WO2013113670A1 - Dispositif et procede pour effectuer des mesures hematologiques et biochimiques a partir d'un echantillon biologique - Google Patents

Dispositif et procede pour effectuer des mesures hematologiques et biochimiques a partir d'un echantillon biologique Download PDF

Info

Publication number
WO2013113670A1
WO2013113670A1 PCT/EP2013/051619 EP2013051619W WO2013113670A1 WO 2013113670 A1 WO2013113670 A1 WO 2013113670A1 EP 2013051619 W EP2013051619 W EP 2013051619W WO 2013113670 A1 WO2013113670 A1 WO 2013113670A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
measuring
measurement
particles
analyte
Prior art date
Application number
PCT/EP2013/051619
Other languages
English (en)
Inventor
Jérôme Bibette
Philippe Nerin
Jean-Philippe Gineys
Gilles Cauet
Original Assignee
Horiba Abx Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Abx Sas filed Critical Horiba Abx Sas
Priority to EP13704728.8A priority Critical patent/EP2810042B1/fr
Priority to CN201380007828.3A priority patent/CN104169707B/zh
Priority to US14/376,270 priority patent/US10073086B2/en
Priority to JP2014555165A priority patent/JP6247643B2/ja
Publication of WO2013113670A1 publication Critical patent/WO2013113670A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5094Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for blood cell populations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/82Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
    • G01N2021/825Agglutination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4737C-reactive protein

