WO2013111853A1 - 太陽電池用封止膜及びこれを用いた太陽電池 - Google Patents

太陽電池用封止膜及びこれを用いた太陽電池 Download PDF

Info

Publication number
WO2013111853A1
WO2013111853A1 PCT/JP2013/051580 JP2013051580W WO2013111853A1 WO 2013111853 A1 WO2013111853 A1 WO 2013111853A1 JP 2013051580 W JP2013051580 W JP 2013051580W WO 2013111853 A1 WO2013111853 A1 WO 2013111853A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing film
solar cell
mass
surface side
resin mixture
Prior art date
Application number
PCT/JP2013/051580
Other languages
English (en)
French (fr)
Inventor
隆人 稲宮
央尚 片岡
加賀 紀彦
泰典 樽谷
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US14/374,946 priority Critical patent/US9293616B2/en
Priority to EP13740833.2A priority patent/EP2808907A4/en
Priority to CN201380006996.0A priority patent/CN104081540B/zh
Publication of WO2013111853A1 publication Critical patent/WO2013111853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • C09D123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09D123/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • C08L2203/162Applications used for films sealable films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell sealing film used for a solar cell, and more particularly to a solar cell sealing film with reduced generation of gas.
  • a solar cell generally has a light receiving surface side transparent protective member 11 made of a glass substrate or the like, a light receiving surface side sealing film 13A, a power generation element 14 such as a silicon crystal cell, and a back surface side sealing film 13B.
  • a back surface side protective member (back cover) 12 are laminated in this order, deaerated under reduced pressure, and heated and pressurized to crosslink and cure the light receiving surface side sealing film 13A and the back surface side sealing film 13B, thereby integrally bonding. Is manufactured.
  • connection tabs 15 In solar cells, a plurality of power generating elements 14 are connected by connection tabs 15 in order to obtain a high electrical output. Therefore, in order to ensure the insulation of the power generation element 14, the power generation element is sealed using the insulating sealing films 13A and 13B.
  • ethylene-vinyl acetate copolymers such as ethylene-vinyl acetate copolymer (hereinafter also referred to as EVA) and ethylene-ethyl acrylate copolymer (EEA) are used.
  • EVA ethylene-vinyl acetate copolymer
  • EAA ethylene-ethyl acrylate copolymer
  • the film which consists of is used.
  • EVA films are preferably used because they are inexpensive and have high transparency.
  • the EVA film for sealing films has improved the crosslinking density using crosslinking agents, such as an organic peroxide, other than EVA.
  • Patent Document 1 describes a solar cell sealing film using an organic peroxide as a cross-linking agent, and the EVA contained in the sealing film is gel-divided by heating when integrated with each member.
  • the heat resistance of the solar cell is improved by crosslinking to a rate of 80 to 95%.
  • an object of the present invention is to provide a solar cell sealing film with reduced gas generation.
  • an object of the present invention is to provide a solar cell in which a power generation element is sealed with this solar cell sealing film.
  • the object includes a resin mixture comprising an ethylene-vinyl acetate copolymer and polyethylene and an organic peroxide, and the mass ratio of the ethylene-vinyl acetate copolymer (EVA) to the polyethylene (PE) in the resin mixture ( EVA: PE) is 8: 2 to 3: 7, and the content of the organic peroxide is 0.1 to 1.0 part by mass with respect to 100 parts by mass of the resin mixture.
  • EVA ethylene-vinyl acetate copolymer
  • PE polyethylene
  • the content of the organic peroxide is 0.1 to 1.0 part by mass with respect to 100 parts by mass of the resin mixture.
  • the solar cell of the present invention can be operated with high power generation efficiency over a long period after installation.
  • the solar cell sealing film of the present invention (hereinafter also referred to as the sealing film for short) includes a resin mixture composed of an ethylene-vinyl acetate copolymer and polyethylene and an organic peroxide.
  • the content of the organic peroxide is 0.1 to 1.0 part by mass with respect to 100 parts by mass of the resin mixture, and the sealing film has a gel fraction after crosslinking of 20 to 80% by mass.
  • the mass ratio (EVA: PE) of ethylene-vinyl acetate copolymer (EVA) to polyethylene (PE) in the resin mixture is 8: 2 to 3: 7, particularly 6: 4 to 3: 7, and further 5.5. : 4.5 to 3: 7 is preferable. If it is mass ratio of this range, it is excellent in the viscoelasticity at high temperature, and it becomes possible to provide high heat resistance to a sealing film.
  • the melting point of the resin mixture composed of EVA and PE is preferably 65 to 105 ° C, particularly 70 to 95 ° C. If it is this range, it can fully melt-knead, without a decomposition
  • the melting point refers to a temperature when the viscosity of a target sample is 30000 Pa ⁇ s, and a viscometer capillograph ID (furnace body diameter: ⁇ 9.55 mm, capillary: ⁇ 1.0 ⁇ 10 mm, It can be determined by measuring the viscosity in increments of 1 ° C. at a test speed of 1 mm / min and measuring the temperature at which the viscosity becomes 30000 Pa ⁇ s.
  • the solar cell sealing film of the present invention is produced by kneading a sealing film-forming composition containing EVA, PE and organic peroxide, and then molding it into a sheet.
  • the solar cell sealing film has a gel fraction after crosslinking of 20 to 80% by mass, preferably 30 to 80% by mass.
  • the gel fraction was determined by weighing the solar cell sealing film after crosslinking [A (g)], immersing it in 120 ° C. xylene for 24 hours, and filtering the insoluble matter with a 200-mesh wire mesh.
  • the above residue can be obtained by vacuum drying, measuring the weight of the dry residue [B (g)], and calculating by the following formula.
  • the storage elastic modulus (G ′) at 80 ° C. of the solar cell sealing film is preferably 1.0 ⁇ 10 6 Pa ⁇ s or more.
  • the upper limit of the storage elastic modulus (G ′) is not particularly limited, but is, for example, 1.0 ⁇ 10 8 Pa ⁇ s.
  • the vinyl acetate content in the ethylene-vinyl acetate copolymer is preferably 20 to 35% by mass, more preferably 26 to 32% by mass.
  • the content of vinyl acetate is less than 20% by mass, sufficient adhesion as a sealing film may not be obtained, and peeling may occur easily. There is a risk that foaming is likely to occur at the interface between the membrane and the protective member.
  • the vinyl acetate content of EVA is a value measured by the method described in JIS K6924-1.
  • the melting point of the ethylene-vinyl acetate copolymer alone is preferably 60 to 90 ° C., particularly 66 to 76 ° C.
  • Polyethylene contained in the resin mixture is a polymer mainly composed of ethylene as defined in JIS. Ethylene homopolymer, ethylene and ⁇ -olefin having 5 or less mol% of 3 or more carbon atoms (for example, butene-1) , Hexene-1,4-methylpentene-1, octene-1, etc.) and ethylene with 1 mol% or less non-olefin monomer having only carbon, oxygen and hydrogen atoms in the functional group Including a copolymer (JIS K6922-1: 1997).
  • PE is generally classified according to its density, and examples thereof include high density polyethylene (HDPE), low density polyethylene (LDPE), and linear low density polyethylene (LLDPE).
  • LDPE generally has a long chain branch obtained by polymerizing ethylene in the presence of a radical generator such as an organic peroxide under a high pressure of 100 to 350 MPa, and its density (according to JIS K7112; the same applies hereinafter). .) Is generally 0.910 g / cm 3 or more and less than 0.930 g / cm 3 .
