WO2013111939A1 - 다공성 금속 나노분말 및 그 제조방법 - Google Patents

다공성 금속 나노분말 및 그 제조방법 Download PDF

Info

Publication number
WO2013111939A1
WO2013111939A1 PCT/KR2012/007703 KR2012007703W WO2013111939A1 WO 2013111939 A1 WO2013111939 A1 WO 2013111939A1 KR 2012007703 W KR2012007703 W KR 2012007703W WO 2013111939 A1 WO2013111939 A1 WO 2013111939A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
powder
nanopowder
metal oxide
oxygen
Prior art date
Application number
PCT/KR2012/007703
Other languages
English (en)
French (fr)
Inventor
황채익
Original Assignee
Hwang Chae-Ik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hwang Chae-Ik filed Critical Hwang Chae-Ik
Publication of WO2013111939A1 publication Critical patent/WO2013111939A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F9/26Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores

Definitions

  • the present invention relates to a porous metal nanopowder and a method for manufacturing the same. Specifically, the present invention is a simple process, can be manufactured at a relatively low temperature to reduce the manufacturing cost, physical and chemical nano-processing process is one The present invention relates to a porous metal nanopowder having excellent stability and a method for producing the same because it is made in a reaction furnace and emits oxygen gas from a cooling tower between the reaction furnace and a reduction furnace.
  • Nanopowders have a wide range of applications, so the types are very diverse.
  • the nanopowder manufacturing method can be roughly classified into physical synthesis and chemical synthesis.
  • Physical methods include mechanically pulverizing the bulk (bulk) to make it down to nanometer size (specifically, less than 100 nm), or applying a high energy such as heat or electron beam to melt the target material and evaporate to obtain nanopowder. .
  • gas condensation ILC
  • a common classification is gas evaporation.
  • the method of synthesizing nanopowders using chemical reactions has long been used in a variety of powder synthesis. Since the energy accompanying chemical reactions can be utilized, synthesis is possible with a small energy input, and the synthesis reaction speed is fast and uniform reaction control is possible.
  • the chemical reduction method of the production method of the metal nanoparticles includes a chemical reduction method and an electroless plating using a chemical reducing agent or synthesized by changing the reduction potential of the metal precursor solution of the metal nanoparticles to be synthesized.
  • the chemical reducing agent used at this time is a high dry jinjin, alcohols, surfactants, citrate acid and the like, by using the chemical reducing agent to reduce the metal from the metal ions or organometallic compounds to the core / shell structure metal nanoparticles and / Or a method of synthesizing metal nanoparticles of an alloy structure.
  • the method of synthesizing metal nanoparticles using the chemical reduction method uniform metal nanoparticles can be obtained. Re-processing is required, and the use of a reducing agent harmful to the human body in a large amount has the disadvantage of requiring an additional process to process the remaining reducing agent after reaction.
  • the method of synthesizing the metal nanoparticles can control the atmosphere in which the metal nanoparticles are synthesized and synthesize them in a high temperature, high pressure, or special gas atmosphere, or physically agglomerate the bulk metal particles by using mechanical force.
  • This method has the advantage of being able to nanonize the metal particles of various components, but it is easy to introduce impurities in the process, there is a disadvantage that requires expensive equipment.
  • 0582921 discloses a method for producing metal nanoparticles from metal compounds containing amino alkoxide ligands.
  • an amino alkoxy metal compound capable of thermal decomposition as a precursor, nano-sized metal nanoparticles can be produced at low temperature by pyrolysis without adding a reducing agent from the outside.
  • this method requires the synthesis of the alkoxide ligand, the precursor of choice, and there is a problem that the shape, size and stability of the particles vary depending on the type of precursor.
  • an object of the present invention is to provide a porous metal nanopowder and a method for manufacturing the same, the process is simple, can be manufactured at a relatively low temperature can reduce the manufacturing cost It is.
  • the object of the present invention is efficient because the physical and chemical nano-processing process is carried out in a single reactor, and by the reaction of oxygen gas in the reaction reactor to remove the oxides attached to the metal surface by the oxygen gas and heat It is to provide a porous metal nano-powder and a method for producing the same that can be a small agae and decomposed into nano-particle size, a large amount of porous nanomaterials.
  • an object of the present invention is to provide a porous metal nanopowder excellent in stability and a method of manufacturing the same because it discharges heat and oxygen gas from the cooling tower.
  • Method for producing a metal nanopowder according to the present invention to achieve the above object and Supplying a metal oxide powder to a reaction furnace heated to a predetermined temperature and supplied with oxygen gas, and heating the metal oxide powder in an oxygen gas atmosphere to nanonize the porous metal oxide nanopowder; S2 step of cooling by supplying the porous metal oxide nanopowder to the polygonal tower of the atmosphere supplied with AIR or nitrogen gas; And S3 step of supplying the cooled porous metal oxide nanopowder to the reduction furnace heated to a predetermined temperature and supplied with hydrogen gas to reduce the metal nanopowder.
  • the metal oxide powder of the method for producing a metal nanopowder according to the present invention is characterized in that the powder of any one metal of the alkali metal, alkaline earth metal and transition metal oxidized form.
  • the metal oxide powder of the method for producing a metal nanopowder according to the present invention is a cupric oxide (Cu 2 0) or nickel (Ni) powder, the semi-furnace of step S1 depending on the material
  • cuprous oxide (Cu 2 0) or nickel (Ni) powder reacts with oxygen to copper (Cu), cuprous oxide (Cu 2 0) or cuprous oxide It is characterized by being nano-ized in the form of (CuO).
  • the size of the metal nanopowder after the step S1 of the method for producing a metal nanopowder according to the present invention is 40 ⁇ 150nm, characterized in that a plurality of micropores are formed.
  • the step S1 of the method for producing a metal nanopowder according to the present invention is characterized in that it is made for 15 minutes to 2 hours.
