WO2013114705A1 - レンズ装置及び可動光学素子の位置検出方法 - Google Patents

レンズ装置及び可動光学素子の位置検出方法 Download PDF

Info

Publication number
WO2013114705A1
WO2013114705A1 PCT/JP2012/079699 JP2012079699W WO2013114705A1 WO 2013114705 A1 WO2013114705 A1 WO 2013114705A1 JP 2012079699 W JP2012079699 W JP 2012079699W WO 2013114705 A1 WO2013114705 A1 WO 2013114705A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
absolute position
optical element
magnetic recording
Prior art date
Application number
PCT/JP2012/079699
Other languages
English (en)
French (fr)
Inventor
宮下 守
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2013556204A priority Critical patent/JP5629836B2/ja
Publication of WO2013114705A1 publication Critical patent/WO2013114705A1/ja
Priority to US14/446,697 priority patent/US8942553B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • G01D5/2452Incremental encoders incorporating two or more tracks having an (n, n+1, ...) relationship
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/008Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires
    • G11B5/00813Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires magnetic tapes

Definitions

  • the present invention relates to a lens apparatus suitable for broadcasting and movies, and a position detection method for a movable optical element mounted thereon.
  • the position detector described in Patent Document 1 includes two annular magnetic recording media that record magnetic signals of different wavelengths, and two MR sensors that detect signals corresponding to the magnetic signals of the two annular magnetic recording media. With. Based on the sine wave and cosine wave output from each of the two MR sensors, the phase difference between the sine waves output from each MR sensor is calculated, and the absolute position of the annular magnetic recording medium is detected from this phase difference. is doing.
  • the position detector described in Patent Document 2 includes two magnetic recording media that record magnetic signals of different wavelengths, and two MR sensors that detect signals corresponding to the magnetic signals of the two magnetic recording media. Prepare. Then, based on the sine wave and cosine wave output from each of the two MR sensors, the phase difference between the sine waves output from each MR sensor is calculated, and the initial absolute position of the magnetic recording medium is obtained from this phase difference. . Thereafter, the temporary detection position of the magnetic recording medium obtained by incrementing from the initial absolute position is compared with the absolute position obtained from the phase difference, and the true absolute position is calculated based on this comparison.
  • the position detector described in Patent Document 3 includes two annular magnetic recording media that record magnetic signals of different wavelengths, and a plurality of MR sensors provided for each of the two annular magnetic recording media. Then, the sine wave and the cosine wave output from each of the plurality of MR sensors are respectively averaged, and based on the sine wave average value and the cosine wave average value obtained for each of the annular magnetic recording media, The phase difference between the output sin waves is calculated.
  • the lens barrel since the lens barrel has an annular shape, it is considered preferable to mount a position detector by combining the annular magnetic recording medium and the MR sensor as described above.
  • this position detector is mounted on a lens device, it is conceivable to fix a hollow annular magnetic recording medium to a rotating member that rotates in accordance with the movement of the zoom lens.
  • the annular magnetic recording medium is made hollow, unevenness is likely to occur in the recorded magnetic signal. This unevenness is particularly noticeable when the lens diameter is large, such as a lens device for television broadcasting or a movie.
  • the gap between the lens device and other members is small in consideration of the reduction in size and weight, an installation error or the like also occurs when a position detector using an annular magnetic recording medium is incorporated in the lens device. This also causes unevenness of the magnetic signal.
  • Patent Document 1 is based on the premise that the above-described non-uniformity does not occur, and does not refer to the above-described problem and means for solving it.
  • the present invention has been made in view of the above circumstances, and provides a lens device and a movable optical element position detection method capable of accurately detecting the absolute position of the movable optical element with a low cost and a simple configuration. With the goal.
  • the lens device of the present invention is a lens device having a movable optical element, and is arranged to be fixed on the outer periphery of the rotating member that rotates with the movement of the movable optical element, and in the circumferential direction of the rotating member.
  • Corresponding to the first and second magnetic recording scales recorded with magnetic signals of different wavelengths extending along the first magnetic recording scale and the first wavelength magnetic signals recorded on the first magnetic recording scale The first signal to be detected and the second signal having a predetermined phase shift with respect to the first signal are detected from the first magnetic recording scale, and the first signal recorded on the second magnetic recording scale is recorded.
  • Signal detection for detecting, from the second magnetic recording scale, a third signal corresponding to a magnetic signal having a second wavelength different from the first wavelength and a fourth signal having a phase shift of the predetermined amount with respect to the third signal.
  • a position detection unit that detects a position of the movable optical element based on a signal detected by the signal detection unit, and the position detection unit includes the first period of the first period detected by the signal detection unit.
  • a phase difference calculator that calculates a phase difference between the first signal and the third signal based on the signal, the second signal, the third signal, and the fourth signal; and the phase A phase average calculation unit that calculates an average value of the phase difference calculated for each of signals of n (n is a natural number of 2 or more) periods by the calculation unit, and the average value calculated by the phase average calculation unit And an absolute position detector for detecting the absolute position of the movable optical element based on the above.
  • the position detection method of the movable optical element of the present invention is a position detection method of the movable optical element mounted on the lens device, and is fixedly disposed on the outer periphery of the rotating member that rotates as the movable optical element moves.
  • a first signal corresponding to the magnetic signal of the first wavelength recorded on the first magnetic recording scale from the first magnetic recording scale and the second magnetic recording scale extending along the circumferential direction of the rotating member And detecting a second signal whose phase is shifted by a predetermined amount with respect to the first signal, and generating a magnetic signal having a second wavelength different from the first wavelength recorded on the second magnetic recording scale.
  • a corresponding third signal and a signal detecting step for detecting the fourth signal whose phase is shifted by a predetermined amount with respect to the third signal, and the first signal for one period detected by the signal detecting step,
  • the second signal Based on the third signal and the fourth signal, a phase difference calculating step for calculating a phase difference between the first signal and the third signal, and n (n is 2 by the phase calculating step) (Natural number above) Phase average calculation step for obtaining the average value of the phase differences calculated for each signal of the period, and detecting the absolute position of the movable optical element based on the average value obtained by the phase average calculation step And an absolute position detecting step.
  • the present invention it is possible to provide a lens device and a movable optical element position detection method capable of accurately detecting the absolute position of the movable optical element with a low cost and simple configuration.
  • FIG. 1 is an external view of an imaging device equipped with a lens device 2 according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional perspective view of the vicinity of the zoom ring 9 of the lens device 2 shown in FIG.
  • Partial enlarged view of the magnetic recording scale 40 shown in FIG. 2 and the magnetic sensor unit 50 facing the magnetic recording scale 40 2 is a developed view of the magnetic recording scale 40 shown in FIG.
  • the graph which shows the result of having examined the output change of the magnetic sensor part 50 when the magnetic recording scale 40 and the magnetic sensor part 50 are integrated in an actual machine.
  • movement of the zoom lens by the lens apparatus 2 shown in FIG. The figure which shows the A, B, C, D phase waveform output from the magnetic sensor part 50 when rotating the zoom ring 9 of the lens apparatus 2 shown in FIG. 1 to one direction.
  • FIG. 1 is an external view of an imaging apparatus equipped with a lens apparatus 2 according to an embodiment of the present invention.
  • a lens device 2 is attached to the front portion of the imaging device main body 1.
  • the lens device 2 includes a cylindrical casing 10 such as a cylindrical shape.
  • the housing 10 includes a photographing lens such as a zoom lens and a focus lens, and a diaphragm device that can adjust the aperture.
  • a mount 3 is provided at the base of the housing 10 of the lens device 2.
  • the lens device 2 is fixed to the imaging device main body 1 by detachably attaching the connecting portion of the mount portion 3 to a lens mounting portion provided at the front portion of the imaging device main body 1.
  • an imaging element is disposed on the optical axis of the lens apparatus 2 in a state where the lens apparatus 2 is mounted. And the optical image condensed with the lens apparatus 2 is imaged with this image pick-up element.
  • the output signal of the imaging device is processed by an image processing unit built in the imaging apparatus main body 1 to generate various image data.
  • the photographer 5 holds the imaging device body 1 on the right shoulder and looks into the viewfinder device 6 with the right eye, for example. Then, the photographer 5 takes a picture of the subject while holding the holding unit of the lens device 2 with the right hand 7 and fixing the imaging device.
  • a focus ring 8 that adjusts the focal position of the focus lens is provided on the front end side (subject side) of the lens device 2 so as to be rotatable around the lens device 2.
  • the focus position can be adjusted by rotating the focus ring 8 by an arbitrary angle by the photographer 5 by hand.
  • a zoom ring 9 for adjusting the zoom position of the zoom lens is provided at an intermediate portion of the lens device 2 so as to be rotatable around the outer periphery of the lens device 2.
  • the zoom magnification 9 can be adjusted by rotating the zoom ring 9 by an arbitrary angle by the photographer 5 by hand.
  • the lens device 2 is provided with an iris ring 11 for adjusting the aperture of the diaphragm device on the side of the imaging device main body 1 of the zoom ring 9.
  • the iris ring 11 is provided so as to be rotatable around the outer periphery of the lens device 2.
  • FIG. 2 is a cross-sectional perspective view of the vicinity of the zoom ring 9 of the lens device 2 shown in FIG.
  • a rotating cylinder 20 that can rotate around the optical axis of the lens device 2 and a zoom lens as a movable optical element provided inside the rotating cylinder 20 are held.
  • a zoom lens holding unit 30 is provided inside the housing 10 provided with the zoom ring 9 on the outer periphery.
  • the zoom lens holding unit 30 is movable in the optical axis direction of the lens device 2 in conjunction with the rotation of the zoom ring 9.
  • the rotary cylinder 20 has a cam groove 21 for converting the linear motion of the zoom lens holding portion 30 into a rotational motion.
  • a projection of the zoom lens holding portion 30 is movably mounted in the cam groove 21.
  • a magnetic recording scale 40 extending along the circumferential direction of the rotating cylinder 20 is fixedly disposed on the outer periphery of the rotating cylinder 20.
  • an annular magnetic recording scale 40 is used, but the magnetic recording scale 40 may not be annular, and a linear one having a length corresponding to the rotatable angle of the rotary cylinder 20 is used. May be.
  • a magnetic sensor unit 50 is fixedly disposed on the inner surface of the housing 10 at a position facing the magnetic recording scale 40.
  • FIG. 3 is a partially enlarged view of the magnetic recording scale 40 shown in FIG. 2 and the magnetic sensor unit 50 opposed thereto.
  • FIG. 4 is a development view of the magnetic recording scale 40 shown in FIG.