  • LLDPE is generally obtained by copolymerizing ethylene and an ⁇ -olefin in the presence of a transition metal catalyst such as a Ziegler type catalyst, a Phillips catalyst, or a metallocene type catalyst, and its density is generally 0.910-0. .940 g / cm 3 , preferably 0.910 to 0.930 g / cm 3 .
  • HDPE is a polyethylene whose density is generally between 0.942 and 0.970 g / cm 3 .
  • the polyethylene used in the present invention is preferably low-density polyethylene or linear low-density polyethylene from the viewpoint of processability.
  • the melting point of polyethylene alone is preferably 99 to 121 ° C.
  • melt flow rate (MFR) of the ethylene-vinyl acetate copolymer and polyethylene is not particularly limited, and may be appropriately selected.
  • the solar cell sealing film of the present invention contains an organic peroxide.
  • the content of the organic peroxide is 0.1 to 1.0 part by weight, preferably 0.3 to 0.8 part by weight, based on 100 parts by weight of the resin mixture.
  • organic peroxide those having a 10-hour half-life temperature of 90 to 120 ° C. are particularly preferable.
  • the organic peroxide is generally selected in consideration of the melting point of the resin mixture, the film forming temperature, the adjustment conditions of the composition, the curing temperature, the heat resistance of the adherend, and the storage stability.
  • organic peroxide examples include benzoyl peroxide curing agent, tert-hexyl peroxypivalate, tert-butyl peroxypivalate, 3,5,5-trimethylhexanoyl peroxide, di-n-octanoyl Peroxide, lauroyl peroxide, stearoyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, succinic acid peroxide, 2,5-dimethyl-2,5-di ( tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, tert- Hexylperoxy-2-ethylhexanoate, te t-butylperoxy-2-eth
  • benzoyl peroxide-based curing agent examples include benzoyl peroxide, 2,5-dimethylhexyl-2,5-bisperoxybenzoate, p-chlorobenzoyl peroxide, m-toluoyl peroxide, 2,4-dichloro.
  • benzoyl peroxide and t-butyl peroxybenzoate examples include benzoyl peroxide and t-butyl peroxybenzoate.
  • the benzoyl peroxide curing agent may be used alone or in combination of two or more.
  • organic peroxide 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane and tert-butylperoxy-2-ethylhexyl monocarbonate are particularly preferable. Thereby, the sealing film for solar cells by which foaming was suppressed effectively is obtained.
  • the sealing film for solar cells before crosslinking curing contains a crosslinking aid.
  • a crosslinking aid can improve a crosslinking density and can improve the adhesiveness, heat resistance, and durability of the sealing film for solar cells.
  • the crosslinking aid is preferably used in an amount of 0.1 to 3.0 parts by mass, and more preferably 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the resin mixture. With such a content of the crosslinking aid, it is possible to improve the crosslinking density without generating gas due to the addition of the crosslinking aid.
  • crosslinking aid compound having a radical polymerizable group as a functional group
  • examples of the crosslinking aid include trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (eg, NK ester). And monofunctional or bifunctional crosslinking aids.
  • trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (eg, NK ester).
  • monofunctional or bifunctional crosslinking aids include triallyl cyanurate and triallyl isocyanurate, and triallyl isocyanurate is particularly preferable.
  • the solar cell sealing film has an excellent adhesive force in consideration of the sealing performance inside the solar cell. Therefore, an adhesion improver may be further included. As the adhesion improver, a silane coupling agent can be used. Thereby, it becomes possible to form the sealing film for solar cells which has the outstanding adhesive force.
  • Silane coupling agents include ⁇ -chloropropylmethoxysilane, vinylethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, ⁇ -glycidoxypropyltrimethoxysilane , ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrichlorosilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ - Mention may be made of (aminoethyl) - ⁇ -aminopropyltrimethoxysilane. These silane coupling agents may be used alone or in combination of two or more. Of these, ⁇ -methacryloxypropyltrimeth
  • the content of the silane coupling agent is 5 parts by mass or less, preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the resin mixture.
  • the sealing film for solar cells of the present invention improves or adjusts various physical properties of the film (optical properties such as mechanical strength and transparency, heat resistance, light resistance, crosslinking speed, etc.), especially improvement of mechanical strength. Therefore, if necessary, various additives such as a plasticizer, an acryloxy group-containing compound, a methacryloxy group-containing compound and / or an epoxy group-containing compound may further be included.
  • the plasticizer is not particularly limited, but generally an ester of a polybasic acid or an ester of a polyhydric alcohol is used. Examples thereof include dioctyl phthalate, dihexyl adipate, triethylene glycol-di-2-ethyl butyrate, butyl sebacate, tetraethylene glycol diptanoate, and triethylene glycol dipelargonate.
  • One plasticizer may be used, or two or more plasticizers may be used in combination.
  • the content of the plasticizer is preferably in the range of 5 parts by mass or less with respect to 100 parts by mass of the resin mixture.
  • the acryloxy group-containing compound and the methacryloxy group-containing compound are generally acrylic acid or methacrylic acid derivatives, and examples thereof include acrylic acid or methacrylic acid esters and amides.
  • ester residues include linear alkyl groups such as methyl, ethyl, dodecyl, stearyl, lauryl, cyclohexyl group, tetrahydrofurfuryl group, aminoethyl group, 2-hydroxyethyl group, 3-hydroxypropyl group, Mention may be made of the 3-chloro-2-hydroxypropyl group.
  • amides include diacetone acrylamide.
  • polyhydric alcohols such as ethylene glycol, triethylene glycol, polypropylene glycol, polyethylene glycol, trimethylolpropane, and pentaerythritol, and esters of acrylic acid or methacrylic acid can also be used.
  • Epoxy-containing compounds include triglycidyl tris (2-hydroxyethyl) isocyanurate, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, phenol (Ethyleneoxy) 5 glycidyl ether, pt-butylphenyl glycidyl ether, adipic acid diglycidyl ester, phthalic acid diglycidyl ester, glycidyl methacrylate, butyl glycidyl ether.
  • the acryloxy group-containing compound, methacryloxy group-containing compound, or epoxy group-containing compound is generally 0.5 to 5.0 parts by weight, particularly 1.0 to 4.0 parts by weight, respectively, with respect to 100 parts by weight of the resin mixture. It is preferable that
  • the solar cell sealing film of the present invention may contain an anti-aging agent.
  • the antioxidant include hindered phenolic antioxidants such as N, N′-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionamide], Examples thereof include phosphorus heat stabilizers, lactone heat stabilizers, vitamin E heat stabilizers, and sulfur heat stabilizers.
  • the solar cell sealing film of the present invention described above may be formed according to a known method.
  • the composition containing each of the above-described components can be produced by a method of obtaining a sheet-like material by molding by ordinary extrusion molding, calendar molding (calendering) or the like.
  • a sheet-like material can be obtained by dissolving the composition in a solvent and coating the solution on a suitable support with a suitable coating machine (coater) and drying to form a coating film.
