WO2013114328A1 - Procede de broyage fin d'une charge de matiere carbonee avec ajouts d'additifs, installation de traitement en continu de biomasse et application a la gazeification associees - Google Patents
Procede de broyage fin d'une charge de matiere carbonee avec ajouts d'additifs, installation de traitement en continu de biomasse et application a la gazeification associees Download PDFInfo
- Publication number
- WO2013114328A1 WO2013114328A1 PCT/IB2013/050863 IB2013050863W WO2013114328A1 WO 2013114328 A1 WO2013114328 A1 WO 2013114328A1 IB 2013050863 W IB2013050863 W IB 2013050863W WO 2013114328 A1 WO2013114328 A1 WO 2013114328A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biomass
- chamber
- mill
- additives
- particles
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
- B02C19/16—Mills provided with vibrators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C21/00—Disintegrating plant with or without drying of the material
- B02C21/007—Disintegrating plant with or without drying of the material using a combination of two or more drum or tube mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C23/00—Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
- B02C23/06—Selection or use of additives to aid disintegrating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C23/00—Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
- B02C23/08—Separating or sorting of material, associated with crushing or disintegrating
- B02C23/16—Separating or sorting of material, associated with crushing or disintegrating with separator defining termination of crushing or disintegrating zone, e.g. screen denying egress of oversize material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/02—Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
- C10L5/34—Other details of the shaped fuels, e.g. briquettes
- C10L5/36—Shape
- C10L5/366—Powders
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
- C10L5/44—Solid fuels essentially based on materials of non-mineral origin on vegetable substances
- C10L5/447—Carbonized vegetable substances, e.g. charcoal, or produced by hydrothermal carbonization of biomass
Definitions
- the present invention relates to the mechanical treatment of carbonaceous material feedstock and more particularly to a process for the fine grinding of such a feedstock, in particular biomass feedstock.
- fine grinding is understood to mean grinding the particles of the carbonaceous material charge to obtain micron or millimetric dimensions, that is to say up to hundreds of microns or even up to dimensions less than 5 millimeters.
- the crushed carbonaceous material filler particles are smaller in size than the millimetric or micron-sized carbonaceous material filler particles that feed the inlet of the first chamber of the vibratory mill in accordance with the invention.
- a first stage of mechanical treatment is conventionally performed and consists of coarse grinding (shredding for forest chips).
- a second mechanical treatment step subsequent to the first is necessary and consists of fine grinding to confer specific properties on the biomass powder.
- it may be wood flour for the manufacture of biofuels in the form of granules.
- the invention therefore relates more particularly to this second step of mechanical treatment of biomass, for injection in powdered form in a downstream conversion reactor (gasification) or in a combustion or so-called co-combustion reactor (biomass and coal) in a coal-fired power plant or for granulation to produce biofuels.
- the invention is advantageously applied to the gasification of biomass for the production of biofuels from the synthesis gas widely known under the name Syngaz.
- the fine biomass crushing method according to the invention is preferably carried out upstream of a powder conditioning / storage unit itself upstream of a gasification reactor to subsequently produce biofuels.
- the mechanical treatment of biomass typically comprises a first step of coarse grinding, usually at the place of harvest, which in particular facilitates transport and reduce its cost.
- This first step of grinding is carried out by means of shredder (in English "shredder") and leads to centimetric or millimeter-sized particles, typically wood chips in the wood dies. It is made using grinders with proven technology (hammer mill, knife or scissors). The particles thus coarsely ground thus constitute what are called inputs in the gasification or biomass combustion pathways (heat and electricity cogeneration, heat production, biofuel production).
- the size required for the biomass particles is of the order of a few hundred microns.
- the powder obtained with a hammer mill has a more spreading particle size distribution (publication [5]), which is a major drawback for the flowability, that is to say the ability to flow, the powder as highlighted in the publications [6], [7].
- Hammer mill grinding occurs mainly by impact and attrition, which induces an elongated and deformed particle geometry, showing hook-like projections along the fiber, called fibrils, which promote the interlace effect between particles, cohesion between the grains and through this the accentuation of the effect known as the effect of vault in storage containers (silos): see publication [8]. It should also be noted that a longer mechanical treatment induces a high energy cost without fundamentally modifying the shape of the particles, because they always undergo crushing by hammers.
- ball mills conventionally used for grinding coal work by attrition and produce elongated particles and many fines on fibrous materials.
- biomass powders obtained that is to say finely ground
- the biomass powders obtained are difficult to transport, handle, inject into a downstream conversion reactor, because they tend to form agglomerates which generates the effect of arch , poor flowability ...
- the first route consists of a mixed solution of thermal pre-heat treatment called roasting combined with mechanical grinding by the milling technology already proven and mentioned above: hammer mills for fibrous ball mill materials for coal.
- Roasting is a gentle thermal treatment of biomass at the interface between drying and pyrolysis, usually carried out at temperatures between 200 and 350 ° C and aimed at removing water and modifying some of the organic matter bio mass to break its fibers.
- this mild heat treatment alters the fibrous structure of the biomass, thus facilitating its grinding. This makes it possible to reduce the energy cost of grinding and to obtain less fibrous particles, thus easier to transport, store and inject into a downstream reactor: see publication [11].
- the powder obtained for a high roasting of the biomass that is to say leading to a loss of mass greater than 30% by the operation, has characteristics close to those obtained with coal.
- This allows to use the solution conventionally adopted for the grinding and for the powder injection which is the pneumatic conveying (dense phase).
- the intrinsic characteristics of the biomass are at the origin of the difficulties of storage, transport and injection in thermochemical conversion reactors.
- the thermal pre-treatment of roasting solves the problem, but for an energy cost that could prove prohibitive. Evaluations are currently underway.
- the second way is to optimize either grinders given according to the type of biomass or complete chains of mechanical grinding.
- the Esteban team explicitly proposes the serialization of two grinders in order to optimize the energy cost of grinding: see publication [12].
- the choice fell on the implementation of two grinders of the same type, namely hammer mills.
- the authors then worked on the integration of the whole to optimize the energy cost of the chain and the granulometry of the final product. They thus determined the granulometric threshold at the outlet of the first mill, optimized the types of recirculation of the product.
- the authors estimate that the cost of grinding on an industrial scale, that is to say for a flow rate of the order of 10 t / h, amounts to 120 to 150 kWh / t for wood chips (poplar or pine respectively).
- the team of Siyi Luo et al. proposes a grinding chain capable of mechanically treating both wood (pine) and softer biomass (straw, stems ...): see publication [13].
- the proposed chain makes it possible to reduce the dimensions of the particles up to values of 250 ⁇ fixed by a cyclone downstream so that they can be used in a burner. More precisely, the proposed chain comprises two crushers in series, with identical technology called blades (in English "crushers").
- the first mill that is to say the one upstream, has its axis which extends horizontally while the axis of the second mill extends to the vertical.
- the energy cost is estimated at 87 kWh / t for pine chips.
- the general object of the invention is to overcome at least some of the disadvantages of the state of the art of biomass treatment and more generally of carbonaceous material charge for its injection in powder form in a conversion reactor. downstream (gasification) or in a combustion or so-called co-combustion reactor (biomass and coal) in a coal-fired power station or for granulation to produce biofuels.
- a particular aim is to propose a process for the fine grinding of biomass, and more generally of carbonaceous material feedstock, which improves the properties (flowability, fluidization ability) of the powder obtained and at a lower energy cost.
- it is sought according to the particular object to avoid agglomerates of finely ground biomass powder to improve their ability to be transported, manipulated, and injected into a downstream conversion reactor.
- the subject of the invention is a process for the fine grinding of a charge of carbonaceous material according to which the charge of carbonaceous matter, in the form of particles of millimeter or micron dimensions, is introduced at the inlet of a first chamber of vibrating-type mill whose output is connected to the inlet of a second vibrating-type mill chamber, the first and second vibrating mill chambers each comprising grinding bodies freely housed therein and adapted to grind particles, a method according to which the first and second chambers are vibrated so as to crush the particles introduced on the one hand between the grinding body and secondly between them and the peripheral inner wall of each chamber.
- additives of mineral matter and / or additives of vegetable matter and / or additives of material of plant origin are introduced, the additives being in the form of a micron-sized powder.
- micron-sized powder means a powder whose particles have unit dimensions of less than 1 mm with, where appropriate, elementary particles of nanometric size, typically of the order of 100 nm.
- the charge of carbonaceous material is biomass.
- the inventors have thought of putting in series two chambers or stages of vibratory mills, which is advantageous from an energy cost point of view, and to introduce into that the most downstream, that is to say the one in which the biomass particles are already finely ground on the submillimeter scale, additives of mineral matter and / or plant material and / or material of plant origin, in the form of a micron-sized powder, preferably less than 5 ⁇ .
- at least a partial coating of the biomass particles is carried out in the dry process, which makes it possible to improve the flowability properties and the fluidization ability of the powder finally obtained.
- the very fine particles of additives of mineral matter and / or plant material and / or material of plant origin are brought into direct and close contact with the relatively larger biomass particles, by application of mechanical forces. shear and impact for example.
- the additives may be chosen from magnesium stearate (C36H70MgO4), silica in the form of microbeads, such as that marketed under the brand name New reach SilicaFume NR950 and which contains 95% of SiO2 or else marketed by Rhodia under the trade name Tixosil®68 and which contains 90% of the amorphous silica or under the name Tixosil®331.
- the additives may also be based on silicon oxide particles SiO 2 or containing CaCO 3.
- according to the invention is incorporated additives that allow proper operation of a downstream gasification reactor. Thanks to the fine biomass crushing method according to the invention, it is now possible to envisage carrying out, on an industrial scale and continuously, a gravity injection directly in thermo-chemical conversion reactors, which was not envisaged. to date, due to the poor flowability and / or fluidization ability of known biomass powders, with the undesirable vault effect that could occur.
- the mineral composition of the additives is advantageously chosen to be a chemical mineral supplement required for ash management in a downstream gasification reactor. Indeed, it is known that the ash content of the biomass is very variable and of very different composition.
- the publication [15] indicates that wood typically contains 0.5-1% ash with mostly calcium and potassium, whereas wheat straw contains 8% ash with mostly potassium and silica.
- two types of biomass there are significant differences in ash content and very different compositions. These differences directly impact the operation of a gasification reactor: the operation with wood generates a very high ash melting temperature required, which requires the addition of additives (silica in this case) to adjust this temperature to the operation reactor, typically at about 1300-1400 ° C.
- the operation with straw results in a melting temperature required too low for the operation of a gasification reactor requiring the addition of different additives (calcium) to raise this temperature value.
- the micron powder of mineral additives is rich in silicon or calcium (greater than 10% by weight).
- the additive is for example based on particles of silicon oxides SiO 2 or silica-based microbeads.
- the additives making it possible to control the gasification operation are preferably derived from lime, that is to say a mixture of calcium CaCO 3 and magnesium oxide.
- a pre-grinding step is advantageously carried out using a knife mill which produces a powder with particles. shorter (reduced length / diameter ratio) and a reduced fine particle ratio ( ⁇ 30 ⁇ ).