  • the magnetic recording scale 40 has a configuration in which a magnetic recording scale 41 and a magnetic recording scale 42 are overlapped.
  • sine wave information of wavelength ⁇ 1 is recorded as magnetic information.
  • sine wave information having a wavelength ⁇ 2 longer than the wavelength ⁇ 1 is recorded as magnetic information.
  • the magnetic sensor unit 50 includes a magnetic sensor 51 disposed at a position facing the magnetic recording scale 41 and a magnetic sensor 52 disposed at a position facing the magnetic recording scale 42.
  • the magnetic sensor 51 has two magnetoresistive elements whose electric resistance changes according to the applied magnetic field. From the magnetic information recorded on the magnetic recording scale 41, a sine wave signal of wavelength ⁇ 1 and the sine wave For example, cosine wave signals whose phases are shifted by 90 ° from the wave signals are detected, and these signals are output.
  • the magnetic sensor 52 has two magnetoresistive elements whose electric resistance changes according to the applied magnetic field. From the magnetic information recorded on the magnetic recording scale 42, a sine wave signal having a wavelength ⁇ 2 and the sine For example, cosine wave signals whose phases are shifted by 90 ° from the wave signals are detected, and these signals are output.
  • sine wave information of wavelength ⁇ 1 is magnetized in a predetermined range of the support 43.
  • the magnetic recording scale 42 is magnetized with sine wave information having a wavelength ⁇ 2 larger than the wavelength ⁇ 1 in a range corresponding to the predetermined range of the support 44.
  • N indicates the N pole of the magnet
  • S indicates the S pole.
  • the position of the magnetic sensor unit 50 with respect to the magnetic recording scale 40 when the rotation angle of the rotary cylinder 20 is 0 ° is indicated by a broken line.
  • the position of the magnetic sensor unit 50 indicated by a broken line in FIG. 4 moves to the left in the figure.
  • the magnetic sensor unit 50 comes to the position indicated by the alternate long and short dash line in FIG.
  • FIG. 5 is a diagram showing signal waveforms output from the magnetic sensor unit 50 when the rotary cylinder 20 shown in FIG. 2 is rotated.
  • FIG 5 are signal waveforms output from the magnetic sensor 51 facing the magnetic recording scale 41.
  • the B phase is 90 ° out of phase with respect to the A phase.
  • C phase and D phase are signal waveforms output from the magnetic sensor 52 facing the magnetic recording scale 42.
  • the phase of the C phase is the same as that of the A phase at first, but the phase advances by 2 ° from the A phase every time one period (one pulse) is advanced.
  • the D phase is a signal whose phase is shifted by 90 ° with respect to the C phase.
  • the magnetic recording scales 41 and 42 are magnetized so that 150 pulses of the A phase and B phase are output and 149 pulses of the C phase and D phase are output while the rotary cylinder 20 rotates 300 °. Has been done.
  • the diameter ⁇ of the magnetic recording scales 41 and 42 is about 80 mm.
  • the above-mentioned ⁇ 1 that is the magnetization pitch may be about 1.4 mm, and ⁇ 2 may be about 1.41 mm.
  • FIG. 6 is a functional block diagram of the lens device 2 that detects the position of the zoom lens holding unit 30 shown in FIG. 2 (synonymous with the position of the zoom lens).
  • the lens device 2 is provided with amplifiers 60A, 60B, 60C, 60D, A / D converters 61A, 61B, 61C, 61D, and a lens control unit 70.
  • the amplifier 60A amplifies the A-phase signal output from the magnetic sensor unit 50.
  • the amplifier 60B amplifies the B phase signal output from the magnetic sensor unit 50.
  • the amplifier 60C amplifies the C-phase signal output from the magnetic sensor unit 50.
  • the amplifier 60D amplifies the D-phase signal output from the magnetic sensor unit 50.
  • the A / D converter 61A samples the A phase signal amplified by the amplifier 60A at a predetermined interval and converts it into a digital signal.
  • the A / D converter 61B samples the B phase signal amplified by the amplifier 60B at a predetermined interval and converts it into a digital signal.
  • the A / D converter 61C samples the C phase signal amplified by the amplifier 60C at a predetermined interval and converts it into a digital signal.
  • the A / D converter 61D samples the D phase signal amplified by the amplifier 60D at a predetermined interval and converts it into a digital signal.
  • the lens control unit 70 includes an absolute position detection unit 71 that detects the absolute position of the zoom lens, a relative position detection unit 72 that detects the position (relative position) of the zoom lens with respect to the absolute position detected by the absolute position detection unit 71, and And a memory 73.
  • the lens control unit 70 is mainly configured by a processor, and the absolute position detection unit 71 and the relative position detection unit 72 are functional blocks realized by the processor executing a program stored in the memory 73.
  • the absolute position detector 71 determines the phase difference between the A phase and the C phase based on the A phase, B phase, C phase, and D phase signals output from the A / D converters 61A to 61D at an arbitrary timing.
  • is calculated.
  • arctan (A / B) ⁇ arctan (C / D) (A, B, C, and D are signal levels acquired at arbitrary timings of the respective phases) is calculated to calculate the phase difference ⁇ .
  • phase difference ⁇ Since the relationship between the phase difference ⁇ and the position (corresponding to the number of pulses) of the zoom lens is known, if the phase difference ⁇ can be calculated, the absolute position of the zoom lens corresponding to this can be detected.
  • the magnetic recording scales 41 and 42 are unevenly magnetized when they are produced. Further, when the magnetic recording scales 41 and 42 are incorporated into the lens device 2, it is difficult to incorporate them as designed, and the distance between the magnetic recording scale 40 and the magnetic sensor unit 50 due to an incorporation error, manufacturing errors of other members, and the like. Is not constant at all rotation angles. Such a phenomenon occurs particularly prominently in the lens apparatus 2 in which there is no room for the space for arranging the magnetic recording scale 40.
  • FIG. 7 is a graph showing the results of examining the change in output of the magnetic sensor unit 50 when the magnetic recording scale 40 and the magnetic sensor unit 50 are incorporated into an actual machine.
  • the magnetic recording scale 40 is output so that the A phase, the B phase, the C phase, and the D phase with the phase difference ⁇ shifted by 2 ° are output from the magnetic sensor unit 50.
  • the number of output pulses of the A phase and the B phase per one rotation of the rotary cylinder 20 is different from the above-described values.
  • FIG. 7 shows the examination result when the rotating cylinder 20 is rotated from the terminal end toward the starting end.
  • the horizontal axis indicates the total number of C-phase pulses output.
  • the left vertical axis in FIG. 7 indicates the phase difference ⁇ obtained by the above-described calculation.
  • the vertical axis on the right side in FIG. 7 indicates the amount of change with respect to the previous pulse of the phase difference ⁇ .
  • the phase difference ⁇ varies with respect to the ideal value (design value) indicated by the broken line.
  • the design pulse number corresponding to the phase difference at the point a is “about 5.5”. It becomes.
  • the point a is actually a phase difference obtained when the number of pulses is “4”, simply obtaining the phase difference ⁇ by the above-described method will erroneously detect the absolute position.
  • the absolute position detection unit 71 calculates the phase difference ⁇ by the above calculation for each of n pulses (n is a natural number of 2 or more), and averages the calculated plurality of phase differences ⁇ . A value is obtained, and the absolute position of the zoom lens is detected based on the average value.
  • the relative position detector 72 is a so-called incremental encoder, and compares the A-phase signal output from the amplifier 60 ⁇ / b> A with the B-phase signal output from the amplifier 60 ⁇ / b> B to compare the zoom lens holding unit 30. Is determined, the number of pulses of the A phase signal or the B phase signal is counted, and the relative position of the zoom lens holding unit 30 from the absolute position detected by the absolute position detecting unit 71 is detected.
  • the relative position detector 72 compares the C phase signal and the D phase signal to determine the moving direction of the zoom lens holding unit 30, and counts the number of pulses of the C phase signal or the D phase signal.
  • the relative position of the zoom lens holding unit 30 from the absolute position detected by the absolute position detection unit 71 may be detected.
  • FIG. 8 is a flowchart for explaining the position detection operation of the zoom lens by the lens device 2 shown in FIG.
  • FIG. 9 shows A, B, C, and D phase waveforms output from the magnetic sensor unit 50 when the zoom ring 9 of the lens apparatus 2 shown in FIG. 1 is rotated in one direction.
  • the A / D converters 61A to 61D send an A-phase signal, a B-phase signal, a C-phase signal, and a D-phase signal (hereinafter referred to as the current zoom lens position).
  • the current zoom lens position are collectively referred to as ABCD phase).
  • ABCD phase it is assumed that the power is turned on at the timing shown at time T1 in FIG.
  • the absolute position detector 71 determines whether or not there is a change in the output signals of the A / D converters 61A to 61D (step S1).
  • step S1 After the power is turned on, when the zoom ring 9 is rotated in one direction by the user and the output signals of the A / D converters 61A to 61D are changed (step S1: YES), the absolute position detection unit 71 performs one cycle. It is determined whether or not a minute (one pulse) ABCD phase has been detected (step S2), and the processing of step S2 is repeated until it is detected.
  • the absolute position detection unit 71 When the absolute position detection unit 71 detects an ABCD phase for one cycle (one pulse) in step S2, the absolute position detection unit 71 normalizes the ABCD phase and stores it in the memory 73 (step S3).
  • step S4 NO
  • the absolute position detector 71 returns the processing to step S1
  • the process of step S5 is performed.
  • the relative position detector 72 detects the moving direction of the zoom lens from the power-on by comparing the A phase signal and the B phase signal, and the detection result is the absolute position detector 71. To enter.
  • step S5 the absolute position detection unit 71 uses the ABCD phase obtained at an arbitrary timing (for example, the timing when the amplitude of the A phase becomes 0) for each of the ABCD phases for 5 pulses stored in the memory 73. Then, arctan (A / B) ⁇ arctan (C / D) is calculated, and the phase difference ⁇ is calculated for each of the five pulses.
  • the absolute position detector 71 calculates the phase difference ⁇ (1) using the ABCD phase obtained at time T2 for the first pulse output after the power is turned on.
  • the phase difference ⁇ (2) is calculated using the ABCD phase obtained at time T3, and for the third pulse, the phase difference ⁇ (3) using the ABCD phase obtained at time T4.
  • the phase difference ⁇ (4) is calculated using the ABCD phase obtained at time T5, and for the fifth pulse, the phase difference is obtained using the ABCD phase obtained at time T6.
  • the phase difference ⁇ (5) is calculated.
  • the absolute position detector 71 calculates an average value of the phase differences ⁇ (1) to ⁇ (5) (step S6), and sets this average value as the phase difference at the third pulse. Then, from the phase difference at the third pulse and the data in which the phase difference (design value) stored in the memory 73 is associated with the zoom lens position, the zoom lens corresponding to the phase difference at the third pulse is determined. The absolute position (absolute position two pulses before the current position) is determined (step S7).
  • the absolute position detection unit 71 receives the movement amount corresponding to two pulses at the absolute position determined in step S7 in accordance with the movement direction of the zoom lens from the power ON to the current time received from the relative position detection unit 72. Are added or subtracted to determine the absolute position of the zoom lens (step S8).
  • the absolute position detection unit 71 sets a movement amount corresponding to two pulses to the absolute position determined in step S7. Add to confirm absolute position.
  • the absolute position detector 71 calculates a movement amount corresponding to two pulses from the absolute position determined in step S7. Subtract to determine absolute position.
  • the absolute position detection unit 71 may output the determined absolute position to a display unit connected to the imaging apparatus main body 1 to notify the user of the absolute position.
  • step S9 when there is a change in the A-phase signal and the B-phase signal (step S9: YES), the relative position detector 72 compares the A-phase signal and the B-phase signal to determine the movement direction of the zoom lens.