  • the heating temperature during film formation is preferably a temperature at which the crosslinking agent does not react or hardly reacts.
  • the thickness of the solar cell sealing film of the present invention is not particularly limited, but is 0.05 to 2 mm.
  • the solar cell in order to sufficiently seal the power generating element, for example, as shown in FIG. 1, the light receiving surface side transparent protective member 11, the solar cell sealing film (light receiving surface side sealing film) 13A of the present invention,
  • the power generation element 14 such as a silicon crystal cell
  • the solar cell sealing film (back side sealing film) 13B and the back side protection member 12 of the present invention are laminated, and the sealing film is crosslinked according to a conventional method such as heating and pressing. What is necessary is just to harden.
  • the laminate is heated at a temperature of 135 to 180 ° C., further 140 to 180 ° C., particularly 155 to 180 ° C., degassing time 0.1 to 5 minutes, and press pressure 0.1 to 1 with a vacuum laminator. It may be heat-bonded at a pressure of 5 kg / cm 2 and a press time of 5 to 15 minutes.
  • the resin of the resin mixture contained in the light-receiving surface side sealing film 13A and the back surface side sealing film 13B is cross-linked, whereby the light receiving surface side sealing film 13A and the back surface side sealing film 13B are interposed.
  • the power receiving element 14 can be sealed by integrating the light receiving surface side transparent protective member 11, the back side transparent member 12, and the power generating element 14.
  • the light-receiving surface side transparent protective member 11 used in the solar cell of the present invention is usually a glass substrate such as silicate glass.
  • the thickness of the glass substrate is generally from 0.1 to 10 mm, and preferably from 0.3 to 5 mm.
  • the glass substrate may generally be chemically or thermally strengthened.
  • the back side protective member 12 used in the present invention is preferably a plastic sheet such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the back side protective member 12 may contain a white pigment.
  • transmits can be reflected and can be entered in an electric power generation element, and electric power generation efficiency improves.
  • the sealing film for solar cells of the present invention includes a light receiving surface side transparent protective member, a back surface side protective member, and a power generating element provided therebetween, between the power generating element and the back surface side protective member of the solar cell. It is particularly preferable to use it as a solar cell sealing film (back side sealing film). Thereby, it is possible to particularly effectively prevent peeling from the back surface side protection member (usually a plastic sheet is used) that is easily peeled off by foaming.
  • the structure of the solar cell is not particularly limited.
  • the structure etc. which sealed the electric power generation element by interposing the sealing film for solar cells between the light-receiving surface side transparent protective member and the back surface side protective member are integrated.
  • the side of the power generation element that is irradiated with light is referred to as “light receiving surface side”, and the side opposite to the light receiving surface of the power generation element is referred to as “back surface side”.
  • the present invention is not limited to a solar cell using a power generation element of a single crystal or polycrystalline silicon crystal cell as shown in FIG. 1, but also a thin film silicon type, a thin film amorphous silicon type solar cell, a copper indium selenide (CIS). ) It can also be applied to thin film solar cells such as solar cells.
  • a solar cell seal is formed on a thin film power generation element layer formed by a chemical vapor deposition method or the like on the surface of a light-receiving surface side transparent protective member such as a glass substrate, a polyimide substrate, or a fluororesin transparent substrate.
  • the laminated structure of the light-receiving surface side transparent protective member, the light-receiving surface side sealing film, the thin-film power generation element, the back surface side sealing film, and the back surface side protective member is laminated in this order and bonded and integrated. The structure etc. are mentioned.
  • Each material is supplied to a roll mill with the composition shown in the following table, and kneaded at a higher temperature (that is, a melting point of PE) ° C among the melting points (° C) of EVA or PE to be used to prepare a sealing film composition for a solar cell. did.
  • This solar cell sealing film composition was calendered at the melting point in each formulation and allowed to cool to obtain a solar cell sealing film (0.5 mm).
  • Each member is obtained by heating and pressing a laminated body in which glass / light-receiving surface side sealing film / power generation element (single crystal silicon cell) / back surface side sealing film / PET film are laminated in this order at 150 ° C. for 10 minutes with a vacuum laminator. An integrated solar cell was obtained.
  • Each of the solar cell sealing films prepared above was used as the back surface side sealing film, and the sealing film prepared by the following formulation was used as the light receiving surface side sealing film.
  • composition of light-receiving surface side sealing film 100 parts by mass of ethylene-vinyl acetate copolymer-2 parts by mass of organic peroxide (Perhexa 25B: 2,5-dimethyl-2,5-di (t-butylperoxy) hexane)-Crosslinking aid (TAIC: Triallyl isocyanurate (manufactured by Nippon Kasei Chemical Co., Ltd.) 1.5 parts by mass / Silane coupling agent (KBM503: ⁇ -methacryloxypropyltrimethoxysilane) 0.3 parts by mass It was allowed to stand, and the presence or absence of swelling between the back surface side sealing film and the PET film after the standing was visually observed and evaluated. A sample in which no swelling was observed was rated as ⁇ , and a sample in which swelling was observed was marked as x.
  • Electromotive force With respect to the solar cell obtained in the same manner as in the above 3, the initial electromotive force and the electromotive force after 2000 hours were measured under high-temperature and high-humidity conditions (85 ° C., 85 RH%). The degree of decrease in electromotive force after lapse of 2000 hours with respect to the initial electromotive force was calculated.
  • the melting point shown in the table indicates the melting point of the resin mixture composed of EVA and PE.
  • the melting point of the resin mixture is viscometer capillograph ID (furnace body diameter: ⁇ 9.55 mm, capillary: ⁇ 1.0 ⁇ 10 mm, manufactured by Toyo Seiki Co., Ltd.), with a test speed of 1 mm / min. The temperature at which the viscosity was 30000 Pa ⁇ s was measured, and this temperature was taken as the melting point.
  • UE750 ethylene-vinyl acetate copolymer (vinyl acetate content 32% by mass, MFR 30 g / 10 min, melting point 66 ° C.) manufactured by Tosoh UE634: ethylene-vinyl acetate copolymer (vinyl acetate content 26% by mass, MFR 4.3 g) / 10 min, melting point 76 ° C.)
  • Tosoh 0540F linear low density polyethylene (produced with metallocene catalyst, MFR 4 g / 10 min, melting point 99 ° C.)
  • Ube Maruzen polyethylene Petrocene 202 low density polyethylene (MFR 24 g / 10 min, melting point) 106 ° C) manufactured by Tosoh Corporation UF230: linear low density polyethylene (MFR 1 g / 10 min, melting point 121 ° C) manufactured by Nippon Polyethylene Perhexa 25B: 2,5-dimethyl-2,5-di (t-butane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