- Particle calibration by sieving also significantly improves the efficiency of fine grinding and particle shaping.
- the sieving operation can be carried out so as to have particles smaller than 500 ⁇ .
- pre-grinding particles of unit dimensions of the order of a millimeter and the vibrating mill is used to adjust the shaping of the particles (remove the fibrils, round the corners and shorten their length).
- the plant material additives are advantageously based on charcoal, such as charcoal and / or cereal straw charcoal.
- the plant material additives may also be advantageously based on roasted biomass, such as roasted wood, or roasted agricultural products, that is to say having previously undergone such as cereal straw, the bark, shells (cherry stones, walnut shells ).
- the amount of added plant material additives is between 0.5 and 20% by weight of the carbonaceous material feed, more preferably between 5 and 10%. It has been found that the greater the quantity of additives added, the better the flowability obtained at the output of the vibratory mill. Thus, the preferred range is advantageous because it is a good compromise between, on the one hand, improving the flowability according to the invention and the cost of carrying out the process.
- the plant material additives may advantageously be based on fossil coal. It is specified here that fossil coal (charcoal) comes from the degradation of the organic organic matter and that it contains minerals whose content may vary according to the geographical area of coal extraction.
- the particle dimensions of the carbonaceous material feed introduced into the first vibrating mill chamber are substantially between 1 and 2 mm.
- the dimensions of the micronic additive powder introduced into the second vibrating mill chamber are substantially less than 5 ⁇ .
- the particle size of the carbonaceous material charge obtained at the outlet of the second vibratory mill chamber is less than 800 ⁇ , preferably less than 200 ⁇ .
- the vibratory mill grinding bodies freely housed inside the chamber consist of several sets of cylindrical bars of unit diameter different from each other.
- the invention also relates to a method for treating biomass in which the mass of biomass is dried in the raw state, and then the fine grinding process as described above is carried out by introducing the biomass into the first vibrating mill chamber. at least dried.
- the dried biomass feed is made with a water content thereof in a range of 10 to 15%.
- a pre-grinding of the dried biomass is carried out upstream of the fine grinding process by introducing it into a chamber of a knife or scissors-type grinder.
- a knife or scissors mill comprises, for example, notches on a central shaft rotatably mounted in the chamber, the notches being adapted to pull the dried biomass particles against the peripheral inner wall of the chamber.
- the particle size of the pre-milled biomass is substantially greater than 1 mm.
- a sieving of the pre-milled biomass is carried out upstream of the fine grinding process, and downstream of the pre-grinding of the dried biomass.
- the sieving of the pre-milled biomass is carried out so as to carry out the fine grinding process from particles of millimeter dimensions less than 2 mm or micron dimensions less than 500 ⁇ .
- the millimeter-sized particles greater than 2 mm are reintroduced into the knife mill.
- the particles obtained are selected according to their dimensions so that they are less than 800 ⁇ , preferably less than 200 ⁇ .
- a roasting heat treatment is carried out with biomass, and then the fine grinding process as described above is carried out by introducing into the first chamber of the vibrating mill the roasted bio mass.
- the subject of the invention is also a continuous bio mass treatment plant intended to implement the method as described above, comprising:
- a micronization mill for grinding additives of mineral material and / or plant material and / or material of plant origin, in the form of a micron-sized powder, the output of the micronization mill being connected to the entrance to the second chamber vibrating mill.
- the plant may further include a drying apparatus upstream of the first vibrating mill chamber. It can also further comprise immediately downstream of the drying apparatus and upstream of the second vibrating mill chamber, a knife mill. It can also further include immediately downstream of the knife mill and immediately upstream of the first vibrating mill chamber, a sieving apparatus. Finally, it may further comprise a dynamic variable speed selector immediately downstream of the second vibrating mill chamber, said dynamic selector being adapted to extract at the output of the second vibrating mill chamber particles smaller than a desired diameter.
- the vibratory mill grinding bodies freely housed inside the chamber advantageously consist of several sets of cylindrical bars of unit diameter different from each other.
- FIG. 1 is a diagrammatic view of a first embodiment of a continuous biomass treatment plant incorporating a vibratory mill with two stages and making it possible to implement the method of fine grinding of the biomass according to FIG. invention;
- FIG. 1A is a schematic view of an alternative embodiment of an installation according to the first illustrated mode of FIG. 1;
- FIG. 2 is a schematic view of a second embodiment of a continuous biomass treatment plant incorporating a vibratory mill with two stages and making it possible to implement the method of fine grinding of the biomass according to FIG. invention
- FIG. 3 is a graph of test records which shows the number of measurements at a given avalanche angle value, the tests being carried out with a wood powder (beech) as a carbonaceous material feedstock of the process fine grinding according to the invention and with or without mineral additives;
- FIG. 4 is a graph of test records which shows the avalanche angle value as a function of the type of wood powder as carbonaceous material feed of the fine grinding process according to the invention and with or without additives of mineral matter;
- FIG. 5 is a graph of test records which shows the number of measurements at a given avalanche angle value, the tests being carried out with a wood meal (sawdust) as a carbonaceous material feedstock of the process fine grinding according to the invention and with or without additives of material of plant origin;
- FIG. 6 is a graph of test records which translates the number of measurements to a given avalanche angle value, the tests being carried out with a wood powder (beech) as a charge of carbonaceous material of the process fine grinding according to the invention and with or without additives of material of plant origin;
- a wood powder beech
- the plant firstly comprises upstream a dryer 1 fed with treated raw biomass to carry out its drying.
- the treated raw biomass consists of forest chips, typically a few mm thick and a few cm in length.
- the flow rate of treated raw mass is of the order of 1 t / h and the dryer 1 used is a rotary kiln dryer, marketed by Maguin.
- This drying step makes it possible to have a reduced energy consumption of the pre-grinding operation immediately downstream on the one hand and allows the optimal operation of the grinding operation according to the invention on the other hand.
- the knife mill 2 may be monorotor type (FL / FNG / FNV) also operating at a rate of 1 t / h and marketed under the trade name Poittemill Forplex. To reduce the energy cost of this pre-grinding operation, care is taken to obtain advantageously at the output of the knife mill particles of dimensions at least equal to one millimeter.
- a sieving operation is carried out continuously using a sieving apparatus 3.
- a sieving apparatus 3 For example, it may be a vibrating sieve marketed by the company RITEC, under the name of MC type.
- the particles of dimensions greater than 2 mm are preferably reinjected into the knife mill 2.
- the fraction thus taken can be used as a fuel for supplying energy to the dryer 1.
- This sieving operation can also be carried out with an apparatus for sieving mesh openings of micrometric (micron) dimensions so as to obtain, at the outlet of the apparatus, micron sized dried biomass particles, typically between 0 and 500 ⁇ . or between 0 and 200 ⁇ .
- fine grinding of the dried, pre-milled and sieved biomass particles is carried out continuously. To do this, these particles are first introduced at the inlet of a first chamber 5 of a vibratory mill. The output of this first vibrating mill chamber 5 is connected directly and immediately downstream to the inlet of a second vibrating mill chamber 7.
- the inlet of the second vibrating mill chamber 7 concomitantly passes biomass particles already finely ground in the first vibrating mill chamber 5, a micron powder of additives 4 (CaCO 3 + SiO 2 or silica microbead ).
- the additives 4 may be continuously micronised to a diameter of less than 20 ⁇ , preferably less than 5 ⁇ by means of a micronization mill 6.
- the first and second chambers, respectively 5 and 7, of vibrating mill can be carried out in the same apparatus.
- it may be the one marketed by the company RITEC under the name Palla 50U (90 kW) which incorporates two grinding stages or in other words two rooms in the same device.
- Palla 50U 90 kW
- steel bodies can be used, preferably in the form of solid cylindrical bars. More preferably, the cylindrical bars used may have a diameter of between 10 and 60 mm, preferably between 20 and 50 mm.
- the grinding bodies can also be in the form of balls or in the form of cylpebs.
- the grinding bodies are of different unit sizes to each other.
- the micronization mill 6 of the additives 4 can also be a vibrating type mill, marketed by the company RITEC, under the name lab / pilot (2.2 kW), and its operating flow can be equal at 10 kg / h.
- Fine grinding according to the invention then advantageously combines the effect of the second chamber 7 vibrating mill and finely milled additives 4 (micron powder). In this way, at least a partial coating of the biomass particles already ground in the first vibratory mill chamber 5 is carried out in a certain way. This improves the flowability and fluidization properties of the powder. At the very least, the vault effect of such a powder conventionally observed in storage silos is considerably reduced.
- the additives 4 have a mineral composition best chosen to control the ash melting temperature in a downstream gasification reactor.
- particles of unit dimensions smaller than 30 ⁇ are extracted using a dynamic selector 6.
- the dynamic selector 6 may be the one marketed by the company RHEWUM under the name of type AQ. This extraction is advantageous because the very fine particles reduce the flow property of the powder.
- This extracted fraction can be used as a combustion product directly in a reactor downstream conversion and / or as a product of combustion directly in the dryer 1 upstream, which further reduces the energy cost.
- the dried, pre-milled, and sieved bio-mass particles are introduced concomitantly with particles of abrasive mineral material 4 'entering the chamber of a vibrating mill 5.
- the fine grinding according to FIG. The invention is thus advantageously supplemented by the effect of the first vibrating mill chamber 5 and the injected inorganic abrasive particles 4 'by coating the biomass particles with the additives.
- the first vibratory mill chamber 5 operates in semi-autogenous operation with the mineral abrasive grinding powder 4 'of particle size equal to 3 mm.
- the mineral abrasive particles 4 'injected are based on SiO 2 silicon oxide particles.
- they have a chemical composition with an SiO 2 content greater than 80%.
- it may be silica (sand) or quartz for example.
- the amount of the abrasive powder 4 ' can be advantageously adjusted with the micronised additive powder 4 injected to have an ash melting temperature adjusted to the operating temperature of the downstream gasification reactor.
- the inlet of the first vibratory mill chamber 5 of the biomass having previously undergone a roasting heat treatment step. It can be forest chips previously shredded to unit sizes of 50 mm and roasted.
- avalanche angle which is a characteristic of a powder flow: the lower the angle, the better the powder flows.
- the avalanche angle of each sample was measured using a device marketed under the name REVOLUTION by MERCURY SCIENTIFIC. This apparatus comprises a drum rotating on itself and inside which the powder is placed whose avalanche angle is to be measured.
- silica additives in the form of microbeads, which is the one marketed by RHODIA under the trademark Tixosil®331.
- FIG. 3 illustrates the number of occurrences (measurements) for a given avalanche angle for the natural beech wood powder respectively without additive, with 1% by mass of Tixosil®331 added and with 2% by mass of Tixosil added ®331. It is clear that the measured average avalanche angle is lower for a larger amount of Tixosil®331 added. In other words, the flowability of the natural beech powder under free flow conditions is improved by the addition of Tixosil®331 mineral additives. This improvement is even greater than the amount of additive is important.
- a third series of tests were also carried out with the same Tixosil®331 mineral additives, but with a spruce wood powder with particle sizes between 0 and 200 ⁇ and for a single batch.