  • the number of pulses of the A-phase signal or B-phase signal (for example, the number of pulses with accuracy multiplied by 64) is counted, and the relative position of the zoom lens with the absolute position determined in step S8 as the reference position is detected. (Step S10).
  • the current position of the zoom lens is determined based on the average value of the phase differences obtained for each of n pulses output from the magnetic sensor unit 50 after the power is turned on. Therefore, it is possible to improve the detection accuracy of the current position by reducing the influence of uneven magnetization of the magnetic recording scale 40 and the incorporation error of the lens device 2.
  • the lens device 2 since the absolute position can be detected by simpler calculation than the absolute position detection method described in Patent Document 2, manufacturing cost and power consumption can be reduced.
  • the manufacturing process can be reduced and the size can be reduced as compared with the absolute position detection method described in Patent Document 3. Can be realized.
  • the calculated phase difference (actually measured value) may be substantially the same even for different pulses due to the above-described uneven magnetization, incorporation error, noise of the magnetic sensor unit 50, and the like.
  • the conventional method cannot determine which pulse corresponds to the phase difference (actual measurement value).
  • the average value of the five phase differences is less likely to be the same value even in different pulses, so that the accuracy of absolute position detection can be improved.
  • the lens device 2 since the unit for detecting the absolute position of the zoom lens is provided in the lens barrel, compared with a lens device of a type in which this unit is externally attached to the lens barrel, There is no need to consider mechanical backlash. For this reason, even if the zoom ring rotates in the reverse direction, a position shift due to mechanical backlash does not occur, and position detection with higher accuracy becomes possible.
  • the average value of the phase differences ⁇ obtained for each of the seven pulses is treated as a phase difference corresponding to the fourth pulse.
  • a position shifted by three pulses from the absolute position may be determined as the absolute position.
  • the average value of the phase differences ⁇ obtained for each of the four pulses is treated as a phase difference corresponding to the second pulse or the third pulse, and the second pulse or 3
  • the position obtained by shifting the position of two pulses or one pulse from this absolute position may be determined as the absolute position.
  • the absolute position detection unit 71 calculates the absolute position corresponding to the average value of the phase differences ⁇ calculated for each of the n pulses by the “quotient when n is divided by 2” pulses. Shift to determine the final absolute position.
  • the absolute position detection unit 71 determines that the absolute position corresponding to the average value of the phase differences ⁇ calculated for each of the n pulses is “a quotient when n is divided by 2” or “ (The quotient when n is divided by 2) The final absolute position is determined by shifting by 1 "pulse.
  • n is preferably 3 or more considering the accuracy of the absolute position.
  • the value of n is the number of pulses output from the magnetic sensor unit 50 according to the angle at which the rotating cylinder 20 is rotated by one rotation operation (about 10 ° to 20 ° if the rotating cylinder 20 is about 80 mm). It is preferable to keep the same as (about 5 to 10).
  • the user can know the absolute position of the zoom lens by simply turning the zoom ring 9 once in a certain direction after turning on the power of the lens device 2. Work up to grasp is simplified.
  • the ABCD phase used for the calculation of the phase difference in step S5 is the data obtained at the timing when the amplitude of the A phase signal becomes 0. Data can be used.
  • the phase difference ⁇ obtained from the data of the ABCD phase obtained when the amplitude of any ABCD phase becomes 0 is the phase difference obtained from the data of the ABCD phase obtained when no amplitude of the ABCD phase becomes 0 Compared to ⁇ , the value is closer to the designed phase difference (value with less error).
  • step S5 of FIG. 8 the zoom lens finally obtained by calculating the phase difference ⁇ from the data of the ABCD phase obtained at the timing when any one of the ABCD phases becomes 0 for each pulse.
  • the accuracy of the absolute position of can be improved.
  • the absolute position is detected. Becomes weaker. That is, depending on the position of the zoom lens when the power is turned on, the absolute position determined in step S7 in FIG. 8 may include an error.
  • an error correction table for correcting this error is stored in the memory 73, and the absolute position detection unit 71 uses the average value of the phase difference calculated in step S6 and the error correction table. Based on this, it is preferable to correct this error.
  • the absolute position detection unit 71 uses the average value of the phase difference calculated in step S6 and the error correction table. Based on this, it is preferable to correct this error.
  • a preferred configuration example for correcting this error will be described.
  • the zoom lens is moved from the tele end to the wide end, and the phase difference ⁇ is calculated for each of the 149 pulses output from the magnetic sensor unit 50 at that time.
  • the average value of the phase difference corresponding to the 145th to 149th pulses is obtained.
  • phase difference (design value) corresponding to 1st to 5th pulses) ⁇ (average value of phase difference (actual value) corresponding to 1st to 5th pulses), (2 to 6th pulse) (Average value of phase difference (design value) corresponding to eyes) ⁇ (average value of phase difference (measured values) corresponding to 2nd to 6th pulses),... (Phase difference corresponding to 145th to 149th pulses) (Average value of (design value)) ⁇ (average value of phase difference (measured value) corresponding to the 145th to 149th pulses).
  • an error correction table in which the error data is associated with the average value (measured value) of the phase difference corresponding to the error data is created, and this table is stored in the memory 73.
  • the absolute position detector 71 calculates the average value (actual value) of the phase difference in step S6 in FIG. 8, and compares this average value (actual value) with the error correction table. Error data corresponding to the average value (actual measurement value) is read from the memory 73.
  • the absolute position detector 71 corrects the average value (actually measured value) obtained in step S6 by using the read error data. Thereafter, the absolute position detector 71 determines the absolute position of the zoom lens corresponding to the corrected average value as the absolute position corresponding to the third pulse. With such a configuration, the absolute position detection accuracy of the zoom lens can be further improved.
  • the above-described error data has different values depending on whether the zoom lens is obtained by moving the zoom lens from one end to the other end within the movable range, or if the zoom lens is obtained by moving the zoom lens from the other end to the one end within the movable range. I know that.
  • the error correction table corresponds to the case where the zoom lens is obtained by moving the zoom lens from one end to the other end within the movable range, and the case where the error correction table is obtained by moving the zoom lens from the other end to the one end within the movable range. It is preferable to prepare a device corresponding to the above.
  • the absolute position detection unit 71 may correct the error using an error correction table corresponding to the moving direction of the zoom lens notified from the relative position detection unit 72.
  • the zoom lens is taken as an example of the movable optical element mounted on the lens device 2, but the technique described in the present embodiment can be applied to other movable optical elements such as a focus lens and a diaphragm device.
  • the disclosed lens device is a lens device having a movable optical element, the rotating member rotating with the movement of the movable optical element, and fixedly disposed on the outer periphery of the rotating member, and in the circumferential direction of the rotating member.
  • the first and second magnetic recording scales recorded with magnetic signals of different wavelengths extending along the first magnetic recording scale and the first wavelength magnetic signals recorded on the first magnetic recording scale are detected from the first magnetic recording scale, and the first signal recorded on the second magnetic recording scale is recorded.
  • Signal detection for detecting, from the second magnetic recording scale, a third signal corresponding to a magnetic signal having a second wavelength different from the first wavelength and a fourth signal having a phase shift of the predetermined amount with respect to the third signal.
  • a position detection unit that detects a position of the movable optical element based on a signal detected by the signal detection unit, and the position detection unit is configured to detect the first period of one cycle detected by the signal detection unit.
  • a phase difference calculation unit that calculates a phase difference between the first signal and the third signal based on the first signal, the second signal, the third signal, and the fourth signal;
  • a phase average calculating unit that calculates an average value of the phase differences calculated for each of signals of n (n is a natural number of 2 or more) periods by the phase calculating unit, and the average value calculated by the phase average calculating unit
  • an absolute position detector for detecting the absolute position of the movable optical element based on the above.
  • the disclosed lens apparatus includes a moving average of the n phase differences for each period obtained when the movable optical element is moved from end to end within a movable range, and the phase difference for each period.
  • An error data storage unit that stores a difference from the design value of each of the n moving averages as error data
  • the absolute position detection unit includes the average value obtained by the phase average calculation unit and the error data. And the average value is corrected based on the error data, and the absolute position is detected based on the corrected average value.
  • the error data storage unit includes, as the error data, first error data obtained by moving the movable optical element from one end to the other end within a movable range, and the movable optical element. Second error data obtained by moving from the other end to the one end within the movable range is stored.
  • the position detection unit determines a movement direction of the movable optical element when a signal for the n cycles is obtained based on a signal detected by the signal detection unit.
  • a determination unit wherein the absolute position detection unit selects either the first error data or the second error data according to the movement direction determined by the movement direction determination unit during the correction. Used.
  • the phase calculation unit may be any one of the first signal, the second signal, the third signal, and the fourth signal used for calculating the phase difference.
  • the signal when the amplitude is zero is used.
  • the position detection unit counts a signal detected by the signal detection unit after the absolute position is detected, and detects a relative position of the movable optical element relative to the absolute position.
  • a detection unit is provided.
  • the disclosed position detection method of the movable optical element of the lens apparatus is a position detection method of the movable optical element mounted on the lens apparatus, and is fixedly disposed on the outer periphery of the rotating member that rotates as the movable optical element moves.
  • the first magnetic recording scale and the second magnetic recording scale extending along the circumferential direction of the rotating member, and corresponding to the first wavelength magnetic signal recorded on the first magnetic recording scale.
  • a signal detection step for detecting a third signal corresponding to the magnetic signal and a fourth signal whose phase is shifted by a predetermined amount with respect to the third signal; and the first signal for one cycle detected by the signal detection step.
  • an absolute position detecting step for detecting the absolute position of
  • the present invention is effective when applied to a lens device for a television camera, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 レンズ装置は、磁気記録スケール41に記録されている第一の波長の磁気信号に対応するA相信号及び当該A相信号に対し位相のずれたB相信号を検出し、磁気記録スケール42に記録されている前記第一の波長と異なる第二の波長の磁気信号に対応するC相信号及び当該C相信号に対し位相のずれたD相信号を検出し、n周期分のABCD相信号に基づいて、n周期のそれぞれについてA相とC相の位相差を算出し、当該位相差の平均値を求め、この平均値に基づいてズームレンズの絶対位置を検出する。