  • the method for producing a metal nanopowder according to the present invention comprises the step of S11 step of drying the metal oxide powder containing water for 1 to 10 hours in a silver degree of 70 ⁇ 200 ° C; Step S12 of transferring the dried metal oxide powder to a reaction furnace heated to a predetermined temperature by using a suction force of a vacuum transfer device; Supplying oxygen into the heated reactor to react the oxygen and the metal oxide powder for 15 minutes to 2 hours to nanonize the porous metal oxide nanoparticles having a size of 40 to 150 nm; The porous metal oxide nano powder is transported to the cooling tower and the porous metal oxide nano powder scattered in the space inside the corner tower is cooled by air or nitrogen gas and dropped to the lower part of the cooling tower. S14 step of discharging to the outside through the top of the corner tower; And supplying the cooled porous metal oxide nanopowder to a reduction furnace in a hydrogen atmosphere to reduce the metal nanopowder to S15.
  • the metal nanopowder according to the present invention is characterized in that it is produced by the above production method.
  • the process is simple, can be produced at a relatively low temperature has the effect of reducing the manufacturing cost.
  • porous metal nanopowder according to the present invention there is little effect of impurities in the process, there is an effect that the shape and size of the particles are controlled within a certain range without using expensive equipment.
  • the physical nano- and chemical nano-processing process is carried out in one reaction furnace (banung furnace) is efficient, the angle tower between the reaction furnace and the reduction furnace Since oxygen is emitted from the gas, it has an excellent stability effect.
  • FIG. 1 is a process diagram showing a first embodiment of a method for producing a metal nanopowder according to the present invention.
  • Figure 2 is a process diagram showing a second embodiment of the method for producing a metal nanopowder according to the present invention.
  • 3 to 7 are photographs taken with an electron microscope of the porous copper nanopowder according to the present invention.
  • FIG. 1 is a process diagram showing a first embodiment of a method for producing a metal nanopowder according to the present invention.
  • the method for preparing a metal nanopowder according to the present invention includes a step S1 of nanolyzing a metal oxide powder into a porous metal oxide nanopowder in a reaction furnace, and a step S2 of cooling the porous metal oxide nanopowder; , Contains S3 step of reducing the porous metal oxide nanopowder.
  • S1 step of supplying the metal oxide powder to the reactor is heated to a predetermined silver and oxygen gas is supplied to heat the metal oxide powder in an oxygen gas atmosphere to nanonize the porous metal oxide nano powder;
  • S2 step of cooling by supplying the porous metal oxide nanopowder to the cooling tower is supplied with nitrogen gas; And go to a predetermined temperature S3 step of supplying the cooled porous metal oxide nanopowder to the reduction and the hydrogen is supplied to the metal nanopowder;
  • the metal oxide powder according to the present invention refers to a powder in which any one metal among alkali metal, alkaline earth metal and transition metal is oxidized on the periodic table. And the metal oxide powder may be composed of a powder having an average diameter of about 1 ⁇ 100 / ⁇ .
  • the present invention is characterized in that to produce a micro-sized metal oxide powder as a nano-sized powder as described above.
  • the present invention relates to copper (Cu 2 0) which is a oxidized copper oxide whose metal oxide powder is a transition metal .
  • Cu 2 0 copper oxide whose metal oxide powder is a transition metal .
  • the reaction chamber of step S1 according to the present invention is supplied with oxygen gas to form an oxygen atmosphere.
  • the oxygen atmosphere of the present invention means a state in which at least 80% or more of the gas contained in the reaction furnace is filled with oxygen, and preferably the reaction furnace is filled with 95 to 100% oxygen.
  • the flow rate of oxygen supplied into the reaction furnace should be adjusted according to the volume of the reaction furnace and the amount of the metal oxide powder. However, it is preferable to supply oxygen so that the pressure in the reaction furnace is at least latm.
  • the reaction furnace is a batch reactor that can be sealed
  • the reactor is made in a vacuum state, filled with oxygen such that the internal pressure is 1 to 2 atm, and the metal oxide powder is stirred with a stirrer.
  • the step S1 is performed while the inlet and the outlet are sealed after injecting oxygen at a predetermined pressure.
  • Nanocrystallization of cuprous oxide (Cu 2 0) powder in step S1 of the present invention can be predicted by the following reaction mechanism 1 to 3.
  • Oxygen gas is supplied and supplied to the reaction vessel in a state of being heated to a predetermined temperature so that the nanostructured to the porous metal oxide nanopowder by the reaction mechanism 1 as follows.
  • cuprous oxide (Cu 2 0) powder is nanonized to copper oxide nano powder by the same mechanism as the reaction mechanisms 2 and 3 below.
  • Oxygen and cuprous oxide (Cu 2 0) powder introduced while the reaction furnace is heated can generate oxygen (*) in the form of intermediate semi-ungung, which may be involved in physical or chemical methods or aging. have.
  • oxygen (*) in the form of intermediate semi-ungung, which may be involved in physical or chemical methods or aging. have.
  • the pressure inside the reaction furnace increases with increasing temperature, thereby promoting or inducing nano reaction reaction.
  • the intermediate form of oxygen (O 2 *) is to provide a degradation or coupling driving force directly or indirectly to the oxidation cuprous (Cu 2 0) powders and oxidized cuprous (Cu 2 0) powder Can be. Therefore, as the process of Banung Mechanism 3 is repeated, the temperature of the Banung furnace increases by approximately 1 to 30% from the initial temperature, and cuprous oxide (Cu 2 0) powder may be nanoscaled.
  • the oxygen in the intermediate form is necessarily limited to * as the reaction mechanisms 2 and 3, and may also form an intermediate such as 0 * or 0 3 *.
  • the temperature of the first heating furnace is preferably set to a silver of 600 1,000 ° C. This is because, when the temperature of the first heating furnace is heated to a temperature of less than 600 ° C. it is difficult to produce the oxygen gas of the intermediate form.
  • step S1 according to the present invention is preferably made for 15 minutes to 2 hours in the state that the silver of the first heating furnace is set to 60C L, 000 ° C.
  • the oxygen (0 2 *) in the intermediate form and the copper oxide powder may not be intimately contacted with each other, and thus may not reach nanoscale.