- the graph in Figure 4 illustrates the results obtained for these second and third series of tests: it appears that the avalanche angle measured is lower for a larger quantity of Tixosil®331 added for each batch and whatever the nature of the wood (natural beech or spruce). In other words, the flowability of the wood powder under free flow conditions is improved by the addition of Tixosil®331 mineral additives regardless of the nature (natural beech or spruce) of the wood.
- the improvement in flowability is greater the greater the amount of Tixosil®331 mineral additive.
- an added quantity of Tixosil®331 mineral additives of 2% by weight decreases the value of the avalanche angle by 58 ° (without additive ) at 50 °.
- FIG. 5 illustrates the number of occurrences (measurements) for a given avalanche angle for wood flour (sawdust) with particle sizes between 0 and 200 ⁇ , respectively without additive and with about 10% by weight ( D50%) added fossil coal ("coal"). It is clear that the average avalanche angle measured is lower when fossil coal is added. In other words, the flowability of the wood flour powder in free flow condition is improved by the addition of fossil coal additives.
- FIG. 6 illustrates the number of occurrences (measurements) for a given avalanche angle for natural beech powder of particle sizes between 0 and 200 ⁇ , respectively without additive and with 10% by weight of added coal. wood. It is clear that the average avalanche angle measured is lower when adding charcoal. In other words, the flowability of the natural beech powder under free flow conditions is improved by the addition of charcoal additives.
- the plant can be used for the fine grinding of other charges of carbonaceous material (coal, petcoke ).
Landscapes
- Food Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Processing Of Solid Wastes (AREA)
- Crushing And Grinding (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
L'invention est relative à un procédé de broyage fin d'une charge de matière carbonée selon lequel on introduit la charge de matière carbonée, sous forme de particules de dimensions millimétriques ou microniques, en entrée d'une première chambre (5) de broyeur de type vibrant dont la sortie est reliée à l'entrée d'une deuxième chambre (7) de broyeur de type vibrant, la première et la deuxième chambres de broyeur vibrant comprenant chacune des corps de broyage logés de façon libre en son sein et adaptés pour broyer des particules, procédé selon lequel on met en vibration la première et la deuxième chambres de sorte à concasser les particules introduites d'une part entre les corps de broyage et d'autre part entre ceux-ci et la paroi interne périphérique de chaque chambre. Selon l'invention, on introduit en outre en entrée de la deuxième chambre de broyeur vibrant des additifs de matière minérale et/ou des additifs de matière végétale et/ou des additifs de matière d'origine végétale, les additifs étant sous la forme d'une poudre de dimension micronique.
Description
PROCEDE DE BROYAGE FIN D'UNE CHARGE DE MATIERE CARBONEE AVEC AJOUTS D'ADDITIFS, INSTALLATION DE TRAITEMENT EN CONTINU DE BIOMASSE
ET APPLICATION A LA GAZEIFICATION ASSOCIEES
Domaine technique
La présente invention concerne le traitement mécanique de charge de matière carbonée et plus particulièrement un procédé de broyage fin d'une telle charge, notamment de biomasse.
On précise ici qu'on entend par broyage fin, un broyage des particules de la charge de matière carbonée jusqu'à obtenir des dimensions microniques ou millimétriques, c'est-à-dire jusqu'à des centaines de microns voire jusqu'à des dimensions inférieures à 5 millimètres. Bien entendu, les particules de charge de matière carbonée broyées sont de dimensions inférieures aux particules de charge de matière carbonée de dimensions millimétriques ou microniques qui alimentent l'entrée de la première chambre du broyeur vibrant conformément à l'invention.
Dans le cas de la biomasse ligno-cellulosique, une première étape de traitement mécanique est classiquement réalisée et consiste en un broyage grossier (déchiquetage pour les plaquettes forestières). Selon l'application souhaitée, une deuxième étape de traitement mécanique consécutif au premier, est nécessaire et consiste en un broyage fin pour conférer des propriétés spécifiques à la poudre de biomasse. Par exemple, il peut s'agir de farine de bois pour la fabrication de biocombustibles sous forme de granulés.
L'invention a donc plus particulièrement trait à cette deuxième étape de traitement mécanique de biomasse, en vue de son injection sous forme pulvérisée dans un réacteur de conversion en aval (gazéification) ou dans un réacteur de combustion ou dit de co-combustion (biomasse et charbon) dans une centrale thermique à charbon ou en vue de sa granulation pour réaliser des biocombustibles.
L'invention s'applique avantageusement à la gazéification de biomasse en vue de la réalisation de biocarburants à partir du gaz de synthèse largement connu sous l'appellation Syngaz. Dans cette application, le procédé de broyage fin de biomasse selon l'invention est de préférence réalisé en amont d'une unité de conditionnement/stockage de poudre elle-même en amont d'un réacteur de gazéification pour produire ultérieurement des biocarburants.
Etat de la technique
Le traitement mécanique de la biomasse (tronc d'arbre, balles de paille) comprend classiquement une première étape de broyage grossier, en général sur le lieu même de la récolte, qui permet notamment de faciliter le transport et d'en réduire son coût. Cette première étape de broyage est réalisée au moyen de déchiqueteuse (en anglais « shredder ») et conduit à des particules de dimensions centimétriques ou millimétriques, typiquement des plaquettes forestières dans les filières bois. Elle est réalisée au moyen de broyeurs à la technologie éprouvée (broyeur à marteaux, à couteaux ou à ciseaux). Les particules ainsi broyées grossièrement constituent ainsi ce que l'on appelle les intrants dans les voies de gazéification ou de combustion de biomasse (cogénération de chaleur et d'électricité, production de chaleur, production de biocarburants).
Pour une application de conversion thermo chimique de la biomasse par gazéification, dans un réacteur de type réacteur à flux entraîné, la taille requise pour les particules de biomasse est de l'ordre de quelques centaines de microns.
Pour les applications de combustion de biomasse, de nombreuses études montrent que la taille des particules joue en effet un rôle clef: comme l'indique la publication [1], la micronisation de la poudre favorise la combustion et réduit les émissions de particules.
Un certain nombre d'études est consacré au broyage fin de particules de biomasse, notamment de plaquettes forestières, pour atteindre des granulométries du millimètre au micron selon les cas. Dans ces études, les effets de la nature de la biomasse, du type de broyeur(s) utilisé(s), de la granulométrie désirée ont été caractérisés sur le coût énergétique de l'opération proprement dite de broyage fin, et/ou les propriétés de la poudre obtenue (distribution granulo métrique, forme des particules).
De ces études, il a pu se dégager un certain nombre de tendances que l'on peut résumer comme suit.
Pour le broyage de biomasse ligno-cellulosique, les broyeurs à couteaux et les broyeurs à marteaux sont bien adaptés : on peut citer ici les publications [1], [2] qui mettent cela en évidence. Cette opération est d'un coût énergétique peu élevé si la taille des particules visées ne descend pas en dessous du millimètre. Chacune de ces technologies présente des avantages et des inconvénients, comme souligné dans la publication [3]. Ainsi, l'avantage majeur de la technologie dite de broyeurs à marteaux est
sa robustesse et un coût d'entretien moindre. En revanche, la consommation énergétique est plus importante pour un broyeur à marteaux, typiquement de l'ordre de 130 kWh/tonne (kWh/t), que pour un broyeur à couteaux, typiquement de l'ordre de 60 kWh/t : voir publication [4]. De plus, la poudre obtenue avec un broyeur à marteaux a une distribution granulométrique plus étalée (publication [5]), ce qui est un inconvénient majeur pour la coulabilité, c'est-à-dire la capacité à s'écouler, de la poudre comme souligné dans les publications [6], [7]. Le broyage par broyeurs à marteaux se produit essentiellement par impact et attrition, ce qui induit une géométrie de particule allongée et déformée, faisant apparaître des saillies en forme de crochets le long de la fibre, appelés fibrilles, qui favorisent l'effet d'entrelacement entre particules, de cohésion entre les grains et par ce biais l'accentuation de l'effet connu sous l'appellation d'effet de voûte dans les récipients (silos) de stockage: voir publication [8]. Il est d'ailleurs à noter qu'un traitement mécanique plus long induit un coût énergétique élevé sans pour autant modifier fondamentalement la forme des particules, car celles-ci subissent toujours un écrasement par les marteaux.
De même, les broyeurs à boulets utilisés classiquement pour le broyage du charbon fonctionnent par attrition et produisent sur les matériaux fibreux des particules allongées et beaucoup de fines.
A côté de ces technologies de broyage éprouvées pour le broyage de charge de matière carbonée, il est connu d'utiliser un broyeur de type vibrant pour réaliser le broyage de matériaux durs et friables, tels que ceux de roche calcaire, des oxydes métalliques... On peut se reporter aux publications [9] et [10] qui décrivent respectivement l'aspect théorique de la fragmentation de ces matériaux et les différentes technologies de broyeur utilisées. Ainsi, dans un broyeur vibrant la fragmentation s'opère par impact et attrition à fréquence variable. L'équipe de Kobayashi et al a pensé à utiliser une technologie de broyeur vibrant afin de réaliser un broyage fin (micronisation de la bio masse) pour une application de combustion : voir publication [6]. Il s'est avéré que la fragmentation par impact permet d'une part de résoudre le problème de la présence de fibrilles sur les particules de biomasse obtenues et d'autre part de raccourcir la longueur des particules en favorisant la propagation des fissures présentes dans les fibres de biomasse. Les essais réalisés par Kobayashi et al ont été effectués directement à partir de plaquettes forestières de dimensions millimétriques (22mm) introduites en entrée de
chambre du broyeur vibrant et ont nécessité un temps de traitement de la poudre relativement long pour obtenir les caractéristiques visées (d<30 μιη), ce qui s'est traduit par un coût énergétique élevé (800kwh/t).
Il ressort de ces études que le problème majeur du broyage fin de biomasse réside dans le coût énergétique de l'opération proprement dite, du fait du caractère fibreux des particules de biomasse.
En outre, les poudres de biomasse obtenues, c'est-à-dire finement broyées s'avèrent difficiles à transporter, manipuler, injecter dans un réacteur de conversion en aval, car elles ont tendances à former des agglomérats ce qui génère des_effets de voûte, une mauvaise coulabilité ...
Il est connu du brevet US 6,833,185 et de la demande de brevet US 2008/0116118 qu'il est possible d'améliorer les propriétés de coulabilité d'une poudre fine, en la mélangeant à une poudre d'additifs de dimension nanométrique ou submicronique dont la densité de particules apparente moyenne est inférieure à celle de la poudre fine.
Au-delà de l'opération de broyage fin proprement dite, deux voies sont actuellement envisagées pour le traitement global permettant réduire les dimensions de particules de biomasse dans des applications énergétiques (cogénération, production de chaleur, production de produits de combustion, production de biocarburants).