Description

レンズ装置及び可動光学素子の位置検出方法
 本発明は、放送用や映画用に適したレンズ装置とそれに搭載される可動光学素子の位置検出方法に関する。
 近年、テレビやモニタなどの大画面化及び高解像度化が進み、映し出される映像に対する高画質化の要求が高まっている。この高画質化の要求に応えるべく、映画用や放送用のズームレンズでは高精度な位置検出が可能である位置検出器を搭載し、レンズ制御の高性能化が図られている。
 レンズ装置用ではないが、位置検出器としては特許文献1~3に記載されているものが知られている。
 特許文献1に記載の位置検出器は、異なる波長の磁気信号を記録した2つの環状磁気記録媒体と、この2つの環状磁気記録媒体の各々の磁気信号に対応する信号を検出する2つのMRセンサとを備える。そして、2つのMRセンサの各々から出力されるsin波及びcos波に基づいて、各MRセンサから出力されるsin波間の位相差を算出し、この位相差から環状磁気記録媒体の絶対位置を検出している。
 特許文献2に記載の位置検出器は、異なる波長の磁気信号を記録した2つの磁気記録媒体と、この2つの磁気記録媒体の各々の磁気信号に対応する信号を検出する2つのMRセンサとを備える。そして、2つのMRセンサの各々から出力されるsin波及びcos波に基づいて、各MRセンサから出力されるsin波間の位相差を算出し、この位相差から磁気記録媒体の初期絶対位置を求める。その後は、初期絶対位置からインクリメントして求められる磁気記録媒体の仮検出位置と、位相差から求められる絶対位置とを比較し、この比較に基づいて真の絶対位置を算出している。
 特許文献3に記載の位置検出器は、異なる波長の磁気信号を記録した2つの環状磁気記録媒体と、2つの環状磁気記録媒体の各々に対して設けられる複数のMRセンサとを備える。そして、この複数のMRセンサの各々から出力されるsin波及びcos波をそれぞれ平均し、各環状磁気記録媒体について求めたsin波平均値及びcos波平均値に基づいて、各環状磁気記録媒体から出力されるsin波間の位相差を算出している。
日本国特開平6-58766号公報 日本国特開2002-250639号公報 日本国特表2004-507722号公報
 レンズ装置においては、レンズ鏡筒が環状となっているため、上述したような環状磁気記録媒体とMRセンサとの組み合わせによる位置検出器を搭載することが好ましいと考えられる。この位置検出器をレンズ装置に搭載する場合は、ズームレンズの移動に応じて回転する回転部材に、中空状の環状磁気記録媒体を固定することが考えられる。
 しかしながら、環状磁気記録媒体を中空状にすると、記録されている磁気信号にムラが生じやすくなる。このムラは、テレビ放送用や映画用等のレンズ装置等のように、レンズ口径が大きいものにおいて特に顕著となる。また、レンズ装置は、小型軽量化を考慮して、他の部材との隙間が小さくなっているため、環状磁気記録媒体を用いた位置検出器をレンズ装置に組み込むときに組み込み誤差等も発生し、これも磁気信号のムラの原因となる。
 上述した磁気信号にムラが生じると、2つのMRセンサの出力信号から求められる位相差も設計値からずれるため、レンズの絶対位置を正確に検出することができなくなるという課題が生じる。
 特許文献1は、上記ムラが生じないことを前提にしており、上記課題やそれを解決する手段については言及していない。
 特許文献2の位置検出器によれば、真の絶対位置を検出することはできるが、演算処理が複雑になる。
 特許文献3の位置検出器によれば、絶対位置の検出精度を高めることはできるが、各環状磁気記録媒体に対して複数のMRセンサが必要になるため、製造コストの増大、レンズ装置の大型化につながる。
 本発明は、上記事情に鑑みてなされたものであり、可動光学素子の絶対位置を低コストかつ簡易な構成で精度良く検出することのできるレンズ装置及び可動光学素子の位置検出方法を提供することを目的とする。
 本発明のレンズ装置は、可動光学素子を有するレンズ装置であって、上記可動光学素子の移動に伴って回転する回転部材と、上記回転部材の外周に固定配置され、上記回転部材の周方向に沿って伸びる、それぞれ異なる波長の磁気信号が記録された第一の磁気記録スケール及び第二の磁気記録スケールと、上記第一の磁気記録スケールに記録されている第一の波長の磁気信号に対応する第一の信号及びその第一の信号に対し所定量位相のずれた第二の信号を上記第一の磁気記録スケールから検出し、上記第二の磁気記録スケールに記録されている上記第一の波長と異なる第二の波長の磁気信号に対応する第三の信号及びその第三の信号に対し上記所定量位相のずれた第四の信号を上記第二の磁気記録スケールから検出する信号検出部と、上記信号検出部により検出される信号に基づいて、上記可動光学素子の位置を検出する位置検出部とを備え、上記位置検出部は、上記信号検出部により検出される1周期分の上記第一の信号、上記第二の信号、上記第三の信号、及び上記第四の信号に基づいて、上記第一の信号と上記第三の信号との位相差を算出する位相差算出部と、上記位相算出部により、n(nは2以上の自然数)周期分の信号のそれぞれについて算出された上記位相差の平均値を求める位相平均算出部と、上記位相平均算出部により求められた上記平均値に基づいて上記可動光学素子の絶対位置を検出する絶対位置検出部とを備えるものである。
 本発明の可動光学素子の位置検出方法は、レンズ装置に搭載される可動光学素子の位置検出方法であって、上記可動光学素子の移動に伴って回転する回転部材の外周に固定配置され、上記回転部材の周方向に沿って伸びる第一の磁気記録スケール及び第二の磁気記録スケールから、上記第一の磁気記録スケールに記録されている第一の波長の磁気信号に対応する第一の信号及びその第一の信号に対し所定量位相のずれた第二の信号を検出し、上記第二の磁気記録スケールに記録されている上記第一の波長とは異なる第二の波長の磁気信号に対応する第三の信号及びその第三の信号に対し上記所定量位相のずれた第四の信号を検出する信号検出ステップと、上記信号検出ステップにより検出した1周期分の上記第一の信号、上記第二の信号、上記第三の信号、及び上記第四の信号に基づいて、上記第一の信号と上記第三の信号との位相差を算出する位相差算出ステップと、上記位相算出ステップによりn(nは2以上の自然数)周期分の信号のそれぞれについて算出した上記位相差の平均値を求める位相平均算出ステップと、上記位相平均算出ステップにより求めた上記平均値に基づいて上記可動光学素子の絶対位置を検出する絶対位置検出ステップとを備えるものである。
 本発明によれば、可動光学素子の絶対位置を低コストかつ簡易な構成で精度良く検出することのできるレンズ装置及び可動光学素子の位置検出方法を提供することができる。
本発明の一実施形態に係るレンズ装置2を装着した撮像装置の外観図 図1に示すレンズ装置2のズームリング9付近の断面斜視図 図2に示す磁気記録スケール40とこれに対向する磁気センサ部50の部分拡大図 図2に示す磁気記録スケール40の展開図 図2に示す回転筒20を回転させているときに磁気センサ部50から出力される信号波形を示す図 図2に示すズームレンズ保持部30の位置(即ちズームレンズの位置)を検出するレンズ装置2の機能ブロックを示す図 磁気記録スケール40と磁気センサ部50を実機に組み込んだときの磁気センサ部50の出力変化を検討した結果を示すグラフ 図1に示すレンズ装置2によるズームレンズの位置検出動作を説明するためのフローチャート 図1に示すレンズ装置2のズームリング9を一方向に回転させていったときに磁気センサ部50から出力されるA,B,C,D相波形を示す図
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、本発明の一実施形態に係るレンズ装置2を装着した撮像装置の外観図である。撮像装置本体1の前部にはレンズ装置2が装着されている。
 レンズ装置2は円筒形状等の筒状の筐体10を備える。この筐体10内には、ズームレンズやフォーカスレンズ等の撮影レンズと、開口量を調整できる絞り装置が内蔵されている。レンズ装置2の筐体10の基部にはマウント部3が設けられている。このマウント部3の接続部を、撮像装置本体1の前部に設けられているレンズ装着部に着脱自在に装着することで、レンズ装置2が撮像装置本体1に固定される。
 撮像装置本体1には、レンズ装置2が装着された状態で、レンズ装置2の光軸上に撮像素子が配置される。そして、この撮像素子により、レンズ装置2によって集光された光学像を撮像する。撮像素子の出力信号は、撮像装置本体1に内蔵される画像処理部によって処理されて、各種画像データが生成される。
 撮影者5は、この撮像装置本体1を右肩に担いで例えば右眼でファインダ装置6を覗く。そして、撮影者5は、右手7でレンズ装置2の把持部を把持して撮像装置を固定しながら、被写体を撮影することになる。
 レンズ装置2の先端側(被写体側)には、フォーカスレンズの焦点位置を調整するフォーカスリング8が、レンズ装置2の外周囲を回動可能に設けられている。このフォーカスリング8を撮影者5が手で任意角度回転させることで、フォーカス位置の調整を行うことができる。