  • the aging fraction of the copper oxide powder may be increased, for example, because the copper oxide nano powder of less than 30nm may burn out.
  • the size of the copper oxide nano powder after the step S1 is formed to 40 ⁇ 150nm, preferably 80 ⁇ 120nm.
  • the size of the copper oxide nano powder is formed less than 40nm can be burned away in the reaction furnace as described above, it is difficult to form micropores.
  • the copper oxide nanopowder is formed in excess of 150nm because the characteristics as a material is not superior to the micro-size powder. Therefore, the copper oxide nano powder having a size of 40 to 150 nm can maintain a yield higher than a certain level of the manufacturing process, and can also fully exhibit the characteristics of nano-ization.
  • the reaction chamber of the step S1 is preferably heated to a temperature of 900 ⁇ 120 (C, the copper oxide for the details not mentioned elsewhere Same as or similar to the contents of the powder.
  • the copper oxide nanopowder is supplied to a cooling tower to which nitrogen gas is supplied to be cooled.
  • the high-temperature copper oxide nano powder which has undergone the SI step of the present invention, is very small in density and is scattered, so it is difficult to transfer it directly to a reduction furnace.
  • the high-temperature copper oxide nano powder that passed through the step S1 is transferred directly to the reduction furnace without going through the tower, the copper oxide nano powder contained in the reactor, as well as the high temperature oxygen gas is taken out.
  • the hot oxygen may react with hydrogen in the reduction furnace and explode. Therefore, the high temperature copper oxide nano powder and the high temperature oxygen which passed through the step S1 are supplied to the corner tower, thereby cooling the copper oxide nano powder, and the high temperature oxygen is discharged through the top of the cooling tower.
  • the cooling tower of step S2 also serves to block the oxygen of the reaction furnace and the hydrogen of the reduction furnace from contacting each other.
  • the step S3 according to the present invention is to reduce the metal nanopowder by supplying the fine porous metal oxide nanopowder to the reduction furnace heated to a predetermined temperature and supplied with hydrogen.
  • Reducing reaction in step S3 of the present invention can be predicted as described below reaction mechanism 4.
  • the cooled copper oxide nanopowder is reduced to pure copper in a hydrogen atmosphere supplied with hydrogen and a reduction furnace heated to a predetermined temperature.
  • the reducing furnace in step S3 is preferably heated to a temperature of approximately 400 ⁇ 600 ° C.
  • the scope of the present invention is not to go through the step S2 and / or step S3, and also includes a nanopowder in the form of oxides, such as the porous metal oxide nanopowder prepared in step S1.
  • the present invention may include a porous metal oxide nanopowder having passed only the S1 step as well as the metal nanopowder which has passed all the steps S1 to S3.
  • FIG. 2 is a process diagram showing a second embodiment of the method for producing a metal nanopowder according to the present invention
  • FIG. 3 is a conceptual diagram showing an apparatus for producing a metal nanopowder according to the present invention.
  • the present invention is a step S11 for drying the water-containing metal oxide powder at a temperature of 70 ⁇ 200 ° C for 1 to 10 hours;
  • Step S12 of transferring the dried metal oxide powder to a reaction furnace heated to a predetermined temperature by using a suction force of a vacuum transfer device; Supplying oxygen into the heated reaction furnace and reacting the oxygen and the powder in the metal oxide for 15 minutes to 2 hours to nanonize the porous metal oxide nanopowder having a size of 40 to 150 nm;
  • Step S14 of transferring the porous metal oxide nanopowder to the cooling tower to disperse the porous metal oxide nanopowder scattering in the internal space of the cooling tower with nitrogen gas and dropping it to the lower part of the cooling tower, and discharging oxygen in the reaction furnace
  • the main difference between the first embodiment and the second embodiment of the present invention is whether the metal oxide powder, which is a raw material, contains moisture.
  • the nanoscale by the reactor operation 1 to 3 may not be made smoothly by moisture. Therefore, it is preferable to dry the metal oxide powder in step S11 according to the present invention.
  • Drying silver and drying time of step S11 may be determined in consideration of the content of water contained in the metal oxide powder.
  • the wet metal oxide powder contains 5 to 11% by weight of water, it is preferable to dry the metal oxide powder at a temperature of 70 to 200 ° C for 1 to 10 hours.
  • step S12 to transfer the dried metal oxide powder of step S11 efficiently to the reaction furnace heated to a predetermined temperature using the suction force of the vacuum transfer device.
  • a copper oxide (Cu 2 0) powder with an average diameter of 8 is fed to the reaction furnace, which is heated to an internal temperature of 850 ° C. And oxygen gas into the reaction vessel of lkg / cm 2 Under the oxygen gas atmosphere supplied under pressure, S1 was performed by nanoparticles with porous metal oxide nanopowders for 15 minutes to 2 hours. At this time, the pressure inside the reaction furnace was maintained at 5 ⁇ 30mm3 ⁇ 40. At this time, the reaction was able to recover 95% of the input weight of the raw material.
  • the porous copper oxide (Cu 2 0) nanopowder is supplied to the cooling tower of the powder supplying nitrogen gas (N 2 ) to cool down the porous copper oxide (Cu 2 0) nanopowder under the corner tower. S2 step was performed.
  • Example 1 copper oxide as a raw material is in a state in which the surface is oxidized and wrapped with an oxygen film, and when oxygen is supplied while applying heat, gold is formed to be smaller as 3 ⁇ 4 as burned by oxygen. It can be confirmed that the porous metal oxide nanopowder is formed by opening the S to the inside.
  • the present invention described above is merely illustrative, and those skilled in the art will appreciate that various modifications and equivalent other embodiments are possible therefrom. Therefore, it will be understood that the present invention is not limited to the forms mentioned in the above detailed description. Therefore, the true technical protection scope of the present invention should be defined by the technical spirit of the appended claims. It is also to be understood that the present invention includes all modifications, equivalents and substitutes within the spirit of the present invention as defined by the appended claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