Definitions

  • the present invention relates to a device and an analysis method for performing biological measurements, including hematological and biochemical, from a biological sample, including a whole blood sample.
  • the field of the invention is more particularly but not limited to that of the analysis systems.
  • the differentiation and counting of cellular elements of the blood, supplemented by the assay of at least one blood analyte, is of great interest in the field of diagnosis. Indeed, most requests for biological analyzes concern blood count (NFS) in addition to which the dosage of one or more analytes such as C-reactive protein (CRP) or Pro-Calcitonin ( PCT).
  • NFS blood count
  • CRP C-reactive protein
  • PCT Pro-Calcitonin
  • these analyzes require two samples: a first sample taken on anticoagulant, intended for the hematological analysis and a second sample, without anticoagulant, intended for the biochemical analysis.
  • the sample intended for biochemical analysis is centrifuged before being treated in analyzers intended for the determination of a serum or plasma biomolecule.
  • the sample for hematological analysis is shaken to keep the cells suspended in the tube before being processed by the hematology machines.
  • both samples are intended for separate equipment located in different laboratories. This process is usually time consuming and expensive.
  • many situations require rapid measurement of the blood count and the determination of one or more analytes. This approach is possible when the technology allows the assay on whole blood (that is to say the plasma with blood cells). While this speed brings a definite benefit to the patient, it also helps to reduce the time and cost of care.
  • this type of analysis is required in ambulatory medicine, emergency medicine or routine laboratories where the rate of analysis is a determining factor.
  • attempts are made to simplify the so-called pre-analytical operations, necessary for the preparation of the sample before the analysis, and we seek a high speed of analysis with high levels of precision and reproducibility to allow reliable diagnosis.
  • a major disadvantage of this device is that it does not allow high analysis rates. Indeed, only one carriage and one sampling needle are used for the collection and distribution of blood and reagents in the hematology module and the biochemistry module. It follows that the needle occupancy rate is too high to allow hematological analysis times less than 60 seconds.
  • the biological test as described in this document does not make it possible to achieve an immunological reaction rate for the determination of the desired analyte which is compatible with high analysis rates while conferring a sensitive, reproducible and without inter ⁇ sample contamination. It is based on a well-known principle making use of colloidal aggregation phenomena. This test, often called "LAI" for
  • “Latex agglutination immunoassay” (in English) is based on the following principle: antibodies specific for a given antigen are grafted on colloidal particles, so the capture of the antigen by at least two particles leads to an aggregate that modifies the turbidity of the solution, which allows a quantitative determination of the antigens.
  • the speed of this aggregation reaction depends, of course, partly on the concentration of antigens. When looking for the best sensitivity, the particle concentration must always exceed that in antigens.
  • a concentration of particles of the order of 10 times that of the antigens ensures the best compromise knowing that if the number of expected doublets (fixed by the number of antigens) is very minor, compared to the number of singlets (non-particles). aggregated), the signal-to-noise ratio is affected.
  • the speed of the colloidal aggregation reaction is also related to the diffusion coefficients of the particles (translation and rotation) as well as to the surface concentration of antibodies grafted onto the surface of the colloidal particles. It is also accepted that this reaction speed imposes for a given incubation time, the sensitivity and the detection threshold of the test. Thus, a shorter incubation time will require, for an equal sensitivity, a higher aggregation rate.
  • These particles are functionalized on their surface with a ligand which may be an antibody, an antigen or any other molecule capable of specifically binding the analyte to be assayed and incorporating a magnetic material capable of adopting a superparamagnetic behavior.
  • a ligand which may be an antibody, an antigen or any other molecule capable of specifically binding the analyte to be assayed and incorporating a magnetic material capable of adopting a superparamagnetic behavior.
  • a ligand which may be an antibody, an antigen or any other molecule capable of specifically binding the analyte to be assayed and incorporating a magnetic material capable of adopting a superparamagnetic behavior.
  • a ligand which may be an antibody, an antigen or any other molecule capable of specifically binding the analyte to be assayed and incorporating a magnetic material capable of adopting a superparamagnetic behavior.
  • they tend to agglutinate in a chain, thus promoting
  • An object of the present invention is to provide a device and a method for performing hematological and biochemical measurements from a whole blood sample, that is to say in which the cells have not been removed beforehand. , quickly and reliably.
  • Another object of the present invention is to provide a device and a method for performing haematological and biochemical measurements from a single sample of whole blood in an automated manner.
  • Another object of the present invention is to provide a device and a method for performing high-speed hematological and biochemical measurements from whole blood samples, of the order of, for example, one measurement per minute.
  • Another object of the present invention is to provide a device and a method for performing hematological and biochemical measurements from a whole blood sample to achieve high sensitivity and measurement dynamics for biochemical measurements.
  • An object of the present invention is finally to provide a device and a method for performing hematological and biochemical measurements from a whole blood sample in which the risks of cross-contamination between the blood sample and the reagents are minimized.
  • a device for analyzing biological parameters from a biological sample comprising:
  • first transfer means able to transfer at least part of said biological sample to first preparation means
  • first preparation means capable of producing at least one dilution of said biological sample with at least one diluent and / or a reagent
  • second preparation means capable of carrying out on a first sample derived from the first preparation means at least one dilution with a reagent of assay comprising particles functionalized on the surface with at least one ligand specific for at least one analyte of interest,
  • - Immunodetection measuring means adapted to perform on a sample from the second preparation means an assay of at least one analyte of interest by measuring the degree of aggregation of functionalized particles in a measuring vessel
  • second transfer means at least partly distinct from the first transfer means and able to take said first sample previously diluted in the first preparation means, and to transfer it to the second preparation means, and
  • the device according to the invention may further comprise cell component measurement means capable of providing, from the biological sample, at least one measurement of cell volume relative to the total volume.
  • the device according to the invention may further comprise cell component measuring means capable of supplying from a second sample derived from the first means of preparing at least one measure of cell volume in relation to the total volume.
  • the second preparation means may be capable of performing at least one lysis operation
  • the first sample from the first preparation means may have previously undergone a lysis operation
  • the lysis operation can be carried out with a lytic reagent, or by other means such as a physical method;
  • the second transfer means may be partially or totally different from the first transfer means. They may be able to operate simultaneously or in parallel with the first transfer means;
  • Functionalized particles can include re:
  • particles having a core of high iron oxide content surrounded by a shell of polymeric material having a core of high iron oxide content surrounded by a shell of polymeric material
  • the immunodetection measuring means may comprise measuring means with at least one source of light and at least one detector placed in the vicinity of the measuring tank, which is provided with it, at least at level desd its means of measurement optiq ue, substantially transparent walls.
  • the immunodetection measuring means may further comprise optional conditioning means capable of producing, from at least one source of light, a collared light beam passing through the measuring vessel.
  • the device according to the invention may comprise at least one light source capable of emitting in optical wave lengths of between 400 nanometers and 4 micrometers, and preferably between 600 nanometers and 900 nanometers.
  • the device according to the invention may furthermore comprise: an electromagnet capable of producing a magnetic field in the measurement vessel,
  • a storage container regulated at an optimum temperature for storing the metering reagent, which temperature may preferably be between 5 ° C. and 15 ° C., and
  • - stirring means for putting and / or suspending the functionalized particles in the stored assay reagent, which can be ultrasonically and comprise at least one of the following means: an external sonotrode coupled to the storage container, a sonotrode immersed in the assay reagent.
  • the first transfer means may comprise a sampling needle and means for moving said sampling needle.
  • the second transfer means may comprise:
  • sampling needle and means for moving said sampling needle capable of transferring assay reagent into the measurement vessel
  • a sampling valve adapted to take a sample in the first preparation means.
  • the biological sample may comprise any type of adapted biological sample, such as, for example, a sample of bone marrow, cerebrospinal fluid, lymph, urine, or a whole blood sample.
  • the device according to the invention may be a device for analyzing biological parameters from a biological sample comprising a whole blood sample.
  • It may further comprise cell component measurement means capable of providing at least one hematocrit measurement.
  • this hematocrit measurement can be provided:
  • the cell component measurement means may comprise hematocrit measurement means, or hematology measurement means capable of providing at least one hematology measurement among a differentiation and / or a count of elements of the hematocrit.
  • blood a hemoglobin assay, a hematocrit measurement, a cell volume measurement.
  • a method for analyzing biological parameters from a biological sample comprising steps of:
  • first transfer means of at least a portion of said biological sample to first preparation means
  • sampling by second transfer means at least partly distinct from the first transfer means of said first sample previously diluted in the first preparation means, and transfer to the second preparation means, and
  • the method according to the invention may further comprise a step of lysis of the sample prior to the determination of the analyte of interest. It can in particular comprise a realization step by the second means of preparing, on the first sample from the first preparation means, at least one lysis operation. This lysis operation can be performed with a lytic reagent.
  • the method according to the invention may furthermore comprise a step of obtaining, by means of cell component measurement means, from the biological sample, at least one measurement of cell volume. compared to the total volume.
  • the method according to the invention may further comprise a step of obtaining, by cell component measurement means, from a second sample derived from the first preparation means, from at least one measure of cell volume in relation to the total volume.
  • the assay of at least one analyte of interest may comprise steps of:
  • the biological sample may be diluted to a level greater than x500 in the measurement solution.
  • the method according to the invention may be a method for analyzing biological parameters from a biological sample which comprises a whole blood sample.
  • a lytic reagent comprising saponin
  • the analyte of interest may be a protein of interest
  • the method according to the invention can implement functionalized particles with a ligand capable of allowing an assay of the C-reactive protein (CRP).
  • CRP C-reactive protein
  • the implementation of colloidal particles with superparamagnetic properties and a homogeneous magnetic field allows good control and excellent performance in terms of reaction kinetics.
  • the main reason is related to the origin of the forces involved: the superparamagnetic character (relative susceptibility of the order of 1) of the colloids makes it possible to apply forces of the order of a few tens of piconewtons to colloids of 200 nm about diameter, without blocking the rotational diffusivity.
  • Intimate contact between particles in the chain can be established while leaving the particles under the action of rotational Brownian motion, and neighboring particles having captured an antigen (or analyte or protein of interest) can quickly find the orientation conducive to forming doublets.
  • an antigen or a protein of interest can be assayed with a sensitivity of the order of pico mol per liter.
  • the superparamagnetic properties result in the fact that the magnetization of the particles appears to be zero in the absence of a magnetic field, but they have a high magnetic susceptibility in the presence of this field. They are naturally dispersed in the absence of a magnetic field and they gather in the form of chains in the presence of the latter.
  • the efficiency and rapidity of the aggregation reaction make it possible to obtain measurement rates that are greater than the devices of the prior art because the recognition between an antibody (or a ligand) and an antigen (or an analyte or a protein of interest) is here forced by the magnetic field and not left to the chance of encounter that would result from the random shock of the particles initiated by the Brownian movement. This forced encounter by the magnetic field makes it possible to quickly form aggregates and therefore, in given time, significantly increase the sensitivity of a bioassay.
  • This efficiency also makes it possible to use high dilution rates (greater than x500, or even x100 or xl500) while maintaining reasonable measurement times.
  • the possibility of using high dilution levels for the determination of analytes of interest or whole blood proteins is a particularly advantageous aspect of the invention.
  • the dilution ratio used is rather of the order of xl5 to x51 (for example for the CRP200® Microphones).
  • the blood medium with hemoglobin is very absorbent in visible wavelengths. This requires optical measurements in the infrared, and because of the long wavelengths, these measurements are simple measurements of absorption or optical density influenced by all the effects of absorption and turbidity of the medium.
  • the medium analyzed is significantly less absorbent for visible wavelengths. This makes it possible to implement shorter wavelengths, and to obtain a measurement in which the losses due to the scattering phenomenon on the particle aggregates are important relative to the absorption of the medium.
  • the optical measurement thus becomes much more (or better) representative of the phenomenon sought and makes it possible to obtain very high sensitivity ranges and a lower measurement noise level than the simple absorption measurements of the prior art.
  • the iron oxide used for the colloidal particles has absorption properties as a function of optical wavelength close to those of hemoglobin.
  • hemoglobin there are wavelengths of transparency between 600 and 900 nm where the measurement can be made without too much discomfort with respect to the absorption properties of the medium.
  • the non-aggregated particles do not disturb the spectroscopic properties of the medium and therefore the measurement.
  • the matrix effect is reduced, that is to say the influence of the medium on the elements to be assayed.
  • the device according to the invention allows an assay of the C-reactive protein (CRP) in the range 2-200 mg / L using a dilution ratio of the order of xl500.
  • CRP C-reactive protein
  • the sampling needle which serves to transfer the assay reagent into the measuring vessel is never in contact with the undiluted whole blood sample.
  • the cell component (or hematology measurement) and immuno-detection measurements are performed in parallel, and make it possible to obtain high measurement rates, of the order of one minute for one hour. blood sample.
  • the coupling of hematology and immuno-detection measurements is not limited to the fluidic part or the sampling. Indeed, the immuno-detection measurements require calibrations that can advantageously exploit parameters derived from hematology measurements.
  • the value of the hematocrit can be used to express the concentration of the analyte (initially measured in whole blood) in the serum fraction of the sample: in this case the concentration of the analyzed analyte is divided by the value of the hematocrit which is the sum of leucocritus, thrombocritus and erythrocritus. It is also possible to divide the value obtained on whole blood by a polynomial of degree greater than or equal to 2 to take into account non-linear effects introduced by the measuring device.
  • the differential counting of the cells can be taken into account in order to detect certain anomalies which are sources of interference, such as too large a number of red blood cells and / or white blood cells and / or platelets. In this case, the display of the analyte assay result is not displayed.
  • i, j, k are integers
  • GR #, GB # and PLT # are counts of red blood cells, white blood cells and platelets expressed per unit volume (L);
  • DO ° is the value of the optical density as measured, uncorrected and having measuring artifacts related to an excess of corresponding cells or debris in the reaction medium;
  • OD is the value of the optical density corrected from the data from the hematology measurements.
  • This relationship is not limiting, it can include other parameters such as cellular volumetry.
  • FIG. 1 is a block diagram of a device according to the invention, according to a first embodiment
  • FIG. 2 shows a schematic representation of a device according to the invention, according to a first embodiment
  • FIG. 3 shows a sectional view of the immunodetection measuring cell
  • FIG. 4 shows an example of acquisition of measurement signals during the measurement measurements, with in FIG. 4 (a) the magnetic field and in FIG. 4 (b) the optical signal,
  • FIG. 5 shows an exemplary calibration calibration curve for the C-reactive protein in a whole blood sample
  • FIG. 6 illustrates the operation of the sampling valve, in a step of taking the sample and the reagents
  • FIG. 7 illustrates the operation of the sampling valve in a step of transferring and mixing the sample with the reagents in the measurement vessels
  • FIG. 8 shows a schematic representation of a device according to the invention, according to a second embodiment.
  • FIGS. 1 and 2 we will describe a first embodiment of an analysis device making it possible to obtain from a single whole blood sample 6 a hemogram and the assay of at least one blood analyte. .
  • This device is designed so as to achieve a high rate of analysis, of the order of at least one complete analysis per minute.
  • This device is composed of a hematology module 1 and an immuno-detection module 2. These two modules are coupled via a mechanical and fluidic interface, the transfer module 3, which allows them to to use one and the same blood sample 6. They work in parallel.
  • This representation in the form of modules is of course purely functional, to facilitate understanding, and it is in no way limiting as regards the physical implementation of the components.
  • the hematology module 1 is based on principles and technologies known to those skilled in the art, such as for example those described in US Pat. No. 6,1067,78. This module 1 is therefore described here in a relatively brief manner. It consists mainly of three subassemblies which are the first sampling and transfer means 5, the first preparation means 7 and the hematology measuring means 8.