 レンズ装置2の中間部分には、ズームレンズのズーム位置を調整するズームリング9がレンズ装置2の外周囲を回動可能に設けられている。このズームリング9を撮影者5が手で任意角度回転させることで、ズーム倍率の調整を行うことができる。
 レンズ装置2には、ズームリング9の更に撮像装置本体1側に、絞り装置の開口量を調整するためのアイリスリング11が設けられている。アイリスリング11は、レンズ装置2の外周囲を回動可能に設けられている。
 図2は、図1に示すレンズ装置2のズームリング9付近の断面斜視図である。
 ズームリング9が外周に設けられた筐体10の内部には、レンズ装置2の光軸を中心に回転可能な回転筒20と、回転筒20内部に設けられ可動光学素子としてのズームレンズを保持するズームレンズ保持部30とが設けられる。
 ズームレンズ保持部30は、ズームリング9の回転に連動して、レンズ装置2の光軸方向に移動可能となっている。
 回転筒20は、ズームレンズ保持部30の直線運動を回転運動に変換するためのカム溝21を有している。カム溝21にはズームレンズ保持部30の突起部が移動可能に装着されており、ズームレンズ保持部30が光軸方向へ移動すると、この移動に伴って回転筒20が光軸を中心に回転する。本実施形態では、回転筒20が一例として300度回転できるものとして説明する。
 回転筒20の外周には、回転筒20の周方向に沿って伸びる磁気記録スケール40が固定して配置されている。本実施形態では、磁気記録スケール40として環状のものを用いるが、磁気記録スケール40は環状でなくてもよく、回転筒20の回転可能な角度に応じた長さを有する直線状のものを用いてもよい。
 筐体10の内面には、磁気記録スケール40と対向する位置に磁気センサ部50が固定して配置されている。
 図3は、図2に示す磁気記録スケール40とこれに対向する磁気センサ部50の部分拡大図である。図4は、図2に示す磁気記録スケール40の展開図である。
 図3に示すように、磁気記録スケール40は、磁気記録スケール41と磁気記録スケール42を重ねた構成である。
 磁気記録スケール41には、波長λ1の正弦波情報が磁気情報として記録されている。磁気記録スケール42には、波長λ1よりも長い波長λ2の正弦波情報が磁気情報として記録されている。
 磁気センサ部50は、磁気記録スケール41と対向する位置に配置された磁気センサ51と、磁気記録スケール42と対向する位置に配置された磁気センサ52とを備える。
 磁気センサ51は、印加磁界に応じて電気抵抗が変化する磁気抵抗効果素子を2つ有しており、磁気記録スケール41に記録されている磁気情報から、波長λ1の正弦波信号と、この正弦波信号に対し位相が例えば90°ずれた余弦波信号を検出し、これらの信号を出力する。
 磁気センサ52は、印加磁界に応じて電気抵抗が変化する磁気抵抗効果素子を2つ有しており、磁気記録スケール42に記録されている磁気情報から、波長λ2の正弦波信号と、この正弦波信号に対し位相が例えば90°ずれた余弦波信号を検出し、これらの信号を出力する。
 図4に示すように、磁気記録スケール41は、支持体43の所定範囲に、波長λ1の正弦波情報が着磁されている。また、磁気記録スケール42は、支持体44の上記所定範囲と対応する範囲において、波長λ1より大きな波長λ2の正弦波情報が着磁されている。図中、“N”は磁石のN極を示し、“S”はS極を示す。
 図4には、回転筒20の回転角が0°(例えば、ズームレンズがワイド端)のときの、磁気記録スケール40に対する磁気センサ部50の位置を破線で示してある。回転筒20が回転すると、図4中の破線で示す磁気センサ部50の位置は図中左方向に移動していく。そして、回転角が300°になったとき、磁気センサ部50は、図4中の一点鎖線で示した位置にくる。
 図5は、図2に示す回転筒20を回転させているときに磁気センサ部50から出力される信号波形を示す図である。
 図5の符号A,Bで示す波形(以下、A相、B相という)は、磁気記録スケール41に対向する磁気センサ51から出力される信号波形である。A相に対しB相は位相が90°ずれている。
 図5の符号C,Dで示す波形(以下、C相、D相という)は、磁気記録スケール42に対向する磁気センサ52から出力される信号波形である。C相は、はじめはA相と位相が同じであるが、1周期(1パルス)進む毎に、A相よりも2°位相が進む。また、D相は、C相に対して位相が90°ずれた信号となっている。
 本実施形態では、回転筒20が300°回転する間に、A相及びB相が150パルス出力され、C相及びD相が149パルス出力されるように、磁気記録スケール41,42の着磁が行われている。
 一般的な放送用のレンズ装置のレンズ口径を考慮すると、磁気記録スケール41,42の直径φは80mm程度とするのが現実的である。この直径で上述したパルス数を実現するには、着磁ピッチである上記λ1を約1.4mm、上記λ2を約1.41mmとすればよい。
 図6は、図2に示すズームレンズ保持部30の位置(ズームレンズの位置と同義)を検出するレンズ装置2の機能ブロックを示す図である。
 レンズ装置2には、アンプ60A,60B,60C,60Dと、A/D変換器61A,61B,61C,61Dと、レンズ制御部70とが設けられる。
 アンプ60Aは、磁気センサ部50から出力されたA相信号を増幅する。アンプ60Bは、磁気センサ部50から出力されたB相信号を増幅する。アンプ60Cは、磁気センサ部50から出力されたC相信号を増幅する。アンプ60Dは、磁気センサ部50から出力されたD相信号を増幅する。
 A/D変換器61Aは、アンプ60Aにて増幅されたA相信号を所定間隔でサンプリングしてデジタル信号に変換する。A/D変換器61Bは、アンプ60Bにて増幅されたB相信号を所定間隔でサンプリングしてデジタル信号に変換する。A/D変換器61Cは、アンプ60Cにて増幅されたC相信号を所定間隔でサンプリングしてデジタル信号に変換する。A/D変換器61Dは、アンプ60Dにて増幅されたD相信号を所定間隔でサンプリングしてデジタル信号に変換する。
 レンズ制御部70は、ズームレンズの絶対位置を検出する絶対位置検出部71と、絶対位置検出部71によって検出された絶対位置に対するズームレンズの位置(相対位置)を検出する相対位置検出部72と、メモリ73とを備える。
 レンズ制御部70はプロセッサを主体に構成されており、絶対位置検出部71と相対位置検出部72は、メモリ73に記憶されているプログラムをプロセッサが実行することにより実現される機能ブロックである。
 絶対位置検出部71は、A/D変換器61A~61Dから出力された任意のタイミングでのA相、B相、C相、D相の信号に基づいて、A相とC相との位相差θを算出する。例えば、arctan(A/B)-arctan(C/D) (A,B,C,Dはそれぞれの相の任意のタイミングで取得された信号レベル)の演算を行って位相差θを算出する。
 位相差θとズームレンズの位置(パルス数と対応)との関係は既知であるため、上記位相差θが算出できれば、これに対応するズームレンズの絶対位置を検出することが可能である。
 しかし、実際には、磁気記録スケール41,42のように、直径が大きくかつ中空形状のようなものは、その作成時に着磁むらが発生する。また、磁気記録スケール41,42をレンズ装置2に組み込むときにも、設計通りに組み込むことは難しく、組み込み誤差、他の部材の製造誤差等により、磁気記録スケール40と磁気センサ部50との距離が全回転角で一定とならない。このような現象は、磁気記録スケール40を配置するスペースに余裕がないレンズ装置2において特に顕著に発生する。
 図7は、磁気記録スケール40と磁気センサ部50を実機に組み込んだときの磁気センサ部50の出力変化を検討した結果を示すグラフである。
 なお、図7は、図5に示したように、位相差θが2°ずつずれていくA相及びB相とC相及びD相が磁気センサ部50から出力されるように磁気記録スケール40を設計して作成した場合の検討結果であり、回転筒20の1回転あたりのA相及びB相の出力パルス数は上述した値とは異なる。また、図7は、回転筒20を終端から始端に向かって回転させていったときの検討結果を示している。
 図7において横軸は、出力されたC相の累計パルス数を示している。また、図7において左側の縦軸は、上述した演算により求めた位相差θを示している。また、図7において右側の縦軸は、位相差θの前のパルスに対する変化量を示している。
 図7に示した破線は、磁気記録スケール40が設計値とおりに製造され、かつ、レンズ装置への組み込み誤差等がないと仮定したときの位相差θの変化を示している。
 図7を見て分かるように、実機においては、位相差θが、破線の理想値(設計値)に対してばらつく。例えば、絶対位置検出部71が演算により求めた位相差θが、図7において符号aで示す値である場合、このa点の位相差に対応する設計上のパルス数は“約5.5”となる。しかし、a点は実際にはパルス数“4”のときに得られる位相差であるため、上述した方法で単純に位相差θを求めただけでは、絶対位置を誤検出してしまう。
 そこで、本実施形態では、絶対位置検出部71が、n個のパルス(nは2以上の自然数)分のそれぞれについて、上記演算により位相差θを算出し、算出した複数の位相差θの平均値を求め、この平均値に基づいて、ズームレンズの絶対位置を検出している。
