が、上記基板に取り付けられた封止部材から出射し、反射シートにて反射して、上記封止部材に再入射する回数を減らすことができ、上記封止部材による光の散乱および吸収を減らすことができる。その結果、線状光源装置の更なる薄型化を進めることにより、光の反射回数が増大しても、上記光の散乱および吸収を抑えることができ、効率よく光を取り出すことができる。 According to the above configuration, the light emitted from the light emitting element in the width direction of the substrate is first reflected by the reflecting member and then emitted from the sealing member. Therefore, the number of times that the light is emitted from the sealing member attached to the substrate, reflected by the reflection sheet, and reentered the sealing member can be reduced, and the light is scattered by the sealing member. And can reduce absorption. As a result, by further reducing the thickness of the linear light source device, the scattering and absorption of the light can be suppressed and the light can be extracted efficiently even if the number of times of light reflection increases.
 なお、上記反射部材は、上記基板の上面において、上記発光素子を囲む領域に設けられていてもよい。また、上記複数の発光素子を囲む領域は、上記基板の上面の幅方向端部の領域に加えて、隣り合う上記発光素子どうしの間の領域であってもよい。上記反射部材が設けられる領域が広くなるにつれて、上記基板と上記反射部材との密着性を向上させることができる。 The reflective member may be provided in a region surrounding the light emitting element on the upper surface of the substrate. Further, the region surrounding the plurality of light emitting elements may be a region between the adjacent light emitting elements in addition to the region at the end in the width direction of the upper surface of the substrate. As the region where the reflecting member is provided becomes wider, the adhesion between the substrate and the reflecting member can be improved.
 さらに、上記反射部材は、上記基板の上面に垂直な方向の厚みにおいて、隣り合う上記発光素子どうしの間の領域に形成された反射部材よりも、上記基板の上面の幅方向端部の領域に形成された反射部材の方が薄いことが好ましい。この場合、上記線状光源装置の製造工程における、例えば蛍光体を含む樹脂で上記発光素子を被覆する工程において、上記発光素子を通る上記幅方向の線に沿って、上記樹脂を連続的に塗布する(流し込む)ことができ、製造効率を向上させることができる。 In addition, the reflective member has a thickness in a direction perpendicular to the top surface of the substrate, and is located in a region at an end portion in the width direction of the top surface of the substrate, rather than a reflective member formed in a region between adjacent light emitting elements. It is preferable that the formed reflecting member is thinner. In this case, in the step of manufacturing the linear light source device, for example, in the step of covering the light emitting element with a resin containing a phosphor, the resin is continuously applied along the line in the width direction passing through the light emitting element. (Injection) can be performed, and the production efficiency can be improved.
 本発明に係る線状光源装置では、上記反射部材は、上記発光素子から直接到達した光を上記基板の法線方向に反射するように、傾斜していることが好ましい。この場合、上記光が、上記封止部材から出射し反射シートにて反射して上記封止部材に再入射する回数をさらに減らすことができ、上記封止部材による光の散乱および吸収をさらに減らすことができ、その結果、さらに効率よく光を取り出すことができる。 In the linear light source device according to the present invention, it is preferable that the reflecting member is inclined so as to reflect light directly reaching the light emitting element in the normal direction of the substrate. In this case, it is possible to further reduce the number of times the light is emitted from the sealing member, reflected by the reflection sheet, and re-entered the sealing member, and further reduces scattering and absorption of light by the sealing member. As a result, light can be extracted more efficiently.