  • the device may comprise a sample changer which makes it possible to automatically bring a sample of blood contained in a tube 6.
  • the first collection and transfer means 5 comprise a hollow metal needle 20 connected to a displacement and aspiration system, which makes it possible to take a sample of whole blood in the sampling tube 6.
  • this needle 20 is preferably treated with a treatment intended to limit the adhesion of the various cellular and chemical compounds of the blood.
  • this needle 20 may be equipped with a plug piercing system.
  • the device also comprises a pressure equalization system.
  • the needle 20 is coupled to a movable carriage 25 which allows it to be positioned above the trays of the first preparation means 7 and to distribute the aliquots of blood in the hematology module 1.
  • the first preparation means 7 comprise several mixing tanks 27, each connected to one or more feeds of specific reagents, a drain, a bubbling circuit for the mixtures and a transfer circuit to the hematology measuring device 8. allow accurate mixing and dosing of the aliquot supplied by the needle 20 with different reagents, to obtain the necessary mixtures for the establishment of the hemogram and counting.
  • Each tray 27 is associated with one or more reagents allowing specific treatment of the sample: dilution in a tonicity reagent equal to that of red blood cells, lysis of red blood cells, lysis and formation of a stable hemoglobin complex, These mixtures are then analyzed by specific devices which comprise fluidic elements known to those skilled in the art to allow the completion of a complete hemogram at the desired rate. These dilution tanks 27 and the hematology measuring device 8 thus allow the counting and differentiation of leucocytes, erythrocytes and thrombocytes. These hematological data include other parameters such as Hct hematocrit measurement or Wintrobe constants. Finally, leukocytes can be differentiated into cellular subpopulations allowing the counting of lymphocytes, monocytes, granules and / or immature cells.
  • the hematology measuring means 8 are based on known flow cytometry techniques. They include moving means for passing blood cells, one by one, in one or more counters, and combine impedance measurements with optical measurements. The volume of the mixture analyzed is controlled to meet the accuracy requirements, in particular for the counts. The processing of these data makes it possible to obtain hematological results.
  • the transfer module 3 provides the interface between the hematology module 1 and the immunodetection module 2. It allows the recovery of one or more aliquots of blood in the hematology module 1 and its (their) transfer (s) to the immunodetection module 2.
  • the transfer module 3 comprises second transfer means with a sampling valve 22 which makes it possible to take a sample from a tank 27 within the first preparation means 7. It further comprises second preparation means 23, 24 for prepare the samples for the immuno-detection module 2. Their operation is detailed below.
  • the immunodetection module 2 comprises a measurement vessel 9. It also comprises second preparation means 10, 11 with a set of reagents equipped with their dispensing means and a temperature-controlled compartment 11 allowing the reagent to be stored. R3 assay containing the magnetic particles. It further comprises second transfer means 4 with a specific needle 21 mounted on a carriage 26 or on a motorized arm (not shown). It also comprises a rinsing tank 10 of the needle 21.
  • the measuring tank 9 is equipped with a specific optics for making an optical density measurement in the medium, possibly compensated by a measurement of the power of the light source. It is provided with an electromagnet 28 made with a coil, which allows the application of a magnetic field to the measured medium. The application of this field and its amplitude as a function of time define the magnetization cycle. It is controlled by an electronic device allowing the cancellation of the coercive field if necessary, and it is synchronized with the optical density variation measurement. The profile of this cycle depends on the type of immunological measurement performed. The measurement principle is detailed more precisely below.
  • the measuring tank 9 is maintained in a temperature-controlled environment. It is equipped with an auxiliary heating system for example with a heated aluminum block placed around this tank 9 in available areas. A temperature sensor can measure its temperature which can then be regulated if necessary.
  • this measurement vessel 9 has a capacity of the order of a few hundred ⁇ ⁇ _. It comprises two opposite transparent flat surfaces in the direction of passage of the light beam 32. Its volume is designed to maximize the illuminated volume. Preferably, it may include a drain funnel for efficient rinsing and drying. Depending on the application, it can be made of different materials such as glass, quartz or injected or machined plastic such as PMMA or polyamide ... It preferably undergoes a surface physicochemical treatment to reduce adhesion of different cellular and chemical compounds of the blood.
  • the temperature-controlled compartment 11 makes it possible to maintain the reagent R3 using the magnetic particles at a storage temperature of a few degrees (typically between 5 and 15 ° C.), which makes it possible to store it within the analyzer itself.
  • a stirring system for example an ultrasonic stirring system 13, which enables the colloidal particles to be placed in suspension and their suspension in suspension, as well as the dissociation of any aggregates due to non-specific interactions.
  • This ultrasonic agitation system 13 includes a sonotrode (ie, a piece that transmits ultrasound) external to the reagent bottle, and mechanically coupled thereto.
  • sonotrode ie, a piece that transmits ultrasound
  • control or calibration reagents of the immunological measurement module 2 may also be stored.
  • a temperature control system 12 allows temperature maintenance of the compartment 11. It is not necessary to have a high accuracy.
  • the systems conventionally used in industry and known to those skilled in the art are largely sufficient.
  • it may be a Peltier module controlled by an on-off regulation loop.
  • the specific sampling needle 21 is dedicated to the immunodetection module 2. This is necessary to be able to guarantee the cycle rate, the occupancy rate of the needle 20 of the hematology module 1 being high in an analyzer at a high rate.
  • she is associated with actuators and a carriage 26 for its vertical and horizontal displacement above the measuring vessel 9, the magnetic particle vial 11 and the rinsing tank 10.
  • This sampling needle 21 is used for the removal of the magnetic particles and their distribution in the analyzed solution, which limits the risk of contamination of the reagent R3 assay. It can also be used to effect mixing by suction and successive discharges of the mixture into the measuring tank 9.
  • the reagents used in the immunodetection module 2 provide three main functions that are:
  • the RI reagent comprises a lytic agent which comprises a detergent or any other molecule having cell membrane alteration and fragmentation properties. It may comprise, for example, a detergent of the class of saponins, or of the class of quaternary ammoniums. It may also comprise an anionic detergent chosen from the class of bile acids.
  • the buffer solution R2 comprises a buffer system capable of maintaining a constant pH during the course of the reaction. This may be for example a 50mM glycine buffer, with a pH of the order of 8.5.
  • the lytic reagent R1 and the buffer solution R2 can be combined into a single reagent.
  • the assay reagent R3 comprises submicron particles on the surface of which are grafted antibodies directed against the analyte to be assayed. These particles are characterized by a mean diameter D and a standard deviation o D such that o D / D ⁇ 20%, the average diameter being between 100 and 300 nm. These particles, of substantially spherical shape, are formed of a shell of polymer material whose thickness is a few tens of nanometers within which is a core with a high content of iron oxide. Examples of such a reagent R3 can be found in EP 1446666.
  • the detection of particulate aggregates is performed by an optical device optimized to detect the light scattered by the colloidal mixture.
  • It comprises a light-emitting diode (LED) type light source 30 and a detector 31 with a photodiode or a photomultiplier placed on either side of the measurement vessel 9. It further comprises beam conditioning means which enable to generate through the tank 9 a collimated beam of light 32, whose divergence is minimal and ideally limited by diffraction.
  • LED light-emitting diode
  • detector 31 with a photodiode or a photomultiplier placed on either side of the measurement vessel 9.
  • beam conditioning means which enable to generate through the tank 9 a collimated beam of light 32, whose divergence is minimal and ideally limited by diffraction.
  • a light source of low temporal coherence it is preferable to use a light source of low temporal coherence, to reduce or avoid various optical noises such as the phenomenon of laser granularity or multiple interferences in the analysis medium, resulting from multiple reflections on the walls of the assembly.
  • a magnetization cycle is performed, which comprises the application of a magnetic field with a time profile defined in its shape, duration, number of periods, etc.
  • this magnetization cycle comprises the application of a magnetic field time step, as illustrated in FIG. 4 (a).
  • the colloidal magnetic particles are grouped into chains. After the interruption of the magnetic field, they disperse again with the exception of aggregates consisting of the capture of the analyte or the protein of interest by ligands or antibodies.
  • the optical signal transmitted through measurement vessel 9 is recorded before, during and after the magnetization cycle, as shown in FIG. 4 (b).
  • This transmitted light variation is due to the scattering of the aggregates that have formed.
  • Ci For each analyte assayed i concentration Ci, the method allows to determine a variation 50Di.
  • the measured quantity 50Di is not directly proportional to Ci.
  • Figure 5 shows an example of a calibration function for the assay of C-reactive protein in a whole blood sample.
  • the hematology module 1 is designed so that it can perform 80 tests per hour.
  • the duration of a cycle to obtain the complete blood count and the count of blood elements is 45 seconds.
  • the immunodetection module 2 comprises two measurement vessels 9, which make it possible to make two simultaneous measurements, in 45 seconds as well. These measurements may include measurements on two different analytes, or measurements on the same analyte over two different measurement ranges.
  • the transfer module 3 makes it possible to take a dilution initially prepared by the hematology module 1 for the counting of the red blood cells, through a sampling valve 22. It then simultaneously feeds the two measurement vessels 9, with two different preparations. of the same blood sample.
  • the device executes the following time sequence:
  • the hematology module 1 takes the aliquot of blood 6 and rinses its needle 20 from 0 to 10s. In parallel, the different tanks of the 2 modules are rinsed. Then, the hematology module 1 prepares the first dilution for the red blood cell count (RBC), while the immunodetection module 2 takes the reagent R3 and starts distributing it in its two measuring vessels 9 ( each tank receiving a different assay reagent R3, specific for a protein). After about twenty seconds, a portion of the RBC dilution is transferred to the immunodetection module 2, while the latter completes the distribution of the reagent R3. The hematology module 1 continues in parallel the preparation of the other mixtures in its other tanks 27.
  • RBC red blood cell count
  • the hematology module ends its cycle on its side up to 45s. Meanwhile, the solutions in the measuring tanks 9 of the module Immuno-detection 2 are mixed and then the assay begins, and ends at 45s from the beginning of the cycle.
  • the dosing cycle lasts only 9 seconds, and the rate is actually limited by the duration of the preparation cycle.
  • the method according to the invention is therefore compatible with much higher measurement rates, by implementing suitable preparation systems, for example based on microfluidic systems.
  • the sampling valve 22 implemented in this embodiment is a drawer type sampling valve, well known to those skilled in the art. It comprises a mobile part 40 in translation in a support 41.
  • the moving part 40 is traversed by capillaries which allow to store aliquots, and the support 41 comprises fluidic ports. An aliquot may be aspirated by a first fluid port and stored in the moving part 40, and then the moving part 40 is moved so that the aliquot can be expelled through another fluid port.
  • the sampling valve 22 manages two types of aliquots:
  • Each volume is adapted to perform the total lysis of the cells contained in each aliquot vi.
  • the sampling valve 22 is designed to fluidly couple the aliquots vi and v'i.
  • the sampling valve 22 is positioned so as to allow the sampling of a sample in the tray 27, and lytic reagent RI in a tray 23. These samples are taken pumped by syringes 43 which also take buffer solution R2 in a tank 24.
  • the sampling valve 22 is positioned so as to allow the aliquots vi and v'i to be pushed into the measurement vessels 9 by the buffer solution R2, a volume of which i, adapted to obtain the final dilution rate
  • the target is also introduced into the measurement tanks 9. This thrust is performed by the syringes 43.
  • a volume v of R3 assay reagent (specific to the desired protein) is dispensed into the measuring vessels 9 by the sampling needle 21 of the immunodetection module 2.
  • the lytic reagent RI is an aqueous solution of a detergent capable of rapidly lysing the cellular elements of the sample.
  • the detergent may be ionic or nonionic with a preference for saponin;
  • the buffer R2 is a buffer system capable of maintaining a pH of 8.5 in the reaction medium, for example a glycine buffer;
  • the reagent R3 comprises a suspension of particles covalently grafted onto a monoclonal or polyclonal antibody capable of specifically recognizing the analyte to be assayed (here CRP).
  • a suspension may contain several populations of particles each having immobilized at their surface a different antibody (monoclonal or polyclonal), each recognizing an epitope different from the analyte to be assayed.
  • v'1 100 ⁇ l of 0.2% saponin in distilled water
  • the sampling and transfer module 5 may comprise a sampling valve or a sampling system as for example described in WO 2009/024710 connected to a distribution system. It may also comprise a capillary tube instead of a needle 20;
  • the second transfer means or the transfer module directly in one or more tanks 27, one or more dilutions initially prepared for a haematological measurement.
  • This sampling can be done in any tray, depending on the rate dilution and reagents used. It can also be in a bin dedicated to immunological measurement.
  • the configuration is chosen according to two main criteria. First of all, the transferred mixture must satisfy the needs of the immunological measurement (such as, for example, the compatibility of the reagents with each other, the dilution rates, etc.). Then the method must be minimally invasive vis-à-vis the hematological module 1, in particular it must not significantly extend the duration of its cycle. Of course, it must not degrade the necessary dilutions of the hematology module 1.
  • the measuring tank 9 may comprise a system for mixing the analyzed solution. It can be ensured indifferently by a bubbling circuit, by a circuit of suctions and successive repressions in a pipe or a dedicated chamber;
  • the measuring tank 9 can not be regulated in temperature. It may comprise one or more temperature sensors used to correct the immuno-detection measurements, by applying adapted models or algorithms;
  • the stirring system (ultrasound) 13 can be realized in different ways. This can be non-invasively with external agitation to the vial, via a dry or wet coupling between the vial and a sonotrode. It is also possible to use a submerged sonotrode, in the form of a vibrating needle, or even to use the sampling needle to perform agitation;
  • the second transfer means 4 may be designed so as to allow to bring the sampling needle 21 in a tray 27 of the hematology module 1.
  • the support of the horizontal carriage 26 can be fixed on the same support that the carriage 25 of the hematology module 1. It can also be fixed on separate supports, aligned or not aligned on the alignment axes of the tanks 27 of the hematology module, as long as it is aligned with the tray interest.
  • the horizontal carriage can also be replaced by a rotating arm.
  • the measuring tank 9, the rinsing tank 10, the particle flask 11 and the possible tank of the hematological module 27 must be substantially circularly aligned around the center of rotation of this arm;
  • the lytic reagent RI can be omitted in cases where the sample is first prediluted in one of the hematology module trays, in particular the Tray for counting white blood cells.
  • the whole blood sample can be mixed with the lytic reagent of the hematology module before being transferred to the immunodetection module.
  • the sample receives only the buffer solution R2 and the assay reagent R3 in the immunodetection module;
  • the light source 30 may comprise any small-sized source such as a laser, a super-luminescent diode, a RCLED (resonant cavity light emitting diode) or a judiciously diaphragmated incandescent lamp. It is also possible to generate the beam 32 by collimation of a light beam from a monomode optical fiber.
  • FIG. 8 we will now describe a second embodiment of an analysis device making it possible to obtain, from a single whole blood sample 6, a hemogram and the assay of at least one blood analyte. .
  • This device is designed so as to achieve a high rate of analysis, of the order of at least one complete analysis per minute.
  • This device comprises an immunodetection module 2 and an external hematology module 50.
  • the external hematology module 50 operates in a similar manner to the hematology module 1 of the first embodiment, and the immunological module detection 2 is identical. Also, only the differences between the first and second embodiments will be detailed in the following.
  • the whole blood sample 6 that is transferred between the immuno-detection module 2 and the external hematology module 50, and not, as in the first embodiment, a predilution .
  • the blood count and assay measurements of blood analyte (s) are therefore always performed on the same blood sample 6.
  • the device may comprise a sample changer which makes it possible to automatically transfer the blood sample contained in a tube 6 between the immunodetection module 2 and the external hematology module 50.
  • Coupling of hematology and immuno-detection measurements is not limited to sharing the whole blood sample 6.
  • the information is also transmitted between the modules so that the hematology measurements can be used to process the immuno-detection measurements, as described above.
  • the immunodetection module 2 and the external hematology module 50 can be interconnected by a computer network.
  • the device according to the invention always comprises first sampling and transfer means 5 and first preparation means 7 as described above, but which are functionally connected to the immuno-detection module 2.
  • the module 3 identical to that of the first embodiment is functionally connected to the immunodetection module 2.
  • the first preparation means 7 comprise a tank 27 which makes it possible to carry out a first dilution of the aliquot brought by the needle 20 from the whole blood sample 6.
  • the transfer module 3 comprises second transfer means with a sampling valve 22 which makes it possible to take a sample from the tank 27 within the first preparation means 7.
  • this embodiment makes it possible, as previously, to carry out immuno-detection measurements with high dilution ratios while minimizing the risks of cross-contamination between the blood sample 6 by using the tank. intermediate 27.
  • the external hematology module 50 comprises its own sampling and preparation means which are distinct from the first sampling and transfer means 5 and the first preparation means 7 attached to the immunodetection module 2. .
  • an immunodetection module 2 with one or more external hematology module (s) 50 and a hematology module