 図7において、a点とその前後2つずつの計5つの位相差の平均を求め、この平均値をa点の位相差と置き換えると、a点の位相差は図7中の×印で示した点になり、設計値に近づく。したがって、この平均値を用いれば、絶対位置の検出精度を向上させることができる。
 図6の説明に戻り、相対位置検出部72は、いわゆるインクリメンタル型エンコーダであり、アンプ60Aから出力されるA相信号とアンプ60Bから出力されるB相信号とを比較してズームレンズ保持部30の移動方向を判定し、当該A相信号又は当該B相信号のパルス数をカウントして、絶対位置検出部71によって検出された絶対位置からのズームレンズ保持部30の相対位置を検出する。
 なお、相対位置検出部72は、C相信号とD相信号とを比較してズームレンズ保持部30の移動方向を判定し、当該C相信号又は当該D相信号のパルス数をカウントして、絶対位置検出部71によって検出された絶対位置からのズームレンズ保持部30の相対位置を検出してもよい。
 次に、以上のように構成されたレンズ装置2によるズームレンズの位置検出動作を図8及び図9を参照して説明する。
 図8は、図1に示すレンズ装置2によるズームレンズの位置検出動作を説明するためのフローチャートである。図9は、図1に示すレンズ装置2のズームリング9を一方向に回転させていったときに磁気センサ部50から出力されるA,B,C,D相波形を示している。
 ユーザによってレンズ装置2の電源がONされると、A/D変換器61A~61Dからは、現在のズームレンズの位置に対応するA相信号,B相信号,C相信号,D相信号(以下、これらをまとめてABCD相とも言う)が出力される。例えば、図9の時刻T1に示すタイミングで電源がONされたものとする。
 電源ONの後、絶対位置検出部71は、A/D変換器61A~61Dの出力信号に変化があるか否かを判定する(ステップS1)。
 電源ONされてから、ユーザによりズームリング9が一方向に回転され、A/D変換器61A~61Dの出力信号に変化があると(ステップS1:YES)、絶対位置検出部71は、1周期分(1パルス分)のABCD相を検出したか否かを判定し(ステップS2)、検出するまでステップS2の処理を繰り返す。
 絶対位置検出部71は、ステップS2で1周期分(1パルス分)のABCD相を検出すると、当該ABCD相を正規化してメモリ73に記憶する(ステップS3)。
 次に、絶対位置検出部71は、メモリ73にnパルス分(ここではn=5とする)のABCD相をメモリ73に記憶していなければ(ステップS4:NO)ステップS1に処理を戻し、記憶していればステップS5の処理を行う。
 なお、ステップS1~ステップS4の間に、相対位置検出部72は、A相信号とB相信号の比較により、電源ONからのズームレンズの移動方向を検出し、検出結果を絶対位置検出部71に入力する。
 ステップS5において、絶対位置検出部71は、メモリ73に記憶した5パルス分のABCD相の各々について、任意のタイミング(例えば、A相の振幅が0となるタイミング)に得られたABCD相を用いて、arctan(A/B)-arctan(C/D)の演算を行い、5パルスの各々について位相差θを演算する。
 例えば、図9に示すように、絶対位置検出部71は、電源ONしてから出力される1パルス目については、時刻T2で得られたABCD相を用いて位相差θ(1)を算出し、2パルス目については、時刻T3で得られたABCD相を用いて位相差θ(2)を算出し、3パルス目については、時刻T4で得られたABCD相を用いて位相差θ(3)を算出し、4パルス目については、時刻T5で得られたABCD相を用いて位相差θ(4)を算出し、5パルス目については、時刻T6で得られたABCD相を用いて位相差θ(5)を算出する。
 次に、絶対位置検出部71は、位相差θ(1)~θ(5)の平均値を算出し(ステップS6)、この平均値を3パルス目における位相差とする。そして、この3パルス目における位相差と、メモリ73に記憶されている位相差(設計値)とズームレンズ位置とを対応付けたデータとから、この3パルス目の位相差に対応するズームレンズの絶対位置(現在位置の2パルス前の絶対位置)を決定する(ステップS7)。
 次に、絶対位置検出部71は、相対位置検出部72から受信した、電源ONから現時点までのズームレンズの移動方向にしたがい、ステップS7で決定した絶対位置に、2パルス分に相当する移動量を加算又は減算して、ズームレンズの絶対位置を確定する(ステップS8)。
 例えば、ズームレンズの移動方向が、位相差θが小さい値から大きい値に変化する方向であった場合、絶対位置検出部71はステップS7で決定した絶対位置に2パルス分に相当する移動量を加算して絶対位置を確定する。
 一方、ズームレンズの移動方向が、位相差θが大きい値から小さい値に変化する方向であった場合、絶対位置検出部71はステップS7で決定した絶対位置から2パルス分に相当する移動量を減算して絶対位置を確定する。
 絶対位置検出部71は、確定した絶対位置を、撮像装置本体1に接続される表示部に出力して、ユーザにこの絶対位置を報知するようにしてもよい。
 ステップS8以降は、相対位置検出部72が、A相信号及びB相信号に変化があった場合(ステップS9:YES)に、A相信号とB相信号を比較してズームレンズの移動方向を判定し、A相信号又はB相信号のパルス数(例えば64逓倍した精度でのパルス数)をカウントして、ステップS8において確定された絶対位置を基準位置とするズームレンズの相対位置を検出する(ステップS10)。
 以上のように、本実施形態のレンズ装置2によれば、電源ON後に磁気センサ部50から出力されるnパルス分の各々について求まる位相差の平均値に基づいて、ズームレンズの現在位置を決定するため、磁気記録スケール40の着磁むらやレンズ装置2の組み込み誤差による影響を低減して、現在位置の検出精度を向上させることができる。
 レンズ装置2によれば、特許文献2に記載の絶対位置検出方法よりも簡易な演算で絶対位置を検出することができるため、製造コスト及び消費電力を低減することができる。
 また、レンズ装置2によれば、磁気記録スケール41,42の各々に対して1つの磁気センサを設ける構成でよいため、特許文献3に記載の絶対位置検出方法よりも製造工ストの低減及び小型化が可能になる。
 実機においては、上述した着磁ムラ、組み込み誤差、及び磁気センサ部50のノイズ等によって、異なるパルスであっても、算出される位相差(実測値)が略同じになる場合がある。
 この場合は従来の方法では、この位相差(実測値)がどのパルスに対応するものなのかを判定することができない。一方、5つの位相差(実測値)の平均値は、異なるパルスでも同じ値になる可能性が低くなるため、絶対位置検出の精度を向上させることができる。
 また、レンズ装置2によれば、ズームレンズの絶対位置を検出するユニットをレンズ鏡筒内に設けているため、このユニットがレンズ鏡筒に対して外付けされるタイプのレンズ装置と比較すると、機械的なバックラシュを考慮する必要がない。そのため、ズームリングが逆回転しても、メカガタによる位置ずれが発生せず、より精度の高い位置検出が可能になる。
 なお、以上の動作説明では、n=5として説明したが、例えばn=7であれば、7個のパルスの各々について求めた位相差θの平均値を4パルス目に対応する位相差として扱い、この位相差によって4パルス目におけるズームレンズの絶対位置を求めた後、この絶対位置から3パルス分位置をずらした位置を絶対位置として確定させればよい。
 また、例えばn=4であれば、4個のパルスの各々について求めた位相差θの平均値を2パルス目又は3パルス目に対応する位相差として扱い、この位相差によって2パルス目又は3パルス目におけるズームレンズの絶対位置を求めた後、この絶対位置から2パルス又は1パルス分位置をずらした位置を絶対位置として確定させればよい。
 つまり、絶対位置検出部71は、nが奇数であれば、n個のパルスの各々について算出した位相差θの平均値に対応する絶対位置を“nを2で割ったときの商”パルス分ずらして最終的な絶対位置を確定する。
 また、絶対位置検出部71は、nが偶数であれば、n個のパルスの各々について算出した位相差θの平均値に対応する絶対位置を“nを2で割ったときの商”又は“(nを2で割ったときの商)-1”パルス分ずらして最終的な絶対位置を確定する。
 nの値としては、絶対位置の精度を考慮すると、3以上であることが好ましい。また、nの値は、1度の回転操作で回転筒20が回転する角度(回転筒20がφ80mm程度であれば10°~20°程度)に応じて磁気センサ部50から出力されるパルス数(5~10程度)と同じにしておくのが好ましい。
 これにより、ユーザは、レンズ装置2の電源をONしてから、ズームリング9をある方向に軽く1回まわす操作を行うだけで、ズームレンズの絶対位置を知ることができるようになり、絶対位置把握までの作業が簡便化される。
 また、以上の動作説明では、ステップS5において位相差の算出に用いるABCD相を、A相信号の振幅が0となるタイミングで得られたデータとしたが、これに限らず、任意のタイミングで得られたデータを用いることができる。