본 발명은 다공성 금속 나노분말 및 그 제조방법에 관한 것으로, 구체적으로 본 발명은 공정이 간단하고, 비교적 낮은 온도에서 제조할 수 있어 제조원가를 절감할 수 있으며, 물리적인 나노화와 화학적인 나노화 공정이 하나의 반응로에서 이루어지므로 효율적이고, 반응로와 환원로 사이에 있는 냉각탑에서 산소가스를 배출시키므로 안정성이 우수한 다공성 금속 나노분말 및 그 제조방법에 관한 것이다. 또한, 본 발명은 소정 온도로 가열되고 산소가스가 공급되는 반응로에 산화 금속 분말을 공급하여, 상기 산화금속 분말을 산소가스 분위기 하에서 가열하여 다공성 산화금속 나노분말로 나노화시키는 S1단계; 상기 다공성 산화금속 나노분말을 질소가스가 공급되는 냉각탑에 공급하여 냉각시키는 S2단계; 및 소정 온도로 가열되고 수소가스가 공급되는 환원로에 상기 냉각된 다공성 산화금속 나노분말을 공급하여 금속 나노분말로 환원시키는 S3단계;를 포함하여 이루어지는 것을 특징으로 한다.

Description

【명세서】
【발명의 명칭】
다공성 금속 나노분말 및 그 제조방법
【기술분야】
. 본 발명은 다공성 금속 나노분말 및 그 제조방법에 관한 것으로, 구체적 으로 본 발명은 공정이 간단하고, 비교적 낮은 온도에서 제조할 수 있어 제조원가 를 절감할 수 있으며, 물리적인 나노화와 화학적인 나노화 공정이 하나의 반웅로에 서 이루어지므로 효을적이고 반웅로와 환원로 사이에 있는 냉각탑에서 산소가스를 배출시키므로 안정성이 우수한 다공성 금속 나노분말 및 그 제조방법에 관한 것이 다.
【배경기술】
나노분말은 이용범위가 대단히 넓은 만큼 종류도 매우 다양하기 때문에 분말 을 합성하는 방법 또한 매우 다양하다. 나노분말의 제조방법은 크게 물리적 합성법 과 화학적 합성법으로 대별할 수 있다.
물리적 방법에는 기계적으로 덩어리 (벌크)를 분쇄하여 나노미터 크기 (구체적 으로는 lOOnm 이하)까지 작게 하는 방법, 열 혹은 전자빔 등 높은 에너지를 가하여 대상 물질을 녹인 후 증발시켜서 나노분말을 얻는 방법 등이 있다. 기계적 합금화 (mechanical alloying)와 같은 고에너지 분쇄법 (high energy mil ling)으로 나노분 말 혹은 나노입자가 분산된 합금을 얻는 방법이 전자에 속하며, 후자에 속하는 것 ᅳ으로는 불활성가스 웅축법 (inert gas condensation, IGC)을 들 수 있다. 일반적인 분류로는 가스증발법 (gas evaporation)에 해당한다.
화학 반웅을 이용하여 나노분말을 합성하는 방법은 오래전부터 분말 합성에 다양하게 이용되어온 방법이다. 화학 반웅에 수반되는 에너지를 활용할 수 있으므 로 적은 에너지 투입으로 합성이 가능하며 합성 반웅속도가 빠르고 균일한 반웅제 어가 가능하다는 장점이 있다.
특히, 금속 나노입자의 제조방법 중 화학적 환원법은 화학적 환원제를 사용 하거나 합성하려는 금속 나노입자의 금속 전구체 용액의 환원전위를 변화하여 합성 하는 화학적 환원법과 무전해 도금이 있다. 이때 사용되는 화학적 환원제로는 하이 드라이드진류, 알콜류, 계면활성제류, 시트레이트 산류 등이 있으며 이러한 화학적 환원제를 이용하여 금속이온 또는 유기 금속 화합물로부터 금속을 환원 시켜 코어 / 쉘 구조의 금속 나노입자 및 /또는 합금 구조의 금속 나노입자를 합성하는 방법이 다. 이러한 화학적 환원법을 이용한 금속 나노입자의 합성방법은 균일한 금속 나노 입자를 얻을 수 있으나 금속 나노 입자간 웅집경향이 매우 강하여 2차적인 후열처 리 과정이 필요하며, 인체에 유해한 환원제를 대량으로 사용하고 있어 반웅 후 잔 존하는 환원제를 처리해야하는 부가적인 공정이 필요한 단점이 있다.
화학적 환원법 이외에 금속 나노입자를 합성하는 방법은 금속 나노입자가 합 성되는 분위기를 제어하여 고온 ·고압 또는 특수한 기체 분위기상에서 합성하거나 기계적인 힘을 이용하여 벌크한 금속입자를 물리적으로 a개어 금속 나노입자를 제 조하는.방법도 있다. 이러한 방법은 여러 성분의 금속 입자를 나노화 할 수 있는 장점은 있으나 공정상 불순물의 흔입이 쉽고, 고가의 장비가 필요로 하는 단점이 있다.
한편, 금속 나노입자를 제조하는 선행기술로서 대한민국 등록특허 제 10-
0582921호 (공고일 : 2006년 5월 24일)에서는 아미노 알콕사이드 리간드를 함유하는 금속 화합물로부터 금속 나노입자를 제조하는 방법을 제시하고 있다. 상기 선행기 술에는 자체 열분해가 가능한 아미노 알콕시 금속 화합물을 선구 물질로 하여 외부 로부터 환원제를 첨가하지 않고 열분해법으로 저온에서 나노 크기의 금속 나노입자 를 제조할 수 있다. 하지만 이 방법은 선택되는 선구 물질인 알콕사이드 리간드의 합성이 필요로 되며 선구물질의 종류에 따라 입자의 모양과 크기, 안정성 등이 달 라진다는 문제가 있다.
【발명의 상세한 설명】
【기술적 과제】
이에 본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 공정이 간단하고, 비교적 낮은 온도에서 제조할 수 있어 제조원가를 절감할 수 있는 다공성 금속 나노분말 및 그 제조방법을 제공하는 것이다.
또한, 본 발명의 목적은 공정상 불순물의 흔입이 적고, 고가의 장비를 사용 하지 않고도 입자의 모양과 크기가 일정 범위 내로 제어되는 다공성 금속 나노분말 및 그 제조방법을 제공하는 것이다.
또한, 본 발명의 목적은 물리적인 나노화와 화학적인 나노화 공정이 하나의 반응로에서 이루어지므로 효율적이며, 반웅로에서 산소가스와 열반응을 하여 금속 표면에 붙어있는 산화물을 제거하며 산소가스와 열에 의해 반웅하여 작게 a개지며 나노 입자 크기로 분해되며, 다량의 기공성 나노 물질을 만들 수 있는 다공성 금속 나노분말 및 그 제조방법을 제공하는 것이다.
또한, 본 발명의 목적은 냉각탑에서 열과 산소가스를 배출시키므로 안정성이 우수한 다공성 금속 나노분말 및 그 제조방법을 제공하는 것이다.
【기술적 해결방법】