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Ecology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

La présente invention concerne un dispositif d'analyse de paramètres biologiques à partir d'un échantillon (6) comprenant (i) des premiers moyens de transfert (5, 20, 25), (ii) des premiers moyens de préparation (7), (iii) des moyens de mesure de composante cellulaire (8), (iv) des seconds moyens de préparation ( 10, 11, 22, 23, 24) aptes à effectuer sur un échantillon issu des premiers moyens de préparation (7) au moins une dilution avec un réactif de dosage (R3) comprenant des particules fonctionnalisées en surface avec au moins un ligand spécifique d'au moins un analyte d'intérêt, (v) des moyens de mesure d'immuno-détection (30, 31) aptes à un dosage d'au moins un analyte d'intérêt par mesure d'agrégation de particules fonctionnalisées, lequel dispositif comprenant en outre (i) des seconds moyens de transfert (4, 21, 22, 26) au moins en partie distincts des premiers moyens de transfert (5, 20, 25) et (ii) des moyens d'application d'un champ magnétique (28) aptes à provoquer par interaction magnétique une accélération de l'agrégation desdites particules fonctionnalisées, lesquelles comprenant des particules colloïdales magnétiques. L'invention concerne aussi un procédé mis en œuvre dans ce dispositif.

Description

« Dispositif et procédé pour effectuer des mesures hématologiques et biochimiques à partir d'un échantillon biologique »
Domaine technique
La présente invention concerne un dispositif et un procédé d'analyse permettant d'effectuer des mesures biologiques, notamment hématologiques et biochimiques, à partir d'un échantillon biologique, notamment un prélèvement de sang total .
Le domaine de l'invention est plus particulièrement mais de manière non limitative celui des systèmes d'analyse.
Etat de la technique antérieure
La différenciation et le comptage d'éléments cellulaires du sang, complétés par le dosage d'au moins un analyte sanguin, présentent un intérêt important dans le domaine du diagnostic. En effet, la plupart des demandes d'analyses biologiques concernent la numération formule sanguine (NFS) en plus de laquelle on demande le dosage d'un ou plusieurs analytes tels que la Protéine C-réactive (CRP) ou encore la Pro-Calcitonine (PCT).
A l'heure actuelle, ces analyses requièrent deux prélèvements : un premier prélèvement réalisé sur anticoagulant, destiné à l'analyse hématologique et un second prélèvement, sans anticoagulant, destiné à l'analyse biochimique.
L'échantillon destiné à l'analyse biochimique est centrifugé avant d'être traité dans les analyseurs destinés au dosage d'une biomolécule sérique ou plasmatique. L'échantillon destiné à l'analyse hématologique est agité afin de maintenir les cellules en suspension dans le tube avant d'être traité par les automates d'hématologie. De plus, et bien souvent, les deux prélèvements sont destinés à des équipements distincts situés dans des laboratoires différents. Ce processus est généralement long et coûteux. Or, nombre de situations requièrent une mesure rapide de la numération formule sanguine et le dosage d'un ou plusieurs analytes. Cette approche est envisageable dès lors où la technologie permet le dosage sur sang total (c'est-à-dire le plasma avec les cellules sanguines). Si cette rapidité apporte un bénéfice incontestable au patient, elle contribue aussi à réduire les délais et les coûts de prise en charge. Par exemple, ce type d'analyse est requis en médecine ambulatoire, en médecine d'urgence ou encore dans des laboratoires de routine où la cadence d'analyse est un facteur déterminant. Dans toutes ces situations, on cherche à simplifier les opérations dites pré-analytiques, nécessaires à la préparation de l'échantillon avant l'analyse, et on cherche une grande rapidité d'analyse avec des niveaux de précision et de reproductibilité élevés pour permettre un diagnostic fiable.
Le couplage d'une mesure hématologique et d'un essai biologique est par exemple décrit dans le document US 6 106778 de Oku et al. Ce document décrit un dispositif d'analyse comprenant un module d'hématologie et un module de biochimie, et permettant la mesure des paramètres hématologiques suivants : nombre de globules blancs (WBC count), nombre de globules rouges (RBC count), nombre de plaquettes (PLT count), volume globulaire moyen (MCV), hématocrite (Hct) et hémoglobine (Hgb).
Un inconvénient majeur de ce dispositif est qu'il ne permet pas des cadences d'analyses élevées. En effet, un seul chariot et une seule aiguille de prélèvement sont utilisés pour le prélèvement et la distribution du sang et des réactifs au niveau du module d'hématologie et du module de biochimie. Il s'ensuit que le taux d'occupation de l'aiguille est trop élevé pour permettre des temps d'analyse hématologique inférieurs par exemple à 60 secondes.
Un autre inconvénient provient du fait qu'une même aiguille est utilisée pour stocker l'échantillon de sang et les réactifs avant l'étape d'hémodilution, ce qui pose un problème de contamination (carry over) préjudiciable aux dosages sensibles d'analytes faiblement abondants.
Enfin, l'essai biologique tel que décrit dans ce document ne permet pas d'atteindre une vitesse de réaction immunologique pour le dosage de l'analyte recherché qui soit compatible avec des cadences d'analyse élevées tout en conférant une mesure sensible, reproductible et sans contamination inter¬ échantillon. Il est basé sur un principe bien connu faisant usage des phénomènes d'agrégation colloïdale. Ce test, souvent appelé « LAI » pour
« latex agglutination immunoassay » (en Anglais) est basé sur le principe suivant : des anticorps spécifiques d'un antigène donné sont greffés sur des particules colloïdales, ainsi la capture de l'antigène par au moins deux particules conduit à un agrégat qui modifie la turbidité de la solution, ce qui autorise un dosage quantitatif des antigènes. La vitesse de cette réaction d'agrégation dépend bien entendu en partie de la concentration en antigènes. Lorsqu'on cherche la meilleure sensibilité, la concentration en particules doit toujours excéder celle en antigènes. En particulier, une concentration en particules de l'ordre de 10 fois celle des antigènes assure le meilleur compromis sachant que si le nombre de doublets attendus (fixé par le nombre d'antigènes) est très minoritaire, comparé au nombre de singulets (particules non agrégées), le rapport signal sur bruit en est affecté.
La vitesse de la réaction d'agrégation colloïdale est aussi liée aux coefficients de diffusion des particules (translation et rotation) ainsi qu'à la concentration surfacique en anticorps greffés sur la surface des particules colloïdales. Il est aussi admis que cette vitesse de réaction impose pour un temps d'incubation donné, la sensibilité et le seuil de détection du test. Ainsi, un temps d'incubation plus court nécessitera, pour une sensibilité égale, une vitesse d'agrégation plus importante.
Plusieurs approches ont été proposées pour accélérer cette réaction sans augmenter significativement le bruit non spécifique, et donc offrir soit une plus grande sensibilité, soit une plus forte cadence d'essai, en réduisant le temps d'incubation. Ces méthodes ont toutes en commun d'augmenter la fréquence de collision des particules en induisant une augmentation locale pendant l'application d'un champ extérieur, de la concentration en particules colloïdales.
Trois approches distinctes sont connues à ce jour : l'utilisation d'ondes stationnaires ultrasonores, l'utilisation de champs électriques alternatifs dans des systèmes bidimensionnels ou tridimensionnels macroscopiques, et enfin l'utilisation de champs magnétiques associés à des particules colloïdales super paramagnétiques. Dans le cas des ondes ultrasonores stationnaires, l'enrichissement local en particules intervient dans les zones de forte pression acoustique ; dans le cas des systèmes bidimensionnels confinés avec application d'un champ alternatif électrique haute fréquence dans le sens perpendiculaire, l'enrichissement local intervient via l'existence de forces attractives d'origine hydrodynamique (induite par la circulation des ions) ; dans le cas des systèmes macroscopiques avec application d'un champ alternatif électrique haute fréquence, l'enrichissement local intervient sous forme de chaînes de particules sous l'action des forces colloïdales dipolaires (induites par la différence de polarisabilité) ; dans le cas de systèmes macroscopiques avec particules colloïdales superparamagnétiques soumis à un champ magnétique homogène, l'enrichissement intervient sous forme de chaînes induites par les interactions dipolaires magnétiques.
On connaît notamment le document EP 1446666 de Bibette et al. qui décrit une méthode pour détecter des analytes en utilisant des particules magnétiques colloïdales, c'est-à-dire des particules magnétiques avec une taille comprise entre 5 nanomètres et 10 micromètres.
Ces particules sont fonctionnalisées à leur surface avec un ligand qui peut être un anticorps, un antigène ou toute autre molécule capable de lier spécifiquement l'analyte à doser et incorporent un matériau magnétique apte à adopter un comportement superparamagnétique. Sous l'effet de l'application d'un champ magnétique, elles ont tendance à s'agglutiner en chaîne, favorisant ainsi l'accrochage de l'analyte à deux particules distinctes. Après annulation du champ magnétique, seules les particules fixées par l'analyte demeurent organisées en chaînes permanentes. La mesure est effectuée par une méthode optique, par microscopie ou mesure de densité. Les exemples de mesure décrits portent notamment sur des dosages d'analytes dans une solution de plasma d'étalonnage.
Un but de la présente invention est de proposer un dispositif et un procédé pour effectuer des mesures hématologiques et biochimiques à partir d'un échantillon de sang total, c'est-à-dire dans lequel les cellules n'ont pas été retirées au préalable, de manière rapide et fiable.
Un autre but de la présente invention est de proposer un dispositif et un procédé pour effectuer des mesures hématologiques et biochimiques à partir d'un seul prélèvement de sang total de manière automatisée.
Un autre but de la présente invention est de proposer un dispositif et un procédé pour effectuer des mesures hématologiques et biochimiques à cadence élevée à partir d'échantillons de sang total, de l'ordre par exemple d'une mesure par minute.
Un autre but de la présente invention est de proposer un dispositif et un procédé pour effectuer des mesures hématologiques et biochimiques à partir d'un échantillon de sang total permettant d'atteindre une sensibilité et une dynamique de mesure élevées pour les mesures biochimiques. Un but de la présente invention est enfin de proposer un dispositif et un procédé pour effectuer des mesures hématologiques et biochimiques à partir d'un échantillon de sang total dans lequel les risques de contamination croisée entre l'échantillon de sang et les réactifs sont minimisés.
Exposé de l'invention
Cet objectif est atteint avec un dispositif d'analyse de paramètres biologiques à partir d'un échantillon biologique, comprenant :
- des premiers moyens de transfert aptes à transférer au moins en partie ledit échantillon biologique vers des premiers moyens de préparation,
- des premiers moyens de préparation aptes à réaliser au moins une dilution dudit échantillon biologique avec au moins un diluant et/ou un réactif,
- des seconds moyens de préparation aptes à effectuer sur un premier échantillon issu des premiers moyens de préparation au moins une dilution avec un réactif de dosage comprenant des particules fonctionnalisées en surface avec au moins un ligand spécifique d'au moins un analyte d'intérêt,
- des moyens de mesure d'immuno-détection aptes à effectuer sur un échantillon issu des seconds moyens de préparation un dosage d'au moins un analyte d'intérêt par mesure du taux d'agrégation de particules fonctionnalisées dans une cuve de mesure,
caractérisé en ce qu'il comprend en outre :
- des seconds moyens de transfert au moins en partie distincts des premiers moyens de transfert et aptes à prélever ledit premier échantillon préalablement dilué dans les premiers moyens de préparation, et à le transférer vers les seconds moyens de préparation, et
- des moyens d'application d'un champ magnétique dans ladite cuve de mesure aptes à provoquer par interaction magnétique une accélération de l'agrégation desdites particules fonctionnalisées, lesquelles comprenant des particules colloïdales magnétiques.
Suivant des modes de réalisation, le dispositif selon l'invention peut comprendre en outre des moyens de mesure de composante cellulaire aptes à fournir à partir de l'échantillon biologique au moins une mesure de volume de cellules par rapport au volume total.
Suivant d'autres modes de réalisation, le dispositif selon l'invention peut comprendre en outre des moyens de mesure de composante cellulaire aptes à fournir à partir d'un second échantillon issu des premiers moyens de préparation au moins une mesure de volume de cell ules par rapport au volu me total .
Suivant des modes de mise en œuvre :
- Les seconds moyens de préparation peuvent être aptes à effectuer au moins une opération de lyse ;
- Le premier échantillon issu des premiers moyens de préparation peut avoir au préalable subi une opération de lyse ;
- L'opération de lyse peut être effectuée avec un réactif lytiq ue, ou par d 'autres moyens tels q u'une méthode physique ;
- Les seconds moyens de transfert peuvent être partiellement ou totalement d istincts des premiers moyens de transfert. Ils peuvent être aptes à fonctionner de manière simultanée ou en paral lèle avec les premiers moyens de transfert ;
Les particules fonctionnalisées peuvent comprend re :
- des particules comprenant un matériau ferromag nétique ;
- des particules pourvues d 'un noyau à forte teneur en oxyde de fer entouré d 'une coq ue en matériau polymère ;
- des particules de forme essentiellement sphériq ue d 'un d iamètre moyen inférieur à 1 micromètre, de préférence inférieur à 500 nanomètres, et encore de préférence compris entre 100 et 300 nanomètres.
Les moyens de mesure d'immuno-détection peuvent comprendre des moyens de mesu re optiq ue avec au moins une sou rce de l umière et au moins un détecteur placés à proximité de la cuve de mesure, laq uel le étant pourvue, au moins au niveau desd its moyens de mesure optiq ue, de parois sensiblement transparentes.
Les moyens de mesure d 'immuno-détection peuvent comprend re en outre des moyens de cond itionnement optiq ues aptes à prod uire à partir d 'au moins une source de l umière un faisceau de lumière col limaté traversant la cuve de mesure.
Le d ispositif selon l'invention peut comprend re au moins une source de lumière apte à émettre dans des long ueurs d 'ondes optiq ues comprises entre 400 nanomètres et 4 micromètres, et de préférence comprises entre 600 nanomètres et 900 nanomètres.
Suivant des modes de réal isation, le d ispositif selon l'invention peut comprend re en outre : - un électroaimant apte à produire un champ magnétique dans la cuve de mesure,
- des moyens de régulation de la température de la cuve de mesure, et/ou des moyens de mesure de la température de la cuve de mesure,
- un conteneur de stockage régulé à une température optimale pour stocker le réactif de dosage, laquelle température pouvant être de préférence comprise entre 5°C et 15°C, et
- des moyens d'agitation pour mettre et/ou maintenir en suspension les particules fonctionnalisées dans le réactif de dosage stocké, lesquels pouvant être par ultrasons et comprendre au moins l'un des moyens suivants : une sonotrode externe couplée au conteneur de stockage, une sonotrode immergée dans le réactif de dosage.
Suivant des modes de réalisation, les premiers moyens de transfert peuvent comprendre une aiguille de prélèvement et des moyens de déplacement de ladite aiguille de prélèvement.
Suivant des modes de réalisation, les seconds moyens de transfert peuvent comprendre :
- une aiguille de prélèvement et des moyens de déplacement de ladite aiguille de prélèvement aptes à transférer du réactif de dosage dans la cuve de mesure,
- une vanne d'échantillonnage apte à prélever un échantillon dans les premiers moyens de préparation.
L'échantillon biologique peut comprendre tout type d'échantillon biologique adapté, tel que par exemple un échantillon de moelle osseuse, de liquide céphalorachidien, de lymphe, d'urine, ou un échantillon de sang total....
Ainsi, suivant des modes de mise en œuvre particuliers, le dispositif selon l'invention peut être un dispositif pour d'analyse de paramètres biologiques à partir d'un échantillon biologique comprenant un échantillon de sang total.
Il peut comprendre en outre des moyens de mesure de composante cellulaire aptes à fournir au moins une mesure d'hématocrite.
Suivant des modes de réalisation, cette mesure d'hématocrite peut être fournie :
- à partir de l'échantillon biologique, - à partir d'un second échantillon issu des premiers moyens de préparation.
Plus généralement, les moyens de mesure de composante cellulaire peuvent comprendre des moyens de mesure d'hématocrite, ou des moyens de mesure d'hématologie aptes à fournir au moins une mesure d'hématologie parmi une différenciation et/ou un comptage d'éléments du sang, un dosage de l'hémoglobine, une mesure de l'hématocrite, une mesure de volume de cellules.
Suivant un autre aspect de l'invention, il est proposé un procédé d'analyse de paramètres biologiques à partir d'un échantillon biologique, comprenant des étapes de :
- transfert par des premiers moyens de transfert d'au moins une partie dudit échantillon biologique vers des premiers moyens de préparation,
- réalisation par des premiers moyens de préparation d'au moins une dilution dudit échantillon biologique avec au moins un diluant et/ou un réactif,
- réalisation par des seconds moyens de préparation, sur un premier échantillon issu des premiers moyens de préparation, d'au moins une dilution avec un réactif de dosage comprenant des particules fonctionnalisées en surface avec au moins un ligand spécifique d'au moins un analyte d'intérêt, - dosage par des moyens de mesure d'immuno-détection d'au moins un analyte d'intérêt avec un échantillon issu des seconds moyens de préparation, par mesure dans une cuve de mesure du taux d'agrégation de particules fonctionnalisées,
caractérisé en ce qu'il comprend en outre des étapes de :
- prélèvement par des seconds moyens de transfert au moins en partie distincts des premiers moyens de transfert dudit premier échantillon préalablement dilué dans les premiers moyens de préparation, et transfert vers les seconds moyens de préparation, et
- application d'un champ magnétique dans ladite cuve de mesure de telle sorte à provoquer par interaction magnétique une accélération de l'agrégation desdites particules fonctionnalisées, lesquelles comprenant des particules colloïdales magnétiques.