 ABCD相のいずれかの振幅が0となるタイミングで得られたABCD相のデータから求まる位相差θは、ABCD相のいずれの振幅も0とならないタイミングで得られたABCD相のデータから求まる位相差θと比較すると、設計上の位相差により近い値(誤差の少ない値)となる。
 このため、図8のステップS5では、各パルスについて、ABCD相のいずれかの振幅が0となるタイミングで得られたABCD相のデータから位相差θを算出することで、最終的に求まるズームレンズの絶対位置の精度を向上させることができる。
 図7の例において、例えばC相のカウント数が7,8,9,10,11に対応する各位相差(実測値)は、全ての値が設計値よりも高くなっている。
 このような5つの位相差(実測値)の平均値を求め、この平均値を、C相のカウント数が9に対応する位相差として扱って絶対位置を検出すると、絶対位置の検出精度向上効果は弱くなる。つまり、電源ON時のズームレンズの位置によっては、図8のステップS7において決定される絶対位置にも誤差が含まれる場合がある。
 そこで、レンズ装置2では、この誤差を補正するための誤差補正テーブルをメモリ73に記憶しておき、絶対位置検出部71が、ステップS6で算出した位相差の平均値と当該誤差補正テーブルとに基づいて、この誤差を補正することが好ましい。以下、この誤差を補正するのに好ましい構成例を説明する。
 レンズ装置2の出荷時に、ズームレンズをテレ端からワイド端まで移動させていき、そのときに磁気センサ部50から出力される149個パルスについてそれぞれ位相差θを算出する。次に、149個の位相差θの5(=n)個毎の移動平均を算出する。
 具体的には、1~5パルス目に対応する位相差の平均値、2~6パルス目に対応する位相差の平均値、3~7パルス目に対応する位相差の平均値、・・・、145~149パルス目に対応する位相差の平均値をそれぞれ求める。
 149個パルスの各々に対応する位相差θの設計値は既知であるため、上記移動平均と設計値の移動平均との差を誤差データとして求める。
 具体的には、(1~5パルス目に対応する位相差(設計値)の平均値)-(1~5パルス目に対応する位相差(実測値)の平均値)、(2~6パルス目に対応する位相差(設計値)の平均値)-(2~6パルス目に対応する位相差(実測値)の平均値)、・・・、(145~149パルス目に対応する位相差(設計値)の平均値)-(145~149パルス目に対応する位相差(実測値)の平均値)、をそれぞれ求める。
 そして、この誤差データと、当該誤差データに対応する位相差の平均値(実測値)とを対応付けた誤差補正テーブルを作成し、このテーブルをメモリ73に記憶しておく。
 レンズ装置2の電源ON時、絶対位置検出部71は、図8のステップS6において位相差の平均値(実測値)を算出すると、この平均値(実測値)と誤差補正テーブルを比較し、この平均値(実測値)に対応する誤差データをメモリ73から読み出す。
 そして、絶対位置検出部71は、ステップS6において求めた平均値(実測値)を、読み出した誤差データを用いて補正する。その後、絶対位置検出部71は、この補正後の平均値に対応するズームレンズの絶対位置を3パルス目に対応する絶対位置として決定する。このような構成により、ズームレンズの絶対位置検出精度を更に向上させることができる。
 上述した誤差データは、ズームレンズを可動範囲内で一端から他端まで移動させて得られる場合と、ズームレンズを可動範囲内で他端から一端まで移動させて得られる場合とで異なる値になることが分かっている。
 このため、誤差補正テーブルは、ズームレンズを可動範囲内で一端から他端まで移動させて得られる場合に対応するものと、ズームレンズを可動範囲内で他端から一端まで移動させて得られる場合に対応するものとを用意しておくことが好ましい。
 このようにした場合、絶対位置検出部71は、相対位置検出部72から通知されるズームレンズの移動方向に対応する誤差補正テーブルを用いて、誤差の補正を行えばよい。
 ここまでは、レンズ装置2に搭載される可動光学素子としてズームレンズを例にしたが、フォーカスレンズや絞り装置等の他の可動光学素子にも本実施形態で説明した技術を適用可能である。
 以上説明してきたように、本明細書は以下の事項が開示されている。
 開示されたレンズ装置は、可動光学素子を有するレンズ装置であって、上記可動光学素子の移動に伴って回転する回転部材と、上記回転部材の外周に固定配置され、上記回転部材の周方向に沿って伸びる、それぞれ異なる波長の磁気信号が記録された第一の磁気記録スケール及び第二の磁気記録スケールと、上記第一の磁気記録スケールに記録されている第一の波長の磁気信号に対応する第一の信号及びその第一の信号に対し所定量位相のずれた第二の信号を上記第一の磁気記録スケールから検出し、上記第二の磁気記録スケールに記録されている上記第一の波長と異なる第二の波長の磁気信号に対応する第三の信号及びその第三の信号に対し上記所定量位相のずれた第四の信号を上記第二の磁気記録スケールから検出する信号検出部と、上記信号検出部により検出される信号に基づいて、上記可動光学素子の位置を検出する位置検出部とを備え、上記位置検出部は、上記信号検出部により検出される1周期分の上記第一の信号、上記第二の信号、上記第三の信号、及び上記第四の信号に基づいて、上記第一の信号と上記第三の信号との位相差を算出する位相差算出部と、上記位相算出部により、n(nは2以上の自然数)周期分の信号のそれぞれについて算出された上記位相差の平均値を求める位相平均算出部と、上記位相平均算出部により求められた上記平均値に基づいて上記可動光学素子の絶対位置を検出する絶対位置検出部とを備えるものである。
 開示されたレンズ装置は、記可動光学素子を可動範囲内で端から端まで移動させたときに得られる各周期に対する上記位相差の上記n個毎の移動平均と、上記各周期に対する上記位相差の上記n個毎の移動平均の設計値との差分を誤差データとして記憶する誤差データ記憶部を備え、上記絶対位置検出部は、上記位相平均算出部により求められた上記平均値と上記誤差データとを比較して、その平均値をその誤差データに基づいて補正し、補正後の平均値に基づいて上記絶対位置を検出するものである。
 開示されたレンズ装置は、上記誤差データ記憶部は、上記誤差データとして、上記可動光学素子を可動範囲内で一端から他端まで移動させて得られる第一の誤差データと、上記可動光学素子を可動範囲内で他端から一端まで移動させて得られる第二の誤差データとを記憶するものである。
 開示されたレンズ装置は、上記位置検出部は、上記信号検出部により検出される信号に基づいて、上記n周期分の信号が得られたときの上記可動光学素子の移動方向を判定する移動方向判定部を備え、上記絶対位置検出部は、上記補正時に、上記移動方向判定部により判定された移動方向に応じて、上記第一の誤差データと上記第二の誤差データのいずれかを選択して用いるものである。
 開示されたレンズ装置は、上記位相算出部は、上記位相差の算出に用いる上記第一の信号、上記第二の信号、上記第三の信号、及び上記第四の信号として、これらのうちいずれかの振幅が0となっている時点での信号を用いるものである。
 開示されたレンズ装置は、上記位置検出部は、上記絶対位置が検出された後に上記信号検出部により検出される信号をカウントして、上記可動光学素子の上記絶対位置に対する位置を検出する相対位置検出部を備えるものである。
 開示されたレンズ装置の可動光学素子の位置検出方法は、レンズ装置に搭載される可動光学素子の位置検出方法であって、上記可動光学素子の移動に伴って回転する回転部材の外周に固定配置され、上記回転部材の周方向に沿って伸びる第一の磁気記録スケール及び第二の磁気記録スケールから、上記第一の磁気記録スケールに記録されている第一の波長の磁気信号に対応する第一の信号及びその第一の信号に対し所定量位相のずれた第二の信号を検出し、上記第二の磁気記録スケールに記録されている上記第一の波長とは異なる第二の波長の磁気信号に対応する第三の信号及びその第三の信号に対し上記所定量位相のずれた第四の信号を検出する信号検出ステップと、上記信号検出ステップにより検出した1周期分の上記第一の信号、上記第二の信号、上記第三の信号、及び上記第四の信号に基づいて、上記第一の信号と上記第三の信号との位相差を算出する位相差算出ステップと、上記位相算出ステップによりn(nは2以上の自然数)周期分の信号のそれぞれについて算出した上記位相差の平均値を求める位相平均算出ステップと、上記位相平均算出ステップにより求めた上記平均値に基づいて上記可動光学素子の絶対位置を検出する絶対位置検出ステップとを備えるものである。
 本発明は、例えばテレビカメラ用のレンズ装置に適用して有効である。
 本発明は、上記実施形態に限定されるものではなく、開示された発明の技術思想を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年1月30日出願の日本特許出願(特願2012-16971)に基づくものであり、その内容はここに参照として取り込まれる。
2 レンズ装置
20 回転筒
41,42 磁気記録スケール
50 磁気センサ部
70 レンズ制御部
71 絶対位置検出部