 ガスの発生を低減することができる太陽電池用封止膜を提供すること。 エチレン-酢酸ビニル共重合体とポリエチレンからなる樹脂混合物及び有機過酸化物を含み、前記樹脂混合物における前記エチレン-酢酸ビニル共重合体(EVA)と前記ポリエチレン(PE)の質量比(EVA:PE)が8:2~3:7であり、前記有機過酸化物の含有量は前記樹脂混合物100質量部に対して0.1~1.0質量部であり、架橋後のゲル分率が20~80質量%であることを特徴とする太陽電池用封止膜13A、13B。

Description

太陽電池用封止膜及びこれを用いた太陽電池
 本発明は、太陽電池に使用される太陽電池用封止膜に関し、特にガスの発生が低減された太陽電池用封止膜に関する。
 近年、資源の有効利用や環境汚染の防止等の面から、太陽光を電気エネルギーに直接変換する太陽電池が広く使用され、更に、耐久性や発電効率等の点から開発が進められている。
 太陽電池は、一般に、図1に示すように、ガラス基板等からなる受光面側透明保護部材11、受光面側封止膜13A、シリコン結晶系セル等の発電素子14、裏面側封止膜13B、及び裏面側保護部材(バックカバー)12をこの順で積層し、減圧で脱気した後、加熱加圧して受光面側封止膜13A及び裏面側封止膜13Bを架橋硬化させて接着一体化することにより製造される。
 太陽電池では、高い電気出力を得るために、複数の発電素子14を接続タブ15で接続して用いられている。従って、発電素子14の絶縁性を確保するために、絶縁性のある封止膜13A、13Bを用いて発電素子を封止している。
 従来から、これらの太陽電池に用いられる封止膜としては、エチレン-酢酸ビニル共重合体(以下、EVAともいう)、エチレン-エチルアクリレート共重合体(EEA)等のエチレン-酢酸ビニル共重合体からなるフィルムが用いられている。特に、安価であり、高い透明性を有することからEVAフィルムが好ましく用いられている。そして、封止膜用のEVAフィルムは、EVAの他に有機過酸化物等の架橋剤を用いて架橋密度を向上させている。
 例えば、特許文献1には、架橋剤として有機過酸化物を使用した太陽電池用封止膜が記載されており、各部材と接着一体化する際の加熱によって封止膜中のEVAをゲル分率80~95%まで架橋させて太陽電池の耐熱性を向上させている。
特開2011-09484号公報
 しかしながら、封止膜に有機過酸化物を添加すると、低分子量の化合物が生成して封止膜の内部や表面上にガスが発生する場合がある。ガスが発生すると太陽電池を構成する他の部材、特に密着性が比較的低い裏面側保護部材(通常はプラスチックシート)との間に気泡が滞留して剥離が生じる可能性がある。剥離が生じた場合には、封止性能が低下して発電効率が低下するだけでなく、外観不良を招く恐れがある。
 したがって、本発明の目的は、ガスの発生が低減された太陽電池用封止膜を提供することにある。
 また、本発明の目的は、この太陽電池用封止膜により発電素子を封止してなる太陽電池を提供することにある。
 上記目的は、エチレン-酢酸ビニル共重合体とポリエチレンからなる樹脂混合物及び有機過酸化物を含み、前記樹脂混合物における前記エチレン-酢酸ビニル共重合体(EVA)と前記ポリエチレン(PE)の質量比(EVA:PE)が8:2~3:7であり、前記有機過酸化物の含有量は前記樹脂混合物100質量部に対して0.1~1.0質量部であり、架橋後のゲル分率が20~80質量%であることを特徴とする太陽電池用封止膜により達成される。
 本発明によれば、太陽電池用封止膜におけるガスの発生が低減され、太陽電池を構成する他の部材との剥離を防止することができると共に、高い耐熱性を有する太陽電池を得ることができる。したがって、本発明の太陽電池は、設置後長期間に亘り高い発電効率で稼働させることが可能である。
一般的な太陽電池の構造を示す概略断面図である。
 以下、本発明を詳細に説明する。上述したように、本発明の太陽電池用封止膜(以下、略して封止膜とも称する)は、エチレン-酢酸ビニル共重合体とポリエチレンからなる樹脂混合物及び有機過酸化物を含んでいる。そして、有機過酸化物の含有量は樹脂混合物100質量部に対して0.1~1.0質量部であり、封止膜は架橋後のゲル分率が20~80質量%である。
 樹脂混合物におけるエチレン-酢酸ビニル共重合体(EVA)とポリエチレン(PE)の質量比(EVA:PE)は8:2~3:7であり、特に6:4~3:7、更に5.5:4.5~3:7であることが好ましい。この範囲の質量比であれば、高温での粘弾性に優れ、高い耐熱性を封止膜に付与することが可能となる。
 EVAとPEからなる樹脂混合物の融点は65~105℃、特に70~95℃であることが好ましい。この範囲であれば、封止膜を形成するための組成物を膜状に成形する際の加熱により有機過酸化物が分解することなく十分に溶融混練することができる。なお、本発明において融点とは、対象となる試料の粘度が30000Pa・sであるときの温度のことをいい、粘度計キャピログラフID(炉体径:φ9.55mm、キャピラリー:φ1.0×10mm、東洋精機製)を用い、試験速度1mm/minの条件にて、1℃刻みで粘度を計測して、粘度が30000Pa・sとなる温度を測定することにより決定することができる。
 本発明の太陽電池用封止膜は、EVA、PE及び有機過酸化物を含む封止膜形成用組成物を混練した後、シート状に成形することにより作製される。本発明では、太陽電池用封止膜は架橋後のゲル分率が20~80質量%、好ましくは30~80質量%である。
 ゲル分率は、架橋後の太陽電池用封止膜を秤量し[A(g)]、これを120℃のキシレン中に24時間浸漬して不溶解分を200メッシュの金網で濾過し、金網上の残渣を真空乾燥して乾燥残渣の重量を測定し[B(g)]、下記式により算出することにより得ることができる。
   ゲル分率(質量%)=(B/A)×100
 本発明によれば、封止膜に配合する有機過酸化物を従来よりも少ない量で使用しているので、ガス発生の元となる低分子量化合物の発生を低減することが可能となる。一方、有機過酸化物を減量することにより架橋性はゲル分率20~80質量%と低下するものの、ポリエチレンを上記質量比で含有させることで高温における粘弾性が向上し、高い耐熱性を確保することが可能となる。
 本発明において、太陽電池用封止膜の80℃における貯蔵弾性率(G’)は1.0×106Pa・s以上であることが好ましい。貯蔵弾性率(G’)は、粘弾性測定装置を(製品名:HAAKE社製 レオストレスRS300)を用い、φ=8mmのパラレルプレート治具を使用して、測定厚さ10mm、測定温度80℃、周波数1Hzにおいて測定することにより得られる。貯蔵弾性率(G’)の上限は特に限定されないが、例えば1.0×108Pa・sである。
 エチレン-酢酸ビニル共重合体における酢酸ビニルの含有率は、20~35質量%、さらに26~32質量%とするのが好ましい。酢酸ビニルの含有率が、20質量%未満であると、封止膜としての接着性が十分に得られずに剥離が生じ易くなる場合があり、35質量%を超えると酸が発生し封止膜と保護部材との界面で発泡が生じ易くなる恐れがある。 
 本発明において、EVAの酢酸ビニル含有率は、JIS K6924-1に記載の方法により測定された値である。また、エチレン-酢酸ビニル共重合体単独での融点は60~90℃、特に66~76℃であることが好ましい。
 樹脂混合物に含まれるポリエチレンは、JISに規定される通り、エチレンを主体とする重合体であり、エチレンの単独重合体、エチレンと5mol%以下の炭素数3以上のα-オレフィン(例えばブテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1等)との共重合体、およびエチレンと官能基に炭素、酸素、および水素原子だけを持つ1mol%以下の非オレフィン単量体との共重合体を含む(JIS K6922-1:1997)。PEは一般に、その密度によって分類され、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)等が挙げられる。