상기와 목적을 달성하기 위하여 본 발명에 따른 금속 나노분말의 제조방법은 소정 온도로 가열되고 산소가스가 공급되는 반웅로에 산화금속 분말을 공급하여, 상기 산화금속 분말을 산소가스 분위기 하에서 가열하여 다공성 산화금속 나노분말 로 나노화시키는 S1단계; 상기 다공성 산화금속 나노분말을 AIR 또는 질소가스 등 이 공급되는 분위기의 넁각탑에 공급하여 냉각시키는 S2단계; 및 소정 온도로 가열 되고 수소가스가 공급되는 환원로에 상기 냉각된 다공성 산화금속 나노분말을 공급 하여 금속 나노분말로 환원시키는 S3단계;를 포함하여 이루어지는 것을 특징으로 한다.
또한, 본 발명에 따른 금속 나노분말의 제조방법의 상기 산화금속 분말은 알 칼리 금속, 알칼리 토금속 및 전이금속 중에서 어느 하나의 금속이 산화된 형태의 분말인 것을 특징으로 한다.
또한, 본 발명에 따른 금속 나노분말의 제조방법의 상기 산화금속 분말은 산 화제일구리 (Cu20) 또는 니켈 (Ni) 분말이고, 상기 S1단계의 반웅로가 재질에 따라
600~1,000°C의 온도로 가열된 상태에서, 상기 산화제일구리 (Cu20) 또는 니켈 (Ni) 분 말이 산소와 반응하여 구리 (Cu), 산화제일구리 (Cu20) 또는 산화제일구리 (CuO)의 형 태로 나노화되는 것올 특징으로 한다.
또한, 본 발명에 따른 금속 나노분말의 제조방법의 상기 S1단계를 거친 금속 나노분말의 크기는 40~150nm이고, 다수의 미세기공이 형성된 것을 특징으로 한다. 또한, 본 발명에 따른 금속 나노분말의 제조방법의 상기 S1단계는 15분〜 2시 간 동안 이루어지는 것을 특징으로 한다.
또한, 본 발명에 따른 금속 나노분말의 제조방법은 수분이 함유된 산화금속 분말을 70~200°C의 은도에서 1~10시간 동안 건조시키는 S11단계; 상기 건조된 산화 금속 분말을 진공이송장치의 흡입력을 이용하여 소정 온도로 가열된 반웅로로 이송 시키는 S12단계; 상기 가열된 반응로 내부로 산소를 공급하여 상기 산소와 상기 산 화금속 분말을 15분〜 2시간 동안 반웅시켜 40~150nm 크기의 다공성 산화금속 나노분 말로 나노화시키는 S13단계; 상기 다공성 산화금속 나노분말을 냉각탑으로 이송시 켜 상기 넁각탑 내부 공간에서 비산하는 상기 다공성 산화금속 나노분말은 공기 (air) 또는 질소가스로 냉각시켜 냉각탑 하부로 떨어뜨리고, 상기 반웅로 내의 산 소는 상기 넁각탑의 상부를 통해 외부로 배출시키는 S14단계; 및 상기 냉각된 다공 성 산화금속 나노분말을 수소 분위기의 환원로에 공급하여 금속 나노분말로 환원시 키는 S15단계;를 포함하여 이루어지는 것을 특징으로 한다.
또한, 본 발명에 따른 금속 나노분말은 상기한 제조방법에 의해서 제조되는 것을 특징으로 한다. 【유리한 효과】
이상과 같은 구성의 본 발명에 따른 다공성 금속 나노분말 및 그 제조방법에 의하면, 공정이 간단하고, 비교적 낮은 온도에서 제조할 수 있어 제조원가를 절감 할 수 있는 효과가 있다.
또한, 본 발명에 따른 다공성 금속 나노분말 및 그 제조방법에 의하면, 공정 상 불순물의 흔입이 적고, 고가의 장비를 사용하지 않고도 입자의 모양과 크기가 일정 범위 내로 제어되는 효과가 있다.
또한, 본 발명에 따른 다공성 금속 나노분말 및 그 제조방법에 의하면, 물리 적인 나노화와 화학적인 나노화 공정이 하나의 반웅로 (반웅로)에서 이루어지므로 효율적이고, 반웅로와 환원로 사이에 있는 넁각탑에서 산소가스를 배출시키므로 안 정성이 우수한 효과가 있다.
【도면의 간단한 설명】
도 1은 본 발명에 따른 금속 나노분말의 제조방법의 제 1실시예를 도시하는 공정도이다.
도 2는 본 발명에 따른 금속 나노분말의 제조방법의 게 2실시예를 도시하는 공정도이다.
도 3 내지 7은 본 발명에 따른 다공성 구리 나노분말을 전자현미경으로 촬영 한사진들이다.
【발명의 실시를 위한 최선의 형태】
이하 본 발명의 실시예에 대하여 첨부된 도면을 참조하여 보다 구체적으로 설명한다.
다만, 본 발명의 설명에서 동일 또는 유사한 구성요소는 동일 또는 유사한 도면번호를 부여하고, 그 자세한 설명은 생략하기로 한다.
도 1은 본 발명에 따른 금속 나노분말의 제조방법의 제 1실시예를 도시하는 공정도이다.
도 1에 도시된 바와 같이, 본 발명에 따른 금속 나노분말의 제조방법은 크게 반웅로에서 산화금속 분말을 다공성 산화금속 나노분말로 나노화시키는 S1단계와, 다공성 산화금속 나노분말을 냉각시키는 S2단계와, 다공성 산화금속 나노분말을 환 원시키는 S3단계를 포함하여 이루어진다.
구체적으로 본 발명은 소정 은도로 가열되고 산소가스가 공급되는 반응로에 산화금속 분말을 공급하여 상기 산화금속 분말을 산소가스 분위기 하에서 가열하여 다공성 산화금속 나노분말로 나노화시키는 S1단계; 상기 다공성 산화금속 나노분말 을 질소가스가 공급되는 냉각탑에 공급하여 냉각시키는 S2단계; 및 소정 온도로 가 열되고 수소가 공급되는 환원로에 상기 냉각된 다공성 산화금속 나노분말을 공급하 여 금속 나노분말로 환원시키는 S3단계;를 포함하여 이루어지는 것이다.
본 발명에 따른 산화금속 분말은 주기율표상에서 알칼리 금속, 알칼리 토금 속 및 전이금속 중에서 어느 하나의 금속이 산화된 형태의 분말을 의미한다. 그리 고 산화금속 분말은 대략 평균 직경이 1~100 /通인 분말로 이루어질 수 있다. 본 발 명은 상기와 같이 마이크로 크기의 산화금속 분말을 나노 크기의 분말로 제조하는 것을 특징으로 한다.
이하에서는 본 발명을 산화금속 분말이 전이금속인 구리가 산화된 산화제일 구리 (Cu20)에 대한.바람직한 일실시예를 중심으로 보다 구체적으로 설명한다.
본 발명에 따른 S1단계의 반웅로에는 산소가스가 공급되어 산소 분위기를 조 성하게 된다.
본 발명의 산소 분위기라 함은 반웅로 내 에 들어있는 기체 중에서 적어도 80% 이상이 산소로 채워진 상태를 의미하며, 바람직하게는 반웅로가 산소 95~100% 로 채워지는 것이다.
반웅로 내부로 공급되는 산소의 유량은 반웅로의 부피와 상기 산화금속 분말 의 양에 따라 조절되어야 한다. 다만, 반웅로 내의 압력이 적어도 latm 이상이 되 도록 산소를 공급해 주는 것이 바람직하다.