Claims (7)

  1.  可動光学素子を有するレンズ装置であって、
     前記可動光学素子の移動に伴って回転する回転部材と、
     前記回転部材の外周に固定配置され、前記回転部材の周方向に沿って伸びる、それぞれ異なる波長の磁気信号が記録された第一の磁気記録スケール及び第二の磁気記録スケールと、
     前記第一の磁気記録スケールに記録されている第一の波長の磁気信号に対応する第一の信号及び当該第一の信号に対し所定量位相のずれた第二の信号を前記第一の磁気記録スケールから検出し、前記第二の磁気記録スケールに記録されている前記第一の波長と異なる第二の波長の磁気信号に対応する第三の信号及び当該第三の信号に対し前記所定量位相のずれた第四の信号を前記第二の磁気記録スケールから検出する信号検出部と、
     前記信号検出部により検出される信号に基づいて、前記可動光学素子の位置を検出する位置検出部とを備え、
     前記位置検出部は、
     前記信号検出部により検出される1周期分の前記第一の信号、前記第二の信号、前記第三の信号、及び前記第四の信号に基づいて、前記第一の信号と前記第三の信号との位相差を算出する位相差算出部と、
     前記位相算出部により、n(nは2以上の自然数)周期分の信号のそれぞれについて算出された前記位相差の平均値を求める位相平均算出部と、
     前記位相平均算出部により求められた前記平均値に基づいて前記可動光学素子の絶対位置を検出する絶対位置検出部とを備えるレンズ装置。
  2.  請求項1記載のレンズ装置であって、
     前記可動光学素子を可動範囲内で端から端まで移動させたときに得られる各周期に対する前記位相差の前記n個毎の移動平均と、前記各周期に対する前記位相差の前記n個毎の移動平均の設計値との差分を誤差データとして記憶する誤差データ記憶部を備え、
     前記絶対位置検出部は、前記位相平均算出部により求められた前記平均値と前記誤差データとを比較して、当該平均値を当該誤差データに基づいて補正し、補正後の平均値に基づいて前記絶対位置を検出するレンズ装置。
  3.  請求項2記載のレンズ装置であって、
     前記誤差データ記憶部は、前記誤差データとして、前記可動光学素子を可動範囲内で一端から他端まで移動させて得られる第一の誤差データと、前記可動光学素子を可動範囲内で他端から一端まで移動させて得られる第二の誤差データとを記憶するレンズ装置。
  4.  請求項3記載のレンズ装置であって、
     前記位置検出部は、前記信号検出部により検出される信号に基づいて、前記n周期分の信号が得られたときの前記可動光学素子の移動方向を判定する移動方向判定部を備え、
     前記絶対位置検出部は、前記補正時に、前記移動方向判定部により判定された移動方向に応じて、前記第一の誤差データと前記第二の誤差データのいずれかを選択して用いるレンズ装置。
  5.  請求項1~4のいずれか1項記載のレンズ装置であって、
     前記位相算出部は、前記位相差の算出に用いる前記第一の信号、前記第二の信号、前記第三の信号、及び前記第四の信号として、これらのうちいずれかの振幅が0となっている時点での信号を用いるレンズ装置。
  6.  請求項1~5のいずれか1項記載のレンズ装置であって、
     前記位置検出部は、前記絶対位置が検出された後に前記信号検出部により検出される信号をカウントして、前記可動光学素子の前記絶対位置に対する位置を検出する相対位置検出部を備えるレンズ装置。
  7.  レンズ装置に搭載される可動光学素子の位置検出方法であって、
     前記可動光学素子の移動に伴って回転する回転部材の外周に固定配置され、前記回転部材の周方向に沿って伸びる第一の磁気記録スケール及び第二の磁気記録スケールから、前記第一の磁気記録スケールに記録されている第一の波長の磁気信号に対応する第一の信号及び当該第一の信号に対し所定量位相のずれた第二の信号を検出し、前記第二の磁気記録スケールに記録されている前記第一の波長とは異なる第二の波長の磁気信号に対応する第三の信号及び当該第三の信号に対し前記所定量位相のずれた第四の信号を検出する信号検出ステップと、
     前記信号検出ステップにより検出した1周期分の前記第一の信号、前記第二の信号、前記第三の信号、及び前記第四の信号に基づいて、前記第一の信号と前記第三の信号との位相差を算出する位相差算出ステップと、
     前記位相算出ステップによりn(nは2以上の自然数)周期分の信号のそれぞれについて算出した前記位相差の平均値を求める位相平均算出ステップと、
     前記位相平均算出ステップにより求めた前記平均値に基づいて前記可動光学素子の絶対位置を検出する絶対位置検出ステップとを備える位置検出方法。
PCT/JP2012/079699 2012-01-30 2012-11-15 レンズ装置及び可動光学素子の位置検出方法 WO2013114705A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013556204A JP5629836B2 (ja) 2012-01-30 2012-11-15 レンズ装置及び可動光学素子の位置検出方法
US14/446,697 US8942553B2 (en) 2012-01-30 2014-07-30 Lens device and position detection method of movable optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-016971 2012-01-30
JP2012016971 2012-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/446,697 Continuation US8942553B2 (en) 2012-01-30 2014-07-30 Lens device and position detection method of movable optical element

Publications (1)

Publication Number Publication Date
WO2013114705A1 true WO2013114705A1 (ja) 2013-08-08

Family

ID=48904768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079699 WO2013114705A1 (ja) 2012-01-30 2012-11-15 レンズ装置及び可動光学素子の位置検出方法

Country Status (3)

Country Link
US (1) US8942553B2 (ja)
JP (1) JP5629836B2 (ja)
WO (1) WO2013114705A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3023370A1 (fr) * 2014-07-07 2016-01-08 Ntn Snr Roulements Montage d’un systeme de determination de position angulaire sur un organe tournant
US10061099B2 (en) 2014-03-18 2018-08-28 Fujifilm Corporation Lens device, imaging apparatus, and method of detecting position of movable lens
DE112014007097B4 (de) 2014-10-24 2022-07-07 Mitsubishi Electric Corporation Magnetpositionsdetektionsvorrichtung und Magnetpositionsdetektionsverfahren

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016039393A (ja) * 2014-08-05 2016-03-22 ソニー株式会社 撮像装置及び画素信号読み出し方法
US11428503B1 (en) * 2021-04-02 2022-08-30 Trijicon, Inc. Digital aiming system for weapon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658766A (ja) * 1992-08-05 1994-03-04 Hitachi Ltd 絶対位置検出装置およびモ−タ制御装置
JP2004061459A (ja) * 2002-07-31 2004-02-26 Canon Inc 位置検出装置、これを備えたレンズおよび位置検出方法
WO2007148461A1 (ja) * 2006-06-19 2007-12-27 Panasonic Corporation エンコーダ信号の位相補正回路
JP2009053067A (ja) * 2007-08-28 2009-03-12 Panasonic Corp エンコーダの補正値制御方法
JP2009204941A (ja) * 2008-02-28 2009-09-10 Canon Inc レンズ鏡筒及びそれを有する光学機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396918A (en) * 1981-03-06 1983-08-02 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Low-frequency radio navigation system
JP4065973B2 (ja) * 1999-01-11 2008-03-26 株式会社ニコン 変位検出装置およびレンズ鏡筒
DE10041089A1 (de) 2000-08-22 2002-03-07 Bosch Gmbh Robert Verfahren zur Korrektur einer Winkelmessung
JP2002250639A (ja) 2001-02-23 2002-09-06 Sankyo Seiki Mfg Co Ltd 絶対位置検出エンコーダ
JP5736519B2 (ja) * 2012-08-30 2015-06-17 富士フイルム株式会社 撮像レンズ鏡筒およびその動作制御方法
CN104541133B (zh) * 2012-08-30 2016-03-16 富士胶片株式会社 摄像透镜镜筒及其动作控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658766A (ja) * 1992-08-05 1994-03-04 Hitachi Ltd 絶対位置検出装置およびモ−タ制御装置
JP2004061459A (ja) * 2002-07-31 2004-02-26 Canon Inc 位置検出装置、これを備えたレンズおよび位置検出方法
WO2007148461A1 (ja) * 2006-06-19 2007-12-27 Panasonic Corporation エンコーダ信号の位相補正回路
JP2009053067A (ja) * 2007-08-28 2009-03-12 Panasonic Corp エンコーダの補正値制御方法
JP2009204941A (ja) * 2008-02-28 2009-09-10 Canon Inc レンズ鏡筒及びそれを有する光学機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10061099B2 (en) 2014-03-18 2018-08-28 Fujifilm Corporation Lens device, imaging apparatus, and method of detecting position of movable lens
FR3023370A1 (fr) * 2014-07-07 2016-01-08 Ntn Snr Roulements Montage d’un systeme de determination de position angulaire sur un organe tournant
EP2966414A1 (fr) * 2014-07-07 2016-01-13 NTN-SNR Roulements Montage d'un système de détermination de position angulaire sur un organe tournant
DE112014007097B4 (de) 2014-10-24 2022-07-07 Mitsubishi Electric Corporation Magnetpositionsdetektionsvorrichtung und Magnetpositionsdetektionsverfahren

Also Published As

Publication number Publication date
US20140340560A1 (en) 2014-11-20
US8942553B2 (en) 2015-01-27
JPWO2013114705A1 (ja) 2015-05-11
JP5629836B2 (ja) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5736518B2 (ja) 撮像レンズ鏡筒およびその動作制御方法
JP5629836B2 (ja) レンズ装置及び可動光学素子の位置検出方法
US8817169B2 (en) Motor driven optical apparatus
US9372324B2 (en) Imaging lens barrel and method for controlling operation of the same
US8682154B2 (en) Position detecting unit, lens unit and camera furnished with same, lens unit manufacturing method, and position detecting method
JP6053985B2 (ja) レンズ装置、撮像装置、可動レンズの位置検出方法
JP2013238822A (ja) 線形運動デバイスの制御装置及びその制御方法
US10620400B2 (en) Position detection device for movable lens, lens device, imaging device, position detection method for movable lens, and non-transitory computer readable medium storing a position detection program for movable lens
US9274305B2 (en) Imaging lens barrel and method for controlling operation of the same
JP5802857B2 (ja) レンズ装置及び可動光学素子の位置検出方法
JP6368605B2 (ja) 位置検出装置及びそれを備えた駆動装置
WO2023286521A1 (ja) 位置検出装置および撮像装置
JP5038176B2 (ja) 光学機器
JP6031415B2 (ja) レンズ装置及び可動光学素子の位置検出方法
JP2013156442A (ja) レンズ装置、撮像装置、絶対位置検出方法
JP2013003352A (ja) 光学装置及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556204

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867114

Country of ref document: EP

Kind code of ref document: A1