Le procédé selon l'invention peut en outre comprendre une étape de lyse de l'échantillon préalablement au dosage de l'analyte d'intérêt. Il peut en particulier comprendre une étape de réalisation par les seconds moyens de préparation, sur le premier échantillon issu des premiers moyens de préparation, d'au moins une opération de lyse. Cette opération de lyse peut être effectuée avec un réactif lytique.
Suivant des modes de mise en œuvre, le procédé selon l'invention peut comprendre en outre une étape d'obtention par des moyens de mesure de composante cellulaire, à partir de l'échantillon biologique, d'au moins une mesure de volume de cellules par rapport au volume total.
Suivant d'autres modes de mise en œuvre, le procédé selon l'invention peut en outre comprendre une étape d'obtention par des moyens de mesure de composante cellulaire, à partir d'un second échantillon issu des premiers moyens de préparation, d'au moins une mesure de volume de cellules par rapport au volume total.
Le dosage d'au moins un analyte d'intérêt peut comprendre des étapes de :
- introduction dans la cuve de mesure d'une solution de mesure comprenant au moins un échantillon et du réactif de dosage,
- mesure d'une première intensité optique au travers de la cuve de mesure,
- application d'un champ magnétique dans la cuve de mesure pendant une durée déterminée, de telle sorte à permettre l'agrégation des particules fonctionnalisées sous l'effet du champ magnétique,
- après l'arrêt du champ magnétique, mesure d'une seconde intensité optique représentative de l'agrégation résiduelle des particules fonctionnalisées due aux couplages entre ligand et analyte d'intérêt,
- calcul d'une variation de densité optique en fonction du ratio desdites premières et secondes intensités optiques, et
- application d'une fonction d'étalonnage préalablement déterminée pour calculer la concentration de la protéine d'intérêt à partir de la variation de densité optique.
Suivant des modes de mise en œuvre, l'échantillon biologique peut être dilué à un taux supérieur à x500 dans la solution de mesure.
Suivant des modes de mise en œuvre, le procédé selon l'invention peut être un procédé pour d'analyse de paramètres biologiques à partir d'un échantillon biologique qui comprend un échantillon de sang total.
II peut mettre en œuvre pour le dosage de l'analyte d'intérêt : - un réactif lytique comprenant de la saponine,
- une solution tampon apte à maintenir un pH optimal .
Suivant des modes de mise en œuvre :
- l'analyte d'intérêt peut être une protéine d'intérêt,
- le procédé selon l'invention peut mettre en œuvre des particules fonctionnalisées avec un ligand apte à permettre un dosage de la protéine C- réactive (CRP) .
Avantageusement, la mise en œuvre de particules colloïdales avec des propriétés superparamagnétiques et d'un champ magnétique homogène permet un bon contrôle et d'excellentes performances en termes de cinétique de réaction . La principale raison est liée à l'origine des forces en jeu : le caractère superparamagnétique (susceptibilité relative de l'ordre de 1) des colloïdes permet d'appliquer des forces de l'ordre de quelques dizaines de piconewtons sur des colloïdes de 200 nm de diamètre environ, sans bloquer la diffusivité rotationnelle. Un contact intime entre particules dans la chaîne peut s'établir tout en laissant les particules soumises à l'action du mouvement Brownien rotationnel, et les particules voisines ayant capturé un antigène (ou un analyte ou une protéine d'intérêt) peuvent trouver rapidement l'orientation propice à former les doublets. Ainsi, en quelques secondes, un antigène ou une protéine d'intérêt peut être dosé avec une sensibilité de l'ordre de la pico mole par litre.
On rappelle que les propriétés superparamagnétiques se traduisent par le fait que l'aimantation des particules paraît nulle en l'absence de champ magnétique, mais qu'elles présentent une susceptibilité magnétique élevée en présence de ce champ. Elles sont naturellement dispersées en l'absence de champ magnétique et elles se regroupent sous forme de chaînes en présence de ce dernier.
L'efficacité et la rapidité de la réaction d'agrégation permettent d'obtenir des cadences de mesure supérieures aux dispositifs de l'art antérieur car la reconnaissance entre un anticorps (ou un ligand) et un antigène (ou un analyte ou une protéine d'intérêt) est ici forcée par le champ magnétique et non laissée au hasard de rencontre qui résulterait du choc aléatoire des particules initié par le mouvement Brownien . Cette rencontre forcée par le champ magnétique permet de former rapidement des agrégats et donc, dans un temps donné, d'augmenter considérablement la sensibilité d'un essai biologique.
Cette efficacité permet en outre d'utiliser des taux de dilution élevés (supérieurs à x500, voire xlOOO ou xl500) tout en conservant des temps de mesure raisonnables.
Dans le domaine des analyses sanguines en particulier, la possibilité d'utiliser des taux de dilution élevés pour le dosage des analytes d'intérêt ou protéines sur sang total est un aspect particulièrement avantageux de l'invention . Dans les dispositifs de l'art antérieur qui utilisent une méthode d'agrégation de particules de latex par agitation simple, tel que par exemple celui décrit dans US 6 106 778, du fait de la faible cinétique de réaction, le taux de dilution utilisé est plutôt de l'ordre de xl5 à x51 (par exemple pour le Micros CRP200®) . Or le milieu sanguin avec l'hémoglobine est très absorbant dans les longueurs d'onde visibles. Cela oblige à faire des mesures optiques dans l'infrarouge, et du fait des grandes longueurs d'onde, ces mesures sont de simples mesures d'absorption ou de densité optique influencées par tous les effets d'absorption et de turbidité du milieu .
Avec des taux de dilution de l'ordre de x500 ou plus, le milieu analysé est nettement moins absorbant pour les longueurs d'onde visibles. Cela permet de mettre en œuvre des longueurs d'onde plus courtes, et d'obtenir une mesure dans laquelle les pertes dues au phénomène de diffusion sur les agrégats de particules sont importantes relativement à l'absorption du milieu . La mesure optique devient ainsi beaucoup plus (ou mieux) représentative du phénomène recherché et permet d'obtenir des plages de sensibilité très élevées et un niveau de bruit de mesure plus faible que les simples mesures d'absorption de l'art antérieur.
En outre, l'oxyde de fer utilisé pour les particules colloïdales possède des propriétés d'absorption en fonction de la longueur d'onde optique proches de celles de l'hémoglobine. Tout comme pour l'hémoglobine, il existe des longueurs d'onde de transparence situées entre 600 et 900 nm où la mesure peut s'effectuer sans trop de gêne par rapport aux propriétés d'absorption du milieu . Ainsi, les particules non agrégées perturbent peu les propriétés spectroscopiques du milieu et donc la mesure. On diminue l'effet de matrice, c'est-à-dire l'influence du milieu sur les éléments à doser. A titre d'exemple, le dispositif selon l'invention permet un dosage de la protéine C-Réactive (CRP) dans la plage 2-200 mg/L en utilisant un taux de dilution de l'ordre de xl500.
Suivant un autre aspect avantageux de l'invention, l'aiguille de prélèvement qui sert à transférer le réactif de dosage dans la cuve de mesure n'est jamais en contact avec l'échantillon de sang total non dilué. Cela représente un réel avantage par rapport à l'art antérieur car cette disposition permet, d'une part, de limiter la pollution du réactif de dosage par l'échantillon de sang lui-même, d'autre part, de réduire l'effet d'interférence « carry over » d'un échantillon à l'autre sur la dilution finale.
Suivant encore un aspect avantageux, les mesures de composante cellulaire (ou mesures d'hématologie) et d'immuno-détection sont effectuées en parallèle, et permettent d'obtenir des cadences de mesure élevées, de l'ordre d'une minute pour un échantillon de sang .
En outre, le couplage des mesures d'hématologie et d'immuno-détection ne se limite pas à la partie fluidique ou à l'échantillonnage. En effet les mesures d'immuno-détection nécessitent des calibrations qui peuvent avantageusement exploiter des paramètres issus des mesures d'hématologie.
Par exemple, la valeur de l'hématocrite peut être utilisée pour exprimer la concentration de l'analyte (initialement dosé sur sang total) dans la fraction sérique de l'échantillon : dans ce cas on divise la concentration de l'analyte dosé par la valeur de l'hématocrite qui est la somme du leucocrite, du thrombocrite et de l'érythrocrite. Il est encore possible de diviser la valeur obtenue sur sang total par un polynôme de degré supérieur ou égal à 2 pour prendre en compte des effets non linéaire introduits par le dispositif de mesure.
Selon un autre exemple, on peut prendre en compte le comptage différentiel des cellules pour détecter certaines anomalies sources d'interférences, telles qu'un nombre trop grand de globules rouges et/ou de globules blancs et/ou de plaquettes. Dans ce cas l'affichage du résultat du dosage de l'analyte n'est pas affiché.
On peut également prendre en compte ces mesures de comptage pour corriger la mesure de la densité optique obtenue lors des mesures de dosage, par exemple en appliquant une relation de correction polynomiale telle que : DO = DO° - ∑ai(GR #)Λϊ - ∑bi(GB - ∑α(ΡΙ_Τ#)ΛΙ< i j k où :
i,j,k sont des entiers ;
GR#, GB# et PLT# sont les comptes des globules rouges, des globules blancs et de plaquettes exprimés par unité de volume (L) ;
ai, bi, ci sont des coefficients ;
DO° est la valeur de la densité optique telle que mesurée, non corrigée et comportant des artefacts de mesure lié à un excès de cellules ou débris correspondant dans le milieu réactionnel ;
DO est la valeur de la densité optique corrigée à partir des données issues des mesures d'hématologie.
Cette relation n'est pas limitative, elle peut notamment faire intervenir d'autres paramètres tels que la volumétrie cellulaire.
Description des figures et modes de réalisation D'autres avantages et particularités de l'invention apparaîtront à la lecture de la description détaillée de mises en œuvre et de modes de réalisation nullement limitatifs, et des dessins annexés suivants :
- la figure 1 présente un schéma fonctionnel d'un dispositif selon l'invention, selon un premier mode de réalisation,
- la figure 2 présente une représentation schématique d'un dispositif selon l'invention, selon un premier mode de réalisation,
- la figure 3 présente une vue en coupe de la cuve de mesure d'immuno- détection,
- la figure 4 présente un exemple d'acquisition de signaux de mesure lors des mesures de dosage, avec à la figure 4(a) le champ magnétique et à la figure 4(b) le signal optique,
- la figure 5 présente un exemple de courbe de calibration de dosage de la protéine C-réactive dans un échantillon de sang total,
- la figure 6 illustre le fonctionnement de la vanne d'échantillonnage, dans une étape de prélèvement de l'échantillon et des réactifs, - la figure 7 illustre le fonctionnement de la vanne d'échantillonnage dans une étape de transfert et de mélange de l'échantillon avec les réactifs dans les cuves de mesure,
- la figure 8 présente une représentation schématique d'un dispositif selon l'invention, selon un second mode de réalisation.
En référence aux figures 1 et 2, nous allons décrire un premier mode de réalisation d'un dispositif d'analyse permettant d'obtenir à partir d'un seul prélèvement de sang total 6 un hémogramme et le dosage d'au moins un analyte sanguin. Ce dispositif est conçu de telle sorte à permettre d'atteindre une cadence d'analyse élevée, de l'ordre d'au moins une analyse complète par minute.
Ce dispositif est composé d'un module d'hématologie 1 et d'un module d'immuno-détection 2. Ces deux modules sont couplés par l'intermédiaire d'une interface mécanique et fluidique, le module de transfert 3, qui leur permet d'utiliser un seul et même échantillon sanguin 6. Ils fonctionnent de manière parallèle. Cette représentation sous forme de modules est bien entendu purement fonctionnelle, pour faciliter la compréhension, et elle n'est en aucun cas limitative en ce qui concerne l'implémentation physique des composants.
Le module d'hématologie 1 est basé sur des principes et des technologies connus de l'homme du métier, telles que par exemple ceux décrits dans US 6 106778. Ce module 1 est donc décrit ici de manière relativement succincte. Il est composé principalement de trois sous-ensembles qui sont les premiers moyens de prélèvement et de transfert 5, les premiers moyens de préparation 7 et les moyens de mesure d'hématologie 8.
Le dispositif peut comprendre un passeur d'échantillon qui permet d'amener, de manière automatique, un échantillon de sang contenu dans un tube 6.
Les premiers moyens de prélèvement et de transfert 5 comprennent une aiguille métallique creuse 20 connectée à un système de déplacement et d'aspiration, qui permet de prélever un échantillon de sang total dans le tube de prélèvement 6.
La surface de cette aiguille 20 est de préférence traitée par un traitement destiné à limiter l'adhérence des différents composés cellulaires et chimiques du sang. Lorsque le dispositif est conçu pour fonctionner avec des tubes d'échantillon 6 hermétiquement fermés, cette aiguille 20 peut être équipée d'un système de perçage du bouchon . Dans ce cas, le dispositif comprend également un système d'équilibrage de la pression .
L'aiguille 20 est couplée à un chariot mobile 25 qui permet de la positionner au dessus des bacs des premiers moyens de préparation 7 et de distribuer les aliquotes de sang dans le module d'hématologie 1.
Les premiers moyens de préparation 7 comprennent plusieurs bacs de mélanges 27, connectés chacun à une ou plusieurs alimentations en réactifs spécifiques, une vidange, un circuit de bullage pour les mélanges et un circuit de transfert vers le dispositif de mesure d'hématologie 8. Ils permettent un mélange et un dosage précis de l'aliquote amenée par l'aiguille 20 avec différents réactifs, pour obtenir les mélanges nécessaires à l'établissement de l'hémogramme et à la numération .
Chaque bac 27 est associé à un ou plusieurs réactifs permettant un traitement spécifique de l'échantillon : dilution dans un réactif de tonicité égale à celle des globules rouges, lyse des globules rouges, lyse et formation d'un complexe stable de l'hémoglobine, .... Ces mélanges sont ensuite analysés par des dispositifs spécifiques qui comprennent des éléments fluidiques connus de l'homme du métier pour permettre la réalisation d'un hémogramme complet à la cadence recherchée. Ces bacs de dilution 27 et le dispositif de mesure d'hématologie 8 permettent ainsi le comptage et la différenciation des leucocytes, des érythrocytes et des thrombocytes. Ces données hématologiques comprennent d'autres paramètres tels que la mesure de l'hématocrite Hct ou les constantes de Wintrobe. Enfin, les leucocytes peuvent être différenciés en sous-populations cellulaires permettant le comptage des lymphocytes, monocytes, granuleux et/ou de cellules immatures.
Les moyens de mesure d'hématologie 8 sont basés sur des techniques connues de cytométrie en flux. Ils comprennent des moyens de déplacement pour faire passer les cellules sanguines, une à une, dans un ou plusieurs compteurs, et associent des mesures d'impédance à des mesures optiques. Le volume de mélange analysé est maîtrisé de façon à satisfaire les exigences de précision, en particulier pour les numérations. Le traitement de ces données permet l'obtention des résultats hématologiques. Le module de transfert 3 assure l'interface entre le module d'hématologie 1 et le module d'immuno-détection 2. Il permet la récupération d'une ou plusieurs aliquote(s) de sang dans le module d'hématologie 1 et son (leur) transfert(s) au module d'immuno-détection 2.
II permet également de poursuivre la préparation du mélange pour la mesure immunologique, par des dilutions supplémentaires et l'adjonction d'un ou plusieurs réactifs.
Le module de transfert 3 comprend des seconds moyens de transfert avec une vanne d'échantillonnage 22 qui permet de prélever un échantillon dans une cuve 27 au sein des premiers moyens de préparation 7. Il comprend en outre des seconds moyens de préparation 23, 24 pour préparer les échantillons pour le module d'immuno-détection 2. Leur fonctionnement est détaillé plus loin .
Le module d'immuno-détection 2 comprend une cuve de mesure 9. Il comprend également des seconds moyens de préparation 10, 11 avec un ensemble de réactifs équipés de leurs moyens de distribution et un compartiment régulé en température 11 permettant le stockage du réactif de dosage R3 contenant les particules magnétiques. Il comprend en outre des seconds moyens de transfert 4 avec une aiguille spécifique 21 montée sur un chariot 26 ou sur un bras motorisé (non représenté) . Il comporte également une cuve de rinçage 10 de l'aiguille 21.
La cuve de mesure 9 est équipée d'une optique spécifique permettant de faire une mesure de densité optique dans le milieu, éventuellement compensée par une mesure de la puissance de la source lumineuse. Elle est munie d'un électroaimant 28 réalisé avec une bobine, qui permet l'application d'un champ magnétique au milieu mesuré. L'application de ce champ et son amplitude en fonction du temps définissent le cycle de magnétisation . Il est piloté par un dispositif électronique permettant l'annulation du champ coercitif si nécessaire, et il est synchronisé avec la mesure de variation de densité optique. Le profil de ce cycle dépend du type de mesure immunologique effectuée. Le principe de mesure est détaillé plus précisément plus loin .
La cuve de mesure 9 est maintenue dans une ambiance régulée en température. Elle est équipée d'un système de chauffage d'appoint par exemple avec un bloc d'aluminium chauffé placé autour de cette cuve 9 dans les zones disponibles. Une sonde de température permet de mesurer sa température qui pourra ensuite être régulée si nécessaire.
En référence à la figure 3, cette cuve de mesure 9 a une contenance de l'ordre de quelques centaines de μ Ι_. Elle comporte deux surfaces planes transparentes opposées dans le sens de passage du faisceau lumineux 32. Son volume est conçu pour maximiser le volume éclairé. De façon préférentielle, elle peut comporter un entonnoir de vidange permettant un rinçage et un séchage efficaces. En fonction des applications, elle peut être réalisée dans différents matériaux tels que du verre, du quartz ou du plastique injecté ou usiné comme par exemple du PM MA ou du polyamide... Elle subit de préférence un traitement physicochimique de surface afin de réduire l'adhérence des différents composés cellulaires et chimiques du sang .
Le compartiment régulé en température 11 permet de maintenir le réactif R3 utilisant les particules magnétiques à une température de conservation de quelques degrés (typiquement entre 5 et 15 °C), ce qui permet de le stocker au sein même de l'analyseur. Il est équipé d'un système d'agitation par exemple un système d'agitation ultrasonore 13, qui permet la mise et le maintien en suspension des particules colloïdales dans leur solution, ainsi que la dissociation d'éventuels agrégats dûs à des interactions non spécifiques. Ce système d'agitation ultrasonore 13 comprend une sonotrode (i.e. une pièce qui transmet les ultrasons) externe au flacon de réactif, et couplée mécaniquement à ce dernier. D'autres systèmes d'agitation connus de l'homme du métier peuvent bien entendu être envisagés.