 LDPEは、一般に、100~350MPaの高圧下で有機過酸化物等のラジカル発生剤の存在下でエチレンを重合して得られる長鎖分岐を有するもので、その密度(JIS K7112に準ずる。以下同じ。)は、一般に、0.910g/cm3以上0.930g/cm3未満である。LLDPEは、一般に、チーグラー型触媒、フィリップス触媒、メタロセン型触媒等の遷移金属触媒の存在下にエチレンとα-オレフィンとを共重合して得られるもので、その密度は、一般に0.910~0.940g/cm3、好ましくは0.910~0.930g/cm3である。HDPEは、その密度が一般に0.942~0.970g/cm3のポリエチレンである。
 本発明において使用するポリエチレンは、加工性の点から低密度ポリエチレン又は直鎖状低密度ポリエチレンが好ましい。ポリエチレン単独での融点は99~121℃であることが好ましい。
 上記エチレン-酢酸ビニル共重合体とポリエチレンのメルトフローレート(MFR)は特に限定されず、適宜選択すればよい。
 上述したように本発明の太陽電池用封止膜には有機過酸化物が含まれる。有機過酸化物の含有量は、樹脂混合物100質量部に対して0.1~1.0質量部であり、好ましくは0.3~0.8量部である。有機過酸化物をこのような少ない量で使用することにより、有機過酸化物の分解に起因する低分子量化合物の生成が抑えられ、発泡及び剥離を抑制することが可能となる。
 有機過酸化物としては、特に、10時間半減期温度が90~120℃であるものが好ましい。有機過酸化物は、一般に、樹脂混合物の融点、成膜温度、組成物の調整条件、硬化温度、被着体の耐熱性、貯蔵安定性を考慮して選択される。
 有機過酸化物としては、例えば、ベンゾイルパーオキサイド系硬化剤、tert-ヘキシルパーオキシピバレート、tert-ブチルパーオキシピバレート、3,5,5-トリメチルヘキサノイルパーオキサイド、ジ-n-オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、スクシニックアシドパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、tert-ヘキシルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、4-メチルベンゾイルパーオキサイド、tert-ブチルパーオキシ-2-エチルヘキサノエート、m-トルオイル+ベンゾイルパーオキサイド、ベンゾイルパーオキサイド、1,1-ビス(tert-ブチルパーオキシ)-2-メチルシクロヘキサネート、1,1-ビス(tert-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサネート、1,1-ビス(tert-ヘキシルパーオキシ)シクロヘキサネート、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン、2,2-ビス(4,4-ジ-tert-ブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(tert-ブチルパーオキシ)シクロドデカン、tert-ヘキシルパーオキシイソプロピルモノカーボネート、tert-ブチルパーオキシマレイックアシド、tert-ブチルパーオキシ-3,3,5-トリメチルヘキサン、tert-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(メチルベンゾイルパーオキシ)ヘキサン、tert-ブチルパーオキシイソプロピルモノカーボネート、tert-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、tert-ヘキシルパーオキシベンゾエート、2,5-ジ-メチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、等が挙げられる。
 ベンゾイルパーオキサイド系硬化剤としては、例えば、ベンゾイルパーオキサイド、2,5-ジメチルヘキシル-2,5-ビスパーオキシベンゾエート、p-クロロベンゾイルパーオキサイド、m-トルオイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート等が挙げられる。ベンゾイルパーオキサイド系硬化剤は1種でも2種以上を組み合わせて使用してもよい。
 有機過酸化物として、特に、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、tert-ブチルパーオキシ-2-エチルヘキシルモノカーボネートが好ましい。これにより、発泡が効果的に抑制された太陽電池用封止膜が得られる。
 また、架橋硬化前の太陽電池用封止膜は、架橋助剤を含んでいることが好ましい。架橋助剤は、架橋密度を向上させ、太陽電池用封止膜の接着性、耐熱性及び耐久性を向上させることができる。
 架橋助剤は、樹脂混合物100質量部に対して、好ましくは0.1~3.0質量部、より好ましくは0.1~2.5質量部で使用される。このような架橋助剤の含有量であれば、架橋助剤の添加によるガスの発生もなく、架橋密度を向上させることができる。
 架橋助剤(官能基としてラジカル重合性基を有する化合物)としては、トリアリルシアヌレート、トリアリルイソシアヌレート等の3官能の架橋助剤の他、(メタ)アクリルエステル(例、NKエステル等)の単官能又は2官能の架橋助剤等を挙げることができる。なかでも、トリアリルシアヌレート及びトリアリルイソシアヌレートが好ましく、特にトリアリルイソシアヌレートが好ましい。
 また、太陽電池用封止膜は、太陽電池内部の封止性能を考慮すると、優れた接着力を有するのが好ましい。そのために、接着向上剤をさらに含んでいても良い。接着向上剤としては、シランカップリング剤を用いることができる。これにより、優れた接着力を有する太陽電池用封止膜を形成することが可能となる。シランカップリング剤としては、γ-クロロプロピルメトキシシラン、ビニルエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランを挙げることができる。これらシランカップリング剤は、単独で使用しても、又は2種以上組み合わせて使用しても良い。なかでも、γ-メタクリロキシプロピルトリメトキシシランが特に好ましく挙げられる。
 シランカップリング剤の含有量は樹脂混合物100質量部に対して5質量部以下、好ましくは0.1~2質量部であることが好ましい。
 本発明の太陽電池用封止膜は、膜の種々の物性(機械的強度、透明性等の光学的特性、耐熱性、耐光性、架橋速度等)の改良あるいは調整、特に機械的強度の改良のため、必要に応じて、可塑剤、アクリロキシ基含有化合物、メタクリロキシ基含有化合物及び/又はエポキシ基含有化合物などの各種添加剤をさらに含んでいてもよい。
 可塑剤としては、特に限定されるものではないが、一般に多塩基酸のエステル、多価アルコールのエステルが使用される。その例としては、ジオクチルフタレート、ジヘキシルアジペート、トリエチレングリコール-ジ-2-エチルブチレート、ブチルセバケート、テトラエチレングリコールジプタノエート、トリエチレングリコールジペラルゴネートを挙げることができる。可塑剤は一種用いてもよく、二種以上組み合わせて使用してもよい。可塑剤の含有量は上記樹脂混合物100質量部に対して5質量部以下の範囲が好ましい。
 アクリロキシ基含有化合物及びメタクリロキシ基含有化合物としては、一般にアクリル酸あるいはメタクリル酸誘導体であり、例えばアクリル酸あるいはメタクリル酸のエステルやアミドを挙げることができる。エステル残基の例としては、メチル、エチル、ドデシル、ステアリル、ラウリル等の直鎖状のアルキル基、シクロヘキシル基、テトラヒドロフルフリル基、アミノエチル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基、3-クロロ-2-ヒドロキシプロピル基を挙げることができる。アミドの例としては、ジアセトンアクリルアミドを挙げることができる。また、エチレングリコール、トリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール、トリメチロールプロパン、ペンタエリスリトール等の多価アルコールとアクリル酸あるいはメタクリル酸のエステルも挙げることができる。