La première voie consiste en une solution mixte de pré-traitement thermique dit de torréfaction combinée à un broyage mécanique par les technologies de broyeurs déjà éprouvées et mentionnées ci-dessus: broyeurs à marteaux pour des matériaux fibreux broyeurs à boulets pour le charbon. La torréfaction est un traitement thermique doux de la biomasse à l'interface entre le séchage et la pyrolyse, généralement réalisé à des températures comprises entre 200 et 350°C et qui vise à éliminer l'eau et à modifier une partie de la matière organique de la bio masse pour casser ses fibres. Autrement dit, ce traitement thermique doux altère la structure fibreuse de la biomasse, facilitant ainsi son broyage. Cela permet de réduire le coût énergétique de broyage et d'obtenir des particules moins fibreuses, donc plus faciles à transporter, stocker et à injecter dans un réacteur en aval : voir publication [11]. La poudre obtenue pour une torréfaction poussée de la biomasse, c'est-à-dire conduisant à une perte de masse supérieure à 30% par l'opération, présente des caractéristiques proches de celles obtenues avec du charbon. Cela permet
d'utiliser la solution classiquement retenue pour le broyage et pour l'injection de poudre qui est le convoyage pneumatique (phase dense). En effet, comme déjà évoqué, les caractéristiques intrinsèques de la biomasse (matériau fibreux et élastique) sont à l'origine des difficultés de stockage, transport et d'injection dans des réacteurs de conversion thermochimique. Ainsi, le pré-traitement thermique de torréfaction permet de résoudre le problème, mais pour un coût énergétique qui pourrait s'avérer prohibitif. Des évaluations sont actuellement en cours.
La deuxième voie consiste en l'optimisation soit de broyeurs donnés en fonction du type de biomasse soit de chaînes complètes de broyage mécanique.
Ainsi, dans la publication [4], des solutions technologiques de broyage mécanique déjà éprouvées sont étudiées en fonction du type de biomasse avec comme objectif principal la réduction du coût énergétique de l'opération de broyage et l'adaptation à l'application visée.
Il a déjà été également proposé d'utiliser deux broyeurs en série pour broyer finement de la biomasse.
L'équipe d'Esteban propose explicitement la mise en série de deux broyeurs afin d'optimiser le coût énergétique de broyage : voir publication [12]. Ici encore, le choix s'est porté sur la mise en œuvre de deux broyeurs du même type, à savoir des broyeurs à marteaux. Les auteurs ont alors travaillé sur l'intégration de l'ensemble pour optimiser le coût énergétique de la chaîne et la granulométrie du produit final. Ils ont ainsi déterminé le seuil granulométrique en sortie du premier broyeur, optimisé les types de recirculation du produit. Sur la base de leurs essais, les auteurs estiment que le coût du broyage à échelle industrielle, c'est-à-dire pour un débit de l'ordre de lOt/h, s'élève à 120 à 150 kWh/t pour des plaquettes forestières (peuplier ou pin respectivement). Toutefois, les auteurs précisent dans la publication [12] qu'il n'a pas été possible d'utiliser une grille de tamisage de taille de tamis inférieure à 1.5 mm en sortie du deuxième broyeur, à cause de problèmes de bourrage. Autrement dit, avec la solution selon Esteban, il apparaît impossible d'obtenir au final des particules broyées finement.
L'équipe de Siyi Luo et al. propose quant à elle une chaîne de broyage capable de traiter mécaniquement à la fois du bois (pin) et des biomasses plus tendres (paille, tiges...) : voir publication [13]. La chaîne proposée permet de réduire les dimensions des particules jusqu'à des valeurs de 250μιη fixée par un cyclone en aval afin qu'elles puissent
être utilisée dans un brûleur. Plus précisément, la chaîne proposée comprend deux broyeurs en série, à technologie identique dite à lames (en anglais « crushers »). En fonctionnement, le premier broyeur, c'est-à-dire celui le plus en amont, a son axe qui s'étend à l'horizontal tandis que l'axe du second broyeur s'étend à la vertical. Le coût énergétique est évalué à une valeur de 87 kWh/t pour les plaquettes de pin. L'effet de cette chaîne de broyage sur les propriétés de coulabilité et d'injection de la poudre dans un réacteur n'est pas étudié par l'équipe de Siyi Luo et al. En outre, il est à noter que la chaîne intègre un séchage initial de la biomasse, dont le coût énergétique n'est pas intégré dans la valeur évaluée. Par ailleurs, si la granulométrie de la poudre est donnée, la forme des particules de la poudre n'a pas été caractérisée.
Le but général de l'invention est de pallier au moins une partie des inconvénients de l'état de l'art de traitement de biomasse et plus généralement de charge de matière carbonée en vue de son injection sous forme pulvérisée dans un réacteur de conversion en aval (gazéification) ou dans un réacteur de combustion ou dit de co- combustion (biomasse et charbon) dans une centrale thermique à charbon ou en vue de sa granulation pour réaliser des biocombustibles.
Un but particulier est de proposer un procédé de broyage fin de biomasse, et plus généralement de charge de matière carbonée, qui améliore les propriétés (coulabilité, aptitude à la fluidisation) de la poudre obtenue et ce, à un moindre coût énergétique. Autrement dit, on cherche selon le but particulier à éviter les agglomérats de poudre de biomasse finement broyées afin d'améliorer leur capacités à être transportées, manipulées, et injectées dans un réacteur de conversion en aval.
Exposé de l'invention
Pour ce faire, l'invention a pour objet un procédé de broyage fin d'une charge de matière carbonée selon lequel on introduit la charge de matière carbonée, sous forme de particules de dimensions millimétriques ou microniques, en entrée d'une première chambre de broyeur de type vibrant dont la sortie est reliée à l'entrée d'une deuxième chambre de broyeur de type vibrant, la première et la deuxième chambres de broyeur vibrant comprenant chacune des corps de broyage logés de façon libre en son sein et adaptés pour broyer des particules, procédé selon lequel on met en vibration la première et la deuxième chambres de sorte à concasser les particules introduites d'une part entre les
corps de broyage et d'autre part entre ceux-ci et la paroi interne périphérique de chaque chambre.
Selon l'invention, on introduit en outre en entrée de la deuxième chambre du deuxième broyeur vibrant des additifs de matière minérale et/ou des additifs de matière végétale et/ou des additifs de matière d'origine végétale, les additifs étant sous la forme d'une poudre de dimension micronique.
Par « poudre de dimension micronique », on entend une poudre dont les particules ont des dimensions unitaires inférieures à 1 mm avec le cas échéant des particules élémentaires de taille nanométrique, typiquement de l'ordre de lOOnm.
Selon un mode de réalisation préféré, la charge de matière carbonée est de la biomasse. Ainsi, pour réaliser une opération de broyage fin de biomasse, les inventeurs ont pensé à mettre en série deux chambres ou étages de broyeurs vibrants, ce qui est avantageux d'un point de vue coût énergétique, et d'introduire dans celle la plus en aval, c'est-à-dire celui dans lequel les particules de biomasse sont déjà finement broyées à l'échelle submillimétrique, des additifs de matière minérale et/ou de matière végétale et/ou de matière d'origine végétale, sous la forme d'une poudre de dimension micronique, de préférence de dimension inférieure à 5 μιη. Ainsi, avec de telles dimensions on réalise un enrobage en voie sèche au moins partiel des particules de biomasse, ce qui permet d'améliorer les propriétés de coulabilité et l'aptitude à la fluidisation de la poudre finalement obtenue. Autrement dit, les particules très fines d'additifs de matière minérale et/ou de matière végétale et/ou de matière d'origine végétale, sont mises en contact direct et étroit avec les relativement plus grosses particules de biomasse, par application de forces mécaniques de cisaillement et d'impact par exemple. En fonction de la biomasse utilisée, les additifs peuvent être choisis parmi le Stéarate de magnésium (C36H70MgO4), la silice sous forme de microperles, telle que celle commercialisée sous la dénomination commerciale New reach SilicaFume NR950 et qui contient 95% de Si02 ou encore celle commercialisée par la société RHODIA sous la dénomination commerciale Tixosil®68 et qui contient 90% de la silice amorphe ou encore sous la dénomination Tixosil®331. Les additifs peuvent aussi être à base de particules d'oxydes de silicium Si02 ou contenant du CaC03. Autrement dit, selon l'invention on incorpore des additifs qui permettent un bon fonctionnement d'un réacteur de gazéification en aval.
Grâce au procédé de broyage fin de biomasse selon l'invention, on peut désormais envisager de réaliser à l'échelle industrielle et en continu une injection par gravité directement dans des réacteurs de conversion thermo-chimique, ce que l'on n'envisageait pas jusqu'à ce jour du fait même de la mauvaise coulabilité et/ou aptitude à la fluidisation des poudres de biomasse connues, avec l'effet de voûte indésirable qui pouvait se produire.
On précise ici que par « coulabilité de la poudre », on entend la définition donnée dans la publication [14], à savoir l'aptitude à s'écouler librement de manière régulière et constante sous la forme de particules individuelles.
On choisit avantageusement la composition des minéraux des additifs pour qu'ils constituent un complément minéral chimique requis pour la gestion des cendres dans un réacteur de gazéification en aval. En effet, on sait que la teneur en cendre de la biomasse est très variable et de composition très différente. La publication [15] indique que le bois contient typiquement 0.5-1% de cendre avec en majorité du calcium et du potassium, alors que la paille de blé contient 8% de cendres avec en majorité du potassium et de la silice Ainsi, pour ces deux types de biomasse, il y a des écarts importants de teneur en cendre et des compositions très différentes. Ces différences impactent directement le fonctionnement d'un réacteur de gazéification : le fonctionnement avec du bois engendre une température requise de fusion des cendres très élevée, ce qui nécessite l'ajout d'additifs (silice dans ce cas) pour ajuster cette température au fonctionnement du réacteur, typiquement aux environs de 1300-1400°C. Inversement, le fonctionnement avec de la paille entraine une température de fusion requise trop basse pour le fonctionnement d'un réacteur de gazéification nécessitant l'ajout d'additifs différents (calcium) pour remonter cette valeur de température. Ainsi, de préférence, la poudre micronique d'additifs de matière minérale est riche en silicium ou en calcium (supérieur à 10 % en masse), Si la biomasse traitée est du bois, l'additif est par exemple à base de particules d'oxydes de silicium Si02 ou à base de silice microperle. Si la biomasse traitée est issue de résidus agricoles avec une faible teneur en calcium, les additifs permettant la maîtrise de l'opération de gazéification sont de préférence issus de la chaux, c'est-à-dire un mélange d'oxyde de carbonate de calcium CaC03 et d'oxyde de magnésium.
Selon un mode de réalisation préféré, on réalise avantageusement une étape de prébroyage à l'aide d'un broyeur à couteaux qui produit une poudre avec des particules
moins longues (rapport longueur/diamètre réduit) et un taux de fines particules (<30 μιη) réduit. Une calibration des particules par tamisage améliore en outre significativement l'efficacité du broyage fin et de mise en forme des particules. L'opération de tamisage peut être réalisée de sorte à avoir des particules de dimensions inférieures à 500 μιη. Ainsi, avantageusement, on réalise un prébroyage des particules de dimensions unitaires de l'ordre du millimètre et on utilise le broyeur vibrant pour ajuster la mise en forme des particules (supprimer les fibrilles, arrondir les angles et raccourcir leur longueur).