Au sein de cette zone régulée en température 11, peuvent être aussi stockés les réactifs de contrôle ou de calibration du module de mesure immunologique 2.
Un système de régulation de la température 12 permet le maintien en température du compartiment 11. Il n'est pas nécessaire d'avoir une grande précision . Les systèmes classiquement utilisés dans l'industrie et connus de l'homme de l'art sont largement suffisants. Par exemple ce peut être un module à effet Peltier piloté par une boucle de régulation tout-ou-rien .
L'aiguille de prélèvement spécifique 21 est dédiée au module d'immuno- détection 2. Cela est nécessaire pour pouvoir garantir la cadence des cycles, le taux d'occupation de l'aiguille 20 du module d'hématologie 1 étant élevé dans un analyseur à forte cadence. Dans la configuration présentée ici, elle est associée à des actionneurs et à un chariot 26 permettant son déplacement vertical et horizontal au-dessus de la cuve de mesure 9, du flacon de particules magnétiques 11 et de la cuve de rinçage 10.
Cette aiguille de prélèvement 21 est utilisée pour le prélèvement des particules magnétiques et leur distribution dans la solution analysée, ce qui limite les risques de contamination du réactif de dosage R3. Elle peut être aussi utilisée pour effectuer le mélange par aspiration et refoulements successifs du mélange dans la cuve de mesure 9.
Les réactifs mis en œuvre dans le module d'immuno-détection 2 assurent trois fonctions principales que sont :
- la lyse des cellules sanguines,
- le maintien d'un pH à une valeur stable et définie
- la réaction d'agglutination.
Nous appellerons RI le réactif lytique, R2 la solution tampon et R3 le réactif de dosage contenant les particules magnétiques.
Le réactif RI comprend un agent lytique qui comprend un détergent ou toute autre molécule ayant des propriétés d'altération et de fragmentation des membranes cellulaires. Il peut comprendre par exemple un détergent de la classe des saponines, ou bien de la classe des ammoniums quaternaires. Il peut également comprendre un détergent anionique choisi parmi la classe des acides biliaires.
La solution tampon R2 comprend un système tampon capable de maintenir un pH constant pendant le déroulement de la réaction. Ce peut être par exemple un tampon glycine 50mM, avec un pH de l'ordre de 8,5.
Le réactif lytique RI et la solution tampon R2 peuvent être combinés en un seul réactif.
Le réactif de dosage R3 comprend des particules submicrométriques à la surface desquelles sont greffés des anticorps dirigés contre l'analyte à doser. Ces particules sont caractérisées par un diamètre moyen D et un écart type oD telles que oD/D < 20 %, le diamètre moyen étant compris en 100 et 300 nm. Ces particules, de forme sensiblement sphérique, sont formées d'une coque en matériau polymère dont l'épaisseur est de quelques dizaines de nanomètres au sein de laquelle se trouve un noyau à forte teneur en oxyde de fer. Des exemples d'un tel réactif R3 peuvent être trouvés dans EP 1446666. La détection des agrégats particulaires est réalisée par un dispositif optique optimisé pour détecter la lumière diffusée par le mélange colloïdal. Il comprend une source de lumière 30 de type diode électroluminescente (DEL) et un détecteur 31 avec une photodiode ou un photomultiplicateur placés de part et d'autre de la cuve de mesure 9. Il comprend en outre des moyens de conditionnement de faisceau qui permettent de générer au travers de la cuve 9 un faisceau de lumière 32 collimaté, dont la divergence est minimale et idéalement limitée par la diffraction.
De manière générale, il est préférable d'utiliser une source de lumière 30 de faible cohérence temporelle, pour réduire ou éviter divers bruits optiques comme le phénomène de granularité laser ou encore les interférences multiples dans le milieu d'analyse, résultant de réflexions multiples sur les parois du montage.
En référence à la figure 4, pour effectuer une mesure de dosage on effectue un cycle de magnétisation, qui comprend l'application d'un champ magnétique avec un profil temporel défini dans sa forme, sa durée, son nombre de périodes,.... Dans l'exemple présenté, ce cycle de magnétisation comprend l'application d'un échelon temporel de champ magnétique, tel qu'illustré à la figure 4(a). Durant l'application du champ magnétique, les particules magnétiques colloïdales se regroupent en chaînes. Après l'interruption du champ magnétique, elles se dispersent de nouveau à l'exception des agrégats constitués par la captation de l'analyte ou de la protéine d'intérêt par les ligands ou les anticorps.
On effectue un enregistrement du signal optique transmis au travers de la cuve de mesure 9 avant, pendant et après le cycle de magnétisation, tel qu'illustré à la figure 4(b). On détermine ensuite une variation de la lumière transmise avant et après l'application du champ magnétique en calculant une variation de densité optique 50D= -Log (It/Io) où « Log » est l'opération de logarithme, It est l'intensité de la lumière transmise après application du champ magnétique et Io est l'intensité de la lumière transmise avant application du champ magnétique. Cette variation de lumière transmise est due à la diffusion des agrégats qui se sont constitués.
Pour chaque analyte dosé noté i de concentration Ci, le procédé permet de déterminer une variation 50Di. En pratique, la quantité mesurée 50Di n'est pas directement proportionnelle à Ci. Une fonction mathématique, qui peut être un polynôme dont les coefficients sont déterminés par étalonnage, permet de déterminer Ci par une relation de la forme Ci = Fi(50Di), où Fi est une fonction spécifique à l'analyte Ci.
La figure 5 présente un exemple de fonction d'étalonnage pour le dosage de la protéine C-réactive dans un échantillon de sang total.
On va décrire maintenant plus précisément un exemple de mise en œuvre du procédé selon l'invention pour le dosage de deux analytes différents.
Le module d'hématologie 1 est conçu de telle sorte à pouvoir effectuer 80 tests à l'heure.
La durée d'un cycle pour obtenir l'hémogramme complet ainsi que la numération des éléments du sang est de 45 secondes.
Le module d'immuno-détection 2 comprend deux cuves de mesure 9, qui permettent de faire deux mesures simultanées, en 45 secondes également. Ces mesures peuvent comprendre des mesures sur deux analytes différents, ou des mesures sur un même analyte sur deux plages de mesures différentes.
Le module de transfert 3 permet de prélever une dilution initialement préparée par le module d'hématologie 1 pour le comptage des globules rouges, à travers une vanne d'échantillonnage 22. Il alimente ensuite simultanément les deux cuves de mesure 9, avec deux préparations différentes d'un même échantillon de sang.
Le dispositif exécute la séquence temporelle suivante :
Le module d'hématologie 1 prélève l'aliquote de sang 6 et rince son aiguille 20 de 0 à 10s. En parallèle, les différentes cuves des 2 modules sont rincées. Ensuite le module d'hématologie 1 prépare la première dilution pour la numération des globules rouges (RBC), pendant que le module d'immuno- détection 2 prélève les réactifs de dosage R3 et commence à les distribuer dans ses deux cuves de mesure 9 (chaque cuve recevant un réactif de dosage R3 différent, spécifique d'une protéine). Après une vingtaine de secondes, une partie de la dilution RBC est transférée vers le module d'immuno-détection 2, tandis que celui-ci termine la distribution des réactifs de dosage R3. Le module d'hématologie 1 poursuit en parallèle la préparation des autres mélanges dans ses autres bacs 27. On est alors à peu près à 25s du début du cycle et le module d'hématologie termine son cycle de son côté jusqu'à 45s. Pendant ce temps, les solutions dans les cuves de mesure 9 du module d'immuno-détection 2 sont mélangées puis la mesure de dosage commence, pour se terminer à 45s du début du cycle.
Il est à noter que le cycle de mesure de dosage ne dure que 9 secondes, et la cadence est de fait limitée par la durés du cycle de préparation. Le procédé selon l'invention est donc compatible avec des cadences de mesures nettement plus élevées, en mettant en œuvre des systèmes de préparation adaptés, par exemple à base de systèmes microfluidiques.
La vanne d'échantillonnage 22 mise en œuvre dans ce mode de réalisation est une vanne d'échantillonnage de type tiroir, bien connue de l'homme du métier. Elle comprend une pièce mobile 40 en translation dans un support 41. La pièce mobile 40 est traversée de capillaires qui permettent de stocker des aliquotes, et le support 41 comprend des ports fluidiques. Une aliquote peut être aspirée par un premier port fluidique et stockée dans la pièce mobile 40, puis la pièce mobile 40 est déplacée de telle sorte que l'aliquote puisse être expulsée par un autre port fluidique.
La vanne d'échantillonnage 22 gère deux types d'aliquotes :
- une première série d'aliquotes correspondants au prélèvement de plusieurs volumes déterminés d'une dilution d'échantillon contenue au sein du module d'hématologie : ces volumes prélevés sont désignés vl, v2.
- une seconde série d'aliquotes correspondants au prélèvement de plusieurs quantités d'un réactif lytique RI : ces volumes prélevés sont désignés v'1, v'2.
Chaque volume v'i est adapté pour effectuer la lyse totale des cellules contenues dans chaque aliquote vi. La vanne d'échantillonnage 22 est conçue pour coupler fluidiquement les aliquotes vi et v'i.
En référence à la figure 6, dans un premier temps, la vanne d'échantillonnage 22 est positionnée de telle sorte à permettre le prélèvement d'un échantillon dans le bac 27, et du réactif lytique RI dans un bac 23. Ces prélèvements sont effectués par pompage par des seringues 43 qui prélèvent également de la solution tampon R2 dans un bac 24.
En référence à la figure 7, dans un second temps la vanne d'échantillonnage 22 est positionnée de telle sorte à permettre que les aliquotes vi et v'i soient poussées dans les cuves de mesure 9 par la solution tampon R2 dont un volume v"i, adapté pour obtenir le taux de dilution final recherché est également introduit dans les cuves de mesure 9. Cette poussée est effectuée par les seringues 43.
En outre, un volume v"'i de réactif de dosage R3 (spécifique à la protéine recherchée) est distribué dans les cuves de mesure 9 par l'aiguille de prélèvement 21 du module d'immuno-détection 2.
Pour le dosage d'un analyte tel que la protéine C réactive ou CRP :
- le réactif lytique RI est une solution aqueuse d'un détergent capable de lyser rapidement les éléments cellulaires de l'échantillon. Le détergent peut être ionique ou non ionique avec une préférence pour la saponine ;
- le tampon R2 est un système tampon capable de maintenir un pH de de 8,5 dans le milieu réactionnel comme par exemple un tampon glycine ;
- les réactifs de dosage R3 comprennent une suspension de particules sur lesquelles est greffé de façon covalente un anticorps monoclonal ou polyclonal capable de reconnaître spécifiquement l'analyte à doser (ici la CRP). Eventuellement, une suspension peut contenir plusieurs populations de particules ayant chacune immobilisé à leur surface un anticorps différent (monoclonal ou polyclonal), chacun reconnaissant un épitope différent de l'analyte à doser.
Un exemple de protocole pour une gamme de 2 à 200mg/L de CRP est le suivant :
vl = 6,5 μΙ d'échantillon prédilué dans le bac de mesure des globules blancs du module d'hématologie (1/40)
v'1 = 100 μΙ de saponine à 0,2% dans l'eau distillée
v"l = 118 μΙ de tampon glycine 0,1M pH 8,5
v"'l = 25 μΙ d'une suspension de particules à 0,4%
Suivant des variantes de modes de réalisation :
- Le module de prélèvement et de transfert 5 peut comprendre une vanne d'échantillonnage ou un système d'échantillonnage comme par exemple décrit dans le document WO 2009/024710 connectés à un système de distribution. Il peut également comprendre un tube capillaire au lieu d'une aiguille 20 ;
- il est possible de prélever avec les seconds moyens de transfert (ou le module de transfert) directement dans un ou plusieurs bacs 27, une ou plusieurs dilutions initialement préparées pour une mesure hématologique. Ce prélèvement peut être effectué dans n'importe quel bac, en fonction du taux de dilution et des réactifs utilisés. Ce peut être aussi dans un bac dédié à la mesure immunologique. La configuration est choisie en fonction de deux critères principaux. Tout d'abord le mélange transféré doit satisfaire les besoins de la mesure immunologique (comme par exemple la compatibilité des réactifs entre eux, des taux de dilutions...). Ensuite le procédé doit être peu invasif vis-à-vis du module hématologique 1, en particulier il ne doit pas rallonger sensiblement la durée de son cycle. Bien évidemment il ne doit pas non plus dégrader les dilutions nécessaires au module d'hématologie 1.
- la cuve de mesure 9 peut comprendre un système de mélange de la solution analysée. Il peut être assuré indifféremment par un circuit de bullage, par un circuit d'aspirations et de refoulements successifs dans un tuyau ou une chambre dédiée ;
- la cuve de mesure 9 peut ne pas être régulée en température. Elle peut comprendre un ou plusieurs capteurs de température utilisés pour corriger les mesures d'immuno-détection, en appliquant des modèles ou des algorithmes adaptés ;
- Le système d'agitation (ultrasonore) 13 peut être réalisé de différentes façons. Ce peut être de manière non invasive avec une agitation extérieure au flacon, par l'intermédiaire d'un couplage sec ou humide entre le flacon et une sonotrode. Il est possible aussi d'utiliser une sonotrode immergée, sous forme d'aiguille vibrante, ou même d'utiliser l'aiguille de prélèvement pour réaliser l'agitation ;
- Les seconds moyens de transfert 4 peuvent être conçus de telle sorte à permettre d'amener l'aiguille de prélèvement 21 dans un bac 27 du module d'hématologie 1. Dans ce cas le support du chariot horizontal 26 peut être fixé sur le même support que le chariot 25 du module d'hématologie 1. Il peut être aussi fixé sur des supports séparés, alignés ou non sur les axes d'alignement des cuves 27 du module d'hématologie, du moment qu'il est aligné avec le bac d'intérêt. Le chariot horizontal peut aussi être remplacé par un bras rotatif. Dans ce cas la cuve de mesure 9, la cuve de rinçage 10, le flacon de particules 11 et l'éventuelle cuve du module hématologique 27 doivent être alignés de façon sensiblement circulaire autour du centre de rotation de ce bras ;
- Le réactif lytique RI peut être omis dans les cas où l'échantillon est d'abord prédilué dans un des bacs du module d'hématologie, en particulier le bac servant au comptage des globules blancs. Dans ce cas, l'échantillon de sang total peut être mélangé avec le réactif lytique du module d'hématologie avant d'être transféré dans le module d'immuno-détection. Dans ce cas également, l'échantillon ne reçoit que la solution tampon R2 et le réactif de dosage R3 dans le module d'immuno-détection ;
- La source de lumière 30 peut comprendre toutes sources de faible dimension telle qu'un laser, une diode super-luminescente, une RCLED (diode électroluminescente à cavité résonnante) ou une lampe à incandescence judicieusement diaphragmée. Il est également possible de générer le faisceau 32 par collimation d'un faisceau de lumière issu d'une fibre optique monomode.
En référence à la figure 8, nous allons maintenant décrire un second mode de réalisation d'un dispositif d'analyse permettant d'obtenir à partir d'un seul prélèvement de sang total 6 un hémogramme et le dosage d'au moins un analyte sanguin. Ce dispositif est conçu de telle sorte à permettre d'atteindre une cadence d'analyse élevée, de l'ordre d'au moins une analyse complète par minute.
Ce dispositif comprend un module d'immuno-détection 2 et un module d'hématologie externe 50. Le module d'hématologie externe 50 fonctionne de manière similaire au module d'hématologie 1 du premier mode de réalisation, et le module d'immuno-détection 2 est identique. Aussi, seules les différences entre les premiers et seconds modes de réalisation seront détaillées dans ce qui suit.
Dans ce mode de réalisation, c'est le prélèvement de sang total 6 qui est transféré entre le module d'immuno-détection 2 et le module d'hématologie externe 50, et non pas, comme dans le premier mode de réalisation, une prédilution. Les mesures d'hémogramme et de dosage d'analyte(s) sanguin(s) sont donc toujours effectuées sur le même prélèvement de sang total 6.
Le dispositif peut comprendre un passeur d'échantillon qui permet d'amener de transférer de manière automatique l'échantillon de sang contenu dans un tube 6 entre le module d'immuno-détection 2 et le module d'hématologie externe 50.
Le couplage des mesures d'hématologie et d'immuno-détection ne se limite pas à un partage du prélèvement de sang total 6. Les informations sont également transmises entre les modules de telle sorte à pouvoir utiliser les mesures d'hématologie pour traiter les mesures d'immuno-détection, tel que décrit précédemment. Pour cela, le module d'immuno-détection 2 et le module d'hématologie externe 50 peuvent être interconnectés par un réseau informatique.
Le dispositif selon l'invention comprend toujours des premiers moyens de prélèvement et de transfert 5 et des premiers moyens de préparation 7 tels que décrits précédemment, mais qui sont fonctionnellement rattachés au module d'immuno-détection 2. De la même manière, le module de transfert 3, identique à celui du premier mode de réalisation, est fonctionnellement rattachés au module d'immuno-détection 2.
Les premiers moyens de préparation 7 comprennent une cuve 27 qui permet d'effectuer une première dilution de l'aliquote amenée par l'aiguille 20 à partir du prélèvement de sang total 6.
Le module de transfert 3 comprend des seconds moyens de transfert avec une vanne d'échantillonnage 22 qui permet de prélever un échantillon dans la cuve 27 au sein des premiers moyens de préparation 7.
Ainsi, ce mode de réalisation permet, comme précédemment, d'effectuer des mesures d'immuno-détection avec des taux de dilution élevés tout en minimisant les risques de contamination croisée entre l'échantillon de sang 6 grâce à l'utilisation de la cuve intermédiaire 27.
Il est à noter enfin que le module d'hématologie externe 50 comprend ses propres moyens de prélèvement et de préparation qui sont distincts des premiers moyens de prélèvement et de transfert 5 et des premiers moyens de préparation 7 rattachés au module d'immuno-détection 2.
Suivant des variantes,
- il est possible de coupler un module d'immuno-détection 2 avec plusieurs modules d'hématologie externes 50 ;
- il est possible de coupler un module d'immuno-détection 2 avec un ou plusieurs module(s) d'hématologie externe(s) 50 et un module d'hématologie
1 tel que présenté dans le premier mode de réalisation.
Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention.