 エポキシ含有化合物としては、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、フェノール(エチレンオキシ)5グリシジルエーテル、p-t-ブチルフェニルグリシジルエーテル、アジピン酸ジグリシジルエステル、フタル酸ジグリシジルエステル、グリシジルメタクリレート、ブチルグリシジルエーテルを挙げることができる。
 アクリロキシ基含有化合物、メタクリロキシ基含有化合物、またはエポキシ基含有化合物は、それぞれ上記樹脂混合物100質量部に対してそれぞれ一般に0.5~5.0質量部、特に1.0~4.0質量部含まれていることが好ましい。
 更に、本発明の太陽電池用封止膜は、老化防止剤を含んでいてもよい。老化防止剤としては、例えばN,N’-ヘキサン-1,6-ジイルビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオナミド〕等のヒンダードフェノール系酸化防止剤、リン系熱安定剤、ラクトン系熱安定剤、ビタミンE系熱安定剤、イオウ系熱安定剤等が挙げられる。
 上述した本発明の太陽電池用封止膜を形成するには、公知の方法に準じて行えばよい。例えば、上述した各成分を含む組成物を、通常の押出成形、又はカレンダ成形(カレンダリング)等により成形してシート状物を得る方法により製造することができる。また、前記組成物を溶剤に溶解させ、この溶液を適当な塗布機(コーター)で適当な支持体上に塗布、乾燥して塗膜を形成することによりシート状物を得ることもできる。尚、製膜時の加熱温度は、架橋剤が反応しない或いはほとんど反応しない温度とすることが好ましい。本発明の太陽電池用封止膜の厚さは特に制限されないが、0.05~2mmである。
 太陽電池において、発電素子を十分に封止するには、例えば、図1に示すように受光面側透明保護部材11、本発明の太陽電池用封止膜(受光面側封止膜)13A、シリコン結晶系セル等の発電素子14、本発明の太陽電池用封止膜(裏面側封止膜)13B及び裏面側保護部材12を積層し、加熱加圧など常法に従って、封止膜を架橋硬化させればよい。
 加熱加圧するには、例えば、積層体を、真空ラミネータで温度135~180℃、さらに140~180℃、特に155~180℃、脱気時間0.1~5分、プレス圧力0.1~1.5kg/cm2、プレス時間5~15分で加熱圧着すればよい。この加熱加圧時に、受光面側封止膜13Aおよび裏面側封止膜13Bに含まれる樹脂混合物の樹脂を架橋させることにより、受光面側封止膜13Aおよび裏面側封止膜13Bを介して、受光面側透明保護部材11、裏面側透明部材12、および発電素子14を一体化させて、発電素子14を封止することができる。
 本発明の太陽電池に使用される受光面側透明保護部材11は、通常珪酸塩ガラスなどのガラス基板であるのがよい。ガラス基板の厚さは、0.1~10mmが一般的であり、0.3~5mmが好ましい。ガラス基板は、一般に、化学的に、或いは熱的に強化させたものであってもよい。
 本発明で使用される裏面側保護部材12は、ポリエチレンテレフタレート(PET)などのプラスチックシートが好ましく用いられる。裏面側保護部材12には、白色顔料が含まれていてもよい。これにより、透過する太陽光を反射させて発電素子に入射させることができ、発電効率が向上する。耐熱性、耐湿熱性を考慮してフッ化ポリエチレンフィルム、特にフッ化ポリエチレンフィルム/Al/フッ化ポリエチレンフィルムをこの順で積層させたフィルムでも良い。
 本発明の太陽電池用封止膜は、受光面側透明保護部材と、裏面側保護部材と、これらの間に設けられる発電素子とを有する太陽電池のその発電素子と裏面側保護部材の間に配置される太陽電池用封止膜(裏面側封止膜)として使用することが特に好ましい。これにより、発泡による剥離が生じ易い裏面側保護部材(通常プラスチックシートが用いられる)との剥離を特に有効に防止することが可能である。
 本発明において、太陽電池の構造は特に制限されない。例えば、受光面側透明保護部材と裏面側保護部材との間に、太陽電池用封止膜を介在させて一体化させることにより発電素子を封止した構造などが挙げられる。なお、本発明において、発電素子の光が照射される側を「受光面側」と称し、発電素子の受光面とは反対面側を「裏面側」と称する。
 本発明は、図1に示したような単結晶又は多結晶のシリコン結晶系セルの発電素子を用いた太陽電池だけでなく、薄膜シリコン系、薄膜アモルファスシリコン系太陽電池、セレン化銅インジウム(CIS)系太陽電池等の薄膜太陽電池にも適用することもできる。この場合は、例えば、ガラス基板、ポリイミド基板、フッ素樹脂系透明基板等の受光面側透明保護部材の表面上に化学気相蒸着法等により形成された薄膜発電素子層上に、太陽電池用封止膜、裏面側保護部材を積層し、接着一体化させた構造、裏面側保護部材の表面上に形成された薄膜発電素子上に、太陽電池用封止膜、受光面側透明保護部材を積層し、接着一体化させた構造、又は受光面側透明保護部材、受光面側封止膜、薄膜発電素子、裏面側封止膜、及び裏面側保護部材をこの順で積層し、接着一体化させた構造等が挙げられる。
 以下、本発明を実施例により説明する。
 下記表に示す配合で各材料をロールミルに供給し、使用するEVAまたはPEの融点(℃)のうち高い温度(つまり、PEの融点)℃において混練して太陽電池用封止膜組成物を調製した。この太陽電池用封止膜組成物を、各配合における融点においてカレンダー成形し、放冷後、太陽電池用封止膜(0.5mm)を得た。
 [評価方法]
 1.ゲル分率
 上記太陽電池用封止膜をオーブンに入れ、155℃で30分間加熱して架橋硬化させた。この架橋後の太陽電池用封止膜を秤量し[A(g)]、これを120℃のキシレン中に24時間浸漬して不溶解分を200メッシュの金網で濾過し、金網上の残渣を真空乾燥して乾燥残渣の重量を測定し[B(g)]、下記式によりゲル分率を算出した。
   ゲル分率(質量%)=(B/A)×100
 2.貯蔵弾性率(G’)
 上記太陽電池用封止膜について、粘弾性測定装置(製品名:レオストレスRS300、HAAKE社製)を用いて貯蔵弾性率(G’)を測定した。その際、φ=8mmのパラレルプレート治具を用いて、測定厚さ10mm、測定温度80℃、周波数1Hzにて測定した。得られた貯蔵弾性率が1.0×106Pa・s以上であるものを○とし、1.0×106Pa・s未満であるものを×とした。
 3.発泡(膨れ)
 ガラス/受光面側封止膜/発電素子(単結晶シリコンセル)/裏面側封止膜/PETフィルムをこの順で積層した積層体を、真空ラミネータで150℃において10分間加熱加圧して各部材が一体化された太陽電池を得た。裏面側封止膜には上記で作製した各太陽電池用封止膜を使用し、受光面側封止膜には以下の配合で作製した封止膜を使用した。
 (受光面側封止膜の配合)
・エチレン-酢酸ビニル共重合体100質量部
・有機過酸化物(パーヘキサ25B:2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン)2質量部
・架橋助剤(TAIC:トリアリルイソシアヌレート、日本化成製)1.5質量部
・シランカップリング剤(KBM503:γ-メタクリロキシプロピルトリメトキシシラン)0.3質量部
 この太陽電池について、温度80℃の環境下で2000時間放置し、放置後の裏面側封止膜とPETフィルムとの間の膨れの有無を目視で観察して評価した。膨れが認められなかったものを○とし、膨れが認められたものを×とした。
 4.起電力
 上記3と同様にして得られた太陽電池について、高温多湿条件下(85℃、85RH%)において初期の起電力及び2000時間後の起電力を測定した。初期の起電力に対する2000時間経過後の起電力の低下度を算出し、5%未満を○、5%以上を×とした。