 本発明に係る線状光源装置では、上記封止部材は、隣り合う上記発光素子の間に設けられ、上記封止部材内に導波された光を屈曲して、該光の一部または全部を外部に導波させる第1凹部と、上記発光素子から上記基板上面の法線方向に照射された光を屈曲して、該光の一部または全部を上記封止部材内に導波させる第2凹部とを備えることが好ましい。 In the linear light source device according to the present invention, the sealing member is provided between the light emitting elements adjacent to each other, and bends light guided into the sealing member so that part or all of the light is transmitted. A first recess that guides the light to the outside, and a light that is emitted from the light emitting element in the normal direction of the upper surface of the substrate is bent, and a part or all of the light is guided into the sealing member. It is preferable to provide two recesses.
 この場合、発光素子からの光は、一部または全部が第2の凹部によって封止部材内に導波される。従って、上記発光素子から外部に直接照射される、高くなり易い輝度を抑えることができる。また、上記封止部材内に導波された光は、一部または全部が第1の凹部によって、外部に照射される。従って、隣り合う発光素子どうしの間における、低くなり易い輝度を増やすことができる。その結果、高輝度で発光させた場合であっても、輝度ムラおよび輝線を抑えることができる。 In this case, part or all of the light from the light emitting element is guided into the sealing member by the second recess. Accordingly, it is possible to suppress luminance that is directly emitted from the light emitting element and tends to be high. In addition, part or all of the light guided into the sealing member is irradiated to the outside by the first recess. Accordingly, it is possible to increase the luminance that tends to decrease between adjacent light emitting elements. As a result, even when light is emitted with high luminance, uneven luminance and bright lines can be suppressed.
 なお、上記封止部材の第1の凹部は、上記封止部材内を上記長手方向に導波された光を全反射することが好ましい。この場合、当該光が上記封止部材の長手方向端部から照射されることを防止できるので、上記線状光源装置からの輝度を増加させることができる。 In addition, it is preferable that the 1st recessed part of the said sealing member totally reflects the light guided in the said longitudinal direction in the said sealing member. In this case, since it can prevent that the said light is irradiated from the longitudinal direction edge part of the said sealing member, the brightness | luminance from the said linear light source device can be increased.
 また、上記封止部材の第2の凹部は、上記発光素子から上記基板上面の法線方向に照射された光を全て反射することが好ましい。この場合、上記発光素子からの高輝度の光が外部に直接照射されることを防止できるので、上記輝度ムラをさらに抑えることができる。 In addition, it is preferable that the second concave portion of the sealing member reflects all the light emitted from the light emitting element in the normal direction of the upper surface of the substrate. In this case, the high luminance light from the light emitting element can be prevented from being directly irradiated to the outside, and thus the luminance unevenness can be further suppressed.
 なお、上記封止部材の第1の凹部および第2の凹部の形状の例としては、上記基板の長手方向に沿った断面の形状がV字型であるものが挙げられる。 In addition, as an example of the shape of the 1st recessed part and the 2nd recessed part of the said sealing member, the shape of the cross section along the longitudinal direction of the said board | substrate is mentioned.
 本発明に係る線状光源装置では、複数の上記発光素子に電気を供給する外部接続端子が上記基板の長手方向の端部に設けられていることが好ましい。この場合、基板の長手方向の端部から効率的に放熱することができる。 In the linear light source device according to the present invention, it is preferable that an external connection terminal for supplying electricity to the plurality of light emitting elements is provided at an end portion in the longitudinal direction of the substrate. In this case, heat can be efficiently radiated from the longitudinal end of the substrate.