Les additifs de matière végétale sont avantageusement à base de charbon, tel que du charbon de bois et/ou du charbon de paille de céréale. Les additifs de matière végétale peuvent être également avantageusement à base de biomasse torréfiée, tel que du bois torréfié, ou des produits agricoles torréfiés, c'est-à-dire ayant subi au préalable une tels que de la paille de céréale, de l'écorce, des coquilles (noyaux de cerise, coques de noix...).
De préférence, la quantité d'additifs de matière végétale ajoutés est comprise entre 0,5 et 20% en masse de la charge de matière carbonée, de préférence encore entre 5 et 10%. On a constaté que plus la quantité d'additifs ajoutés est importante, meilleure est la coulabilité obtenue en sortie de broyeur vibrant. Ainsi, la gamme préférée est avantageuse car elle est un bon compromis entre d'une part à l'amélioration de la coulabilité selon l'invention et le coût de réalisation du procédé.
Les additifs de matière d'origine végétale peuvent être avantageusement à base de charbon fossile. On précise ici que le charbon fossile (charbon de terre) provient de la dégradation de la matière organique végétale et qu'il contient des minéraux dont la teneur peut varier en fonction de la zone géographique d'extraction du charbon.
Selon une variante avantageuse, les dimensions des particules de la charge de matière carbonée introduite dans la première chambre de broyeur vibrant sont sensiblement comprises entre 1 et 2 mm.
Selon une variante avantageuse, les dimensions de la poudre micronique d'additifs introduite dans la deuxième chambre de broyeur vibrant sont sensiblement inférieures à 5 μιη.
De préférence, les dimensions des particules de la charge de matière carbonée obtenues en sortie de la deuxième chambre de broyeur vibrant sont inférieures à 800 μιη, de préférence inférieures à 200 μιη.
Selon une variante avantageuse, les corps de broyage du broyeur vibrant logés de façon libre à l'intérieur de la chambre consistent en plusieurs jeux de barres cylindriques de diamètre unitaire différents entre eux.
L'invention concerne également un procédé de traitement de bio masse selon lequel on fait sécher de la bio masse à l'état brut, puis on réalise le procédé de broyage fin tel que décrit précédemment en introduisant dans la première chambre de broyeur vibrant la biomasse au moins séchée. De préférence, l'alimentation en biomasse séchée est faite avec une teneur en eau de celle-ci dans une gamme de 10 à 15%.
Selon un mode de réalisation avantageux, on réalise en amont du procédé de broyage fin, un pré-broyage de la biomasse séchée en introduisant celle-ci dans une chambre d'un broyeur de type à couteaux ou à ciseaux. Un broyeur à couteaux ou à ciseaux comprend, par exemple, des encoches pratiquées sur un arbre central monté en rotation dans la chambre, les encoches étant adaptées pour arracher les particules de biomasse séchée contre la paroi interne périphérique de la chambre. Selon une variante avantageuse, les dimensions des particules de la biomasse pré-broyée son sensiblement supérieures à 1 mm.
Selon un mode de réalisation avantageux, on réalise en amont du procédé de broyage fin, et en aval du pré-broyage de la biomasse séchée, un tamisage de la biomasse pré-broyée. Selon une variante avantageuse, le tamisage de la biomasse pré-broyée est réalisé de sorte à réaliser le procédé de broyage fin à partir de particules de dimensions millimétriques inférieures à 2 mm ou de dimensions microniques inférieures à 500 μιη. De préférence, les particules de dimensions millimétriques supérieures à 2 mm sont réintroduites dans le broyeur à couteaux.
Selon un mode de réalisation avantageux, en sortie de deuxième chambre de broyeur vibrant on sélectionne les particules obtenues en fonction de leurs dimensions de sorte à ce que celles-ci soient inférieures à 800 μιη, de préférence inférieures à 200 μιη.
Selon un mode de réalisation avantageux, on fait un traitement thermique de torréfaction à de la biomasse, puis on réalise le procédé de broyage fin tel que décrit ci- dessus en introduisant dans la première chambre du broyeur vibrant la bio masse torréfiée.
L'invention a également pour objet une installation de traitement de bio masse en continu, destinée à mettre en œuvre le procédé tel que décrit ci-dessus, comprenant :
- une première chambre de broyeur de type vibrant,
- une deuxième chambre de broyeur de type vibrant dont l'entrée est reliée à la sortie de la première chambre de broyeur vibrant;
- un broyeur de micronisation pour broyer des additifs de matière minérale et/ou de matière végétale et/ou de matière d'origine végétale, sous la forme d'une poudre de dimension micronique, la sortie du broyeur de micronisation étant reliée à l'entrée de la deuxième chambre de broyeur vibrant.
L'installation peut comprendre en outre un appareil de séchage en amont de la première chambre de broyeur vibrant. Elle peut également comprendre en outre immédiatement en aval de l'appareil de séchage et en amont de la deuxième chambre de broyeur vibrant, un broyeur à couteaux. Elle peut également comprendre en outre immédiatement en aval du broyeur à couteaux et immédiatement en amont de la première chambre de broyeur vibrant, un appareil de tamisage. Elle peut enfin comprendre en outre un sélecteur dynamique à vitesse variable immédiatement en aval de la deuxième chambre de broyeur vibrant, ledit sélecteur dynamique étant adapté pour extraire en sortie de la deuxième chambre de broyeur vibrant des particules inférieures à un diamètre souhaité. Les corps de broyage du broyeur vibrant logés de façon libre à l'intérieur de la chambre consistent avantageusement en plusieurs jeux de barres cylindriques de diamètre unitaire différents entre eux.
Description détaillée
D'autres avantages et caractéristiques de l'invention ressortiront mieux à la lecture de la description détaillée de l'invention faite à titre illustratif et non limitatif en référence aux figures suivantes parmi lesquelles :
- la figure 1 est une vue schématique d'un premier mode de réalisation d'une installation de traitement de biomasse en continu intégrant un broyeur vibrant à double étages et permettant de mettre en œuvre le procédé de broyage fin de la biomasse se selon l'invention ;
- la figure 1A est une vue schématique d'une variante de réalisation d'une installation selon le premier mode illustré de la figure 1 ;
- la figure 2 est une vue schématique d'un deuxième mode de réalisation d'une installation de traitement de biomasse en continu intégrant un broyeur vibrant à double étages et permettant de mettre en œuvre le procédé de broyage fin de la biomasse se selon l'invention ;
- la figure 3 est un graphique de relevés d'essais qui traduit le nombre de mesures à une valeur d'angle d'avalanche donnée, les essais étant réalisés avec une poudre de bois (hêtre) en tant que charge de matière carbonée du procédé de broyage fin selon l'invention et avec ou sans additifs de matière minérale;
- la figure 4 est un graphique de relevés d'essais qui montre la valeur d'angle d'avalanche en fonction du type de poudre de bois en tant que charge de matière carbonée du procédé de broyage fin selon l'invention et avec ou sans additifs de matière minérale;
- la figure 5 est un graphique de relevés d'essais qui traduit le nombre de mesures à une valeur d'angle d'avalanche donnée, les essais étant réalisés avec une farine de bois (sciure) en tant que charge de matière carbonée du procédé de broyage fin selon l'invention et avec ou sans additifs de matière d'origine végétale;
- la figure 6 est un graphique de relevés d'essais qui traduit le nombre de mesures à une valeur d'angle d'avalanche donnée, les essais étant réalisés avec une poudre de bois (hêtre) en tant que charge de matière carbonée du procédé de broyage fin selon l'invention et avec ou sans additifs de matière d'origine végétale;
Dans la description qui va suivre les termes « entrée », « sortie » « amont », «aval », « premier », « deuxième » sont utilisés par référence avec la direction de transfert de la biomasse et de la poudre d'additifs à la fois dans les broyeurs vibrant selon l'invention, et dans l'installation intégrant les broyeurs.
Dans le mode de réalisation de la figure 1, l'installation comprend tout d'abord en amont un sécheur 1 alimenté en biomasse brute traitée pour réaliser son séchage. A titre d'exemple, la biomasse brute traitée consiste en des plaquettes forestières, typiquement de quelques mm d'épaisseur et de quelques cm de longueur. A titre d'exemple également, le débit de bio masse brute traitée est de l'ordre de 1 t/h et le sécheur 1 utilisé est un sécheur à four tournant, commercialisé par la société MAGUIN. Cette étape de séchage permet d'avoir une consommation énergétique réduite de l'opération de pré broyage immédiatement en aval d'une part et permet le fonctionnement optimal de l'opération de broyage selon l'invention d'autre part. On peut envisager tous types de sécheurs disponibles sur le marché (four tournant, sécheur à bande etc. ...) pour réaliser cette étape.
Une fois la biomasse séchée en sortie du sécheur 1 , elle est introduite dans un broyeur à couteaux 2 qui réalise donc une étape de pré-broyage mécanique des particules
de biomasse séchée. A titre d'exemple, le broyeur à couteaux 2 peut être de type monorotor (FL/FNG/FNV) fonctionnant également au débit de 1 t/h et commercialisé sous la dénomination commerciale Poittemill Forplex. Pour réduire le coût énergétique de cette opération de pré-broyage, on veille à obtenir avantageusement en sortie du broyeur à couteaux des particules de dimensions au moins égales au millimètre.
Pour optimiser l'opération de pré-broyage et réduire la distribution granulo métrique des particules, une opération de tamisage est réalisée en continu à l'aide d'un appareil de tamisage 3. A titre d'exemple, il peut s'agir d'un tamiseur vibrant commercialisé par la société RITEC, sous l'appellation de type MC.
Comme montré sur la figure 1, les particules de dimensions supérieures à 2 mm sont de préférence réinjectées dans le broyeur à couteaux 2. Au cours de cette étape de tamisage en continu, on peut avantageusement réaliser une extraction des très fines particules, de diamètre inférieur à 30 μιη, à l'aide d'un sélecteur dynamique non représenté : selon cette variante, la fraction ainsi prélevée peut être utilisée comme combustible pour apporter de l'énergie au sécheur 1. Ainsi, en sortie de l'appareil de tamisage on obtient des particules de dimensions comprises sensiblement entre 1 et 2 mm. On peut également réaliser cette opération de tamisage avec un appareil de tamisage d'ouvertures de mailles de dimensions micrométriques (microniques) de sorte à obtenir en sortie de l'appareil des particules de biomasse séchée de dimensions microniques, typiquement comprises entre 0 et 500 μιη ou entre 0 et 200 μιη.
On réalise enfin en continu un broyage fin des particules de biomasse séchées, pré-broyées, et tamisées. Pour ce faire, ces particules sont tout d'abord introduites en entrée d'une première chambre 5 d'un broyeur vibrant. La sortie de cette première chambre de broyeur vibrant 5 est reliée directement et immédiatement en aval à l'entrée d'une deuxième chambre 7 de broyeur vibrant.
Selon l'invention, on introduit en entrée de la deuxième chambre 7 de broyeur vibrant concomitamment au passage des particules de biomasse déjà finement broyées dans la première chambre 5 de broyeur vibrant, une poudre micronique d'additifs 4 (CaC03 + Si02 ou silice microperle...).