 結果を下記表に示す。表に示す融点はEVAとPEからなる樹脂混合物の融点を示している。樹脂混合物の融点は、粘度計キャピログラフID(炉体径:φ9.55mm、キャピラリー:φ1.0×10mm、東洋精機製)を用い、試験速度1mm/minの条件にて、1℃刻みで樹脂混合物の粘度を計測して粘度が30000Pa・sとなる温度を測定し、この温度を融点とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002






備考)
 UE750: エチレン-酢酸ビニル共重合体(酢酸ビニル含有率32質量%、MFR30g/10分、融点66℃)東ソー製
 UE634: エチレン-酢酸ビニル共重合体(酢酸ビニル含有率26質量%、MFR4.3g/10分、融点76℃)東ソー製
 0540F: 直鎖状低密度ポリエチレン(メタロセン触媒で生成、MFR4g/10分、融点99℃)宇部丸善ポリエチレン製
 ペトロセン202: 低密度ポリエチレン(MFR24g/10分、融点106℃)東ソー製
 UF230: 直鎖状低密度ポリエチレン(MFR1g/10分、融点121℃)日本ポリエチレン製
 パーヘキサ25B: 2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(10時間半減期温度118℃)日本油脂製
 パーブチルE: t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(10時間半減期温度99℃)日本油脂製
 TAIC: トリアリルイソシアヌレート、日本化成製
 KBM503: γ-メタクリロキシプロピルトリメトキシシラン、信越化学製
 [評価結果]
 上記表に示されているように、実施例に記載の配合で作製した封止膜は発泡及び起電力特性の点で良好であった。一方、比較例において、有機過酸化物の含有量が2質量部と多い場合は発泡による膨れが認められた。また、有機過酸化物の含有量が0.3質量部と少ない場合であっても、EVA:PEの質量比が8:2~3:7の範囲にない場合(比較例6及び7)は、貯蔵弾性率や起電力特性の低下が認められた。有機過酸化物の量が少なすぎる場合(比較例13)は起電力特性が低下していた(低ゲル分率に伴う耐熱性の低下によるものと考えられる)。
 11 受光面側透明保護部材
 12 裏面側保護部材
 13A 受光面側封止膜
 13B 裏面側封止膜
 14 発電素子
 15 接続タブ

Claims (6)

  1.  エチレン-酢酸ビニル共重合体とポリエチレンからなる樹脂混合物及び有機過酸化物を含み、
     前記樹脂混合物における前記エチレン-酢酸ビニル共重合体(EVA)と前記ポリエチレン(PE)の質量比(EVA:PE)が8:2~3:7であり、
     前記有機過酸化物の含有量は前記樹脂混合物100質量部に対して0.1~1.0質量部であり、
     架橋後のゲル分率が20~80質量%であることを特徴とする太陽電池用封止膜。
  2.  80℃における貯蔵弾性率(G’)が1.0×106Pa・s以上であることを特徴とする請求項1に記載の太陽電池用封止膜。
  3.  前記樹脂混合物の融点(粘度が30000Pa・sであるときの温度)が65~105℃であることを特徴とする請求項1又は2に記載の太陽電池用封止膜。
  4.  前記エチレン-酢酸ビニル共重合体の酢酸ビニル含有率が20~35質量%であることを特徴とする請求項1~3の何れか1項に記載の太陽電池用封止膜。
  5.  受光面側透明保護部材と、裏面側保護部材と、これらの間に設けられる発電素子とを有する太陽電池の前記発電素子と前記裏面側保護部材の間に配置される太陽電池用封止膜であることを特徴とする請求項1~4の何れか1項に記載の太陽電池用封止膜。
  6.  請求項1~5の何れか1項に記載の太陽電池用封止膜により発電素子を封止してなる太陽電池。
PCT/JP2013/051580 2012-01-27 2013-01-25 太陽電池用封止膜及びこれを用いた太陽電池 WO2013111853A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/374,946 US9293616B2 (en) 2012-01-27 2013-01-25 Solar cell sealing film and solar cell using the same
EP13740833.2A EP2808907A4 (en) 2012-01-27 2013-01-25 SEALING FILM FOR SOLAR CELLS AND SOLAR CELL USING SAID SEALING FILM
CN201380006996.0A CN104081540B (zh) 2012-01-27 2013-01-25 太阳能电池用密封膜和使用其的太阳能电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-015258 2012-01-27
JP2012015258 2012-01-27