 本発明に係る線状光源装置では、上記封止部材は、蛍光体を含んでおり、かつ上記各発光素子を被覆する蛍光部を備えていることが好ましい。この場合、所望の色を発光させた場合であっても、色度ムラを抑えることができる。また、蛍光体の種類や透光性の樹脂に分散させる蛍光体の濃度を適宜選択すれば、上記封止部材から射出される光を任意の色度に設定することができる。 In the linear light source device according to the present invention, it is preferable that the sealing member includes a fluorescent material and includes a fluorescent portion that covers each of the light emitting elements. In this case, chromaticity unevenness can be suppressed even when a desired color is emitted. Further, the light emitted from the sealing member can be set to an arbitrary chromaticity by appropriately selecting the type of phosphor and the concentration of the phosphor dispersed in the translucent resin.
 本発明に係る線状光源装置では、上記発光素子の光出射側の端部において、上記長手方向の側面は、上記基板の厚さ方向に対して傾斜していてもよい。この場合、発光素子から射出される光を、上方向に向かう光と、長手方向側に傾いた光と、に拡散することができる。すなわち、一般的な形状の発光素子に比べて、発光素子自体で、光を予め拡散させることができる。よって、線状光源装置の光取り出し効率をさらに向上されることができる。 In the linear light source device according to the present invention, the side surface in the longitudinal direction may be inclined with respect to the thickness direction of the substrate at the end of the light emitting element on the light emitting side. In this case, the light emitted from the light emitting element can be diffused into light directed upward and light inclined toward the longitudinal direction. That is, light can be diffused in advance by the light emitting element itself as compared with a light emitting element having a general shape. Therefore, the light extraction efficiency of the linear light source device can be further improved.
 なお、上記構成の線状光源装置と、該線状光源装置から線状に入射された光を面状の光で出射するための導光板とを備える面発光装置であれば、上述と同様の効果を奏することができる。また、上記構成の面発光装置と、該面発光装置からの光を変調する液晶表示パネルとを備えることにより表示出力する液晶表示装置であれば、上述と同様の効果を奏することができる。 In addition, if it is a surface light-emitting device provided with the linear light source device of the said structure and the light-guide plate for radiate | emitting the light linearly incident from this linear light source device with planar light, it is the same as that of the above-mentioned There is an effect. In addition, the same effects as described above can be obtained as long as the liquid crystal display device performs display output by including the surface light emitting device having the above configuration and a liquid crystal display panel that modulates light from the surface light emitting device.
 以上のように、本発明に係る線状光源装置は、発光素子から基板の幅方向に出射した光が、まず反射部材にて反射してから、封止部材から出射することにより、効率よく光を取り出すことができるので、バックライトを有する任意の表示装置の光源に適用可能であり、特に、携帯電話、デジタルカメラ、携帯型ゲーム機等の携帯型電子機器における表示装置の光源に好適である。 As described above, in the linear light source device according to the present invention, the light emitted from the light emitting element in the width direction of the substrate is first reflected by the reflecting member and then emitted from the sealing member. Therefore, it can be applied to a light source of an arbitrary display device having a backlight, and is particularly suitable for a light source of a display device in a portable electronic device such as a mobile phone, a digital camera, or a portable game machine. .
11,111 線状光源装置
12 発光素子
13 基板
14 樹脂封止部(蛍光部)
15 樹脂封止層(封止部材)
16、116 反射板(反射部材)
17 第1反射シート
18 第2反射シート
20 第1凹部
21 第2凹部
40 プリント板材(板材)
51a、b 外部接続端子
52a、b 外部接続端子
61 面発光装置
62 導光板
11, 111 Linear light source device 12 Light emitting element 13 Substrate 14 Resin sealing part (fluorescent part)
15 Resin sealing layer (sealing member)
16, 116 Reflector (reflective member)
17 1st reflection sheet 18 2nd reflection sheet 20 1st recessed part 21 2nd recessed part 40 Printed board material (plate material)
51a, b External connection terminals 52a, b External connection terminals 61 Surface light emitting device 62 Light guide plate