Comme montré sur cette figure 1 , les additifs 4 peuvent être micronisés en continu à un diamètre inférieur à 20 μιη, de préférence inférieur à 5μιη au moyen d'un broyeur de micronisation 6. Les première et deuxième chambres, respectivement 5 et 7, de
broyeur vibrant peuvent être réalisées dans le même appareil. A titre d'exemple, il peut s'agir de celui commercialisé par la société RITEC sous l'appellation Palla 50U (90 kW) qui intègre deux étages de broyage ou autrement dit deux chambres dans un même appareil. En tant que corps de broyage logés librement à l'intérieur de la chambre des broyeurs vibrants, on peut utiliser des corps en acier de préférence sous forme de barres cylindriques pleines. De préférence encore, les barres cylindriques utilisées peuvent avoir un diamètre compris entre 10 et 60 mm, de préférence compris entre 20 et 50 mm. Les corps broyants peuvent être également soit sous forme de boulets, soit sous forme de cylpebs. De préférence, les corps broyants sont de dimensions unitaires différentes entre eux. Selon une variante avantageuse, on peut utiliser avantageusement plusieurs jeux de barres cylindriques de diamètres unitaires différents entre eux, logés de façon libre dans une même chambre du broyeur vibrant 5. On améliore ainsi encore l'efficacité du broyage car comparativement à des barres cylindriques de même diamètre unitaire, on réduit statistiquement les jeux entre barres de diamètre unitaire différent.
A titre d'exemple également, le broyeur de micronisation 6 des additifs 4 peut aussi être un broyeur de type vibrant, commercialisé par la société RITEC, sous l'appellation labo/pilote (2.2 kW), et son débit de fonctionnement peut être égal à 10 kg/h. Le broyage fin selon l'invention combine alors avantageusement l'effet de la deuxième chambre 7 de broyeur vibrant et des additifs 4 finement broyés (poudre micronique). On réalise ainsi en quelque sorte un enrobage en voie sèche au moins partiel des particules de biomasse déjà préalablement broyées dans la première chambre 5 de broyeur vibrant. On améliore ainsi les propriétés de coulabilité et d'aptitude à la fluidisation de la poudre. On évite, à tout le moins on réduit, considérablement l'effet de voûte d'une telle poudre classiquement constatés dans les silos de stockage. De préférence, les additifs 4 ont une composition minérale choisie au mieux pour maîtriser la température de fusion des cendres dans un réacteur de gazéification en aval.
En sortie de la deuxième chambre 7 de broyeur vibrant, on extrait les particules de dimensions unitaires inférieure à 30 μιη à l'aide d'un sélecteur dynamique 6. A titre d'exemple, le sélecteur dynamique 6 peut être celui commercialisé par la société RHEWUM sous l'appellation de type AQ. Cette extraction est avantageuse car les très fines particules amoindrissent la propriété d'écoulement de la poudre. Cette fraction extraite peut être utilisée en tant que produit de combustion directement dans un réacteur
de conversion en aval et/ou en tant que produit de combustion directement dans le sécheur 1 en amont, ce qui permet encore de réduire le coût énergétique.
Dans la variante illustrée en figure 1 A, les particules de bio masse séchées, prébroyées, et tamisées sont introduites concomitamment avec des particules de matière minérale abrasive 4' en entrée de la chambre d'un broyeur vibrant 5. Le broyage fin selon l'invention par enrobage des particules de biomasse par les additifs est ainsi complété avantageusement par l'effet de la première chambre 5 de broyeur vibrant et des particules abrasives minérales 4' injectées. Autrement dit, la première chambre 5 de broyeur vibrant fonctionne en fonctionnement semi autogène avec la poudre broyante 4' abrasive minérale de dimensions de particules égales à 3 mm. De préférence, les particules abrasives minérales 4' injectées sont à base de particules d'oxydes de silicium Si02. De préférence, elles ont une composition chimique avec une teneur en Si02 supérieure à 80%. Ainsi, il peut s'agir de silice (sable) ou de quartz par exemple.
On peut avantageusement ajuster la quantité de la poudre d'abrasifs 4' avec la poudre micronique d'additifs 4 injectée pour avoir une température de fusion des cendres ajustée à la température du fonctionnement du réacteur de gazéification en aval. Ainsi, de préférence, on choisit des proportions relatives entre des additifs 4 contenant du CaO et la poudre abrasive 4' contenant au moins 80% de Si02 dans une plage pouvant varier entre 35%o et 65%o de chacun de ces deux constituants, à savoir le CaO et le Si02, afin d'avoir une température de fonctionnement d'un réacteur de gazéification en aval comprise entre 1436 et 1460 °C.
Dans le mode illustré en figure 2, au lieu de sécher, pré-broyer et tamiser en continu les particules comme dans le mode illustré en figures 1 et 1A, on introduit directement en entrée de la première chambre 5 de broyeur vibrant de la biomasse ayant subie au préalable une étape de traitement thermique de torréfaction. Il peut s'agir de plaquettes forestières déchiquetées au préalable à des dimensions unitaires de 50 mm et torréfiées.
Pour optimiser le coût énergétique de l'installation qui vient d'être décrite, on veille à trouver un optimum entre les dimensions des particules visées entre l'étape de pré- broyage par le broyeur à couteaux 2 et de broyage fin par les première et deuxième chambres 5 et 7 de broyeur vibrant et l'énergie totale consommée.
On a réalisé différents essais sur des échantillons pour corroborer l'effet de meilleure coulabilité de la charge de matière carbonée broyée grâce aux additifs introduits en entrée de la première chambre de broyeur vibrant selon l'invention.
Afin d'évaluer quantitativement la coulabilité, on mesure ce qu'on appelle l'angle d'avalanche qui est une caractéristique d'un écoulement de poudre: plus l'angle a une valeur faible, mieux coule la poudre. L'angle d'avalanche de chaque échantillon a été mesuré au moyen d'un appareil commercialisé sous la dénomination REVOLUTION par la société MERCURY SCIENTIFIC. Cet appareil comporte un tambour tournant sur lui- même et à l'intérieur duquel on place la poudre dont on cherche à mesurer l'angle d'avalanche.
On a tout d'abord réalisé une première série d'essais avec des additifs de silice sous forme de microperles, qui sont celle commercialisée par la société RHODIA sous la dénomination commerciale Tixosil®331.
Cette première série d'essais est réalisée avec une poudre de bois de hêtre naturel de dimensions de particules comprises entre 0 et 500 μιη à laquelle on a ajouté un pourcentage plus ou moins important d'additifs Tixosil®331. On précise ici que sur les figures 3, 4 et 6 l'abréviation %m signifie le pourcentage en masse des additifs par rapport à la quantité de la bio masse concernée.
La figure 3 illustre le nombre d'occurrences (mesures) pour un angle d'avalanche donné pour la poudre de bois de hêtre naturel respectivement sans additif, avec 1% en masse ajoutée de Tixosil®331 et avec 2% en masse ajoutée de Tixosil®331. Il ressort clairement que l'angle d'avalanche moyen mesuré est plus faible pour une plus grande quantité de Tixosil®331 ajoutée. Autrement dit, la coulabilité de la poudre de hêtre naturel en condition d'écoulement libre est améliorée par l'ajout d'additifs de matière minérale Tixosil®331. Cette amélioration est d'autant plus grande que la quantité d'additif est importante.
On a réalisé une deuxième série d'essais toujours avec les mêmes additifs de matière minérale Tixosil®331, avec une poudre de bois de hêtre naturel mais avec des dimensions de particules comprises entre 0 et 200 μιη et pour deux lots différents.
On a également réalisé une troisième série d'essais avec les mêmes additifs de matière minérale Tixosil®331, mais avec une poudre de bois d'épicéa de dimensions de particules comprises entre 0 et 200 μιη et pour un seul lot.
Le graphique de la figure 4 illustre les résultats obtenus pour ces deuxième et troisième série d'essais : il ressort que l'angle d'avalanche mesuré est plus faible pour une plus grande quantité de Tixosil®331 ajoutée pour chaque lot et quelle que soit la nature du bois (hêtre naturel ou épicéa). Autrement dit, la coulabilité de la poudre de bois en condition d'écoulement libre est améliorée par l'ajout d'additifs de matière minérale Tixosil®331 quelle que soit la nature (hêtre naturel ou épicéa) du bois. Pour la poudre d'hêtre naturel ou d'épicéa, l'amélioration de la coulabilité est d'autant plus grande que la quantité d'additif de matière minérale Tixosil®331 est importante. Par exemple, pour le lot N°l de la poudre d'hêtre naturel, une quantité ajoutée d'additifs de matière minérale Tixosil®331 de 2% en masse diminue la valeur de l'angle d'avalanche de 58° (sans additif) à 50°.
On a réalisé d'autres essais avec en tant qu'additifs à du bois des additifs de matière d'origine végétale.
La figure 5 illustre le nombre d'occurrences (mesures) pour un angle d'avalanche donné pour la farine de bois (sciure) de dimensions de particules comprises entre 0 et 200 μιη, respectivement sans additif et avec une dizaine de % en masse (D50%) ajoutée de charbon fossile (« coal » en anglais ). Il ressort clairement que l'angle d'avalanche moyen mesuré est plus faible lorsqu'on ajoute du charbon fossile. Autrement dit, la coulabilité de la poudre de farine de bois en condition d'écoulement libre est améliorée par l'ajout d'additifs de charbon fossile.
On a réalisé enfin des essais avec en tant qu'additifs à du bois des additifs de matière végétale.
La figure 6 illustre le nombre d'occurrences (mesures) pour un angle d'avalanche donné pour de la poudre de hêtre naturel de dimensions de particules comprises entre 0 et 200 μιη, respectivement sans additif et avec 10 % en masse ajoutée de charbon de bois. Il ressort clairement que l'angle d'avalanche moyen mesuré est plus faible lorsqu'on ajoute du charbon de bois. Autrement dit, la coulabilité de la poudre de de hêtre naturel en condition d'écoulement libre est améliorée par l'ajout d'additifs de charbon de bois.
On peut conclure de l'ensemble de ces essais, que la coulabilité d'une poudre ou farine de bois de dimensions de particules microniques, en condition d'écoulement libre est améliorée par l'ajout d'additifs sous la forme d'une poudre de dimension
micronique, ces additifs pouvant être de matière minérale, de matière végétale ou de matière d'origine végétale. Cette amélioration de coulabilité est d'autant plus marquée que la quantité d'additifs ajoutée à la poudre ou farine de bois est importante.
Bien que décrite en référence exclusivement à la bio masse, l'installation peut être utilisée pour le broyage fin d'autres charges de matière carbonée (charbon, petcoke...).