예를 들어, 반웅로가 밀폐 가능한 회분식 (batch reactor)인 경우에는 반응로 를 진공상태로 만든 후, 내부 압력이 l~2atm이 되도록 산소를 채우고, 교반기로 산 화금속 분말을 교반하게 된다.
한편, 반응로가 반웅물인 산화금속 분말의 유입과 유출이 용이한 관형 반웅 로의 경우에는 일정 압력의 산소를 주입한 후 유입구와 유출구를 밀폐한 상태에서 S1단계가 이루어지게 된다.
본 발명의 S1단계에서의 산화제일구리 (Cu20) 분말의 나노화는 다음과 같은 반웅 기작 1 내지 3에 의한 것으로 예측할 수 있다.
산소가스가 공급되고 소정 온도로 가열된 상태의 반웅로로 공급되어 아래와 같은 반응 기작 1에 의해 다공성 산화금속 나노분말로 나노화가 이루어질 수 있다.
[반웅 기작 1]
CU20
Figure imgf000007_0001
구체적으로는 산화제일구리 (Cu20) 분말이 아래의 반웅 기작 2, 3과 같은 메 카니즘에 의해 산화구리 나노분말로 나노화가 이루어진다고 볼 수 있다.
[반웅 기작 2] aCueQ + b02ᅳ^ cCu20 + dCuO + eCu + f02 + g02 (a{ b, c +d >e)
[반웅 기작 3]
Cu20
Figure imgf000008_0001
먼저, 반웅 기작 2와 같이, 반응로에는 유입되는 산소 (02)가 산화제일구리 (Cu20) 분말보다 과량으로 공급된다.
그리고 반웅로가 가열된 상태에서 유입된 산소와 산화제일구리 (Cu20) 분말은 반웅성이 큰 중간체 형태의 산소 ( *)를 생성하여 물리적 내지 화학적인 방식의 나 노화에 관여하는 것으로 파악할 수 있다. 한편, 반웅로 내부의 압력은 온도가 증가 함에 따라 증가하여 나노화 반웅을 촉진 내지 관여하게 된다.
즉 반웅 기작 3과 같이, 중간체 형태의 산소 (02*)는 산화제일구리 (Cu20) 분 말과 산화제일구리 (Cu20) 분말에 직 ·간접적으로 분해 또는 결합하는 구동력을 제공 할 수 있다. 따라서 반웅 기작 3의 과정이 반복됨에 따라 반웅로의 온도는 초기에 설정된 온도보다 대략 1~30%상승하게 되고, 산화제일구리 (Cu20) 분말은 나노화되는 것이라고 할 수 있다.
다만, 중간체 형태의 산소는 반드시 상기 반웅 기작 2, 3과 같이 *로 한정 된다고 단정짓기는 어려우며, 0* 또는 03*와 같은 형태의 중간체도 형성할 수 있다. 본 발명의 산화구리 분말이 산화구리 나노분말로 나노화되기 위해서는 제 1가 열로의 온도는 600 1, 000 °C의 은도로 설정되는 것이 바람직하다. 왜냐하면, 제 1가열로의 온도가 600°C 미만의 온도로 가열되는 경우에는 상기 한 중간체 형태의 산소가스가 생성되기 어렵기 때문이다.
그리고 제 1가열로의 온도가 1,000°C를 초과하는 온도로 가열되는 경우에는 상기한 중간체 형태의 산소의 발생은 용이할 수 있으나, 상기 반웅 기작 3이 진행 됨에 따라 제 1가열로의 온도와 반웅에 의해 발생되는 열로 인해 오른쪽으로 가는 반웅만 이루어질 수 있기 때문이다. 즉 정반웅에 해당되는 산화제이구리 (CuO) 분말 로 소결되어, 더 이상 나노화 과정이 진행되지 않을 수 있기 때문이다.
또한, 본 발명에 따른 S1단계는 제 1가열로의 은도가 60C L,000°C로 설정된 상태에서 15분 내지 2시간 동안 이루어지는 것이 바람직하다.
왜냐하면, S1단계가 15분 미만 동안 이루어지는 경우에는 중간체 형태의 산 소 (02*)와 산화구리 분말이 서로 층분히 접촉하지 못하여 나노화에 이르지 못할 수 있기 때문이다.
그리고 S1단계가 2시간을 초과하여 이루어지는 경우에는 산화구리 분말의 나 노화되는 분율은 커질 수 있으나, 예를 들어 30nm 미만의 산화구리 나노분말은 타 서 없어질 수 있기 때문이다.
한편, S1단계를 거친 산화구리 나노분말의 크기는 40~150nm, 바람직하게는 80~120nm로 형성되는 것이다.
왜냐하면, 산화구리 나노분말의 크기가 40nm 미만으로 형성되는 경우에는 상 기한 바와 같이 반웅로에서 타서 없어질 수 있고, 미세기공도 형성되기 어렵기 때 문이다.
그리고 산화구리 나노분말의 크기가 150nm를 초과하여 형성되는 경우에는 소 재로서의 특성이 마이크로 크기의 분말과 비교하여 월등하지 못하기 때문이다. 따라서 40~150nm 크기의 산화구리 나노분말이 제조공정의 일정 수준 이상의 수율을 유지할 수 있고, 나노화의 특성도 층분히 발휘할 수 있게 된다.
한편, 상기 산화금속 분말은 산화제일니켈 (NiO) 분말인 경우에는 상기 S1단 계의 반웅로는 900~120( C의 온도로 가열되는 것이 바람직하고, 그외 언급하지 않 은 내용에 대해서는 상기 산화구리 분말의 내용과 동일 내지 유사하다.
즉 산화구리 분말 대신에 산화니켈, 산화코발트 및 기타 다양한 종류의 금 속을 이용하여 다공성 나노 분말을 제조할 수 있으며, 본 발명의 범위에 속하는 것 은 물론이다.
본 발명에 따른 S2단계는 상기 산화구리 나노분말을 질소가스가 공급되는 냉 각탑에 공급하여 넁각시키는 것이다. 즉 본 발명의 SI단계를 거친 고온의 산화구리 나노분말은 밀도가 매우 작아 비산되기 때문에, 바로 환원로로 이송하기 어렵다.
따라서 산화구리 나노분말을 냉각탑으로 공급되는 질소가스에 의한 냉각을 통해 냉각탑 하부로 떨어뜨리는 과정을 거치는 것이 바람직하다.
그리고 만일 S1단계를 거친 고온의 산화구리 나노분말을 넁각탑을 거치지 않 고 바로 환원로로 이송하게 되면, 반응로에 들어 있던 산화구리 나노분말은 물론, 고온의 산소가스가 함께 빠져나오게 된다.
이때, 고온의 산소는 환원로에 있는 수소와 반웅하여 폭발할 위험이 있다. 따라서 S1단계를 거친 고온의 산화구리 나노분말과 고온의 산소는 넁각탑에 공급함으로써, 산화구리 나노분말은 냉각시키고, 고온의 산소는 냉각탑의 상부를 통해 배출시키게 된다.
상기와 같이 S2단계의 냉각탑에서는 반웅로의 산소와 환원로의 수소가 서로 접촉하지 않도록 차단하는 역할도 수행하게 된다.