Claims (13)

  1.  細長の基板上の長手方向に配列された複数の発光素子から線状の光を照射する線状光源装置であって、
     上記基板の上面の幅方向端部に、上記発光素子からの光を反射する反射部材が、上記発光素子と対向するように設けられており、
     上記基板、上記発光素子、および上記反射部材上に、上記発光素子を封止する透光性の封止部材が設けられていることを特徴とする線状光源装置。
    A linear light source device that emits linear light from a plurality of light emitting elements arranged in a longitudinal direction on an elongated substrate,
    A reflection member that reflects light from the light emitting element is provided at the end in the width direction of the upper surface of the substrate so as to face the light emitting element.
    A linear light source device, wherein a translucent sealing member for sealing the light emitting element is provided on the substrate, the light emitting element, and the reflecting member.
  2.  上記反射部材は、上記基板の上面において、上記発光素子を囲む領域に設けられていることを特徴とする請求項1に記載の線状光源装置。 2. The linear light source device according to claim 1, wherein the reflecting member is provided in a region surrounding the light emitting element on the upper surface of the substrate.
  3.  上記複数の発光素子を囲む領域は、上記基板の上面の幅方向端部の領域に加えて、隣り合う上記発光素子どうしの間の領域であることを特徴とする請求項2に記載の線状光源装置。 3. The linear shape according to claim 2, wherein the region surrounding the plurality of light emitting elements is a region between the adjacent light emitting elements in addition to the region of the end portion in the width direction of the upper surface of the substrate. Light source device.
  4.  上記反射部材は、上記基板の上面に垂直な方向の厚みにおいて、隣り合う上記発光素子どうしの間の領域に形成された反射部材よりも、上記基板の上面の幅方向端部の領域に形成された反射部材の方が薄いことを特徴とする請求項3に記載の線状光源装置。 The reflective member is formed in a region at an end portion in the width direction of the upper surface of the substrate rather than a reflective member formed in a region between the adjacent light emitting elements in a thickness in a direction perpendicular to the upper surface of the substrate. The linear light source device according to claim 3, wherein the reflecting member is thinner.
  5.  上記反射部材は、上記発光素子から直接到達した光を上記基板の法線方向に反射するように、傾斜していることを特徴とする請求項1~4の何れか1項に記載の線状光源装置。 The linear member according to any one of claims 1 to 4, wherein the reflecting member is inclined so as to reflect light directly reaching the light emitting element in a normal direction of the substrate. Light source device.
  6.  上記封止部材は、
     隣り合う上記発光素子の間に設けられ、上記封止部材内に導波された光を屈曲して、該光の一部または全部を外部に導波させる第1凹部と、
     上記発光素子から上記基板上面の法線方向に照射された光を屈曲して、該光の一部または全部を上記封止部材内に導波させる第2凹部とを備えることを特徴とする請求項1~5の何れか1項に記載の線状光源装置。
    The sealing member is
    A first recess provided between the light emitting elements adjacent to each other and bending the light guided in the sealing member to guide part or all of the light to the outside;
    And a second recess that bends light emitted from the light emitting element in the normal direction of the upper surface of the substrate and guides part or all of the light into the sealing member. Item 6. The linear light source device according to any one of Items 1 to 5.
  7.  上記封止部材の第1凹部は、上記封止部材内を上記長手方向に導波された光を全反射することを特徴とする請求項6に記載の線状光源装置。 The linear light source device according to claim 6, wherein the first concave portion of the sealing member totally reflects the light guided in the longitudinal direction in the sealing member.
  8.  上記封止部材の第2凹部は、上記発光素子から上記基板上面の法線方向に照射された光を全反射することを特徴とする請求項6または7に記載の線状光源装置。 The linear light source device according to claim 6 or 7, wherein the second concave portion of the sealing member totally reflects light irradiated from the light emitting element in a normal direction of the upper surface of the substrate.
  9.  複数の上記発光素子に電気を供給する外部接続端子が上記基板の長手方向の端部に設けられていることを特徴とする請求項1~8の何れか1項に記載の線状光源装置。 9. The linear light source device according to claim 1, wherein an external connection terminal for supplying electricity to the plurality of light emitting elements is provided at an end portion in a longitudinal direction of the substrate.
  10.  上記封止部材は、蛍光体を含んでおり、かつ上記各発光素子を被覆する蛍光部を備えていることを特徴とする請求項1~9の何れか1項に記載の線状光源装置。 The linear light source device according to any one of claims 1 to 9, wherein the sealing member includes a phosphor and includes a fluorescent portion that covers each of the light emitting elements.
  11.  上記発光素子の光出射側の端部において、上記長手方向の側面は、上記基板の厚さ方向に対して傾斜していることを特徴とする請求項1~10の何れか1項に記載の線状光源装置。 11. The longitudinal side surface of the light emitting element at an end of the light emitting element is inclined with respect to the thickness direction of the substrate. Linear light source device.
  12.  請求項1~11の何れか1項に記載の線状光源装置と、
     該線状光源装置から線状に入射された光を面状の光で出射するための導光板とを備える面発光装置。
    A linear light source device according to any one of claims 1 to 11,
    A surface light emitting device comprising: a light guide plate for emitting light linearly incident from the linear light source device as planar light.
  13.  請求項12に記載の面発光装置と、該面発光装置からの光を変調する液晶表示パネルとを備えることにより表示出力する液晶表示装置。 A liquid crystal display device that outputs a display by including the surface light emitting device according to claim 12 and a liquid crystal display panel that modulates light from the surface light emitting device.
PCT/JP2013/050962 2012-01-30 2013-01-18 Linear light source device, surface light-emitting device, and liquid crystal display device WO2013114977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012017293A JP5851262B2 (en) 2012-01-30 2012-01-30 Linear light source device, surface light emitting device, and liquid crystal display device
JP2012-017293 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013114977A1 true WO2013114977A1 (en) 2013-08-08