Claims

REVENDICATIONS
1. Dispositif d'analyse de paramètres biologiques à partir d'un échantillon biologique (6), comprenant :
- des premiers moyens de transfert (5, 20, 25) aptes à transférer au moins en partie ledit échantillon biologique (6) vers des premiers moyens de préparation (7),
- des premiers moyens de préparation (7) aptes à réaliser au moins une dilution dudit échantillon biologique (6) avec au moins un diluant et/ou un réactif,
- des seconds moyens de préparation (10, 11, 22, 23, 24) aptes à effectuer sur un premier échantillon issu des premiers moyens de préparation (7) au moins une dilution avec un réactif de dosage (R3) comprenant des particules fonctionnalisées en surface avec au moins un ligand spécifique d'au moins un analyte d'intérêt,
- des moyens de mesure d'immuno-détection (30, 31) aptes à effectuer sur un échantillon issu des seconds moyens de préparation (10, 11, 22, 23, 24) un dosage d'au moins un analyte d'intérêt par mesure du taux d'agrégation de particules fonctionnalisées dans une cuve de mesure (9),
caractérisé en ce qu'il comprend en outre :
- des seconds moyens de transfert (4, 21, 22, 26) au moins en partie distincts des premiers moyens de transfert (5, 20, 25) et aptes à prélever ledit premier échantillon préalablement dilué dans les premiers moyens de préparation (7), et à le transférer vers les seconds moyens de préparation (10, 11, 22, 23, 24), et
- des moyens d'application d'un champ magnétique (28) dans ladite cuve de mesure (9) aptes à provoquer par interaction magnétique une accélération de l'agrégation desdites particules fonctionnalisées, lesquelles comprenant des particules colloïdales magnétiques.
2. Le dispositif de la revendication 1, qui comprend en outre des moyens de mesure de composante cellulaire (8, 50) aptes à fournir à partir de l'échantillon biologique (6) au moins une mesure de volume de cellules par rapport au volume total .
3. Le dispositif de la revendication 1 , qui comprend en outre des moyens de mesure de composante cellulaire (8) aptes à fournir à partir d'un second échantillon issu des premiers moyens de préparation (7) au moins une mesure de volume de cellules par rapport au volume total .
4. Le dispositif de l'une des revendications précédentes, dans lequel les particules fonctionnalisées comprennent des particules pourvues d'un noyau à forte teneur en oxyde de fer entouré d'une coque en matériau polymère.
5. Le dispositif de l'une des revendications précédentes, dans lequel les particules fonctionnalisées comprennent des particules de forme essentiellement sphérique d'un diamètre moyen inférieur à 1 micromètre.
6. Le dispositif de l'une des revendications précédentes, dans lequel les moyens de mesure d'immuno-détection (2) comprennent des moyens de mesure optique avec au moins une source de lumière (30) et au moins un détecteur (31) placés à proximité de la cuve de mesure (9), laquelle étant pourvue, au moins au niveau desdits moyens de mesure optique (30, 31), de parois sensiblement transparentes.
7. Le dispositif de la revendication 6, dans lequel les moyens de mesure d'immuno-détection comprennent en outre des moyens de conditionnement optique aptes à produire à partir d'au moins une source de lumière (30) un faisceau de lumière collimaté (32) traversant la cuve de mesure (9) .
8. Le dispositif de l'une des revendications 6 ou 7, qui comprend au moins une source de lumière (30) apte à émettre dans des longueurs d'onde optiques comprises entre 600 nanomètres et 900 nanomètres.
9. Le dispositif de l'une des revendications précédentes, qui comprend en outre un électroaimant (28) apte à produire un champ magnétique dans la cuve de mesure (9) .
10. Le dispositif de l'une des revendications précédentes, qui comprend en outre des moyens de régulation de la température de la cuve de mesure (9).
11. Le dispositif de l'une des revendications précédentes, qui comprend en outre un conteneur de stockage (11) régulé à une température optimale pour stocker le réactif de dosage (R3).
12. Le dispositif de la revendication 10, qui comprend en outre des moyens d'agitation par ultrasons (13) pour mettre et/ou maintenir en suspension les particules fonctionnalisées dans le réactif de dosage (R3) stocké, comprenant au moins l'un des moyens suivants : une sonotrode externe couplée au conteneur de stockage, une sonotrode immergée dans le réactif de dosage (R3).
13. Le dispositif de l'une des revendications précédentes, dans lequel les premiers moyens de transfert comprennent une aiguille de prélèvement (20) et des moyens de déplacement (25) de ladite aiguille de prélèvement (20).
14. Le dispositif de l'une des revendications précédentes, dans lequel les seconds moyens de transfert comprennent une aiguille de prélèvement (21) et des moyens de déplacement (26) de ladite aiguille de prélèvement (21) aptes à transférer du réactif de dosage (R3) dans la cuve de mesure (9).
15. le dispositif de l'une des revendications précédentes, dans lequel les seconds moyens de transfert comprennent une vanne d'échantillonnage (22) apte à prélever un échantillon dans les premiers moyens de préparation (7).
16. Le dispositif de l'une des revendications précédentes, pour d'analyse de paramètres biologiques à partir d'un échantillon biologique comprenant un échantillon de sang total (6).
17. Le dispositif de la revendication 16, qui comprend des moyens de mesure de composante cellulaire (8, 50) aptes à fournir au moins une mesure d'hématocrite.
18. Procédé d'analyse de paramètres biologiques à partir d'un échantillon biologique (6), comprenant des étapes de :
- transfert par des premiers moyens de transfert (5, 20, 25) d'au moins une partie dudit échantillon biologique (6) vers des premiers moyens de préparation (7),
- réalisation par des premiers moyens de préparation (7) d'au moins une dilution dudit échantillon biologique (6) avec au moins un diluant et/ou un réactif,
- réalisation par des seconds moyens de préparation (10, 11, 22, 23, 24), sur un premier échantillon issu des premiers moyens de préparation (7), d'au moins une dilution avec un réactif de dosage (R3) comprenant des particules fonctionnalisées en surface avec au moins un ligand spécifique d'au moins un analyte d'intérêt,
- dosage par des moyens de mesure d'immuno-détection (30, 31) d'au moins un analyte d'intérêt avec un échantillon issu des seconds moyens de préparation (10, 11, 22, 23, 24), par mesure dans une cuve de mesure (9) du taux d'agrégation de particules fonctionnalisées,
caractérisé en ce qu'il comprend en outre des étapes de :
- prélèvement par des seconds moyens de transfert (4, 21, 22, 26) au moins en partie distincts des premiers moyens de transfert (5, 20, 25) dudit premier échantillon préalablement dilué dans les premiers moyens de préparation (7), et transfert vers les seconds moyens de préparation (10, 11, 22, 23, 24), et
- application d'un champ magnétique dans ladite cuve de mesure (9) de telle sorte à provoquer par interaction magnétique une accélération de l'agrégation desdites particules fonctionnalisées, lesquelles comprenant des particules colloïdales magnétiques.
19. Le procédé de la revendication 18, qui comprend en outre une étape d'obtention par des moyens de mesure de composante cellulaire (8, 50), à partir de l'échantillon biologique (6), d'au moins une mesure de volume de cellules par rapport au volume total.
20. Le procédé de la revendication 18, qui comprend en outre une étape d'obtention par des moyens de mesure de composante cellulaire (8), à partir d'un second échantillon issu des premiers moyens de préparation (7), d'au moins une mesure de volume de cellules par rapport au volume total.
21. Le procédé de l'une des revendications 18 à 20, dans lequel le dosage d'au moins un analyte d'intérêt comprend des étapes de :
- introduction dans la cuve de mesure (9) d'une solution de mesure comprenant au moins un échantillon et du réactif de dosage (R3),
- mesure d'une première intensité optique au travers de la cuve de mesure,
- application d'un champ magnétique dans la cuve de mesure (9) pendant une durée déterminée, de telle sorte à permettre l'agrégation des particules fonctionnalisées sous l'effet du champ magnétique,
- après l'arrêt du champ magnétique, mesure d'une seconde intensité optique représentative de l'agrégation résiduelle des particules fonctionnalisées due aux couplages entre ligand et analyte d'intérêt,
- calcul d'une variation de densité optique en fonction du ratio desdites première et seconde intensités optiques, et
- application d'une fonction d'étalonnage préalablement déterminée pour calculer la concentration de la protéine d'intérêt à partir de la variation de densité optique.
22. Le procédé de la revendication 21, dans lequel l'échantillon biologique est dilué à un taux supérieur à x500 dans la solution de mesure.
23. Le procédé de l'une des revendications 18 à 22, pour d'analyse de paramètres biologiques à partir d'un échantillon biologique (6) qui comprend un échantillon de sang total.
24. Le procédé de la revendication 23, qui met en œuvre pour le dosage de l'analyte d'intérêt : - un réactif lytique (RI) comprenant de la saponine,
- une solution tampon (R2) apte à maintenir un pH optimal.
25. Le procédé de l'une des revendications 23 ou 24, qui met en œuvre des particules fonctionnalisées avec un ligand apte à permettre un dosage d'un analyte d'intérêt qui est la protéine C-réactive (CRP).
PCT/EP2013/051619 2012-02-02 2013-01-29 Dispositif et procede pour effectuer des mesures hematologiques et biochimiques a partir d'un echantillon biologique WO2013113670A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13704728.8A EP2810042B1 (fr) 2012-02-02 2013-01-29 Dispositif et procede pour effectuer des mesures hematologiques et biochimiques a partir d'un echantillon biologique
CN201380007828.3A CN104169707B (zh) 2012-02-02 2013-01-29 用于从生物样品进行血液学和生物化学测量的装置和方法
US14/376,270 US10073086B2 (en) 2012-02-02 2013-01-29 Device and method for carrying out haematological and biochemical measurements from a biological sample
JP2014555165A JP6247643B2 (ja) 2012-02-02 2013-01-29 生物学的試料から血液学的なおよび生化学的な測定を実行するための、装置および方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1250961 2012-02-02
FR1250961A FR2986617B1 (fr) 2012-02-02 2012-02-02 Dispositif et procede pour effectuer des mesures hematologiques et biochimiques a partir d'un echantillon biologique