본 발명에 따른 S3단계는 소정 온도로 가열되고 수소가 공급되는 환원로에 상기 넁각된 다공성 산화금속 나노분말을 공급하여 금속 나노분말로 환원시키는 것 이다.
본 발명의 S3단계에서 일어나는 환원 반웅은 아래의 반웅 기작 4와 같이 예 측할 수 있다.
CU20 + H2ᅳ^ 2CU + H2O 상기 반웅 기작 4와 같이, 냉각된 산화구리 나노분말은 수소가 공급되는 수 소 분위기와 소정의 온도로 가열된 환원로에서 순수한 구리로 환원된다.
그리고 이때 상기 S3단계에서 환원로는 대략 400~600°C의 온도로 가열되는 것이 바람직하다.
한편, 본 발명의 범위는 상기 S2단계 및 /또는 S3단계를 거치지 아니하고, S1 단계에서 제조된 다공성 산화금속 나노분말과 같이 산화물 형태의 나노분말도 포함 하는 것이다.
즉 본 발명은 S1단계 내지 S3단계를 모두 거친 금속 나노분말은 물론, S1단 계만을 거친 다공성 산화금속 나노분말을 포함할 수 있다.
도 2는 본 발명에 따른 금속 나노분말의 제조방법의 제 2실시예를 도시하는 공정도이고, 도 3은 본 발명에 따른 금속 나노분말의 제조장치를 도시하는 개념도 이다. 도 2 및 도 3에 도시된 바와 같이, 본 발명은 수분이 함유된 산화금속 분말 을 70~200°C의 온도에서 1~10시간 동안 건조시키는 S11단계; 상기 건조된 산화금속 분말을 진공이송장치의 흡입력을 이용하여 소정 온도로 가열된 반웅로로 이송시키 는 S12단계; 상기 가열된 반웅로 내부로 산소를 공급하여 상기 산소와 상기 산화금 속 분말을 15분 ~2시간 동안 반웅시켜 40~150nm 크기의 다공성 산화금속 나노분말로 나노화시키는 S13단계; 상기 다공성 산화금속 나노분말을 냉각탑으로 이송시켜 상 기 냉각탑 내부 공간에서 비산하는 상기 다공성 산화금속 나노분말은 질소가스로 냉각시켜 냉각탑 하부로 떨어뜨리고, 상기 반웅로 내의 산소는 외부로 배출시키는 S14단계; 및 상기 냉각된 다공성 산화금속 나노분말을 수소 분위기의 환원로에 공 급하여 금속 나노분말로 환원시키는 S15단계;를 포함하여 이루어질 수 있다.
상기 본 발명의 제 1실시예와 제 2실시예의 가장 큰 차이점은 원료가 되는 산 화금속 분말이 수분이 함유되어 있는지 여부이다.
즉 일반적으로 원료가 되는 산화금속 분말을 반웅로까지 유입시키기 전에 상 당한 양의 산화금속 분말이 비산하는 문제가 있다. 이러한 분말을 작업자가 호흡기 를 통해 흡입하는 것을 방지하고, 운송 내지 운반의 편의성을 제공하기 위해 산화 금속 분말에 물을 뿌린 형태로 취급한다.
이때, 물에 젖은 상태로 반응로로 이송하게 되면, 수분에 의해 상기 반응기 작 1 내지 3에 의한 나노화가 원활하게 이루어지지 않을 수 있다. 따라서 본 발명 에 따른 S11단계에서 산화금속 분말을 건조하는 것이 바람직하다.
S11단계의 건조 은도 및 건조 시간은 상기 산화금속 분말에 함유된 수분의 함량 등을 고려하여 정할 수 있다.
일반적으로, 젖은 상태의 산화금속 분말에는 5~11중량 %의 수분이 함유되어 있는 것을 고려하면 산화금속 분말을 70~200°C의 온도에서 1~10시간 동안 건조시키 는 것이 바람직하다.
S12단계에서는 상기 S11단계의 건조된 산화금속 분말을 효율적으로 이송하기 위해 진공이송장치의 흡입력을 이용하여 소정 온도로 가열된 반웅로로 이송시키게 된다.
이러한 진공이송장치를 이용하기 때문에 반웅로에 산소가스 분위기를 보다 용이하게 조성할 수 있다.
【실시예 1】
반웅로 내부 온도를 850 °C가 되도록 가열되는 반웅로에 평균 직경이 8 인 산화구리 (Cu20) 분말를 공급한다. 그리고 상기 반웅기 내로 산소가스가 lkg/cm2의 압력으로 공급되는 산소가스 분위기 하에서 15분~2시간 동안 다공성 산화금속 나노 분말로 나노화시켜 S1단계를 수행하였다. 이때 반웅로 내부 압력은 5~30mm¾0로 유 지하였다. 이때, 반웅로에서는 원료 투입중량 대비 95%를 회수할 수 있었다.
이어, 상기 다공성 산화구리 (Cu20) 나노분말을 질소가스 (N2)가 공급되는 분 위기의 냉각탑에 공급하여 넁각탑 하부로 다공성 산화구리 (Cu20) 나노분말이 냉각되 어 떨어뜨리는 S2단계를 수행하였다.
다음으로 냉각된 다공성 산화구리 (Cu20) 나노분말을 400~600°C로 가열되는 환원로에 공급하였다. 이때, 환원로 내로 수소가스를 lkg/cm2의 압력으로 공급하였 고, 환원로 내의 압력을 5~30mm¾0로 유지하여 구리 나노분말로 환원시켜 S3단계를 수행하였다. 이때, 환원로에서는 원료 투입량 대비 99~100%를 회수할 수 있었다. 그리고 도 3 내지 7은 본 발명에 따른 다공성 구리 나노분말을 전자현미경으로 촬 영한 사진들이고, 그 중에서도 도 7은 증국 호남성 장사시 중남대학교에 의뢰하여 다공성 구리 나노분말을 50만 (500,000><)배의 배율로 확대하여 촬영한 사진이다. 도 3 내지 도 7에서 확인할 수 있듯이, 상기 S1~S3단계를 거친 다공성 구리 나노분 말은 순도 99% 이상이고, 직경이 40~150nm 크기이며, 다공성 (porosity)이라는 것을 확인할 수 있다.
상기 실시예 1과 같이, 원료인 산화구리는 표면이 산화되어 산소막으로 감싸 져 있는 상태로서, 열을 가하면서 산소를 공급하면 산소에 의해 타면서 작게 ¾개 지도록 금이 생기며, 이 과정을 거치면서 내부까지 S개지며 다공성의 산화금속 나 노분말이 형성되는 것을 확인할 수 있었다. 이상에서 설명된 본 발명은 예시적인 것에 불과하며, 본 발명이 속한 기술분 야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가 능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발 명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해 져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정 신 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되 어야 한다.