Family

ID=48905019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050962 WO2013114977A1 (en) 2012-01-30 2013-01-18 Linear light source device, surface light-emitting device, and liquid crystal display device

Country Status (3)

Country Link
JP (1) JP5851262B2 (en)
TW (1) TW201337414A (en)
WO (1) WO2013114977A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11705541B2 (en) 2019-04-26 2023-07-18 Nichia Corporation Light-emitting device and light-emitting module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014115622A1 (en) * 2014-10-28 2016-05-12 Osram Opto Semiconductors Gmbh Production of a lighting module for a backlight device
CN105334668A (en) * 2015-12-08 2016-02-17 武汉华星光电技术有限公司 Laterally-incident-type backlight module and liquid crystal display device
JP7129746B2 (en) * 2019-01-17 2022-09-02 Koa株式会社 Flow sensor device and flow sensor device with cover

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066328A (en) * 2004-08-30 2006-03-09 Sumitomo Rubber Ind Ltd Light source module and planar lighting device using the light source module
JP2006269088A (en) * 2005-03-22 2006-10-05 Matsushita Electric Ind Co Ltd Linear light source device
JP2008041567A (en) * 2006-08-09 2008-02-21 Sharp Corp Light emission device
JP2008186914A (en) * 2007-01-29 2008-08-14 Hitachi Ltd Linear light source device and back light device
JP2009021221A (en) * 2007-06-13 2009-01-29 Sharp Corp Linear light source device, surface light-emitting device, surface light source device, and liquid-crystal display device
JP2009260174A (en) * 2008-04-21 2009-11-05 Sharp Corp Light-emitting device, backlight device, and liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066328A (en) * 2004-08-30 2006-03-09 Sumitomo Rubber Ind Ltd Light source module and planar lighting device using the light source module
JP2006269088A (en) * 2005-03-22 2006-10-05 Matsushita Electric Ind Co Ltd Linear light source device
JP2008041567A (en) * 2006-08-09 2008-02-21 Sharp Corp Light emission device
JP2008186914A (en) * 2007-01-29 2008-08-14 Hitachi Ltd Linear light source device and back light device
JP2009021221A (en) * 2007-06-13 2009-01-29 Sharp Corp Linear light source device, surface light-emitting device, surface light source device, and liquid-crystal display device
JP2009260174A (en) * 2008-04-21 2009-11-05 Sharp Corp Light-emitting device, backlight device, and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11705541B2 (en) 2019-04-26 2023-07-18 Nichia Corporation Light-emitting device and light-emitting module

Also Published As

Publication number Publication date
JP2013157210A (en) 2013-08-15
JP5851262B2 (en) 2016-02-03
TW201337414A (en) 2013-09-16

Similar Documents

Publication Publication Date Title
JP7125636B2 (en) light emitting device
US8068194B2 (en) Line light source device, plane light emission device, plane light source device, and liquid crystal display
US10930624B2 (en) Light-emitting module
JP2010087324A (en) Light emitting device
KR101613246B1 (en) LED Surface Light and manufacturing method for the same
KR102632553B1 (en) Back light unit
KR102446576B1 (en) Back light unit
US11901498B2 (en) Light-emitting unit and surface-emission light source
CN110970408A (en) Light emitting device
CN112531095A (en) Backlight unit
JP5851262B2 (en) Linear light source device, surface light emitting device, and liquid crystal display device
JP2010161279A (en) Light-emitting device
JP2008305714A (en) Light source device and flat lighting device
KR20120045539A (en) Light emitting device package
KR20150026858A (en) Light emitting device
US20220308272A1 (en) Light-reflecting member and light source device
KR20200019514A (en) Light emitting diode package and display device including the same
JP2022096128A (en) Light emitting device and planar light source
CN110364608B (en) Wafer level linear light source light emitting device
KR101888603B1 (en) Light emitting device package and display device
JP2010040825A (en) Light-emitting device
US20240136476A1 (en) Light-emitting device and surface light source
WO2022196300A1 (en) Light-emitting device and surface light source
JP2019197885A (en) Chip scale linear light emitting device
KR102425618B1 (en) Light-Emitting Package for Display Device and Backlight Unit having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13742954

Country of ref document: EP

Kind code of ref document: A1