Références citées
[1]: Partiale and handling characteristics of wood fuel powder: ejfects of différent mills, de Susanne Paulrud, Jan Erik Mattsson et Calle Nilsson, Décembre 2001 (Fuel Processing Technology 76 (2002) pp 23- 39);
[2]: Ist Int. Symp. on Partiale Size Réduction, de M. A. Heimann Mai 1983, Manhattan ;
[3]: Review and analysis of performance and productivity of size réduction equipment for fibrous materials, de Mozammel Hoque, Shahab Sokhansanj, Ladan Naimi, Xiaotao Bi, and Jim Lim, Juin 2007 (Meeting Présentation of the American Society of Agricultural and Biological Engineers (Paper Number 076164));
[4]: Biomass Size Réduction Machines for Enhancing Biogas Production, de Lukas Kratky et Tomas (Chem. Eng. Technolpgy 2011, 34, No. 3, pp 391-399);
[5] : Comminution Energy consumption of biomass in Knife Mill and its Particle Size Characterization de Venkata S. P. Bitra Alvin R. Womac, Igathinathane Cannayen Petre I. Miu, Yuechuan T. Yang et Shahab Sokhansanj, Juin 2009 (Meeting Présentation of the American Society of Agricultural and Biological Engineers (Paper Number 095898));
[6] : A new pulverized biomass utilization technology, de Nobusuke Kobayashi, Piao Guilin, Jun Kobayashi, Shigenobu Hatano, Yoshinori Itaya, Shigekatsu Mori (Powder Technology 180 (2008) pp 272-283) ;
[7] : Flow properties of biomass and coal blends, de Mohammad Zulfîqar, Behdad Moghtaderi , Terry F. Wall Fuel Processing Technology 87 (2006) pp 281-288) ;
[8] : Mixing and ségrégation in powders, de JC Williams (Chapitre 4 - Principles of Powder technologies edited by M.J. Rhodes) ;
[9] -.Fragmentation - Aspect théorique Techniques de l'ingénieur [J 3 050] ;
[10] -.Fragmentation - Technologie Techniques de l'ingénieur [J 3 051] ;
[11] : Influence of torréfaction on the grindability and reactivity of woody biomass de B. Arias, C. Pevida, J. Fermoso, M. G. Plaza, F. Rubiera, J.J. Pis (Fuel Processing Technology 89 (2008) pp 169-175) ;
[12] : Evaluation of différent stratégies for pulverization of forest Montasses, d'Esteban et Carrasco (Powder Technology 166 (2006) pp 139-151) ;
[13] : A novel biomass pulverization technology, de Siyi Luo, Chang Liu, Bo Xiao, Lei Xiao (Renewable Energy 36 (2011) pp 578-582)
[14] : Caractérisation et analyse des poudres, Techniques de l'Ingénieur [J2 252];
[15] : Bioenergy II: Suitability of Wood Chips and Varions Biomass Types for Use in Plant of BtL Production by Gasification de Dupont, Capucine; Rouge, Sylvie; Berthelot, Alain; Perez, Denilson; Da Silva, Graffïn ; Ambroise, Labalette ; Françoise Laboubee ; Céline, Mithouard ; Jean-Claude, Pitocchi ; Sophie (INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING (2010) Volume: 8 Article Number: A74).
Claims
1. Procédé de broyage fin d'une charge de matière carbonée selon lequel on introduit la charge de matière carbonée, sous forme de particules de dimensions millimétriques ou microniques, en entrée d'une première chambre (5) de broyeur de type vibrant dont la sortie est reliée à l'entrée d'une deuxième chambre (7) de broyeur de type vibrant, la première et la deuxième chambres de broyeur vibrant comprenant chacune des corps de broyage logés de façon libre en son sein et adaptés pour broyer des particules, procédé selon lequel on met en vibration la première et la deuxième chambres de sorte à concasser les particules introduites d'une part entre les corps de broyage et d'autre part entre ceux-ci et la paroi interne périphérique de chaque chambre, caractérisé en ce qu'on introduit en outre en entrée de la deuxième chambre (7) de broyeur vibrant des additifs (4) de matière minérale et/ou des additifs de matière végétale et/ou des additifs de matière d'origine végétale, les additifs étant sous la forme d'une poudre de dimension micronique.
2. Procédé de broyage fin selon la revendication 1 , selon lequel la matière carbonée est de la biomasse.
3. Procédé de broyage fin selon la revendication 1 ou 2, selon lequel les additifs de matière minérale sont à base de particules d'oxydes de silicium Si02 ou contenant du CaC03, ou à base de silice sous forme de microperles.
4. Procédé de broyage fin selon l'une des revendications précédentes, selon lequel les additifs de matière végétale sont à base de charbon, tel que du charbon de bois et/ou du charbon de paille de céréale.
5. Procédé de broyage fin selon l'une des revendications précédentes, selon lequel les additifs de matière végétale sont à base de biomasse torréfiée, tel que du bois torréfié, ou des produits agricoles torréfiés.
6. Procédé de broyage fin selon l'une des revendications précédentes, selon lequel les additifs de matière d'origine végétale sont à base de charbon fossile.
7. Procédé de broyage fin selon l'une des revendications précédentes, selon lequel la quantité d'additifs de matière végétale ajoutés est comprise entre 0,5 et 20% en masse de la charge de matière carbonée, de préférence entre 5 et 10%.
8. Procédé de broyage fin selon l'une des revendications précédentes, selon lequel les dimensions des particules de la charge de matière carbonée introduite dans la première chambre (5) de broyeur vibrant sont sensiblement comprises entre 1 et 2 mm.
9. Procédé de broyage fin selon l'une des revendications précédentes, selon lequel les dimensions de la poudre micronique d'additifs introduite dans la deuxième chambre (7) de broyeur vibrant sont sensiblement inférieures à 5 μιη.
10. Procédé de broyage fin selon l'une des revendications précédentes, selon lequel les dimensions des particules de la charge de matière carbonée obtenues en sortie de la deuxième chambre (7) de broyeur vibrant sont sensiblement inférieures à 800 μιη, de préférence inférieures à 200 μιη.
11. Procédé de broyage fin selon l'une des revendications précédentes, selon lequel les corps de broyage du broyeur vibrant logés de façon libre à l'intérieur de la chambre consistent en plusieurs jeux de barres cylindriques de diamètre unitaire différents entre eux.
12. Procédé de traitement de bio masse selon lequel on fait sécher de la bio masse à l'état brut, puis on réalise le procédé de broyage fin selon l'une des revendications 2 à 11 en introduisant dans la première chambre (5) de broyeur vibrant la biomasse au moins séchée.
13. Procédé de traitement de biomasse selon la revendication 12, selon lequel l'alimentation en bio masse séchée est faite avec une teneur en eau de celle-ci dans une gamme de 10 à 15%.
14. Procédé de traitement de bio masse selon la revendication 12 ou 13, selon lequel on réalise en amont du procédé de broyage fin, un pré-broyage de la biomasse séchée en introduisant celle-ci dans une chambre d'un broyeur de type à couteaux ou à ciseaux.
15. Procédé de traitement de biomasse selon la revendication 14, selon lequel les dimensions des particules de la biomasse pré-broyée sont sensiblement supérieures à 1 mm.
16. Procédé de traitement de bio masse selon la revendication 14 ou 15, selon lequel on réalise en amont du procédé de broyage fin, et en aval du pré-broyage de la biomasse séchée, un tamisage de la biomasse pré-broyée.
17. Procédé de traitement de biomasse selon la revendication 16, selon lequel le tamisage de la biomasse pré-broyée est réalisé de sorte à réaliser le procédé de broyage fin à partir de particules de dimensions millimétriques inférieures à 2 mm ou de dimensions microniques inférieures à 500 μιη.
18. Procédé de traitement de biomasse selon la revendication 17, selon lequel les particules de dimensions millimétriques supérieures à 2 mm sont réintroduites dans le broyeur à couteaux.
19. Procédé de traitement de biomasse selon l'une des revendications 12 à 18, selon lequel en sortie de deuxième chambre (7) de broyeur vibrant on sélectionne les particules obtenues en fonction de leurs dimensions de sorte à ce que celles-ci soient inférieures à 800 μιη, de préférence inférieures à 200 μιη.
20. Procédé de traitement de biomasse selon lequel on fait un traitement thermique de torréfaction à de la biomasse, puis on réalise le procédé de broyage fin selon l'une des revendications 2 à 11 en introduisant dans la première chambre du broyeur vibrant la biomasse torréfiée.
21. Installation de traitement de biomasse en continu, destinée à mettre en œuvre le procédé selon l'une quelconque des revendications 12 à 20, comprenant :
- une première chambre (5) de broyeur de type vibrant,
- une deuxième chambre (7) de broyeur de type vibrant dont l'entrée est reliée à la sortie de la première chambre de broyeur vibrant;
- un broyeur de micronisation (6) pour broyer des additifs (4) de matière minérale et/ou de matière végétale et/ou de matière d'origine végétale, sous la forme d'une poudre de dimension micronique, la sortie du broyeur de micronisation étant reliée à l'entrée de la deuxième chambre de broyeur vibrant (7).
22. Installation de traitement de bio masse en continu selon la revendication 21, comprenant un appareil de séchage (1) en amont de la première chambre de broyeur vibrant (5).
23. Installation de traitement de biomasse en continu selon la revendication 22, comprenant en outre immédiatement en aval de l'appareil de séchage et en amont de la deuxième chambre de broyeur vibrant, un broyeur à couteaux (2).
24. Installation de traitement de bio masse en continu selon la revendication 23, comprenant en outre immédiatement en aval du broyeur à couteaux et immédiatement en amont de la première chambre de broyeur vibrant, un appareil de tamisage (3).
25. Installation de traitement de bio masse en continu selon l'une des revendications 21 à 24, comprenant en outre un sélecteur dynamique à vitesse variable (6) immédiatement en aval de la deuxième chambre de broyeur vibrant, ledit sélecteur dynamique étant adapté pour extraire en sortie de la deuxième chambre de broyeur vibrant des particules inférieures à un diamètre souhaité.