Claims

【청구의 범위】
【청구항 1】
소정 온도로 가열되고 산소가스가 공급되는 반웅로에 산화금속 분말을 공급 하여, 상기 산화금속 분말을 산소가스 분위기 하에서 가열하여 다공성 산화금속 나 노분말로 나노화시 키는 S1단계 ;
상기 다공성 산화금속 나노분말을 공기 (ai r) 또는 질소가스 (N2)가 공급되는 분위 기의 냉각탑에 공급하여 넁각시 키는 S2단계 ; 및
소정 온도로 가열되고 수소가스가 공급되는 환원로에 상기 넁각된 다공성 산 화금속 나노분말을 공급하여 금속 나노분말로 환원시 키는 S3단계 ;
를 포함하여 이루어지는 것을 특징으로 하는 금속 나노분말의 제조방법 .
【청구항 2]
제 1항에 있어서,
상기 산화금속 분말은 알칼리 금속, 알칼리 토금속 및 전이금속 중에서 어느 하나의 금속이 산화된 형 태의 분말인 것을 특징으로 하는 금속 나노분말의 제조방
【청구항 3】
제 1항에 있어서,
상기 산화금속 분말은 산화제 일구리 (Cu20) 분말이고,
상기 S1단계의 반웅로가 600~1 , 000°C의 온도로 가열된 상태에서, 상기 산화 제일구리 (Cu20) 분말이 산소와 반응하여 구리 (Cu) , 산화제일구리 (Cu20) 또는 산화제 일구리 (CuO)의 형 태로 나노화되는 것을 특징으로 하는 금속 나노분말의 제조방법 .
【청구항 4】
제 1항에 있어서,
상기 S1단계를 거친 금속 나노분말의 크기는 40~150nm이고, 다수의 미세기공 이 형성된 것을 특징으로 하는 금속 나노분말의 제조방법 .
【청구항 5]
게 1항에 있어서 ,
상기 S1단계는 15분~2시간 동안 이루어지는 것을 특징으로 하는 금속 나노분 말의 제조방법 .
【청구항 6]
수분이 함유된 산화금속 분말을 70~200°C의 온도에서 1~10시간 동안 건조시 키는 S11단계 ; 상기 건조된 산화금속 분말을 진공이송장치의 흡입력을 이용하여 소정 온도 로 가열된 반웅로로 이송시키는 S12단계;
상기 가열된 반웅로 내부로 산소를 공급하여 상기 산소와 상기 산화금속 분 말을 15분 ~2시간 동안 반웅시켜 4(KL50nm 크기의 다공성 산화금속 나노분말로 나노 화시키는 S13단계;
상기 다공성 산화금속 나노분말을 냉각탑으로 이송시켜 상기 냉각탑 내부 공 간에서 비산하는 상기 다공성 산화금속 나노분말은 질소가스로 냉각시켜 냉각탑 하 부로 떨어뜨리고, 상기 반웅로 내의 산소는 상기 넁각탑의 상부를 통해 외부로 배 출시키는 S14단계; 및
상기 넁각된 다공성 산화금속 나노분말을 수소 분위기의 환원로에 공급하여 금속 나노분말로 환원시키는 S15단계 ;
를 포함하여 이루어지는 것을 특징으로 하는 금속 나노분말의 제조방법 . [청구항 7】
청구항 1 내지 청구항 6 중에서 어느 하나의 제조방법에 의해서 제조되는 것 을 특징으로 하는 금속 나노분말.
PCT/KR2012/007703 2012-01-25 2012-09-25 다공성 금속 나노분말 및 그 제조방법 WO2013111939A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0007171 2012-01-25
KR1020120007171A KR101153620B1 (ko) 2012-01-25 2012-01-25 다공성 금속 나노분말 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2013111939A1 true WO2013111939A1 (ko) 2013-08-01

Family

ID=46688763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007703 WO2013111939A1 (ko) 2012-01-25 2012-09-25 다공성 금속 나노분말 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR101153620B1 (ko)
WO (1) WO2013111939A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101902921B1 (ko) 2012-10-16 2018-10-01 삼성전자주식회사 다공성 금속 재료의 제조방법
KR101851173B1 (ko) * 2016-09-23 2018-06-05 한국생산기술연구원 금속-금속수소화물 코어-쉘 입자의 제조방법
CN112310367A (zh) * 2020-10-09 2021-02-02 上海交通大学 一种锂电池电极用超薄多孔金属材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970000321A (ko) * 1995-06-30 1997-01-21 강필종 기상화학 반응에 의한 금속 및 금속산화물 초미분체 제조
KR20020029888A (ko) * 2002-03-27 2002-04-20 곽영훈 기상 환원반응에 의한 코발트 초미분체 제조방법
JP2004211201A (ja) * 2002-12-30 2004-07-29 Korea Inst Of Mach & Materials 低圧気相反応法によるナノw粉末の製造方法
KR20100124581A (ko) * 2009-05-19 2010-11-29 한국에너지기술연구원 나노분말 제조 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1607055B (zh) 1998-05-06 2011-05-04 H.C.施塔克公司 铌粉、以其制备的阳极以及含有该阳极的电容器
JP4304221B2 (ja) * 2007-07-23 2009-07-29 大陽日酸株式会社 金属超微粉の製造方法
KR20090059749A (ko) * 2007-12-07 2009-06-11 주식회사 동진쎄미켐 플라스마를 이용한 금속 나노 분말의 합성장치 및 방법
KR101182178B1 (ko) * 2009-07-03 2012-09-12 주식회사 코닉글로리 고순도 이산화규소 나노 분말 제조 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970000321A (ko) * 1995-06-30 1997-01-21 강필종 기상화학 반응에 의한 금속 및 금속산화물 초미분체 제조
KR20020029888A (ko) * 2002-03-27 2002-04-20 곽영훈 기상 환원반응에 의한 코발트 초미분체 제조방법
JP2004211201A (ja) * 2002-12-30 2004-07-29 Korea Inst Of Mach & Materials 低圧気相反応法によるナノw粉末の製造方法
KR20100124581A (ko) * 2009-05-19 2010-11-29 한국에너지기술연구원 나노분말 제조 장치

Also Published As

Publication number Publication date
KR101153620B1 (ko) 2012-06-18

Similar Documents

Publication Publication Date Title
Portehault et al. A general solution route toward metal boride nanocrystals
Che et al. Preparation of dense spherical Ni particles and hollow NiO particles by spray pyrolysis
Huang et al. Preparation of fine nickel powders via reduction of nickel hydrazine complex precursors
JP4661726B2 (ja) 微粒ニッケル粉末及びその製造方法
CN106077695B (zh) 一种高铜钨铜纳米复合粉末的制备方法
Shih et al. Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis
TWI716526B (zh) 鎳粉末
Wang et al. Preparation of w–cu nano-composite powders with high copper content using a chemical co-deposition technique
Lungu Synthesis and Processing Techniques of Tungsten Copper Composite Powders for Electrical Contact Materials A Review.
US9309119B2 (en) Producing method of metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
Liu et al. Dual-reductant synthesis of nickel nanoparticles for use in screen-printing conductive paste
CN107900373B (zh) 超细W-Cu复合粉末及其制备方法
WO2013111939A1 (ko) 다공성 금속 나노분말 및 그 제조방법
JP2007290887A (ja) ビスマスチタン酸系ナノ粒子、それを用いた圧電セラミックス、それらの製造方法
CN111041318A (zh) 一种钨铜合金及其制备方法
KR100593265B1 (ko) 플라즈마 아크방전을 이용한 나노분말 제조공정
Logutenko et al. A novel method to prepare copper microspheres via chemical reduction route
KR20120065831A (ko) 수열합성법을 이용한 니켈 분말 직접 제조 방법
KR101096059B1 (ko) 구리 나노분말의 제조방법
CN109128143B (zh) 一种具有核壳结构的纳米钨铜粉体的制备方法
Ardestani et al. Synthesis of WC–20 wt.% Cu composite powders by co-precipitation and carburization processes
CN112589090B (zh) 一种单质态和氧化态共混的金属纳米粉末的制备方法
CN103752841A (zh) 一种纳米铜粉的制备方法
JP2013040358A (ja) 金属多孔質体の製造方法
Jo et al. Synthesis of Y2O3-dispersed W powders prepared by ultrasonic spray pyrolysis and polymer solution route

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866958

Country of ref document: EP

Kind code of ref document: A1