Publications (1)

Publication Number Publication Date
WO2013111853A1 true WO2013111853A1 (ja) 2013-08-01

Family

ID=48873564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051580 WO2013111853A1 (ja) 2012-01-27 2013-01-25 太陽電池用封止膜及びこれを用いた太陽電池

Country Status (5)

Country Link
US (1) US9293616B2 (ja)
EP (1) EP2808907A4 (ja)
JP (1) JP5572233B2 (ja)
CN (1) CN104081540B (ja)
WO (1) WO2013111853A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188493A (ja) * 2011-03-09 2012-10-04 Chuo Rika Kogyo Corp 熱可塑性樹脂水性分散液及びこれを用いた耐水性皮膜

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6073590B2 (ja) * 2012-01-27 2017-02-01 株式会社ブリヂストン 積層体形成用シート製造用組成物、その製造方法、及び積層体形成用シート
CN104081539B (zh) * 2012-01-27 2016-11-23 株式会社普利司通 太阳能电池用密封膜和使用该膜的太阳能电池
WO2014061669A1 (ja) * 2012-10-17 2014-04-24 株式会社ブリヂストン 硬化シート、それを有する積層体、及びその積層体の製造方法
CN105706264B (zh) * 2013-12-09 2017-12-19 积水化学工业株式会社 显示元件用密封剂
KR102410418B1 (ko) * 2018-03-19 2022-06-22 미츠이·다우 폴리케미칼 가부시키가이샤 농업용 필름
CN113707744A (zh) * 2021-08-27 2021-11-26 浙江福斯特新材料研究院有限公司 一种光伏电池片用连接膜
CN113717559B (zh) * 2021-08-27 2022-08-19 浙江福斯特新材料研究院有限公司 水性涂料、胶膜及其在电池组件中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235048A (ja) * 2001-02-09 2002-08-23 Mitsubishi Plastics Ind Ltd 接着性シート、太陽電池充填材用シート及びそれを用いた太陽電池
JP2011009484A (ja) 2009-06-26 2011-01-13 Bridgestone Corp 太陽電池用封止膜、及びこれを用いた太陽電池
JP2011074264A (ja) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp 樹脂封止シート
WO2012002264A1 (ja) * 2010-06-28 2012-01-05 日本ポリエチレン株式会社 太陽電池封止材、及びそれを用いた太陽電池モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258255A (ja) * 2007-04-02 2008-10-23 Bridgestone Corp 太陽電池用封止膜及びこれを用いた太陽電池
KR101389511B1 (ko) * 2008-04-09 2014-04-28 아사히 가세이 이-매터리얼즈 가부시키가이샤 수지 밀봉 시트
JP2011119358A (ja) * 2009-12-01 2011-06-16 Asahi Kasei E-Materials Corp 太陽電池樹脂封止シート
JP5636221B2 (ja) * 2009-12-28 2014-12-03 日本ポリエチレン株式会社 太陽電池封止材用樹脂組成物
KR20130112687A (ko) * 2010-05-20 2013-10-14 도레이 필름 카코우 가부시키가이샤 태양전지 모듈용 이면 보호 시트
CN104081539B (zh) * 2012-01-27 2016-11-23 株式会社普利司通 太阳能电池用密封膜和使用该膜的太阳能电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235048A (ja) * 2001-02-09 2002-08-23 Mitsubishi Plastics Ind Ltd 接着性シート、太陽電池充填材用シート及びそれを用いた太陽電池
JP2011009484A (ja) 2009-06-26 2011-01-13 Bridgestone Corp 太陽電池用封止膜、及びこれを用いた太陽電池
JP2011074264A (ja) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp 樹脂封止シート
WO2012002264A1 (ja) * 2010-06-28 2012-01-05 日本ポリエチレン株式会社 太陽電池封止材、及びそれを用いた太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2808907A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188493A (ja) * 2011-03-09 2012-10-04 Chuo Rika Kogyo Corp 熱可塑性樹脂水性分散液及びこれを用いた耐水性皮膜

Also Published As

Publication number Publication date
EP2808907A1 (en) 2014-12-03
CN104081540A (zh) 2014-10-01
US9293616B2 (en) 2016-03-22
CN104081540B (zh) 2016-11-23
JP5572233B2 (ja) 2014-08-13
US20140366945A1 (en) 2014-12-18
JP2013175722A (ja) 2013-09-05
EP2808907A4 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5572232B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5572233B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5587659B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2014017282A1 (ja) 太陽電池用封止膜、太陽電池モジュール及び太陽電池用封止膜の選定方法
WO2010140608A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2013002133A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5819159B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2016194606A1 (ja) 太陽電池用封止膜及び太陽電池モジュール
JP5778441B2 (ja) 太陽電池封止膜及びこれを用いた太陽電池
JP6054664B2 (ja) 太陽電池用封止膜、及びその選定方法
JP2013008761A (ja) 太陽電池封止膜及びこれを用いた太陽電池
JP2012241169A (ja) エチレン−極性モノマー共重合体シート、並びにこれを用いた合わせガラス用中間膜、合わせガラス、太陽電池用封止膜及び太陽電池
JP5909101B2 (ja) 太陽電池用封止膜形成用組成物
JP2012182407A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5893908B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5624898B2 (ja) 太陽電池用裏面側保護部材一体型封止膜の製造方法、並びにこれを用いた太陽電池及びその製造方法
JP5604335B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5726568B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2016213401A (ja) 太陽電池用封止材製造用組成物
JP6054665B2 (ja) 太陽電池モジュール
JP2011238862A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2017222753A (ja) 太陽電池用封止材製造用組成物及び太陽電池用封止材
JP2018029092A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2013030583A (ja) 太陽電池用封止膜及びこれを用いた太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14374946

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013740833

Country of ref document: EP