Publications (1)

Publication Number Publication Date
WO2013113670A1 true WO2013113670A1 (fr) 2013-08-08

Family

ID=47722225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/051619 WO2013113670A1 (fr) 2012-02-02 2013-01-29 Dispositif et procede pour effectuer des mesures hematologiques et biochimiques a partir d'un echantillon biologique

Country Status (6)

Country Link
US (1) US10073086B2 (fr)
EP (1) EP2810042B1 (fr)
JP (1) JP6247643B2 (fr)
CN (1) CN104169707B (fr)
FR (1) FR2986617B1 (fr)
WO (1) WO2013113670A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656085A (zh) * 2014-07-01 2018-02-02 深圳迈瑞生物医疗电子股份有限公司 一种血液检测仪
JP7499376B2 (ja) 2015-02-09 2024-06-13 スリングショット バイオサイエンシーズ, インコーポレイテッド 調整可能な光学特性を有するヒドロゲル粒子およびその使用の方法
US12038369B2 (en) 2020-01-24 2024-07-16 Slingshot Biosciences, Inc. Compositions and methods for cell-like calibration particles

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784571B (zh) * 2016-02-29 2023-05-26 深圳市帝迈生物技术有限公司 一种特定反应蛋白crp的双池子测量方法及装置
FR3049348B1 (fr) * 2016-03-23 2023-08-11 Commissariat Energie Atomique Procede de caracterisation d’une particule dans un echantillon
CN107643393B (zh) * 2016-07-21 2021-11-05 深圳迈瑞生物医疗电子股份有限公司 样本分析仪及其清洗方法、含有溶血剂成分的液体的用途
CN108279229B (zh) * 2017-01-05 2024-02-27 深圳市帝迈生物技术有限公司 一种全血crp检测装置
EP3611491B1 (fr) * 2018-05-30 2020-07-22 Pragmatic Diagnostics, S.L. Procédé optomagnétophorétique pour la détection de substances biologiques et chimiques
AT521352B1 (de) * 2018-07-13 2020-01-15 Meon Medical Solutions Gmbh & Co Kg Verfahren und vorrichtung zur durchführung von heterogenen immunoassays
WO2020037289A1 (fr) * 2018-08-16 2020-02-20 Essenllix Corporation Dosage homogène avec agrégation ou désagrégation de particules
CN110823892A (zh) * 2019-11-20 2020-02-21 广州中医药大学第一附属医院 一种多功能临床检验分析装置
CN113049800B (zh) * 2019-12-28 2024-05-28 深圳市帝迈生物技术有限公司 一种免疫分析仪及其检测方法、计算机可读存储介质
CN115003798A (zh) * 2020-06-17 2022-09-02 兰迪·莱曼·阿伦 用于检测分析物的方法和试剂盒
CN113917165A (zh) * 2020-07-10 2022-01-11 深圳市帝迈生物技术有限公司 Poct样本分析仪及其检测方法
JP7546505B2 (ja) 2021-03-15 2024-09-06 トヨタホーム株式会社 連棟式建物
FR3130994A1 (fr) 2021-12-21 2023-06-23 Horiba Abx Sas Procédé de dosage

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030888A (en) * 1975-02-28 1977-06-21 Toa Medical Electronics Co., Ltd. Automatic blood analyzer
EP0409606A2 (fr) * 1989-07-19 1991-01-23 Tosoh Corporation Analyseur automatique d'essais immunologiques et son procédé d'utilisation
US5183638A (en) * 1989-12-04 1993-02-02 Kabushiki Kaisha Nittec Automatic immunity analysis apparatus with magnetic particle separation
US5215714A (en) * 1988-04-08 1993-06-01 Toa Medical Electronics Co., Ltd. Immunoagglutination measurement apparatus
US5290708A (en) * 1990-03-30 1994-03-01 Fujirebio Inc. Method of immunoassay measurement
US5939326A (en) * 1994-08-01 1999-08-17 Abbott Laboratories Method and apparatus for performing automated analysis
US6106778A (en) 1997-09-27 2000-08-22 Horiba, Ltd. Blood cell count/immunoassay apparatus using whole blood
US6159740A (en) * 1987-03-13 2000-12-12 Coulter Corporation Method and apparatus for screening obscured or partially obscured cells
WO2002037078A2 (fr) * 2000-10-31 2002-05-10 Dpc Cirrus, Inc. Analyseur automatique d'immuno-essai et procede d'utilisation
EP1446666A1 (fr) 2001-11-20 2004-08-18 Diagnostica Stago Methode de detection d'analyte(s) a l'aide de particules magnetiques colloidales
WO2009024710A1 (fr) 2007-08-03 2009-02-26 Horiba Abx Sas Dispositif de preparation et de distribution fractionnee d'echantillons d'un fluide, systeme de distribution comportant un tel dispositif et procede associe
US20090117620A1 (en) * 2007-11-05 2009-05-07 Abbott Laboratories Automated analyzer for clinical laboratory

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1311404C (fr) 1987-03-13 1992-12-15 Kenneth H. Kortright Analyseur automatique et methode pour le depistage de cellules ou de corps formes, servant a compter les populations presentant des caracteristiques selectionnees
JP3010509B2 (ja) 1990-03-30 2000-02-21 富士レビオ株式会社 免疫測定用容器、免疫測定方法及び免疫測定装置
US5541072A (en) * 1994-04-18 1996-07-30 Immunivest Corporation Method for magnetic separation featuring magnetic particles in a multi-phase system
US5200084A (en) * 1990-09-26 1993-04-06 Immunicon Corporation Apparatus and methods for magnetic separation
JPH05240859A (ja) * 1991-11-28 1993-09-21 Fujirebio Inc 凝集免疫測定方法及び装置
JP3475056B2 (ja) * 1997-09-27 2003-12-08 株式会社堀場製作所 全血血球免疫測定装置
US7258799B2 (en) * 2002-01-22 2007-08-21 Dexter Magnetic Techologies, Inc. Method and apparatus for magnetic separation of particles
JP4299597B2 (ja) * 2002-07-29 2009-07-22 シスメックス株式会社 血液分析装置及び方法
EP2333561A3 (fr) * 2005-03-10 2014-06-11 Gen-Probe Incorporated Système permettant d'exécuter des analyses multi-formats
US20100231213A1 (en) * 2006-03-30 2010-09-16 Koninklijke Philips Electronics N.V. Magnetoresistive sensor as temperature sensor
US7625115B2 (en) * 2006-06-23 2009-12-01 Exxonmobil Research And Engineering Company Method of blending lubricants using positive displacement liquid-handling equipment
US20100062518A1 (en) * 2008-09-09 2010-03-11 Sukanta Banerjee Concentrating White Blood Cells for DNA Extraction from a Leukodepleted Blood Sample
US9050595B2 (en) * 2010-12-03 2015-06-09 Abbott Point Of Care Inc. Assay devices with integrated sample dilution and dilution verification and methods of using same
US9518984B2 (en) * 2011-02-22 2016-12-13 Chrome Red Technologies, Llc Separation, washing and determination of analytes tagged with magnetic particles
US9632102B2 (en) * 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030888A (en) * 1975-02-28 1977-06-21 Toa Medical Electronics Co., Ltd. Automatic blood analyzer
US6159740A (en) * 1987-03-13 2000-12-12 Coulter Corporation Method and apparatus for screening obscured or partially obscured cells
US5215714A (en) * 1988-04-08 1993-06-01 Toa Medical Electronics Co., Ltd. Immunoagglutination measurement apparatus
EP0409606A2 (fr) * 1989-07-19 1991-01-23 Tosoh Corporation Analyseur automatique d'essais immunologiques et son procédé d'utilisation
US5183638A (en) * 1989-12-04 1993-02-02 Kabushiki Kaisha Nittec Automatic immunity analysis apparatus with magnetic particle separation
US5290708A (en) * 1990-03-30 1994-03-01 Fujirebio Inc. Method of immunoassay measurement
US5939326A (en) * 1994-08-01 1999-08-17 Abbott Laboratories Method and apparatus for performing automated analysis
US6106778A (en) 1997-09-27 2000-08-22 Horiba, Ltd. Blood cell count/immunoassay apparatus using whole blood
WO2002037078A2 (fr) * 2000-10-31 2002-05-10 Dpc Cirrus, Inc. Analyseur automatique d'immuno-essai et procede d'utilisation
EP1446666A1 (fr) 2001-11-20 2004-08-18 Diagnostica Stago Methode de detection d'analyte(s) a l'aide de particules magnetiques colloidales
WO2009024710A1 (fr) 2007-08-03 2009-02-26 Horiba Abx Sas Dispositif de preparation et de distribution fractionnee d'echantillons d'un fluide, systeme de distribution comportant un tel dispositif et procede associe
US20090117620A1 (en) * 2007-11-05 2009-05-07 Abbott Laboratories Automated analyzer for clinical laboratory

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656085A (zh) * 2014-07-01 2018-02-02 深圳迈瑞生物医疗电子股份有限公司 一种血液检测仪
CN107656085B (zh) * 2014-07-01 2021-04-09 深圳迈瑞生物医疗电子股份有限公司 一种血液检测仪
JP7499376B2 (ja) 2015-02-09 2024-06-13 スリングショット バイオサイエンシーズ, インコーポレイテッド 調整可能な光学特性を有するヒドロゲル粒子およびその使用の方法
US12066369B2 (en) 2015-02-09 2024-08-20 Slingshot Biosciences, Inc. Synthetic human cell mimic particle for cytometric or coulter device
US12038369B2 (en) 2020-01-24 2024-07-16 Slingshot Biosciences, Inc. Compositions and methods for cell-like calibration particles

Also Published As

Publication number Publication date
FR2986617A1 (fr) 2013-08-09
JP2015508158A (ja) 2015-03-16
EP2810042A1 (fr) 2014-12-10
EP2810042B1 (fr) 2018-10-31
CN104169707A (zh) 2014-11-26
JP6247643B2 (ja) 2017-12-13
FR2986617B1 (fr) 2015-03-27
US10073086B2 (en) 2018-09-11
US20140377771A1 (en) 2014-12-25
CN104169707B (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
EP2810042B1 (fr) Dispositif et procede pour effectuer des mesures hematologiques et biochimiques a partir d&#39;un echantillon biologique
Quinn et al. Development and application of surface plasmon resonance-based biosensors for the detection of cell–ligand interactions
Seo et al. High-throughput lens-free blood analysis on a chip
US4849340A (en) Reaction system element and method for performing prothrombin time assay
US6361956B1 (en) Biospecific, two photon excitation, fluorescence detection and device
JP4260196B2 (ja) 光学アッセイ装置および方法
JP2021056232A (ja) 生物学的サンプルの画像分析および測定
Wiklund et al. Acoustofluidics 21: ultrasound-enhanced immunoassays and particle sensors
EP1866622B1 (fr) Dispositif optique d&#39;analyse sanguine, appareil d&#39;analyse equipe d&#39;un tel dispositif
US9322823B2 (en) Method and apparatus for chemical detection
EP2534467B1 (fr) Dispositif et procede de mesures multiparametriques de microparticules dans un fluide
EP1866651B1 (fr) Procédé pour l&#39;analyse d&#39;un échantillon de sang
US20060192955A1 (en) Imaging platform for nanoparticle detection applied to spr biomolecular interaction analysis
US20160299070A1 (en) Optical detection system for liquid samples
WO2012051206A1 (fr) Système et procédé d&#39;analyse cellulaire
FR2484652A1 (fr) Procede et appareil de determination quantitative du degre d&#39;agglutination de particules
JP2006292410A (ja) 分析装置およびそれに使用する分析デバイス
CN114487399A (zh) 一种粒径与表面标志物联合分析的方法
CH621628A5 (en) Process for nephelometric analysis
EP0099309B1 (fr) Néphélomètre à laser perfectionné pour la détection des antigènes et des anticorps
EP1042663B1 (fr) Dispositif, procede et appareil de mise en oeuvre du procede, pour effectuer un dosage d&#39;au moins un composant particulier dans un echantillon de produit
EP1866624B1 (fr) Cuve pour dispositif optique d&#39;analyse sanguine, appareil d&#39;analyse équipé d&#39; une telle cuve
GB2570909A (en) Biomarker detection apparatus
Wiklund et al. Ultrasound-enhanced immunoassays and particle sensors
US20240077479A1 (en) Detection system and method for the migrating cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13704728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014555165

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14376270

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013704728

Country of ref document: EP