26. Installation de traitement de bio masse en continu selon l'une des revendications 21 à 25, dans laquelle les corps de broyage du broyeur vibrant logés de façon libre à l'intérieur de la chambre consistent en plusieurs jeux de barres cylindriques de diamètre unitaire différents entre eux.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK13712911.0T DK2809447T3 (da) | 2012-02-03 | 2013-02-01 | Fremgangsmåde til fin formaling af carbonholdigt råmateriale ved tilsætning af additiver, installation til kontinuerlig behandling af biomasse og anvendelse til forgasning |
EP13712911.0A EP2809447B1 (fr) | 2012-02-03 | 2013-02-01 | Procede de broyage fin d'une charge de matiere carbonee avec ajouts d'additifs, installation de traitement en continu de biomasse et application a la gazeification associees |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1251026 | 2012-02-03 | ||
FR1251026A FR2986443B1 (fr) | 2012-02-03 | 2012-02-03 | Procede de broyage fin de charge de matiere carbonee avec ajouts d'additifs, installation de traitement en continu de biomasse et application a la gazeification associee. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013114328A1 true WO2013114328A1 (fr) | 2013-08-08 |
Family
ID=48014119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2013/050863 WO2013114328A1 (fr) | 2012-02-03 | 2013-02-01 | Procede de broyage fin d'une charge de matiere carbonee avec ajouts d'additifs, installation de traitement en continu de biomasse et application a la gazeification associees |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2809447B1 (fr) |
DK (1) | DK2809447T3 (fr) |
FR (1) | FR2986443B1 (fr) |
WO (1) | WO2013114328A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3026655A1 (fr) * | 2014-10-01 | 2016-04-08 | Commissariat Energie Atomique | Dispositif de reduction de la taille de particules de biomasse a fonctionnement continu |
WO2017072133A1 (fr) * | 2015-10-27 | 2017-05-04 | Construction Research & Technology Gmbh | Additif de broyage pour solide carboné |
WO2019007938A1 (fr) | 2017-07-07 | 2019-01-10 | IFP Energies Nouvelles | Procede de traitement de la biomasse par co-broyage avec une charge fossile |
WO2019243140A1 (fr) | 2018-06-21 | 2019-12-26 | IFP Energies Nouvelles | Procede de traitement de la biomasse par co-broyage avec une seconde charge de biomasse |
WO2022123045A1 (fr) * | 2020-12-11 | 2022-06-16 | Institut National De Recherche Pour L'agriculture, L'alimentation Et L'environnement | Procédé de traitement d'une biomasse lignocellulosique, pour améliorer sa comminution en voie sèche et/ou pour améliorer son écoulement sous forme de poudre |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2035452A5 (fr) * | 1969-02-13 | 1970-12-18 | Colortex | |
US20010016467A1 (en) * | 1998-07-17 | 2001-08-23 | Reiner Weichert | Method and apparatus for ultrafine grinding and/or mixing of solid particles |
US6833185B2 (en) | 2002-07-12 | 2004-12-21 | The University Of Western Ontario | Fluidization additives to fine powders |
US20080116118A1 (en) | 2006-11-20 | 2008-05-22 | Jingxu Zhu | Method and apparatus for uniformly dispersing additive particles in fine powders |
US20110258914A1 (en) * | 2011-05-15 | 2011-10-27 | Avello Bioenergy, Inc. | Methods for integrated fast pyrolysis processing of biomass |
-
2012
- 2012-02-03 FR FR1251026A patent/FR2986443B1/fr active Active
-
2013
- 2013-02-01 WO PCT/IB2013/050863 patent/WO2013114328A1/fr active Application Filing
- 2013-02-01 DK DK13712911.0T patent/DK2809447T3/da active
- 2013-02-01 EP EP13712911.0A patent/EP2809447B1/fr active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2035452A5 (fr) * | 1969-02-13 | 1970-12-18 | Colortex | |
US20010016467A1 (en) * | 1998-07-17 | 2001-08-23 | Reiner Weichert | Method and apparatus for ultrafine grinding and/or mixing of solid particles |
US6833185B2 (en) | 2002-07-12 | 2004-12-21 | The University Of Western Ontario | Fluidization additives to fine powders |
US20080116118A1 (en) | 2006-11-20 | 2008-05-22 | Jingxu Zhu | Method and apparatus for uniformly dispersing additive particles in fine powders |
US20110258914A1 (en) * | 2011-05-15 | 2011-10-27 | Avello Bioenergy, Inc. | Methods for integrated fast pyrolysis processing of biomass |
Non-Patent Citations (15)
Title |
---|
B. ARIAS; C. PEVIDA; J. FERMOSO; M.G. PLAZA; F. RUBIERA; J.J. PIS: "Influence of torrefaction on the grindability and reactivity of woody biomass", FUEL PROCESSING TECHNOLOGY, vol. 89, 2008, pages 169 - 175, XP022432427, DOI: doi:10.1016/j.fuproc.2007.09.002 |
CARACTéRISATION ET ANALYSE DES POUDRES, TECHNIQUES DE L'INGéNIEUR [J2 252 |
DUPONT, CAPUCINE; ROUGE, SYLVIE; BERTHELOT, ALAIN; PEREZ, DENILSON; DA SILVA, GRAFFIN; AMBROISE, LABALETTE; FRANCOISE LABOUBEE; CE: "Bioenergy II: Suitability of Wood Chips and Various Biomass Types for Use in Plant of BtL Production by Gasification", INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, vol. 8, no. A74, 2010 |
ESTEBAN ET CARRASCO: "Evaluation of different strategies forpulverization of forest biomasses", POWDER TECHNOLOGY, vol. 166, 2006, pages 139 - 151 |
FRAGMENTATION - ASPECT THéORIQUE TECHNIQUES DE L'INGéNIEUR |
FRAGMENTATION - TECHNOLOGIE TECHNIQUES DE L'INGéNIEUR [J 3051 |
JC WILLIAMS: "Mixing and segregation in powders" |
LUKAS KRATKY; TOMAS: "Biomass Size Reduction Machines for Enhancing Biogas Production", CHEM. ENG. TECHNOLPGY., vol. 34, no. 3, 2011, pages 391 - 399 |
M. A. HEIMANN, ¡ST INT. SYMP. ON PARTICLE SIZE REDUCTION, May 1983 (1983-05-01) |
MOHAMMAD ZULFIQAR; BEHDAD MOGHTADERI; TERRY F: "Flow properties of biomass and coal blends", WALL FUEL PROCESSING TECHNOLOGY, vol. 87, 2006, pages 281 - 288 |
MOZAMMEL HOQUE; SHAHAB SOKHANSANJ; LADAN NAIMI; XIAOTAO BI; JIM LIM: "Review and analysis ofperformance and productivity of size reduction equipmentfor fibrous materials", MEETING PRESENTATION OF THE AMERICAN SOCIETY OF AGRICULTURAL AND BIOLOGICAL ENGINEERS, June 2007 (2007-06-01) |
NOBUSUKE KOBAYASHI; PIAO GUILIN; JUN KOBAYASHI; SHIGENOBU HATANO; YOSHINORI ITAYA; SHIGEKATSU MORI: "A new pulverized biomass utilization technology", POWDER TECHNOLOGY, vol. 180, 2008, pages 272 - 283, XP022406245, DOI: doi:10.1016/j.powtec.2007.02.041 |
SIYI LUO; CHANG LIU; BO XIAO; LEI XIAO: "A novel biomass pulverization technology", RENEWABLE ENERGY, vol. 36, 2011, pages 578 - 582, XP027383553 |
SUSANNE PAULRUD; JAN ERIK MATTSSON; CALLE NILSSON: "Particle and handling characteristics of wood fuel powder: effects of different mills", FUEL PROCESSING TECHNOLOGY, vol. 76, December 2001 (2001-12-01), pages 23 - 39 |
VENKATA S. P. BITRA; ALVIN R. WOMAC; IGATHINATHANE CANNAYEN PETRE I; MIU, YUECHUAN; T. YANG; SHAHAB SOKHANSANJ: "Comminution Energy consumption of biomass in Knife Mill and its Particle Size Characterization", MEETING PRESENTATION OF THE AMERICAN SOCIETY OF AGRICULTURAL AND BIOLOGICAL ENGINEERS, June 2009 (2009-06-01) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3026655A1 (fr) * | 2014-10-01 | 2016-04-08 | Commissariat Energie Atomique | Dispositif de reduction de la taille de particules de biomasse a fonctionnement continu |
WO2017072133A1 (fr) * | 2015-10-27 | 2017-05-04 | Construction Research & Technology Gmbh | Additif de broyage pour solide carboné |
CN108348924A (zh) * | 2015-10-27 | 2018-07-31 | 建筑研究和技术有限公司 | 用于碳质固体的研磨添加剂 |
WO2019007938A1 (fr) | 2017-07-07 | 2019-01-10 | IFP Energies Nouvelles | Procede de traitement de la biomasse par co-broyage avec une charge fossile |
WO2019243140A1 (fr) | 2018-06-21 | 2019-12-26 | IFP Energies Nouvelles | Procede de traitement de la biomasse par co-broyage avec une seconde charge de biomasse |
WO2022123045A1 (fr) * | 2020-12-11 | 2022-06-16 | Institut National De Recherche Pour L'agriculture, L'alimentation Et L'environnement | Procédé de traitement d'une biomasse lignocellulosique, pour améliorer sa comminution en voie sèche et/ou pour améliorer son écoulement sous forme de poudre |
FR3117383A1 (fr) * | 2020-12-11 | 2022-06-17 | Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement | Procédé de traitement d’une biomasse lignocellulosique, pour améliorer sa comminution en voie sèche et/ou pour améliorer son écoulement sous forme de poudre |
Also Published As
Publication number | Publication date |
---|---|
DK2809447T3 (da) | 2020-07-13 |
EP2809447A1 (fr) | 2014-12-10 |
FR2986443B1 (fr) | 2014-03-07 |
FR2986443A1 (fr) | 2013-08-09 |
EP2809447B1 (fr) | 2020-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6684298B2 (ja) | 固体燃料の製造方法及び固体燃料 | |
EP2809447B1 (fr) | Procede de broyage fin d'une charge de matiere carbonee avec ajouts d'additifs, installation de traitement en continu de biomasse et application a la gazeification associees | |
US20220306958A1 (en) | Process for producing solid biomass fuel | |
EP3307854B1 (fr) | Procede et installation de preparation de biomasse | |
KR100878051B1 (ko) | 목재펠릿 제조방법 및 목재펠릿 제조 설비 | |
JP6606845B2 (ja) | 固体燃料の製造方法及び固体燃料 | |
CN103380342A (zh) | 干燥生物质和含碳材料的方法 | |
Obidziński et al. | Production of fuel pellets from a mixture of sawdust and rye bran | |
WO2013108177A1 (fr) | Carburant solide sous forme d'une poudre comprenant un constituant lignocellulosique | |
EP2809446B1 (fr) | Procede de broyage fin d'une charge de matiere carbonee, installation de traitement en continu de biomasse et application a la gazeification associee | |
JP6639075B2 (ja) | 固体燃料の製造方法及び固体燃料 | |
JP2011140610A (ja) | 複合燃料製造方法 | |
JP4338747B2 (ja) | 木質ペレット燃料の製造方法及び製造システム | |
JP2007169534A (ja) | バイオマス炭化装置 | |
FR2959426A1 (fr) | Installation de broyage de matieres minerales avec presse a rouleaux | |
Nwakuba et al. | Measurement of energy requirements for size reduction of palm kernel and groundnut shells for downstream bioenergy generation | |
JP2010069458A (ja) | 原料の粉砕方法及び粉砕システム | |
EP3545056B1 (fr) | Procede de traitement d'une poudre de biomasse par granulation humide | |
FR3097556A1 (fr) | Procédé de vapocraquage comprenant une étape de séparation et traitement différentiel des particules obtenues en fonction d’une valeur seuil. | |
KR101594838B1 (ko) | Efb 바이오 탄화 펠릿 제조방법 | |
JP7522982B1 (ja) | 炭素を主体とした塊成化物の製造方法 | |
WO2022123045A1 (fr) | Procédé de traitement d'une biomasse lignocellulosique, pour améliorer sa comminution en voie sèche et/ou pour améliorer son écoulement sous forme de poudre | |
WO2024161788A1 (fr) | Procédé de production d'agglomérats principalement composés de carbone | |
WO2020002831A1 (fr) | Procédé pour le broyage d'une matière minérale, en présence d'au moins un agent de mouture | |
JP2024025561A (ja) | コークスの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13712911 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 1412787 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20130117 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013712911 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |