WO2013111600A1 - Organic electroluminescent element manufacturing apparatus and organic electroluminescent element manufacturing method - Google Patents

Organic electroluminescent element manufacturing apparatus and organic electroluminescent element manufacturing method Download PDF

Info

Publication number
WO2013111600A1
WO2013111600A1 PCT/JP2013/000375 JP2013000375W WO2013111600A1 WO 2013111600 A1 WO2013111600 A1 WO 2013111600A1 JP 2013000375 W JP2013000375 W JP 2013000375W WO 2013111600 A1 WO2013111600 A1 WO 2013111600A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
opening
discharge amount
amount adjusting
adjusting plate
Prior art date
Application number
PCT/JP2013/000375
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 北村
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to KR1020147019963A priority Critical patent/KR20140107501A/en
Priority to CN201380006851.0A priority patent/CN104066866A/en
Publication of WO2013111600A1 publication Critical patent/WO2013111600A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • the present invention relates to an apparatus for producing an organic electroluminescence element and a method for producing an organic electroluminescence element using the apparatus.
  • Patent Document 1 includes a plurality of processing chambers that can independently control the atmosphere and the degree of vacuum, and a transport unit that continuously transports the substrate to the plurality of processing chambers.
  • An apparatus for manufacturing an organic electroluminescent element by performing a predetermined treatment is disclosed. With such an in-line manufacturing apparatus, organic thin films can be sequentially stacked, so that the manufacturing efficiency of the organic EL element is improved.
  • the vapor deposition material is deposited with an amount distribution that is large at the center and small at the end, so that the film may be formed with a convex cross-sectional shape. is there.
  • FIG. 16 is an example of an organic EL element A manufactured by a conventional organic EL element manufacturing apparatus.
  • a first electrode 12 serving as an anode is formed on the surface of a substrate 11, and an organic layer 13 and a second electrode 14 serving as a cathode are laminated on the surface.
  • the organic layer 13 is laminated in the order of the hole transport layer 13a, the light emitting layer 13b, the electron transport layer 13c, the intermediate layer 13d, the hole transport layer 13e, the light emitting layer 13f, and the electron transport layer 13g from the substrate 11 side. Each of these layers is formed by vapor deposition.
  • the second electrode 14 is formed by evaporating an electrode material on the surface of the electron transport layer 13g.
  • the deposition material is stacked more at the center portion than at the end portions (both side portions). Therefore, the thickness of the convex shape becomes thicker at the center portion and thinner toward the side portions. Distribution. Therefore, also in the whole organic layer 13 formed by vapor deposition, the thickness is increased at the central portion and the thickness is decreased at both side portions, so that a convex thickness distribution is formed.
  • the organic layer 13 composed of the laminate is thick at the center and thin at the side, there is a problem in that the light emission luminance is different between the center of the substrate and the end of the substrate. That is, light is often extracted to the outside of the element by using interference, and if the film thickness is different between the central portion and the side portion, the degree of interference will be different, and the light emission luminance is likely to be biased.
  • the uniformity of in-plane light emission is lowered, and the function as a light emitter may be impaired.
  • the amount of vapor deposition material constituting each layer of the organic layer 13 is controlled to be a distribution that is constant at the side portion and the central portion, and a layer having a uniform thickness is deposited by vapor deposition.
  • Lamination is also conceivable.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an apparatus for producing an organic electroluminescence element having more uniform light emission luminance. Moreover, it aims at providing the method of manufacturing an organic electroluminescent element with more uniform luminescent brightness.
  • the organic electroluminescence element manufacturing apparatus is an organic electroluminescence element manufacturing apparatus for forming an organic layer by sequentially laminating a thin film layer from a plurality of vapor deposition units on a transported deposition target,
  • Each of the plurality of vapor deposition units includes a vapor deposition source that radiates a vapor deposition material for forming the thin film layer, and the vapor deposition material that is heated to a temperature at which the vapor deposition material is vaporized and radiated from the vapor deposition source.
  • a cylindrical body that discharges the vapor deposition material toward the deposition target body, and the cylindrical body has an opening that discharges the vapor deposition material.
  • the discharge amount adjusting structure includes a discharge amount adjusting plate, and the discharge amount adjusting plate is heated to a temperature at which the vapor deposition material is vaporized to partially block the opening and It is preferable to adjust the discharge amount distribution of the vapor deposition material from the opening.
  • the blocking area of the discharge amount adjusting plate in the convex distributed vapor deposition unit is different from the blocking area of the discharge amount adjusting plate in the concave distributed vapor deposition unit.
  • the discharge amount adjusting plate has an outer edge formed in an arc shape and protrudes along a direction parallel to the transport direction of the deposition target to partially block the opening, and the convex shape
  • the length in the carrying direction of the blocking region by the discharge amount adjusting plate in the concave distributed vapor deposition unit is longer than the length in the carrying direction of the blocking region by the discharge amount adjusting plate in the distributed vapor deposition unit.
  • the discharge amount adjusting plate has an outer edge formed in an arc shape and protrudes along a direction parallel to the transport direction of the deposition target to partially block the opening, and the convex shape
  • the length in the direction perpendicular to the transport direction of the blocking region by the discharge amount adjusting plate in the concave distributed deposition unit is longer than the length in the direction perpendicular to the transport direction of the blocking region by the discharge amount adjusting plate in the distributed deposition unit. Is short.
  • the discharge amount adjusting plate is partially cut out so that the outer edge has an arc shape and projects along a direction parallel to the transport direction of the deposition target, so that the opening is partially formed.
  • the circular radius by the discharge amount adjusting plate in the concave distributed vapor deposition unit is smaller than the circular radius by the discharge amount adjusting plate in the convex distributed vapor deposition unit.
  • the discharge amount adjusting plate has a trapezoidal shape and protrudes along a direction parallel to the transport direction of the deposition target, partially blocking the opening, and the convex distributed deposition.
  • the length in the transport direction of the blocking region by the discharge amount adjusting plate in the concave distributed vapor deposition unit is longer than the length in the transport direction of the blocking region by the discharge amount adjusting plate in the unit.
  • the discharge amount adjusting plate has a trapezoidal shape and protrudes along a direction parallel to the transport direction of the deposition target, partially blocking the opening, and the convex distributed deposition.
  • the length in the direction perpendicular to the carrying direction of the blocking region by the discharge amount adjusting plate in the concave distributed vapor deposition unit is shorter than the length in the direction perpendicular to the carrying direction of the blocking region by the discharge amount adjusting plate in the unit. .
  • the discharge amount adjusting plate has a trapezoidal shape and protrudes along a direction parallel to the transport direction of the deposition target, partially blocking the opening, and the convex distributed deposition.
  • the blocking ratio at the central portion of the opening by the discharge amount adjusting plate in the concave distributed vapor deposition unit is larger than the blocking ratio at the central portion of the opening by the discharge amount adjusting plate in the unit.
  • the discharge amount adjusting structure is formed by a side wall of the cylindrical body, and the side wall is formed by changing the shape of the opening in plan view, thereby releasing the deposition material from the opening. It is preferable to adjust the distribution.
  • the side wall protrudes along a direction parallel to the transport direction of the vapor-deposited body, thereby deforming the planar view shape of the opening.
  • the shape of the emission amount adjusting structure in the plurality of vapor deposition units has variability.
  • the method for producing an organic electroluminescence element according to the present invention is characterized in that an organic electroluminescence element is produced using the above-described organic electroluminescence element production apparatus.
  • the thickness of the laminated body laminated by vapor deposition can be made close to uniform, it is possible to produce an organic electroluminescence element with more uniform light emission luminance.
  • FIG. 1 and 2 show an example of an organic electroluminescence element manufacturing apparatus (hereinafter also referred to as “organic EL manufacturing apparatus”).
  • This organic EL manufacturing apparatus forms an organic layer 13 by sequentially laminating thin film layers 6 (see FIGS. 8 and 9) from a plurality of vapor deposition units 1 on a transported deposition target (work) 10 by vapor deposition.
  • an organic electroluminescence element (organic EL element) is manufactured.
  • FIG. 1 illustrates a state in which three vapor deposition units 1 are sequentially arranged from the upstream side to the downstream side in the conveyance direction (white arrow) X of the deposition target 10. It may be the above.
  • the same number of vapor deposition units 1 as the number of thin film layers 6 formed by vapor deposition can be used.
  • the vapor deposition unit 1 needs to be two or more.
  • Each of the vapor deposition units 1 in the plurality of vapor deposition units 1 includes a vapor deposition source 2 that radiates a vapor deposition material for forming the thin film layer 6, and a vapor deposition material that is heated to a temperature at which the vapor deposition material is vaporized and emitted from the vapor deposition source 2. And a cylindrical body 3 that discharges toward the deposition target body 10.
  • the cylindrical body 3 is formed in a vertical cylindrical shape having a cavity with a rectangular cross section, and is connected to the vapor deposition source 2 at the lower part and has an opening part 4 for discharging vaporized vapor deposition material upward at the upper part. Is provided.
  • the vapor deposition material is discharged toward the vapor deposition target 10 by the cylindrical body 3 in this way, the thin film layer 6 can be laminated on the vapor deposition target 10. Further, since the cylindrical body 3 is heated at a temperature equal to or higher than the vaporization temperature of the vapor deposition material, the vapor deposition material can be discharged from the opening 4 without adhering to the inside of the cylindrical body 3.
  • the cylindrical body 3 can be made of metal.
  • the vapor deposition may be vacuum vapor deposition. In FIG. 1, the release of the vapor deposition material is indicated by black arrows.
  • the cylindrical body 3 can be formed in a square cylindrical shape having four side walls 30.
  • the side wall 30 includes a pair of first side walls 30a and a pair of second side walls 30b.
  • Each first side wall 30a has a flat plate shape.
  • the direction in which the pair of first side walls 30a oppose is a direction parallel to the transport direction X.
  • Each second side wall 30b has a flat plate shape.
  • the direction in which the pair of second side walls 30b oppose is a direction perpendicular to the transport direction X.
  • the cylindrical body 3 has a hot wall structure in which the side wall 30 is heated at a temperature equal to or higher than the vaporization temperature of the vapor deposition material.
  • the opening 4 is formed in a rectangular shape in which a short side is disposed in parallel with the transport direction X and a long side is disposed in parallel with a direction perpendicular to the transport direction X.
  • the thin film layer 6 can be formed with a more uniform film thickness on the surface of the vapor-deposited body 10 to be conveyed.
  • the short side of the opening 4 is formed by the upper edge of the second side wall 30b.
  • the long side of the opening 4 is formed by the upper edge of the first side wall 30a.
  • Each vapor deposition unit 1 includes a discharge amount adjustment structure 50 that adjusts the discharge amount distribution of the vapor deposition material from the cylindrical body 3. That is, each vapor deposition unit 1 includes a discharge amount adjustment plate 5 as the discharge amount adjustment structure 50.
  • the discharge amount adjusting plate 5 blocks (closes) a part of the opening 4 of the cylindrical body 3. That is, the discharge amount adjusting plate 5 partially blocks the opening 4 of the cylindrical body 3 to adjust the discharge amount distribution of the vapor deposition material from the cylindrical body 3.
  • the discharge amount adjusting plate 5 is heated to a temperature at which the vapor deposition material is vaporized.
  • the discharge amount adjusting plate 5 Since the discharge amount adjusting plate 5 is heated at a temperature equal to or higher than the vaporization temperature of the vapor deposition material, the vapor deposition material can be discharged from the opening 4 without adhering to the discharge amount adjusting plate 5.
  • the temperature of the discharge amount adjusting plate 5 may be the same as that of the cylindrical body 3 or may be different.
  • the heating mechanism can be simplified. can do.
  • the discharge amount adjusting plate 5 can be made of metal.
  • the discharge amount adjusting plate 5 is provided at the upper end of the second side wall 30 b of the cylindrical body 3 to partially block the opening 4 having a rectangular shape in plan view. That is, a region other than the blocking region S of the opening 4 by the discharge amount adjusting plate 5 is formed as a discharge region H from which the vapor deposition material is discharged. Therefore, the planar view shape of the discharge region H of the cylindrical body 3 can be deformed by the shape of the discharge amount adjusting plate 5 and the like, and thereby the discharge distribution of the vapor deposition material from the discharge region H can be adjusted.
  • the discharge distribution of the vapor deposition material can be easily adjusted and the distribution of the vapor deposition amount can be adjusted. That is, in the case where the vapor deposition unit 1 in which the entire rectangular opening 4 having no discharge amount adjusting plate 5 is opened is used, a large amount of vapor deposition material is released in the central portion in the direction perpendicular to the transport direction X (width direction). At the same time, a small amount of vapor deposition material is released to the side portion in the width direction. Then, the thin film layer 6 is formed in a convex shape in which the film thickness distribution protrudes extremely, and becomes a layer in which the central portion protrudes greatly.
  • the discharge amount adjusting plate 5 is provided, the distribution of the film thickness can be easily adjusted by adjusting the state of blocking by the discharge amount adjusting plate 5, and vapor deposition between the central portion and the side portion. The amount can be close.
  • each vapor deposition unit 1 a pair of two discharge amount adjustment plates 5 are arranged along a direction parallel to the transport direction X. That is, an upstream discharge amount adjusting plate 5a is disposed on the upstream side in the transport direction X, and a downstream discharge amount adjusting plate 5b is disposed on the downstream side in the transport direction X.
  • the upstream discharge amount adjusting plate 5 a protrudes from the upstream edge of the opening 4 toward the downstream side, and blocks a part of the upstream side of the opening 4.
  • the downstream discharge amount adjusting plate 5 b protrudes from the downstream edge of the opening 4 toward the upstream side and blocks a part of the downstream side of the opening 4.
  • the degree of partial blockage of the opening 4 by the discharge amount adjusting plate 5 increases as it goes from the side in the width direction to the center. By providing such a discharge amount adjusting plate 5, it is possible to bring the deposition amount on the deposition target 10 closer to a value closer to the central portion and the side portion.
  • the organic EL manufacturing apparatus includes transport means 20 for transporting the deposition target 10.
  • the transport means 20 is configured by an appropriate transport mechanism such as a conveyor, whereby the deposition target 10 sequentially passes above the respective vapor deposition units 1 from the upstream side to the downstream side in the transport direction X along the line. Can do.
  • a supporting member that supports the end of the vapor deposition body 10 in the width direction and conveys the entire supporting member so that the lower surface of the vapor deposition body 10 is exposed to the outside is used.
  • Can do Since the lower surface of the body to be vapor-deposited 10 is exposed, the thin film layer 6 can be formed by vapor-depositing the vapor deposition material released from the cylindrical body 3 on this surface.
  • the vapor-deposited body 10 includes at least the substrate 11.
  • the substrate 11 on which the first electrode 12 is formed can be used.
  • substrate 11 with which the 1st electrode 12 and the one part layer of the organic layer 13 were formed in the surface can also be used.
  • the to-be-deposited body 10 can be comprised by setting the board
  • the conveyance means 20 may be configured by a conveyor such as a roller or a belt disposed at each end in the width direction, and the end in the width direction of the substrate 1 may be placed on the conveyor and conveyed.
  • a mask may be stacked on the lower surface of the vapor-deposited body 10. Thereby, it can be made not to vapor-deposit on the outer peripheral part of the to-be-deposited body 10, or the thin film layer 6 can be laminated
  • the thin film layer 6 is sequentially formed by the vapor deposition unit 1 in which the discharge amount adjusting plate 5 is provided in the opening 4. A part of the opening 4 is blocked by the discharge amount adjusting plate 5. Even so, it is difficult to stack the vapor deposition material with a certain thickness from the central part to the side part in the width direction for each single thin film layer 6. In particular, it is difficult to make all the thin film layers 6 constituting the organic layer 3 uniform in thickness in the width direction. Therefore, in this embodiment, in the plurality of vapor deposition units 1, the distribution of the discharge amount is adjusted by changing the partial blocking state of the opening 4 by the discharge amount adjusting plate 5, and the thickness of the entire stacked body is made more uniform. is there. Note that, even when the discharge amount adjusting plate 5 is provided, when the ratio of blocking the opening 4 is small, the thin film layer 6 is usually formed with a convex film thickness distribution, so that the organic layer as shown in FIG. The EL element A is manufactured.
  • the plurality of vapor deposition units 1 are convex distribution vapor deposition units 1a (hereinafter, simply referred to as “unit 1a”) in which the film thickness distribution of the thin film layer 6 adjusted by the discharge amount adjusting plate 5 is convex.
  • a concave distributed vapor deposition unit 1b (hereinafter simply referred to as “unit 1b”) in which the film thickness distribution of the thin film layer 6 adjusted by the discharge amount adjusting plate 5 is concave. That is, a part of the plurality of vapor deposition units 1 is the unit 1a, and the whole or a part of the remaining part is the unit 1b.
  • the thin film layer 6 having a convex thickness distribution (convex thin film layer 6a) and the thin film layer having a concave thickness distribution (concave thin film layer 6b) are laminated, and thus formed by vapor deposition. It is possible to make the distribution of the thickness of the entire laminate close to a constant value. And when the thickness of the center part in the organic layer 13 which is a laminated body and the thickness of a side part approach constant, the light emission luminance of a center part and a side part will approach the same grade more.
  • the plurality of vapor deposition units 1 may include a flat distribution vapor deposition unit having a flat film thickness distribution.
  • the high temperature vapor deposition unit may be arrange
  • the high temperature vapor deposition unit is a unit for vapor deposition at a higher vapor deposition temperature than the vapor deposition on a hot wall such as the unit 1a and the unit 1b.
  • a high-temperature vapor deposition unit can be used for vapor deposition of a metal such as Al used for the cathode or a metal-containing layer (Mg, ITO, MoO 3 , Li 2 MoO 3, etc.) in the organic layer 13.
  • the thin film layer 6 formed by the high temperature vapor deposition unit may have a uniform thickness distribution in the width direction, or may be convex or concave.
  • FIG. 8 shows an example of the thin film layer 6.
  • FIG. 8A is an example of the convex thin film layer 6a formed by the unit 1a.
  • the thickness gradually increases as it approaches the central portion from both side portions, and the central portion protrudes in the thickness direction.
  • the unit 1a forms a layer having a convex film thickness distribution when the thin film layer 6 is formed on a flat surface.
  • FIG. 8B is an example of the concave thin film layer 6b formed by the unit 1b.
  • the thickness is gradually reduced from the both sides toward the center, and the center is recessed in the thickness direction.
  • the unit 1b forms a layer having a concave thickness distribution when the thin film layer 6 is formed on a flat surface.
  • the unit 1b should just form the thin film layer 6 by the film thickness distribution which has a recessed part which thickness became small as it approached the center part from the side part.
  • the amount of vapor deposition may decrease at the edge of the opening 4.
  • the thickness of the thin film layer 6 may be reduced at the side edge as shown in FIG. Since such a thin film layer 6 also has a recess at the center, it becomes a concave thin film layer 6b.
  • the blocking effect at the central portion by the discharge amount adjusting plate 5 decreases, and in this case, as shown in FIG. 8D, the thickness of the thin film layer 6 may increase at the central portion.
  • the thin film layer 6 also has a recess in the vicinity of the center, it becomes a concave thin film layer 6b.
  • the thickness of the portion protruding at the center is preferably smaller than the thickness of the portion protruding at the side.
  • the blocking area of the discharge amount adjusting plate 5 in the unit 1a is different from the blocking area of the discharge amount adjusting plate 5 in the unit 1b. .
  • the thin film layer 6 can be easily formed in a convex shape or a concave shape.
  • the blocking area of the discharge amount adjusting plate 5 in the unit 1b is made larger than the blocking area of the discharge amount adjusting plate 5 in the unit 1a, and the discharge of the vapor deposition material is blocked from the side portion in the central portion, so that the deposition amount is reduced. Try to reduce it. Then, the vapor deposition material can be laminated with a concave film thickness distribution to form the concave thin film layer 6b.
  • the film thickness distribution of the thin film layer 6 can be easily made convex or concave by the partial disk type discharge amount adjusting plate 5 disposed in the opening 4 of the cylindrical body 3.
  • the discharge amount adjusting plate 5 in the plurality of vapor deposition units 1 has an outer edge formed in an arc shape and protrudes along a direction parallel to the transport direction X to block the opening 4. By forming the outer edge to be blocked into an arc shape, the film thickness distribution can be smoothly changed from the side to the center.
  • the outer edge of the discharge amount adjusting plate 5 having an arc shape is a curved curve passing through the corner portions 4 a and 4 a arranged in the width direction in the rectangular opening 4.
  • This curve may be part of a circle or part of an ellipse.
  • At least one of the length L1 in the transport direction X and the length L2 perpendicular to the transport direction X of the blocking region S by the discharge amount adjusting plate 5 is made different among the plurality of vapor deposition units 1.
  • the blocking state of the opening 4 can be changed.
  • both the lengths L1 and L2 may be different.
  • the change in the blocking state by the discharge amount adjusting plate 5 will be described.
  • the blocking state of the opening 4 is changed. Can be changed.
  • the blocking area can be easily changed. That is, the length L1 in the transport direction X of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b is longer than the length L1 in the transport direction X of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a.
  • the form of FIG. 2 shows the opening 4 of the unit 1b, and the form of FIG.
  • FIG. 3A shows the opening 4 of the unit 1a.
  • the opening length in the transport direction X is longer than that in FIG. In the central portion of the opening 4, more vapor deposition material is released, and the thin film layer 6 can be formed thick, so that a convex thickness distribution as shown in FIG. 8A can be formed.
  • the central part in the width direction of the opening 4 has a shorter opening length in the transport direction X than the form of FIG. The amount is reduced, the thin film layer 6 can be formed thin, and a concave thickness distribution as shown in FIG. 8B or the like can be formed. In this way, by changing the length L1 of the blocking region S in the transport direction X by the discharge amount adjusting plate 5, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape. It is.
  • the unit 1a and the unit 1b have different lengths L2 in the direction (width direction) perpendicular to the transport direction X of the blocking region S by the discharge amount adjusting plate 5.
  • the blocking state of the opening 4 can be changed.
  • the blocking area can be easily changed. That is, the length L2 in the width direction of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b is shorter than the length L2 in the width direction of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a.
  • the form of FIG. 2 shows the opening 4 of the unit 1a
  • the form of FIG. 3B shows the opening 4 of the unit 1b.
  • the opening area is larger than that of FIG. 2 at the side of the opening 4 in the width direction. Then, at the side of the opening 4, more vapor deposition material is released, so that the thin film layer 6 can be formed thick, and a concave film thickness distribution as shown in FIG. 8B or the like can be formed.
  • the opening area of the side part in the width direction of the opening part 4 is smaller than that of the form of FIG. 3B, the emission amount of the vapor deposition material is reduced at the side part of the opening part 4, The thin film layer 6 can be formed thin to form a convex thickness distribution as shown in FIG. 8A.
  • the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape. is there. 3B, the intersection of the outer edge of the arc of the blocking area S and the edge of the opening 4 is arranged inside the corner 4a.
  • the discharge amount adjusting plate 5 is formed when a part of a circle is cut out and the outer edge has an arc shape and projects along a direction parallel to the transport direction X to block the opening 4.
  • the circular radius R by the discharge amount adjusting plate 5 in the unit 1b is made smaller than the circular radius R by the discharge amount adjusting plate 5 in the unit 1a.
  • the opening ratio is smaller than that of the unit 1a.
  • the unit 1b in the central portion of the opening 4, the amount of the vapor deposition material released is reduced, the thin film layer 6 is formed thin, and a concave thickness distribution as shown in FIG. 8B or the like is formed. it can.
  • the opening ratio is larger in the central part of the opening 4 than in the unit 1b. Will increase.
  • the thin film layer 6 can be formed thick and a convex thickness distribution as shown in FIG. 8A can be formed.
  • the radius R of the discharge amount adjusting plate 5 the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape.
  • the outer edge of the blocking region S by each discharge amount adjusting plate 5 can pass through the corners 4 a and 4 a of the opening 4.
  • the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape. Also, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape by changing the ratio of the major axis to the minor axis length of the ellipse.
  • FIG. 5 shows another example of the discharge amount adjusting plate 5.
  • the discharge amount adjusting plate 5 is trapezoidal and protrudes along a direction parallel to the transport direction X to block the opening 5.
  • the blocking region S becomes trapezoidal, the amount of the vapor deposition material released in the side portion is reduced toward the center portion, and the amount of the vapor deposition material emission is not reduced too much in the center portion.
  • a thin film layer 6 can be formed.
  • a pair of two discharge amount adjustment plates 5 are arranged along a direction parallel to the transport direction X. That is, an upstream discharge amount adjusting plate 5a is disposed on the upstream side in the transport direction, and a downstream discharge amount adjusting plate 5b is disposed on the downstream side in the transport direction X.
  • the upstream discharge amount adjusting plate 5 a protrudes from the upstream edge of the opening 4 toward the downstream side, and blocks the upstream side of the opening 4.
  • the downstream discharge amount adjusting plate 5 b protrudes from the downstream edge of the opening 4 toward the upstream side, and blocks the downstream side of the opening 4.
  • the degree of blocking of the opening 4 by the discharge amount adjusting plate 5 is greater at the center than at the side in the width direction.
  • the lower side of the trapezoid of the blocking area S formed by the discharge amount adjusting plate 5 is equal to the line segment formed by the corners 4 a and 4 a in the width direction in the rectangular opening 4. Yes.
  • the film thickness distribution of the thin film layer 6 is made different from the area of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a and the area of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b. Can be adjusted to a convex shape or a concave shape. Further, even if the area of the blocking region S is the same, if the trapezoidal shape is changed so that the ratio of the blocking region S in the central portion is changed, the film thickness distribution of the thin film layer 6 is convex or concave. Can be adjusted.
  • the blocking region S has a trapezoidal shape, if the blocking ratio at the central portion due to this trapezoid is increased, the amount of vapor deposition material released in the vicinity of the central portion can be easily reduced, and the film thickness distribution is concave. Can be.
  • the opening 4 is blocked by making at least one of the length L1 in the transport direction and the length L2 perpendicular to the transport direction of the blocking region S by the discharge amount adjusting plate 5 different in the plurality of vapor deposition units 1.
  • the state can be changed.
  • both the lengths L1 and L2 may be different.
  • the blocking area S by the discharge amount adjusting plate 5 is trapezoidal
  • the length L1 is the height of the trapezoid
  • the length L2 is the length of the lower side of the trapezoid.
  • the blocking state of the opening 4 is changed by changing the length L1 of the blocking region S in the transport direction by the discharge amount adjusting plate 5 between the unit 1a and the unit 1b.
  • the blocking area can be easily changed. That is, the length L1 in the transport direction X of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b is longer than the length L1 in the transport direction X of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a.
  • the form of FIG. 5 shows the opening 4 of the unit 1b, and the form of FIG.
  • FIG. 6A shows the opening 4 of the unit 1a.
  • the opening length in the conveyance direction X is longer than that in FIG.
  • the central portion of the opening 4 more vapor deposition material is released, and the thin film layer 6 can be formed thick, so that a convex thickness distribution as shown in FIG. 8A can be formed.
  • the central part in the width direction of the opening 4 has an opening length in the transport direction shorter than that in the form of FIG. 6A. Therefore, the thin film layer 6 can be formed thin, and a concave film thickness distribution as shown in FIG. 8B can be formed.
  • the film thickness distribution of the thin film layer 6 is changed to a convex shape and a concave shape. And can be formed separately.
  • the length L2 in the direction (width direction) perpendicular to the conveying direction X of the blocking area S by the discharge amount adjusting plate 5 is made different between the unit 1a and the unit 1b.
  • the blocking state of the opening 4 can be changed.
  • the blocking area can be easily changed. That is, the length L2 in the width direction of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b is shorter than the length L2 in the width direction of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a.
  • the form of FIG. 5 shows the opening 4 of the unit 1a
  • the form of FIG. 6B shows the opening 4 of the unit 1b.
  • FIG. 5 shows the opening 4 of the unit 1a
  • the opening area is larger than that of FIG. Then, at the side of the opening 4, more vapor deposition material is released, so that the thin film layer 6 can be formed thick, and a concave film thickness distribution as shown in FIG. 8B or the like can be formed.
  • the opening area of the side part in the width direction of the opening part 4 is smaller than that of the form of FIG. 6B, the emission amount of the vapor deposition material is reduced at the side part of the opening part 4,
  • the thin film layer 6 can be formed thin to form a convex thickness distribution as shown in FIG. 8A.
  • the film thickness distribution of the thin film layer 6 is changed to a convex shape and a concave shape. It can be formed separately into shapes.
  • the lower side of the trapezoid of the blocking region S is shorter than the length of the opening 4 in the width direction, and is disposed on the inner side of the corner 4a.
  • the length L3 of the upper side of the trapezoid shown in FIG. 6B can be changed by the same procedure as that of the lower side of the trapezoid.
  • the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape. That is, if the length L3 of the upper side is made longer, the amount of vapor deposition material released at the central portion in the width direction is reduced, so that the film thickness distribution of the thin film layer 6 can be made closer to a concave shape.
  • the blocking ratio at the center of the opening 4 by the discharge amount adjusting plate 5 in the unit 1b is higher than the blocking ratio at the center of the opening 4 by the discharging amount adjusting plate 5 in the unit 1a. It is preferable that it is larger.
  • the blocking region S is trapezoidal, the amount of vapor deposition material released in the vicinity of the central portion can be easily controlled by increasing or decreasing the blocking ratio at the central portion due to the trapezoid, and the film thickness distribution. Can be convex or concave.
  • the area of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b is larger than the area of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a.
  • the blocking region S since the blocking region S has a trapezoidal shape, if the area of the blocking region S formed by the trapezoid is increased, the amount of the vapor deposition material released in the vicinity of the central portion can be easily reduced.
  • the thickness distribution can be made concave.
  • the area of the trapezoid is increased.
  • the amount of discharge near the center can be reduced, and the film thickness distribution can be made concave.
  • the area of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b is smaller than the area of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a.
  • the blocking region S has a trapezoidal shape. Therefore, if the area of the blocking region S formed by the trapezoid is reduced, the amount of the vapor deposition material released from the side portion can be easily increased.
  • the distribution can be concave. For example, if the height (length L1) of the trapezoid of the blocking region S is fixed and the lower side (length L2) of the trapezoid is shortened, the area of the trapezoid is reduced and the discharge amount at the side is increased. The distribution can be concave.
  • each vapor deposition unit 1 the two discharge
  • the form of the discharge amount adjusting plate 5 is not limited to this.
  • FIG. 7 shows an example of a form in the case where one discharge amount adjusting plate 5 is disposed in the opening 4.
  • FIG. 7 is an example in which a leaf-shaped discharge amount adjusting plate 5 is arranged at the center in the transport direction X of the opening 4 so as to straddle the width direction. Thereby, two openings 4 having a small opening ratio in the center in the width direction are formed on the upstream side and the downstream side in the transport direction.
  • FIG. 7A is an example using the discharge amount adjusting plate 5 showing a blocking region where two arcuate outer edges are joined at the edge of the opening 4.
  • FIG. 7B is an example using the discharge
  • the film thickness distribution of the thin film layer 6 can be changed by changing the length L1 of the conveyance direction X, and the thin film layer 6 can be formed in a convex type or a concave type. . That is, if the length L1 in the transport direction X is increased, the amount of the vapor deposition material released from the central portion in the width direction can be reduced, and the thin film layer 6 can be brought close to a concave shape.
  • the discharge amount adjusting plate 5 straddles the opening 4 in the width direction, it is difficult to adjust the length L2 in the width direction, but the discharge amount adjusting plate 5 is disposed so as to straddle the transport direction X. If so, the length L2 in the width direction can be adjusted.
  • the blocking region S of the opening 4 is preferably line-symmetric with respect to a line that bisects the opening 4 in the width direction. Thereby, the emission amount distribution from the side part in the width direction to the center part becomes symmetrical in the width direction, and adjustment of the film thickness of the entire laminate is facilitated. Further, the blocking region S of the opening 4 is preferably line-symmetric with respect to a line obtained by dividing the opening 4 into two in the transport direction X. Thereby, it is possible to prevent the film thickness from varying in the transport direction X. In order to obtain a line-symmetric blocking region S, for example, in the form of FIGS. 2 and 5, the two blocking regions S blocked by the discharge amount adjusting plate 5 can have the same shape.
  • the shape of the discharge amount adjusting plate 5 in the plurality of vapor deposition units 1 has variability. Since the shape of the discharge amount adjusting plate 5 has variability, the area of the blocking area can be easily increased or decreased, or the length L1 in the conveying direction X and the length L2 in the width direction in the blocking area S can be easily changed. It is possible to easily adjust the emission amount distribution of the vapor deposition material.
  • the discharge amount adjusting plate 5 can be detachably inserted into the opening 4. In this case, the shape of the blocking region S can be changed using a plurality of discharge amount adjusting plates 5 having different shapes.
  • the discharge amount distribution plate 5 having a different radius R can be inserted into the vapor deposition unit 1 to adjust the discharge amount distribution.
  • the discharge amount adjusting plate 5 having a different trapezoidal height or a different upper side length is inserted into the vapor deposition unit 1 to thereby release the discharge amount.
  • the distribution can be adjusted.
  • the discharge amount distribution can be adjusted also by the discharge amount adjusting plate 5 having the same shape. For example, if the discharge amount adjusting plate 5 is inserted deeper into the opening 4, the length L1 in the transport direction of the blocking region is increased, or the area of the blocking region S is increased, so that the discharge amount in the central portion is increased. It can be reduced.
  • FIG. 9 is an example of the organic EL element A manufactured using the organic EL manufacturing apparatus according to the present invention. As shown in FIG. 1, the organic EL element A sequentially stacks the thin film layers 6 from the plurality of vapor deposition units 1 on the surface of the vapor deposition target 10 while conveying the vapor deposition target 10 including the substrate 11. Can be manufactured.
  • a first electrode 12 serving as an anode is formed on the surface of a substrate 11, and an organic layer 13 and a second electrode 14 serving as a cathode are stacked on the surface.
  • the organic layer 13 is laminated in the order of the hole transport layer 13a, the light emitting layer 13b, the electron transport layer 13c, the intermediate layer 13d, the hole transport layer 13e, the light emitting layer 13f, and the electron transport layer 13g from the substrate 11 side. Each of these layers is formed by vapor deposition.
  • the second electrode 14 is formed by evaporating an electrode material on the surface of the electron transport layer 13g.
  • each layer of the organic layer 13 is vapor-deposited on the surface of the first electrode 2 formed on the substrate 11 as a thin film layer 6 so as to be appropriately convex or concave.
  • the organic EL element A can be manufactured.
  • the film thickness distribution of the second electrode 14 may be adjusted to a convex shape or a concave shape.
  • the light emitting layer has a two-stage structure, but it may be a single stage or three or more stages.
  • the organic layer 13 In the form of FIG. 9, among the organic layer 13, four layers of the hole transport layer 13a, the intermediate layer 13d, the hole transport layer 13e, and the light emitting layer 13f are formed as the convex thin film layer 6a. Further, the three layers of the light emitting layer 13b, the electron transport layer 13c, and the electron transport layer 13g are formed as the concave thin film layer 6b.
  • the units 1a and 1b are arranged side by side in the transport direction corresponding to the convex type and concave type of the thin film layer 6 constituting each layer of the organic layer 13, and the thin film layers 6 are sequentially deposited. Then, they can be formed by laminating.
  • the number of convex thin film layers 6a and the number of concave thin film layers 6b should be close to each other. If the number of convex thin film layers 6a and the number of concave thin film layers 6b are the same or the same, the total thickness of the convex layers and the total thickness of the concave layers are as follows. This makes it easier to adjust the film thickness distribution of the entire laminate. However, if the overall thickness can be adjusted, the number of the concave thin film layers 6b may be one or a small number, or conversely, the number of the convex thin film layers 6a may be one or a small number.
  • the layer formed as the concave thin film layer 6b is preferably a concave layer even in the cross section of the organic layer 13 formed by being laminated. That is, it is preferable that the unit 1b is not only for forming the thin film layer 6 alone, but also for laminating the thin film layer 6 as a layer having a concave film thickness distribution even in a stacked state with other layers.
  • the light emitting layer 13b, the electron transport layer 13c, and the electron transport layer 13g formed as the concave thin film layer 6b are not only in the cross section of a single layer (see FIG. 8) but in the cross section of the entire organic layer 13. Has a concave film thickness distribution.
  • the layer formed as the convex thin film layer 6a may also be a convex layer in the cross section of the organic layer 13 formed by being laminated. That is, the unit 1a is not limited to the case where the thin film layer 6 is formed alone, but may be the one in which the thin film layer 6 is laminated as a layer having a convex film thickness distribution even in a laminated state with other layers.
  • each thin film layer 6 constituting the organic layer 13 is a convex type or a concave type is determined by comparing the thickness at the side portion of the thin film layer 6 with the thickness at the central portion. can do.
  • the thin film layer 6 inside the organic layer 13 can be formed on a convex or concave surface that has been laminated so far, and is usually formed on a flat surface as shown in FIG. Is not formed.
  • the thickness of the thin film layer 6 is compared between the side portion and the central portion. Whether it is a mold or a concave type can be determined. That is, when the thickness of the center part is thicker than the side part, it can be determined as a convex layer, and conversely, when the thickness of the center part from the side part is thinner, it can be determined as a concave type.
  • each layer constituting the organic layer 13 is formed with a convex film thickness distribution. It becomes a convex thickness distribution in which the thickness becomes thinner toward the side.
  • the substrate center and the substrate edge are compared, there is a possibility that a film thickness difference of several tens of nanometers may occur.
  • the plurality of thin film layers 6 are appropriately formed in a convex shape or a concave shape. And the central part can be closer.
  • the difference in film thickness when comparing the substrate center and the substrate edge can be reduced. And if the thickness of a laminated body approaches uniformly as a whole, the light emission luminance in a center part and an edge part will become closer, and in-plane light emission will approach uniformly. That is, light is often extracted to the outside of the element using interference, and when the film thickness is close between the central portion of the substrate and the end portion of the substrate, the degree of interference becomes close and the emission luminance becomes more uniform. Therefore, in the organic EL manufacturing apparatus described above, an organic EL element with higher uniformity of in-plane light emission can be manufactured.
  • the uniformity of the entire thickness of the organic layer 13 is important for in-plane light emission uniformity, and an organic material having a light emitting surface with a large area.
  • the uniformity of in-plane light emission can be improved.
  • the second electrode 14 can also be formed by vapor deposition, but the uniformity of the film thickness of the organic layer 13 is more important than the thickness of the stacked body including the second electrode 14. .
  • the first electrode 12 is a light transmissive electrode and the second electrode 4 is a reflective electrode
  • the light emitted from the light emitting layer is reflected directly or by the second electrode 14 from the transparent substrate 11. It will be taken out to the outside. Therefore, in order to reduce the degree of optical interference, the distance between the interface between the second electrode 14 that is a reflective electrode and the organic layer 13 and the interface between the first electrode 12 that is a light transmissive electrode and the organic layer 13 is used. It is advantageous that becomes more constant.
  • the thickness of the organic layer 13 uniform in the plane of the light emitting region.
  • the thickness of the entire stack of vapor deposition materials including the second electrode 14 may be uniform.
  • the light emitting layer is a flatter layer (a layer having a small film thickness difference). That is, if the light emitting layer is extremely convex or concave, the light moving distance is likely to be greatly different between the central portion of the substrate and the end portion of the substrate, and the degree of interference is likely to be different.
  • the layer thickness difference is small, the distance of light movement becomes shorter and the coherence becomes closer, so that the light emission becomes more uniform. Therefore, when forming the thin film layer 6, it is more preferable to adjust the convex type or the concave type to further flatten the light emitting layer.
  • FIG. 10 and 11 show an example of another embodiment of an organic electroluminescence element manufacturing apparatus (hereinafter also referred to as “organic EL manufacturing apparatus”).
  • This organic EL manufacturing apparatus forms an organic layer 13 by sequentially laminating thin film layers 6 (see FIGS. 8 and 9) from a plurality of vapor deposition units 1 on a transported deposition target (work) 10 by vapor deposition.
  • an organic electroluminescence element (organic EL element) is manufactured.
  • FIG. 10 shows a state in which three vapor deposition units 1 are sequentially arranged from the upstream side to the downstream side in the conveyance direction (white arrow) X of the vapor deposition target 10, but there are four vapor deposition units 1. It may be the above.
  • the same number of vapor deposition units 1 as the number of thin film layers 6 formed by vapor deposition can be used.
  • the vapor deposition unit 1 needs to be two or more.
  • Each of the vapor deposition units 1 in the plurality of vapor deposition units 1 includes a vapor deposition source 2 that radiates a vapor deposition material for forming the thin film layer 6, and a vapor deposition material that is heated to a temperature at which the vapor deposition material is vaporized and emitted from the vapor deposition source 2. And a cylindrical body 3 that discharges toward the deposition target body 10.
  • the cylindrical body 3 is formed in a vertical cylindrical shape having a cavity with a rectangular cross section, and is connected to the vapor deposition source 2 at the lower part and has an opening part 4 for discharging vaporized vapor deposition material upward at the upper part. Is provided.
  • the vapor deposition material is discharged toward the vapor deposition target 10 by the cylindrical body 3 in this way, the thin film layer 6 can be laminated on the vapor deposition target 10. Further, since the cylindrical body 3 is heated at a temperature equal to or higher than the vaporization temperature of the vapor deposition material, the vapor deposition material can be discharged from the opening 4 without adhering to the inside of the cylindrical body 3.
  • the cylindrical body 3 can be made of metal.
  • the vapor deposition may be vacuum vapor deposition. In FIG. 10, the release of the vapor deposition material is indicated by black arrows.
  • the cylindrical body 3 can be formed in a substantially rectangular tube shape having four side walls 30.
  • the side wall 30 includes a pair of first side walls 30a and a pair of second side walls 30b.
  • the direction in which the pair of first side walls 30 a face each other is a direction parallel to the transport direction X of the deposition target 10.
  • a direction in which the pair of second side walls 30 b face each other is a direction perpendicular to the transport direction X of the deposition target 10.
  • the cylindrical body 3 has a hot wall structure in which the side wall 30 is heated at a temperature equal to or higher than the vaporization temperature of the vapor deposition material.
  • a curved portion 31 is formed on each first side wall 30a.
  • the entire first side wall 30 a shown in FIG. 11 is formed as a curved portion 31. Therefore, the first side wall 30a is formed in a curved plate shape.
  • the second side wall 30b is formed in a flat plate shape.
  • the opening 4 has a short side parallel to the transport direction X of the deposition target 10 and is long in a direction substantially perpendicular to the transport direction X of the deposition target 10. It is formed in a shape in which long sides are arranged. Thereby, the thin film layer 6 can be formed with a more uniform film thickness on the surface of the vapor-deposited body 10 to be conveyed.
  • the short side of the opening 4 is formed by the upper edge of the second side wall 30b.
  • the long side of the opening 4 is formed by the upper edge of the first side wall 30a.
  • the entire opening 4 is formed as an emission region H from which the vapor deposition material is released.
  • the emission region H of this embodiment has the same shape as the emission region H of the embodiment shown in FIG.
  • the dimension between the opposed central parts of the pair of long sides of the opening 4 is formed shorter than the dimension of the short side of the opening 4.
  • Each vapor deposition unit 1 includes a discharge amount adjustment structure 50 that adjusts the discharge amount distribution of the vapor deposition material from the cylindrical body 3. That is, each vapor deposition unit 1 includes the first side wall 30 a as the discharge amount adjusting structure 50. The first side wall 30 a adjusts the amount of vapor deposition material released from the cylindrical body 3 by changing the shape of the opening 4 of the cylindrical body 3 in a plan view from a rectangular shape.
  • the long side of the opening 4 of the cylindrical body 3 is curved, so that the dimension between the opposed central parts of the pair of long sides of the opening 4 is the dimension of the short side of the opening 4. It is formed shorter. Therefore, the planar view shape of the discharge region H of the cylindrical body 3 can be deformed by the shape of the first side wall 30a and the like, and thereby the discharge distribution of the vapor deposition material from the discharge region H can be adjusted. That is, in the vapor deposition unit 1, the first side wall 30 a is curved by the curved portion 31, so that the release distribution of the vapor deposition material can be easily adjusted and the vapor deposition amount distribution can be adjusted.
  • the vapor deposition unit 1 in which the entire rectangular opening 4 is opened when used, a large amount of vapor deposition material is released in the center portion in the direction (width direction) perpendicular to the transport direction of the vapor deposition target 10, and the width Less vapor deposition material will be released to the side of the direction. Then, the thin film layer 6 is formed in a convex shape in which the film thickness distribution is extremely protruded, and the central portion of the thin film layer 6 is a layer protruding greatly. Therefore, in order to make the deposition amount between the central portion and the side portion of the thin film layer 6 closer, it is possible to easily adjust the film thickness distribution of the thin film layer 6 by changing the shape of the opening 4 in plan view. The amount of vapor deposition between the central portion and the side portion of the thin film layer 6 can be made closer.
  • each vapor deposition unit 1 two pairs of the first side walls 30 a are arranged along a direction parallel to the conveyance direction X of the vapor deposition target 10. That is, the upstream first side wall 30a is disposed on the upstream side in the transport direction X of the deposition target 10, and the downstream first side wall 30a is disposed on the downstream side in the transport direction X of the deposition target 10. Is arranged.
  • the first side wall 30a on the upstream side is formed with a curved portion 31 that curves from the upstream side in the transport direction X toward the downstream side.
  • the first side wall 30a on the upstream side is curved so that the center portion in the width direction (direction perpendicular to the transport direction X) protrudes from the upstream side in the transport direction X toward the downstream side than the end portion in the width direction. is doing.
  • the first side wall 30a on the downstream side is formed with a curved portion 31 that bends from the downstream side in the transport direction X toward the upstream side. That is, the first side wall 30a on the downstream side is curved so that the center portion in the width direction (direction perpendicular to the transport direction X) protrudes from the downstream side in the transport direction X toward the upstream side from the end portion in the width direction. is doing.
  • the amount of vapor deposition on the vapor deposition target 10 can be made closer to a value closer to the center and the side.
  • the organic EL manufacturing apparatus includes transport means 20 for transporting the deposition target 10.
  • the transport means 20 is configured by an appropriate transport mechanism such as a conveyor, whereby the deposition target 10 sequentially passes above the respective vapor deposition units 1 from the upstream side to the downstream side in the transport direction X along the line. Can do.
  • a supporting member that supports the end of the vapor deposition body 10 in the width direction and conveys the entire supporting member so that the lower surface of the vapor deposition body 10 is exposed to the outside is used.
  • Can do Since the lower surface of the body to be vapor-deposited 10 is exposed, the thin film layer 6 can be formed by vapor-depositing the vapor deposition material released from the cylindrical body 3 on this surface.
  • the vapor-deposited body 10 includes at least the substrate 11.
  • the substrate 11 on which the first electrode 12 is formed can be used.
  • substrate 11 with which the 1st electrode 12 and the one part layer of the organic layer 13 were formed in the surface can also be used.
  • the to-be-deposited body 10 can be comprised by setting the board
  • the conveying means 20 may be configured by a conveyor such as a roller or a belt disposed at each end in the width direction, and the end in the width direction of the substrate 11 may be placed on the conveyor and conveyed.
  • a mask may be stacked on the lower surface of the vapor-deposited body 10. Thereby, it can be made not to vapor-deposit on the outer peripheral part of the to-be-deposited body 10, or the thin film layer 6 can be laminated
  • the thin film layer 6 is sequentially formed by the vapor deposition unit 1 in which the amount distribution of the vapor deposition material from the opening 4 is adjusted, but the amount distribution of the vapor deposition material from the opening 4 is adjusted. Even if it was made, about each single thin film layer 6, it is difficult to laminate
  • the distribution of the emission amount is adjusted by changing the emission amount distribution of the vapor deposition material from the opening 4, and the thickness of the entire laminate is made closer to a constant value.
  • the thin film layer 6 is usually formed with a convex film thickness distribution.
  • the EL element A is manufactured.
  • the plurality of vapor deposition units 1 has a convex distribution vapor deposition unit 1a (hereinafter simply referred to as a film thickness distribution of the thin film layer 6 by adjusting the discharge amount distribution of the vapor deposition material from the opening 4). And a concave distribution vapor deposition unit 1b (hereinafter simply referred to as “unit”) in which the film thickness distribution of the thin film layer 6 is concaved by adjusting the amount distribution of the vapor deposition material from the opening 4. 1b ”). That is, a part of the plurality of vapor deposition units 1 is the unit 1a, and the whole or a part of the remaining part is the unit 1b.
  • the thin film layer 6 having a convex thickness distribution (convex thin film layer 6a) and the thin film layer having a concave thickness distribution (concave thin film layer 6b) are laminated, and thus formed by vapor deposition. It is possible to make the distribution of the thickness of the entire laminate close to a constant value. And when the thickness of the center part in the organic layer 13 which is a laminated body and the thickness of a side part approach constant, the light emission luminance of a center part and a side part will approach the same grade more.
  • the plurality of vapor deposition units 1 may include a flat distribution vapor deposition unit having a flat film thickness distribution.
  • the high temperature vapor deposition unit may be arrange
  • the high temperature vapor deposition unit is a unit for vapor deposition at a higher vapor deposition temperature than the vapor deposition on a hot wall such as the unit 1a and the unit 1b.
  • a high-temperature vapor deposition unit can be used for vapor deposition of a metal such as Al used for the cathode or a metal-containing layer (Mg, ITO, MoO 3 , Li 2 MoO 3, etc.) in the organic layer 13.
  • the thin film layer 6 formed by the high temperature vapor deposition unit may have a uniform thickness distribution in the width direction, or may be convex or concave.
  • FIG. 8 shows an example of the thin film layer 6.
  • FIG. 8A is an example of the convex thin film layer 6a formed by the unit 1a.
  • the thickness gradually increases as it approaches the central portion from both side portions, and the central portion protrudes in the thickness direction.
  • the unit 1a forms a layer having a convex film thickness distribution when the thin film layer 6 is formed on a flat surface.
  • FIG. 8B is an example of the concave thin film layer 6b formed by the unit 1b.
  • the thickness is gradually reduced from the both sides toward the center, and the center is recessed in the thickness direction.
  • the unit 1b forms a layer having a concave thickness distribution when the thin film layer 6 is formed on a flat surface.
  • the unit 1b should just form the thin film layer 6 by the film thickness distribution which has a recessed part which thickness became small as it approached the center part from the side part.
  • the amount of vapor deposition may decrease at the edge of the opening 4.
  • the thickness of the thin film layer 6 may be reduced at the side edge as shown in FIG. Since such a thin film layer 6 also has a recess at the center, it becomes a concave thin film layer 6b.
  • the blocking effect at the center portion by adjusting the emission amount distribution due to the shape of the opening 4 decreases, and in this case, the thickness of the thin film layer 6 increases at the center portion as shown in FIG. 8D.
  • the thickness of the portion protruding at the center is preferably smaller than the thickness of the portion protruding at the side.
  • the shape of the opening 4 in the unit 1a is preferably different from the shape of the opening 4 in the unit 1b.
  • the thin film layer 6 can be easily formed in a convex shape or a concave shape.
  • the area of the opening 4 in the unit 1b is made smaller than the opening area of the opening 4 in the unit 1a, so that the amount of vapor deposition material is released in the central part of the opening 4 less than the side part. To do. Then, the vapor deposition material can be laminated with a concave film thickness distribution to form the concave thin film layer 6b.
  • the film thickness distribution of the thin film layer 6 can be easily made convex or concave by the shape of the opening 4 of the cylindrical body 3 in plan view.
  • the first side wall 30a of the cylindrical body 3 in the plurality of vapor deposition units 1 is formed in a direction parallel to the transport direction so that the long side constituting the opening edge of the opening 4 becomes an arc shape by the curved portion 31. Projecting along.
  • the film thickness distribution can be smoothly changed from the side portion to the center portion of the thin film layer 6.
  • the long side of the arc-shaped first side wall 30 a is a curved curve that passes through the corners 4 a and 4 a arranged in the width direction in the opening 4. Yes.
  • This curve may be part of a circle or part of an ellipse.
  • the length of the shortest portion between the first side walls 30a, 30a facing each other in the transport direction (the length between the central portions of the facing curved portions 31, 31) L4 and each first side wall 30a.
  • the planar view shape of the opening 4 can be changed.
  • both the lengths L4 and L2 may be different.
  • the length L2 is a dimension between the corner portions 4a and 4a.
  • the change in the emission amount distribution due to the shape of the opening 4 in plan view will be described.
  • the length L4 of the shortest portion between the first side walls 30a and 30a facing each other in the transport direction is made different between the unit 1a and the unit 1b.
  • the planar view shape can be changed.
  • the emission amount distribution and the emission amount area of the opening 4 can be easily changed. That is, the length L4 in the unit 1b is shorter than the length L4 in the unit 1a.
  • the form of FIG. 13 shows the opening 4 of the unit 1b
  • the form of FIG. 12A shows the opening 4 of the unit 1a.
  • the opening length in the transport direction is longer in the central portion in the width direction of the opening 4 than in FIG. In the central portion of the opening 4, more vapor deposition material is released, and the thin film layer 6 can be formed thick, so that a convex thickness distribution as shown in FIG. 8A can be formed.
  • the thin film layer 6 can be formed thin, and a concave film thickness distribution as shown in FIG. 8B can be formed.
  • the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape.
  • the length (the length between the base portions of the curved portion 31) L2 in the direction (width direction) perpendicular to the conveying direction of the curved portion 31 of the first side wall 30a is set to the unit 1a. It is also possible to change the shape of the opening 4 in plan view by making it different between the unit 1b and the unit 1b. In this case, the emission amount distribution and the emission amount area of the opening 4 can be easily changed. That is, the length L2 in the unit 1b is made shorter than the length L2 in the unit 1a.
  • the form of FIG. 11 shows the opening 4 of the unit 1a
  • the form of FIG. 12B shows the opening 4 of the unit 1b.
  • FIG. 11 shows the opening 4 of the unit 1a
  • the opening area is larger than that of FIG. 11 at the side portion in the width direction of the opening 4. Then, on the side of the opening 4, more vapor deposition material is released to form the thin film layer 6 thicker, and to form a concave thickness distribution as shown in FIG. it can.
  • the opening area of the side part in the width direction of the opening 4 is smaller than that of the form of FIG. 12B, the amount of the vapor deposition material released is reduced at the side part of the opening 4.
  • the thin film layer 6 can be formed thin to form a convex thickness distribution as shown in FIG. 8A.
  • the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape.
  • the base part of the curved part 31 of the 1st side wall 30a will be arrange
  • the curved portion 31 of the first side wall 30a has an arc shape in which a long side is partially cut out and protrudes along a direction parallel to the conveying direction. 4 opening edges are formed.
  • the circular radius R drawn by the curved portion 31 shown in FIG. 13 may be made different for each vapor deposition unit 1. That is, the circular radius R by the curved portion 31 in the unit 1a is made different from the circular radius by the curved portion 31 in the unit 1b.
  • the planar view shape of the opening part 4 can be changed. In this case, the emission amount distribution and the emission area of the opening 4 can be easily changed.
  • the circular radius R by the curved portion 31 in the unit 1b is made smaller than the circular radius R by the curved portion 31 in the unit 1a. Then, in the unit 1a, the distance between the outer edge and the center of the circle becomes shorter, the radius of curvature (R) drawn by the outer edge becomes smaller, and the curved portion 31 becomes more protruded. In the central portion, the opening ratio is smaller than that of the unit 1a. In the concave distribution vapor deposition unit 1b, the amount of the vapor deposition material is reduced at the center of the opening 4, the thin film layer 6 is formed thin, and a concave film thickness distribution as shown in FIG. 8B is formed. can do.
  • the thin film layer 6 can be formed thick and a convex thickness distribution as shown in FIG. 8A can be formed.
  • the radius R of the curved portion 31 of the first side wall 30a the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape.
  • the radius R is changed, for example, the circular shape can pass through the corners 4 a and 4 a of the opening 4.
  • the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape. Also, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape by changing the ratio of the major axis to the minor axis length of the ellipse.
  • FIG. 14 shows another example of the first side wall 30a.
  • the first side wall 30a is formed so that its central portion protrudes in a direction parallel to the transport direction from both side portions (corner portions 4a). That is, the plan view shape assuming the first side wall 30a and virtual straight lines connecting the corners 4a and 4a at both ends thereof is trapezoidal.
  • the shape of the opening 4 in plan view is that the length (dimension) L4 of the central portion in the transport direction X is narrower than the length of the side portion, so that the amount of vapor deposition material released becomes closer to the central portion at the side portion.
  • the thin film layer 6 can be formed so that the amount of the vapor deposition material released does not become too small at the center.
  • the protruding portion 32 is formed to include a central flat portion 32a and inclined portions 32b at both end portions of the flat portion 32a.
  • each vapor deposition unit 1 two paired first side walls 30 a are arranged along a direction parallel to the transport direction X of the vapor deposition target 10. That is, the upstream first side wall 30a is disposed on the upstream side in the transport direction X of the deposition target 10, and the downstream first side wall 30a is disposed on the downstream side in the transport direction X of the deposition target 10. Is arranged.
  • the upstream first side wall 30 a is formed such that the protruding portion 32 protrudes from the upstream side in the transport direction X toward the downstream side.
  • the first side wall 30a on the upstream side is formed such that the center portion in the width direction (direction perpendicular to the transport direction X) protrudes from the upstream side in the transport direction X toward the downstream side than the end portion in the width direction.
  • the first side wall 30a on the downstream side is formed such that the protruding portion 32 protrudes from the downstream side in the transport direction X toward the upstream side.
  • the downstream first side wall 30a is formed such that the center portion in the width direction (direction perpendicular to the transport direction X) protrudes from the downstream side in the transport direction X toward the upstream side from the end portion in the width direction.
  • the amount of vapor deposition on the vapor deposition target 10 can be made closer to a value closer to the center and the side.
  • both ends in the width direction of the opening 4 are equal to the positions of the corners 4a and 4a.
  • the film thickness distribution of the thin film layer 6 can be adjusted to be convex or concave by making the area of the opening 4 in the unit 1a different from the area of the opening 4 in the unit 1b. Further, even if the area of the opening 4 is the same, if the shape of the opening 4 is changed so that the ratio of the emission amount distribution in the center changes, the film thickness distribution of the thin film layer 6 is convex. It can be adjusted to mold or concave. In other words, in the central portion of the opening 4, the distance between the opposing first side walls 30 a, 30 a (the length between the planar portions 32 a, 32 a of the opposing protrusions 32, 32) L4 is easily reduced. The discharge amount of the vapor deposition material in the vicinity of the central portion can be reduced, and the film thickness distribution can be made concave.
  • the planar view shape of the opening 4 can be changed.
  • both the lengths L4 and L2 may be different.
  • the change in the emission amount distribution by the emission amount adjusting structure 50 will be described.
  • FIGS. 14 and 15A for example, by changing the length L4 of the central portion of the opening 4 in the transport direction X between the unit 1a and the unit 1b, the planar view shape of the opening 4 is changed. be able to. In this case, the emission amount distribution and the emission area from the opening 4 can be easily changed. That is, the length L4 of the central portion of the opening 4 in the unit 1b is shorter than the length L4 of the central portion of the opening 4 in the unit 1a.
  • the form of FIG. 14 shows the opening 4 of the unit 1b
  • the form of FIG. 15A shows the opening 4 of the unit 1a.
  • the length L4 in the transport direction is longer in the central portion in the width direction of the opening 4 than in FIG. In the central portion of the opening 4, more vapor deposition material is released, and the thin film layer 6 can be formed thick, so that a convex thickness distribution as shown in FIG. 8A can be formed.
  • the center part in the width direction of the opening 4 has a length L4 in the transport direction shorter than that of the form of FIG. 15A. Therefore, the thin film layer 6 can be formed thin, and a concave film thickness distribution as shown in FIG. 8B can be formed.
  • the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape.
  • the plane of the opening 4 can also be obtained by making the length L2 in the direction (width direction) perpendicular to the conveying direction of the opening 4 different between the unit 1a and the unit 1b.
  • the visual shape can be changed.
  • the emission amount distribution and the emission area from the opening 4 can be easily changed. That is, the length L2 in the width direction on the base side of the protruding portion of the first side wall 30a in the unit 1b is shorter than the length L2 in the width direction on the base side of the protruding portion of the first side wall 30a in the unit 1a.
  • the form of FIG. 14 shows the opening 4 of the unit 1a, and the form of FIG.
  • FIG. 15B shows the opening 4 of the unit 1b.
  • the opening area is larger than that of FIG. 14 at the side portion in the width direction of the opening 4.
  • more vapor deposition material is released, so that the thin film layer 6 can be formed thick, and a concave film thickness distribution as shown in FIG. 8B or the like can be formed.
  • the opening area of the side part in the width direction of the opening 4 is smaller than that of the form of FIG. 15B, the emission amount of the vapor deposition material is reduced at the side part of the opening 4,
  • the thin film layer 6 can be formed thin to form a convex thickness distribution as shown in FIG. 8A.
  • the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape by changing the length L2 in the width direction of the protruding portion of the first side wall 30a.
  • the length L2 between the base parts of the protrusion part 32 of the 1st side wall 30a becomes shorter than the length of the width direction of the opening part 4, and will be arrange
  • the thin film layer can also be obtained by changing the width direction length L3 of the flat portion 32a of the protruding portion 32 of the first side wall 30a shown in FIG. 15B in the same manner as in the case of the length L2 on the base side. 6 can be divided into a convex shape and a concave shape. That is, if the length L3 is made longer, the amount of vapor deposition material released at the central portion in the width direction is reduced, so that the film thickness distribution of the thin film layer 6 can be made closer to a concave shape.
  • the discharge ratio at the center of the opening 4 in the unit 1b is smaller than the discharge ratio at the center of the opening 4 in the unit 1a.
  • the emission ratio at the center of the opening 4 is increased or decreased, the amount of the vapor deposition material released in the vicinity of the center can be easily controlled, and the film thickness distribution can be made convex or concave. It can be done.
  • the area of the emission region H of the opening 4 in the unit 1b is smaller than the area of the emission region H of the opening 4 in the unit 1a.
  • the area of the emission region H of the opening 4 is reduced, the amount of vapor deposition material released in the vicinity of the center can be easily reduced, and the film thickness distribution can be made concave.
  • the length L4 between the protruding portions 32, 32 of the first side walls 30a, 30a facing each other is fixed as a line segment of the corners 4a, 4a in the width direction of the opening 4, and the emission region H is reduced.
  • the amount of discharge in the vicinity of the central portion can be reduced, and the film thickness distribution can be made concave.
  • the area of the emission region H of the opening 4 in the unit 1b is larger than the area of the emission region H of the opening 4 in the unit 1a.
  • the area of the emission region H of the opening 4 is increased, the amount of vapor deposition material released from the side can be easily increased, and the film thickness distribution can be made concave.
  • the length L4 between the opposing first side walls 30a and 30a is fixed and the length L2 in the width direction of the opening 4 is shortened, the area of the emission region H of the opening 4 of the opening 4 is increased.
  • the discharge amount at the side portion can be increased, and the film thickness distribution can be made concave.
  • the emission region H of the opening 4 is line symmetric with respect to a line that bisects the opening 4 in the width direction. Thereby, the emission amount distribution from the side part in the width direction to the center part becomes symmetrical in the width direction, and adjustment of the film thickness of the entire laminate is facilitated.
  • the discharge region H of the opening 4 is line-symmetric with respect to a line obtained by dividing the opening 4 into two in the transport direction X. Thereby, it can suppress that a film thickness varies in a conveyance direction.
  • the first side wall 30a can have the same shape.
  • the shape of the first side wall 30a in the plurality of vapor deposition units 1 has variability. Since the shape of the first side wall 30a has variability, the area of the opening 4 can be easily increased or decreased, or the length L4 in the transport direction and the length L2 in the width direction of the opening 4 can be easily changed. It is possible to easily adjust the emission amount distribution of the vapor deposition material.
  • FIG. 9 is an example of an organic EL element A manufactured using the organic EL manufacturing apparatus according to the present invention shown in FIGS.
  • the organic EL element A is transported from the plurality of vapor deposition units 1 to the thin film layers 6 on the surface of the vapor deposition target 10 while conveying the vapor deposition target 10 including the substrate 11 as shown in FIG. Can be manufactured by sequentially stacking layers by vapor deposition.
  • the organic electroluminescence device manufacturing apparatus of the embodiment shown in FIGS. 10 to 15 has the following characteristics.
  • the organic electroluminescence element manufacturing apparatus forms an organic layer by sequentially laminating thin film layers from a plurality of vapor deposition units on a conveyed vapor-deposited body.
  • Each of the plurality of vapor deposition units includes a vapor deposition source that radiates a vapor deposition material for forming the thin film layer, and a temperature at which the vapor deposition material is vaporized, and is emitted from the vapor deposition source.
  • a cylindrical body that discharges the vapor deposition material toward the deposition target. Further, the cylindrical body has an opening for discharging the vapor deposition material, and the opening is formed so that the discharge amount distribution of the vapor deposition material can be adjusted by a discharge amount adjusting structure.
  • the plurality of vapor deposition units may include a convex distributed vapor deposition unit in which a film thickness distribution of the thin film layer adjusted by the discharge amount adjusting structure is convex, and a thin film layer adjusted by the discharge amount adjusting structure. And a concave distributed vapor deposition unit having a concave thickness distribution.
  • emission amount adjustment structure is formed by the side wall of the said cylindrical body, and this side wall adjusts the discharge
  • an area of the emission region of the opening in the convex distributed vapor deposition unit is different from an area of the emission region of the opening in the concave distributed vapor deposition unit.
  • the side wall projects along a direction parallel to the transport direction of the deposition target to deform the shape of the opening in plan view.
  • the side wall has an arc shape and projects along a direction parallel to the transport direction of the deposition target to form an opening edge of the opening. Moreover, it is preferable that the length of the discharge region of the opening in the concave distribution vapor deposition unit in the transport direction is shorter than the length of the discharge region of the opening in the convex distribution vapor deposition unit.
  • the side wall has an arc shape and projects along a direction parallel to the transport direction of the deposition target to form an opening edge of the opening.
  • the length of the emission region of the opening in the concave distributed vapor deposition unit in the direction perpendicular to the conveyance direction is longer than the length of the emission region of the opening in the convex distributed vapor deposition unit in the direction perpendicular to the conveyance direction. Is preferably long.
  • the side wall is cut out in a circular shape by partially cutting out a circular shape, and protrudes along a direction parallel to the transport direction of the vapor-deposited body. Is forming. Moreover, it is preferable that the circular radius of the side wall in the concave distributed vapor deposition unit is smaller than the circular radius of the side wall in the convex distributed vapor deposition unit.
  • the said side wall has a protrusion part, and the protrusion part protrudes along the direction parallel to the conveyance direction of the said to-be-deposited body, and forms the opening edge part of the said opening part. .
  • the length of the discharge region of the opening in the concave distribution vapor deposition unit in the transport direction is shorter than the length of the discharge region of the opening in the convex distribution vapor deposition unit.
  • the said side wall has a protrusion part, and the protrusion part protrudes along the direction parallel to the conveyance direction of the said to-be-deposited body, and forms the opening edge part of the said opening part. .
  • the length in the direction perpendicular to the transport direction of the discharge region of the opening in the concave distribution vapor deposition unit is longer than the length of the discharge region of the opening in the convex distribution vapor deposition unit in the direction perpendicular to the transport direction. Is preferably long.
  • the said side wall has a protrusion part, and the protrusion part protrudes along the direction parallel to the conveyance direction of the said to-be-deposited body, and forms the opening edge part of the said opening part.
  • the emission rate of the emission region of the opening in the concave distribution vapor deposition unit is smaller than the emission rate of the emission region of the opening in the convex distribution vapor deposition unit.
  • Example 1 Using the organic EL manufacturing apparatus having a plurality of vapor deposition units 1 as shown in FIG. 1, the organic layer 13 was laminated in-line to manufacture the organic EL element A.
  • the discharge amount adjusting plate 5 in each vapor deposition unit 1 As the discharge amount adjusting plate 5 in each vapor deposition unit 1, as shown in FIG. 2, the outer edge is arcuate and protrudes along a direction parallel to the transport direction from both the upstream and downstream sides in the transport direction.
  • blocks 4 was used.
  • the length of the opening 4 in the transport direction is about 100 mm, and the length in the width direction is 300 mm.
  • ITO was formed on the surface of the transparent substrate 11 as the first electrode 12 (anode).
  • the transparent substrate 11 was placed with the first electrode 12 facing down, and was transported by the transport device 20 as the deposition target 10.
  • the organic layer 13 was formed by sequentially laminating the layers constituting the organic layer 13 by discharging the vapor deposition material upward from the vapor deposition units 1 on the surface of the first electrode 12.
  • the organic layer 13 includes a first hole injection layer, a first hole transport layer, a first light emitting layer, a second light emitting layer, a first electron transport layer, an electron injection layer, a first intermediate layer, and a second intermediate layer.
  • a layer (each thin film layer 6) composed of a layer, a second hole injection layer, a second hole transport layer, a third light emitting layer, and a second electron transport layer.
  • the first hole injection layer a co-evaporated body of 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD) and molybdenum oxide (MoO 3 ) is used.
  • the film was formed with a thickness of 30 nm.
  • ⁇ -NPD was used and formed with a thickness of 40 nm.
  • the first light-emitting layer a layer in which 7% by mass of rubrene was co-evaporated on Alq 3 was used, and a film was formed with a thickness of 20 nm.
  • the second light-emitting layer 4,4′-bis (2,2′-diphenyl-ethen-1-yl) -diphenyl (BPVBI) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] are used.
  • each layer was formed by unit 1a.
  • Alq 3 was used as the first electron transporting layer and formed with a thickness of 30 nm. And about the 1st electron carrying layer, it formed by the unit 1b.
  • the electron injecting layer was deposited Li 2 MoO 4 in a thickness 3 nm.
  • the electron injection layer was formed by vapor deposition using a high temperature vapor deposition unit.
  • the first intermediate layer Mg was used and was formed with a thickness of 1 nm.
  • the second intermediate layer ITO was used and formed into a film with a thickness of 3 nm.
  • MoO 3 which is a hole injecting metal oxide was used and was formed to a thickness of 1 nm.
  • each layer was vapor-deposited with the high temperature vapor deposition unit.
  • ⁇ -NPD was used as the second hole transport layer and formed with a thickness of 40 nm. And about the 2nd hole transport layer, it formed by the unit 1a.
  • the third light emitting layer a layer obtained by co-evaporating 3% by mass of 4- (Dicyanomethylene) -2-methyl-6- (julolidin-4-yl-vinyl) -4H-pyran (DCM2) on BPVBI with a thickness of A film was formed at 20 nm.
  • DCM2 julolidin-4-yl-vinyl
  • Alq 3 was used and formed with a thickness of 30 nm.
  • the third light emitting layer and the second electron transport layer were formed by the unit 1b.
  • the unit 1a uses two discharge amount adjusting plates 5 each having a shape with a radius of 900 mm (diameter 1800 mm) cut out, and each discharge amount adjusting plate 5 has a length of 300 mm in the width direction and a conveying direction.
  • the opening 4 is cut off with a length of about 12.59 mm.
  • the unit 1b uses two discharge amount adjusting plates 5 each having a shape of a circular shape with a radius of 750 mm (diameter 1500 mm), and each discharge amount adjusting plate 5 has a length of 300 mm in the width direction and a length of about 10 mm in the transport direction.
  • the opening 4 is cut off at 15.15 mm.
  • the high temperature vapor deposition unit used in this example is a vapor deposition unit that performs vapor deposition at a higher temperature than the units 1a and 1b.
  • the same organic EL device can be manufactured even if the hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer, intermediate layer, and cathode are formed of other materials. Further, the intermediate layer may not be laminated.
  • an organic EL element A was obtained.
  • the film thickness distributions of the first electron transport layer, the third light emitting layer, and the second electron transport layer are at least concave.
  • the in-plane film thickness distribution of the organic layer 13 was averaged to be ⁇ 3% or less. That is, the error of the film thickness with respect to the average film thickness is 3% or less, and the film thickness when the average film thickness is 100% falls within the range of the minimum value of 97% or more and the maximum value of 103% or less. Met.
  • the in-plane film thickness distribution of the organic layer 13 is about ⁇ 5% to ⁇ 10%. That is, the film thickness error with respect to the average film thickness is 5% or more, and it is difficult to make it smaller, and the film thickness error may be about 10%.
  • the in-plane film thickness distribution of the organic layer 13 is averaged, and the film thickness error is reduced. Therefore, it was possible to obtain an organic EL element A having excellent in-plane film thickness uniformity and more uniform in-plane light emission.
  • the organic EL element A of the present example is excellent in in-plane light emission uniformity, it is useful as a self-luminous display device or a lighting device, and can be used particularly as a surface light-emitting lighting panel. is there.
  • Example 2 The organic layer 13 was laminated
  • the first side wall 30 a has an arc shape and protrudes along a direction parallel to the transport direction from both the upstream and downstream sides in the transport direction to form the opening 4. did.
  • the length of the opening 4 in the transport direction is about 100 mm, and the length in the width direction is 300 mm.
  • ITO was formed on the surface of the transparent substrate 11 as the first electrode 12 (anode).
  • the transparent substrate 11 was placed with the first electrode 12 facing down, and was transported by the transport device 20 as the deposition target 10.
  • the organic layer 13 was formed by sequentially laminating the layers constituting the organic layer 13 by discharging the vapor deposition material upward from the vapor deposition units 1 on the surface of the first electrode 12.
  • the organic layer 13 includes a first hole injection layer, a first hole transport layer, a first light emitting layer, a second light emitting layer, a first electron transport layer, an electron injection layer, a first intermediate layer, and a second intermediate layer.
  • a layer (each thin film layer 6) composed of a layer, a second hole injection layer, a second hole transport layer, a third light emitting layer, and a second electron transport layer.
  • the first hole injection layer a co-evaporated body of 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD) and molybdenum oxide (MoO 3 ) is used.
  • the film was formed with a thickness of 30 nm.
  • ⁇ -NPD was used and formed with a thickness of 40 nm.
  • the first light-emitting layer a layer in which 7% by mass of rubrene was co-evaporated on Alq 3 was used, and a film was formed with a thickness of 20 nm.
  • the second light-emitting layer 4,4′-bis (2,2′-diphenyl-ethen-1-yl) -diphenyl (BPVBI) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] are used.
  • each layer was formed by convex distribution evaporation unit 1a.
  • Alq 3 was used as the first electron transporting layer and formed with a thickness of 30 nm. And about the 1st electron carrying layer, it formed with the concave distributed vapor deposition unit 1b.
  • the electron injecting layer was deposited Li 2 MoO 4 in a thickness 3 nm.
  • the electron injection layer was formed by vapor deposition using a high temperature vapor deposition unit.
  • the first intermediate layer Mg was used and was formed with a thickness of 1 nm.
  • the second intermediate layer ITO was used and formed into a film with a thickness of 3 nm.
  • MoO 3 which is a hole injecting metal oxide was used and was formed to a thickness of 1 nm.
  • each layer was vapor-deposited with the high temperature vapor deposition unit.
  • the second hole transport layer ⁇ -NPD was used and formed with a thickness of 40 nm.
  • the second hole transport layer was formed by the convex distributed vapor deposition unit 1a.
  • the third light emitting layer a layer obtained by co-evaporating 3% by mass of 4- (Dicyanomethylene) -2-methyl-6- (julolidin-4-yl-vinyl) -4H-pyran (DCM2) on BPVBI with a thickness of A film was formed at 20 nm.
  • DCM2 julolidin-4-yl-vinyl
  • Alq 3 was used and formed with a thickness of 30 nm.
  • the unit 1a uses two first side walls 30a having a shape obtained by cutting a circular arc having a radius of 900 mm (diameter 1800 mm), a length L2 in the width direction is 300 mm, and a length L4 in the transport direction is about
  • the discharge region H of the opening 4 is formed at 87.41 mm.
  • the unit 1b uses two first side walls 30a each having a shape of a circular arc having a radius of 750 mm (diameter 1500 mm), a length of 300 mm in the width direction, and a length of about 84.85 mm in the transport direction.
  • the release region H is formed.
  • the high temperature vapor deposition unit used in this example is a vapor deposition unit that performs vapor deposition at a higher temperature than the units 1a and 1b.
  • the same organic EL device can be manufactured even if the hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer, intermediate layer, and cathode are formed of other materials. Further, the intermediate layer may not be laminated.
  • an organic EL element A was obtained.
  • the film thickness distributions of the first electron transport layer, the third light emitting layer, and the second electron transport layer are at least concave.
  • the in-plane film thickness distribution of the organic layer 13 was averaged to be ⁇ 3% or less. That is, the error of the film thickness with respect to the average film thickness is 3% or less, and the film thickness when the average film thickness is 100% falls within the range of the minimum value of 97% or more and the maximum value of 103% or less. Met.
  • the in-plane film thickness distribution of the organic layer 13 is about ⁇ 5% to ⁇ 10%. That is, the film thickness error with respect to the average film thickness is 5% or more, and it is difficult to make it smaller, and the film thickness error may be about 10%.
  • the in-plane film thickness distribution of the organic layer 13 is averaged, and the film thickness error is reduced. Therefore, it was possible to obtain an organic EL element A having excellent in-plane film thickness uniformity and more uniform in-plane light emission.
  • the organic EL element A of the present example is excellent in in-plane light emission uniformity, it is useful as a self-luminous display device or a lighting device, and can be used particularly as a surface light-emitting lighting panel. is there.
  • a Organic electroluminescent element 1 Deposition unit 1a Convex distribution vapor deposition unit 1b Concave distribution vapor deposition unit 2 Deposition source 3 Cylindrical body 4 Opening part 5 Emission amount adjustment plate 6 Thin film layer 6a Convex thin film layer 6b Concave thin film layer 10 Deposited body 11 Substrate 12 First electrode 13 Organic layer 14 Second electrode 30 Side wall

Abstract

[Problem] To provide an apparatus for manufacturing organic electroluminescent elements having a more uniform luminance. [Solution] The present invention pertains to an organic electroluminescent element manufacturing apparatus that forms an organic layer (13) by sequentially laminating, by means of vapor deposition, thin-film layers (6) from a plurality of vapor deposition units (1) on vapor deposition target bodies (10) being conveyed. Each vapor deposition unit (1) is provided with an evaporation source (2) that emits a vapor deposition material for forming the thin-film layers (6), and a cylindrical body (3) that discharges the vapor deposition material emitted from the evaporation source (2) toward a deposition target body (10). The cylindrical body has an opening through which the vapor deposition material is discharged. The opening adjustably forms a discharge amount distribution of the vapor deposition material using a discharge amount regulating structure. The plurality of vapor deposition units (1) each have a convex distribution vapor deposition unit (1a) in which the film thickness distribution of the thin-film layers (6) regulated by the discharge amount regulating structure (50) takes on a convex form, and a concave distribution vapor deposition unit (1b) in which the film thickness distribution of the thin-film layers (6) regulated by the discharge amount regulating structure (50) takes on a concave shape. Luminance can be made more uniform by bringing the thickness of laminated bodies formed by vapor deposition uniformly close.

Description

有機エレクトロルミネッセンス素子製造装置及び有機エレクトロルミネッセンス素子の製造方法Organic electroluminescence device manufacturing apparatus and organic electroluminescence device manufacturing method
 本発明は、有機エレクトロルミネッセンス素子を製造する装置、及び、その装置を用いて有機エレクトロルミネッセンス素子を製造する方法に関する。 The present invention relates to an apparatus for producing an organic electroluminescence element and a method for producing an organic electroluminescence element using the apparatus.
 従来、ラインに基板を搬送し、この基板を被蒸着体として表面に順次に薄膜を蒸着して積層して有機エレクトロルミネッセンス素子(以下「有機EL素子」ともいう)を製造することが知られている。例えば、特許文献1には、独立して雰囲気及び真空度を制御可能な複数の処理室と、複数の処理室へ基板を連続的に搬送する搬送手段とを有し、この複数の処理室において所定の処理を行って、有機エレクトロルミネセンス素子を製造する装置が開示されている。このようなインライン式の製造装置により、有機薄膜を順次に積層できるので有機EL素子の製造効率が向上する。 Conventionally, it is known to manufacture an organic electroluminescence element (hereinafter also referred to as “organic EL element”) by transporting a substrate to a line, sequentially depositing and laminating thin films on the surface of the substrate as a deposition target. Yes. For example, Patent Document 1 includes a plurality of processing chambers that can independently control the atmosphere and the degree of vacuum, and a transport unit that continuously transports the substrate to the plurality of processing chambers. An apparatus for manufacturing an organic electroluminescent element by performing a predetermined treatment is disclosed. With such an in-line manufacturing apparatus, organic thin films can be sequentially stacked, so that the manufacturing efficiency of the organic EL element is improved.
特開2005-285576号公報JP 2005-285576 A
 従来の搬送型(インライン式)の有機EL素子製造装置においては、蒸着材料が中央で大きく端部で小さくなる量分布で蒸着されるため、断面形状が凸型になって成膜されるおそれがある。 In the conventional transport type (in-line type) organic EL element manufacturing apparatus, the vapor deposition material is deposited with an amount distribution that is large at the center and small at the end, so that the film may be formed with a convex cross-sectional shape. is there.
 図16は、従来の有機EL素子製造装置によって製造した有機EL素子Aの一例である。この有機EL素子Aでは、基板11の表面に、陽極となる第1電極12が形成され、その表面に、有機層13、及び、陰極となる第2電極14が積層されて形成されている。この形態では、有機層13は、基板11側から、ホール輸送層13a、発光層13b、電子輸送層13c、中間層13d、ホール輸送層13e、発光層13f、電子輸送層13gの順に積層されており、これらの各層は蒸着によって形成されている。また、第2電極14は、電子輸送層13gの表面に電極材料が蒸着されることによって形成されている。そして、蒸着された各層においては、蒸着材料が中央部分において端部(両側部)よりもより多く積層されるため、中央部で厚みが厚くなるとともに側部になるほど厚みが薄くなる凸形状の厚み分布となっている。したがって、蒸着によって形成される有機層13全体においても、中央部で厚みが厚くなるとともに両側部においは厚みが小さくなり、凸形状の厚み分布となって形成されることになる。 FIG. 16 is an example of an organic EL element A manufactured by a conventional organic EL element manufacturing apparatus. In this organic EL element A, a first electrode 12 serving as an anode is formed on the surface of a substrate 11, and an organic layer 13 and a second electrode 14 serving as a cathode are laminated on the surface. In this embodiment, the organic layer 13 is laminated in the order of the hole transport layer 13a, the light emitting layer 13b, the electron transport layer 13c, the intermediate layer 13d, the hole transport layer 13e, the light emitting layer 13f, and the electron transport layer 13g from the substrate 11 side. Each of these layers is formed by vapor deposition. The second electrode 14 is formed by evaporating an electrode material on the surface of the electron transport layer 13g. In each of the deposited layers, the deposition material is stacked more at the center portion than at the end portions (both side portions). Therefore, the thickness of the convex shape becomes thicker at the center portion and thinner toward the side portions. Distribution. Therefore, also in the whole organic layer 13 formed by vapor deposition, the thickness is increased at the central portion and the thickness is decreased at both side portions, so that a convex thickness distribution is formed.
 このように、積層体で構成される有機層13が中央部で厚みが厚くなり、側部で厚みが薄くなると、基板中央部と基板端部との発光輝度が異なってしまうといった問題が生じる。すなわち、光は干渉を利用して素子外部に取り出されることが多く、中央部と側部とで膜厚が異なると干渉の度合いが異なることになり、発光輝度に偏りができやすくなる。特に、比較的大きな面積で発光するような発光パネルなどにおいては、面内の発光の均一性が低下し、発光体としての機能を損ねるおそれがある。 As described above, when the organic layer 13 composed of the laminate is thick at the center and thin at the side, there is a problem in that the light emission luminance is different between the center of the substrate and the end of the substrate. That is, light is often extracted to the outside of the element by using interference, and if the film thickness is different between the central portion and the side portion, the degree of interference will be different, and the light emission luminance is likely to be biased. In particular, in a light-emitting panel that emits light in a relatively large area, the uniformity of in-plane light emission is lowered, and the function as a light emitter may be impaired.
 積層体の厚みを揃えるために、有機層13の各層を構成する蒸着材料の放出量を側部と中央部とで一定になるような分布に制御して、膜厚の均一な層を蒸着により積層させることも考えられる。しかしながら、搬送される被蒸着体に対し、蒸着量を被蒸着領域全体に一定に揃えて層を形成することは難しく、しかも複数の層の全ての層について厚みを一定に制御することは困難であり、かえって製造効率を悪化させるおそれがある。 In order to make the thickness of the laminated body uniform, the amount of vapor deposition material constituting each layer of the organic layer 13 is controlled to be a distribution that is constant at the side portion and the central portion, and a layer having a uniform thickness is deposited by vapor deposition. Lamination is also conceivable. However, it is difficult to form a layer with a constant deposition amount over the entire deposition area for the object to be transported, and it is difficult to control the thickness of all the layers to be constant. On the contrary, there is a possibility that the production efficiency is deteriorated.
 本発明は上記の事情に鑑みてなされたものであり、発光輝度がより均一な有機エレクトロルミネッセンス素子を製造する装置を提供することを目的とする。また、発光輝度がより均一な有機エレクトロルミネッセンス素子を製造する方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an apparatus for producing an organic electroluminescence element having more uniform light emission luminance. Moreover, it aims at providing the method of manufacturing an organic electroluminescent element with more uniform luminescent brightness.
 本発明に係る有機エレクトロルミネッセンス素子製造装置は、搬送される被蒸着体に、複数の蒸着ユニットから薄膜層を蒸着により順次に積層して有機層を形成する有機エレクトロルミネッセンス素子製造装置であって、前記複数の蒸着ユニットにおける各蒸着ユニットは、前記薄膜層を形成するための蒸着材料を放射する蒸着源と、前記蒸着材料が気化される温度に加熱され、前記蒸着源から放射された前記蒸着材料を被蒸着体に向けて放出する筒状体とを備え、この筒状体は前記蒸着材料を放出する開口部を有し、この開口部は放出量調整構造により前記蒸着材料の放出量分布を調整可能に形成され、前記複数の蒸着ユニットは、前記放出量調整構造によって調整された前記薄膜層の膜厚分布が凸形状になる凸型分布蒸着ユニットと、前記放出量調整構造によって調整された前記薄膜層の膜厚分布が凹形状になる凹型分布蒸着ユニットとを有することを特徴とするものである。 The organic electroluminescence element manufacturing apparatus according to the present invention is an organic electroluminescence element manufacturing apparatus for forming an organic layer by sequentially laminating a thin film layer from a plurality of vapor deposition units on a transported deposition target, Each of the plurality of vapor deposition units includes a vapor deposition source that radiates a vapor deposition material for forming the thin film layer, and the vapor deposition material that is heated to a temperature at which the vapor deposition material is vaporized and radiated from the vapor deposition source. And a cylindrical body that discharges the vapor deposition material toward the deposition target body, and the cylindrical body has an opening that discharges the vapor deposition material. The plurality of vapor deposition units formed so as to be adjustable, and a convex distribution vapor deposition unit in which the film thickness distribution of the thin film layer adjusted by the discharge amount adjustment structure becomes a convex shape, Film thickness distribution of the thin film layer which is adjusted by the serial emission amount adjustment structure is characterized in that it has a concave profile evaporation unit becomes concave.
 本発明にあっては、前記放出量調整構造は放出量調整板を有し、この放出量調整板は前記蒸着材料が気化される温度に加熱され、前記開口部を部分的に遮断して前記開口部からの前記蒸着材料の放出量分布を調整するものであることが好ましい。 In the present invention, the discharge amount adjusting structure includes a discharge amount adjusting plate, and the discharge amount adjusting plate is heated to a temperature at which the vapor deposition material is vaporized to partially block the opening and It is preferable to adjust the discharge amount distribution of the vapor deposition material from the opening.
 本発明にあっては、前記凸型分布蒸着ユニットにおける前記放出量調整板の遮断面積と、前記凹型分布蒸着ユニットにおける前記放出量調整板の遮断面積とが異なることが好ましい。 In the present invention, it is preferable that the blocking area of the discharge amount adjusting plate in the convex distributed vapor deposition unit is different from the blocking area of the discharge amount adjusting plate in the concave distributed vapor deposition unit.
 好ましい一形態では、前記放出量調整板は、外縁が円弧状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部を部分的に遮断しており、前記凸型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向の長さよりも、前記凹型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向の長さが長い。 In a preferred embodiment, the discharge amount adjusting plate has an outer edge formed in an arc shape and protrudes along a direction parallel to the transport direction of the deposition target to partially block the opening, and the convex shape The length in the carrying direction of the blocking region by the discharge amount adjusting plate in the concave distributed vapor deposition unit is longer than the length in the carrying direction of the blocking region by the discharge amount adjusting plate in the distributed vapor deposition unit.
 好ましい一形態では、前記放出量調整板は、外縁が円弧状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部を部分的に遮断しており、前記凸型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向に垂直な方向の長さよりも、前記凹型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向に垂直な方向の長さが短い。 In a preferred embodiment, the discharge amount adjusting plate has an outer edge formed in an arc shape and protrudes along a direction parallel to the transport direction of the deposition target to partially block the opening, and the convex shape The length in the direction perpendicular to the transport direction of the blocking region by the discharge amount adjusting plate in the concave distributed deposition unit is longer than the length in the direction perpendicular to the transport direction of the blocking region by the discharge amount adjusting plate in the distributed deposition unit. Is short.
 好ましい一形態では、前記放出量調整板は、円形の一部が切り出されて外縁が円弧状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部を部分的に遮断しており、前記凸型分布蒸着ユニットにおける前記放出量調整板による前記円形の半径よりも、前記凹型分布蒸着ユニットにおける前記放出量調整板による前記円形の半径の方が小さい。 In a preferred embodiment, the discharge amount adjusting plate is partially cut out so that the outer edge has an arc shape and projects along a direction parallel to the transport direction of the deposition target, so that the opening is partially formed. The circular radius by the discharge amount adjusting plate in the concave distributed vapor deposition unit is smaller than the circular radius by the discharge amount adjusting plate in the convex distributed vapor deposition unit.
 好ましい一形態では、前記放出量調整板は、台形状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部を部分的に遮断しており、前記凸型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向の長さよりも、前記凹型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向の長さが長い。 In a preferred embodiment, the discharge amount adjusting plate has a trapezoidal shape and protrudes along a direction parallel to the transport direction of the deposition target, partially blocking the opening, and the convex distributed deposition. The length in the transport direction of the blocking region by the discharge amount adjusting plate in the concave distributed vapor deposition unit is longer than the length in the transport direction of the blocking region by the discharge amount adjusting plate in the unit.
 好ましい一形態では、前記放出量調整板は、台形状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部を部分的に遮断しており、前記凸型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向に垂直な方向の長さよりも、前記凹型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向に垂直な方向の長さが短い。 In a preferred embodiment, the discharge amount adjusting plate has a trapezoidal shape and protrudes along a direction parallel to the transport direction of the deposition target, partially blocking the opening, and the convex distributed deposition. The length in the direction perpendicular to the carrying direction of the blocking region by the discharge amount adjusting plate in the concave distributed vapor deposition unit is shorter than the length in the direction perpendicular to the carrying direction of the blocking region by the discharge amount adjusting plate in the unit. .
 好ましい一形態では、前記放出量調整板は、台形状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部を部分的に遮断しており、前記凸型分布蒸着ユニットにおける前記放出量調整板による前記開口部の中央部での遮断割合よりも、前記凹型分布蒸着ユニットにおける前記放出量調整板による前記開口部の中央部での遮断割合の方が大きい。 In a preferred embodiment, the discharge amount adjusting plate has a trapezoidal shape and protrudes along a direction parallel to the transport direction of the deposition target, partially blocking the opening, and the convex distributed deposition. The blocking ratio at the central portion of the opening by the discharge amount adjusting plate in the concave distributed vapor deposition unit is larger than the blocking ratio at the central portion of the opening by the discharge amount adjusting plate in the unit.
 本発明にあっては、前記放出量調整構造は前記筒状体の側壁で形成され、この側壁は、前記開口部の平面視形状を変形することにより前記開口部からの前記蒸着材料の放出量分布を調整するものであることが好ましい。 In the present invention, the discharge amount adjusting structure is formed by a side wall of the cylindrical body, and the side wall is formed by changing the shape of the opening in plan view, thereby releasing the deposition material from the opening. It is preferable to adjust the distribution.
 本発明にあっては、前記側壁は、前記被蒸着体の搬送方向と平行な方向に沿って突出することにより、前記開口部の平面視形状を変形することが好ましい。 In the present invention, it is preferable that the side wall protrudes along a direction parallel to the transport direction of the vapor-deposited body, thereby deforming the planar view shape of the opening.
 上記の有機エレクトロルミネッセンス素子製造装置においては、前記複数の蒸着ユニットにおける前記放出量調整構造の形状が可変性を有することが好ましい。 In the organic electroluminescence element manufacturing apparatus, it is preferable that the shape of the emission amount adjusting structure in the plurality of vapor deposition units has variability.
 本発明に係る有機エレクトロルミネッセンス素子の製造方法は、上記の有機エレクトロルミネッセンス素子製造装置を用いて、有機エレクトロルミネッセンス素子を製造することを特徴とするものである。 The method for producing an organic electroluminescence element according to the present invention is characterized in that an organic electroluminescence element is produced using the above-described organic electroluminescence element production apparatus.
 本発明によれば、蒸着により積層される積層体の厚みを均一に近づけることができるので、発光輝度がより均一な有機エレクトロルミネッセンス素子を製造することができる。 According to the present invention, since the thickness of the laminated body laminated by vapor deposition can be made close to uniform, it is possible to produce an organic electroluminescence element with more uniform light emission luminance.
有機エレクトロルミネッセンス素子製造装置の実施の形態の一例を示す斜視図である。It is a perspective view which shows an example of embodiment of an organic electroluminescent element manufacturing apparatus. 蒸着ユニットの開口部の一例を示す平面図である。It is a top view which shows an example of the opening part of a vapor deposition unit. 図3A及び3Bは、蒸着ユニットの開口部の一例を示す平面図である。3A and 3B are plan views showing an example of the opening of the vapor deposition unit. 蒸着ユニットの開口部の遮断を説明する平面図である。It is a top view explaining interruption | blocking of the opening part of a vapor deposition unit. 蒸着ユニットの開口部の一例を示す平面図である。It is a top view which shows an example of the opening part of a vapor deposition unit. 図6A及び6Bは、蒸着ユニットの開口部の一例を示す平面図である。6A and 6B are plan views showing an example of the opening of the vapor deposition unit. 図7A及び7Bは、蒸着ユニットの開口部の一例を示す平面図である。7A and 7B are plan views showing an example of the opening of the vapor deposition unit. 図8A、8B、8C及び8Dは、薄膜層の一例を示す断面図である。8A, 8B, 8C, and 8D are cross-sectional views illustrating an example of a thin film layer. 有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of an organic electroluminescent element. 有機エレクトロルミネッセンス素子製造装置の他の実施の形態の一例を示す斜視図である。It is a perspective view which shows an example of other embodiment of an organic electroluminescent element manufacturing apparatus. 他の蒸着ユニットの開口部の一例を示す平面図である。It is a top view which shows an example of the opening part of another vapor deposition unit. 図12A及び12Bは、他の蒸着ユニットの開口部の一例を示す平面図である。12A and 12B are plan views showing an example of an opening of another vapor deposition unit. 他の蒸着ユニットの開口部の遮断を説明する平面図である。It is a top view explaining interruption | blocking of the opening part of another vapor deposition unit. 他の蒸着ユニットの開口部の一例を示す平面図である。It is a top view which shows an example of the opening part of another vapor deposition unit. 図15A及び15Bは、他の蒸着ユニットの開口部の一例を示す平面図である。15A and 15B are plan views illustrating an example of an opening of another vapor deposition unit. 従来の有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the conventional organic electroluminescent element.
 図1及び図2は、有機エレクトロルミネッセンス素子製造装置(以下「有機EL製造装置」ともいう)の一例を示している。この有機EL製造装置は、搬送される被蒸着体(ワーク)10に、複数の蒸着ユニット1から薄膜層6(図8、9参照)を蒸着により順次に積層して有機層13を形成することにより、有機エレクトロルミネッセンス素子(有機EL素子)を製造するものである。図1には、被蒸着体10の搬送方向(白抜き矢印)Xの上流から下流に向けて3個の蒸着ユニット1が順に配置された様子が図示されているが、蒸着ユニット1は4個以上であってもよい。例えば、蒸着して形成する薄膜層6の数と同じ数の蒸着ユニット1を用いることができる。なお、蒸着ユニット1は二つ以上であることが必要である。 1 and 2 show an example of an organic electroluminescence element manufacturing apparatus (hereinafter also referred to as “organic EL manufacturing apparatus”). This organic EL manufacturing apparatus forms an organic layer 13 by sequentially laminating thin film layers 6 (see FIGS. 8 and 9) from a plurality of vapor deposition units 1 on a transported deposition target (work) 10 by vapor deposition. Thus, an organic electroluminescence element (organic EL element) is manufactured. FIG. 1 illustrates a state in which three vapor deposition units 1 are sequentially arranged from the upstream side to the downstream side in the conveyance direction (white arrow) X of the deposition target 10. It may be the above. For example, the same number of vapor deposition units 1 as the number of thin film layers 6 formed by vapor deposition can be used. In addition, the vapor deposition unit 1 needs to be two or more.
 複数の蒸着ユニット1における各蒸着ユニット1は、薄膜層6を形成するための蒸着材料を放射する蒸着源2と、蒸着材料が気化される温度に加熱され、蒸着源2から放射された蒸着材料を被蒸着体10に向けて放出する筒状体3とを備えている。筒状体3は、断面矩形状の空洞を有する縦型の筒形状に形成されており、下部では蒸着源2と接続されるとともに、上部には気化した蒸着材料を上方に放出する開口部4が設けられている。このように筒状体3によって蒸着材料を被蒸着体10に向かって放出すれば、被蒸着体10に薄膜層6を積層することが可能になる。また、筒状体3が蒸着材料の気化温度以上の温度で加熱されていることにより、蒸着材料を筒状体3の内部に付着せずに開口部4から放出することができる。筒状体3は金属製にすることができる。また、蒸着は真空蒸着であってもよい。図1では、蒸着材料の放出を黒矢印で示している。 Each of the vapor deposition units 1 in the plurality of vapor deposition units 1 includes a vapor deposition source 2 that radiates a vapor deposition material for forming the thin film layer 6, and a vapor deposition material that is heated to a temperature at which the vapor deposition material is vaporized and emitted from the vapor deposition source 2. And a cylindrical body 3 that discharges toward the deposition target body 10. The cylindrical body 3 is formed in a vertical cylindrical shape having a cavity with a rectangular cross section, and is connected to the vapor deposition source 2 at the lower part and has an opening part 4 for discharging vaporized vapor deposition material upward at the upper part. Is provided. If the vapor deposition material is discharged toward the vapor deposition target 10 by the cylindrical body 3 in this way, the thin film layer 6 can be laminated on the vapor deposition target 10. Further, since the cylindrical body 3 is heated at a temperature equal to or higher than the vaporization temperature of the vapor deposition material, the vapor deposition material can be discharged from the opening 4 without adhering to the inside of the cylindrical body 3. The cylindrical body 3 can be made of metal. The vapor deposition may be vacuum vapor deposition. In FIG. 1, the release of the vapor deposition material is indicated by black arrows.
 筒状体3は四面の側壁30を有する角筒状に形成することができる。側壁30は、一対の第一側壁30aと、一対の第二側壁30bとで構成されている。各第一側壁30aは平板状である。また一対の第一側壁30aの対向する方向は搬送方向Xと平行な方向である。各第二側壁30bは平板状である。また一対の第二側壁30bの対向する方向は搬送方向Xと垂直な方向である。筒状体3は側壁30が蒸着材料の気化温度以上の温度で加熱されるホットウォール構造を有する。 The cylindrical body 3 can be formed in a square cylindrical shape having four side walls 30. The side wall 30 includes a pair of first side walls 30a and a pair of second side walls 30b. Each first side wall 30a has a flat plate shape. In addition, the direction in which the pair of first side walls 30a oppose is a direction parallel to the transport direction X. Each second side wall 30b has a flat plate shape. The direction in which the pair of second side walls 30b oppose is a direction perpendicular to the transport direction X. The cylindrical body 3 has a hot wall structure in which the side wall 30 is heated at a temperature equal to or higher than the vaporization temperature of the vapor deposition material.
 図2に示すように、本形態では、開口部4は、搬送方向Xと平行に短辺が配置されるとともに、搬送方向Xに垂直な方向と平行に長辺が配置された矩形形状に形成されている。それにより、搬送される被蒸着体10表面に、より均一な膜厚で薄膜層6を形成することができる。開口部4の短辺は第二側壁30bの上端縁部で形成されている。開口部4の長辺は第一側壁30aの上端縁部で形成されている。 As shown in FIG. 2, in this embodiment, the opening 4 is formed in a rectangular shape in which a short side is disposed in parallel with the transport direction X and a long side is disposed in parallel with a direction perpendicular to the transport direction X. Has been. Thereby, the thin film layer 6 can be formed with a more uniform film thickness on the surface of the vapor-deposited body 10 to be conveyed. The short side of the opening 4 is formed by the upper edge of the second side wall 30b. The long side of the opening 4 is formed by the upper edge of the first side wall 30a.
 また、各蒸着ユニット1は、筒状体3からの蒸着材料の放出量分布を調整する放出量調整構造50を備えている。すなわち、各蒸着ユニット1は、放出量調整構造50として、放出量調整板5を備える。この放出量調整板5は、筒状体3の開口部4の一部を遮断(閉塞)している。すなわち、放出量調整板5は、筒状体3の開口部4を部分的に遮断して筒状体3からの蒸着材料の放出量分布を調整する。この放出量調整板5は、蒸着材料が気化される温度に加熱されている。放出量調整板5が蒸着材料の気化温度以上の温度で加熱されていることにより、蒸着材料を放出量調整板5に付着させずに開口部4から放出することができる。放出量調整板5の温度は筒状体3と同じ温度であってもよいし異なっていてもよい。また、筒状体3と放出量調整板5とが熱伝達性を有して接続され、筒状体3を加熱することにより放出量調整板5を加熱することができれば、加熱機構を簡単にすることができる。放出量調整板5は金属製にすることができる。 Each vapor deposition unit 1 includes a discharge amount adjustment structure 50 that adjusts the discharge amount distribution of the vapor deposition material from the cylindrical body 3. That is, each vapor deposition unit 1 includes a discharge amount adjustment plate 5 as the discharge amount adjustment structure 50. The discharge amount adjusting plate 5 blocks (closes) a part of the opening 4 of the cylindrical body 3. That is, the discharge amount adjusting plate 5 partially blocks the opening 4 of the cylindrical body 3 to adjust the discharge amount distribution of the vapor deposition material from the cylindrical body 3. The discharge amount adjusting plate 5 is heated to a temperature at which the vapor deposition material is vaporized. Since the discharge amount adjusting plate 5 is heated at a temperature equal to or higher than the vaporization temperature of the vapor deposition material, the vapor deposition material can be discharged from the opening 4 without adhering to the discharge amount adjusting plate 5. The temperature of the discharge amount adjusting plate 5 may be the same as that of the cylindrical body 3 or may be different. In addition, if the cylindrical body 3 and the discharge amount adjusting plate 5 are connected with heat transfer properties and the discharge amount adjusting plate 5 can be heated by heating the cylindrical body 3, the heating mechanism can be simplified. can do. The discharge amount adjusting plate 5 can be made of metal.
 この蒸着ユニット1では、筒状体3の第二側壁30bの上端に放出量調整板5を設けることによって、平面視形状が矩形状の開口部4を部分的に遮断している。すなわち、放出量調整板5による開口部4の遮断領域S以外の領域は、蒸着材料が放出される放出領域Hとして形成されている。従って、筒状体3の放出領域Hの平面視形状は放出量調整板5の形状等により変形することができ、これにより、放出領域Hからの蒸着材料の放出分布を調整することができる。つまり、蒸着ユニット1にあっては、放出量調整板5を設けることで、簡単に蒸着材料の放出分布を調整し、蒸着量の分布を調整することができる。すなわち、放出量調整板5を設けていない矩形状の開口部4の全体が開口した蒸着ユニット1を用いた場合、搬送方向Xに垂直な方向(幅方向)の中央部分では蒸着材料が多く放出されるとともに、幅方向の側部には蒸着材料が少なく放出されることになる。すると、薄膜層6は膜厚分布が極端に突出する凸形状になって形成されることなり、中央部が大きく突出した層となる。中央部と側部との蒸着量をより近づけるために、筒状体3自体の開口の形状を変えることも考えられるが、その場合、装置構成が複雑になってしまうおそれがある。しかしながら、放出量調整板5を設けるようにすれば、放出量調整板5による遮断の状態を調整することによって、簡単に膜厚の分布を調整することができ、中央部と側部との蒸着量を近づけることができる。 In the vapor deposition unit 1, the discharge amount adjusting plate 5 is provided at the upper end of the second side wall 30 b of the cylindrical body 3 to partially block the opening 4 having a rectangular shape in plan view. That is, a region other than the blocking region S of the opening 4 by the discharge amount adjusting plate 5 is formed as a discharge region H from which the vapor deposition material is discharged. Therefore, the planar view shape of the discharge region H of the cylindrical body 3 can be deformed by the shape of the discharge amount adjusting plate 5 and the like, and thereby the discharge distribution of the vapor deposition material from the discharge region H can be adjusted. That is, in the vapor deposition unit 1, by providing the discharge amount adjusting plate 5, the discharge distribution of the vapor deposition material can be easily adjusted and the distribution of the vapor deposition amount can be adjusted. That is, in the case where the vapor deposition unit 1 in which the entire rectangular opening 4 having no discharge amount adjusting plate 5 is opened is used, a large amount of vapor deposition material is released in the central portion in the direction perpendicular to the transport direction X (width direction). At the same time, a small amount of vapor deposition material is released to the side portion in the width direction. Then, the thin film layer 6 is formed in a convex shape in which the film thickness distribution protrudes extremely, and becomes a layer in which the central portion protrudes greatly. Although it is conceivable to change the shape of the opening of the cylindrical body 3 itself in order to bring the deposition amount between the central portion and the side portion closer, there is a possibility that the apparatus configuration becomes complicated. However, if the discharge amount adjusting plate 5 is provided, the distribution of the film thickness can be easily adjusted by adjusting the state of blocking by the discharge amount adjusting plate 5, and vapor deposition between the central portion and the side portion. The amount can be close.
 本形態では、各蒸着ユニット1において、一対となった二つの放出量調整板5が、搬送方向Xと平行な方向に沿って配置されている。すなわち、搬送方向Xの上流側には、上流側の放出量調整板5aが配置されるとともに、搬送方向Xの下流側には、下流側の放出量調整板5bが配置されている。上流側の放出量調整板5aは、開口部4の上流側縁部から下流側に向けて突出し、開口部4の上流側の一部を遮断している。また、下流側の放出量調整板5bは、開口部4の下流側縁部から上流側に向けて突出し、開口部4の下流側の一部を遮断している。そして、放出量調整板5による開口部4の部分的な遮断の度合は、幅方向の側部から中央部になるほど大きくなっている。このような放出量調整板5が設けられることによって、被蒸着体10に対する蒸着量を中央部と側部とでより近い値に近づけることができる。 In this embodiment, in each vapor deposition unit 1, a pair of two discharge amount adjustment plates 5 are arranged along a direction parallel to the transport direction X. That is, an upstream discharge amount adjusting plate 5a is disposed on the upstream side in the transport direction X, and a downstream discharge amount adjusting plate 5b is disposed on the downstream side in the transport direction X. The upstream discharge amount adjusting plate 5 a protrudes from the upstream edge of the opening 4 toward the downstream side, and blocks a part of the upstream side of the opening 4. Further, the downstream discharge amount adjusting plate 5 b protrudes from the downstream edge of the opening 4 toward the upstream side and blocks a part of the downstream side of the opening 4. The degree of partial blockage of the opening 4 by the discharge amount adjusting plate 5 increases as it goes from the side in the width direction to the center. By providing such a discharge amount adjusting plate 5, it is possible to bring the deposition amount on the deposition target 10 closer to a value closer to the central portion and the side portion.
 有機EL製造装置は、被蒸着体10を搬送する搬送手段20を備えている。搬送手段20は、コンベア等の適宜の搬送機構によって構成され、これにより、被蒸着体10はラインに沿って搬送方向Xの上流側から下流側に順次に各蒸着ユニット1の上方を通過することができる。搬送手段20としては、支持部材により被蒸着体10の幅方向の端部を支持するとともに、被蒸着体10の下部表面が外部に露出するようにして支持部材ごと搬送するようなものを用いることができる。被蒸着体10の下部表面が露出していることにより、この表面に筒状体3から放出された蒸着材料を蒸着して薄膜層6を形成することができる。被蒸着体10は、少なくとも基板11を含むものであり、例えば、第1電極12が表面に形成された基板11を用いることができる。また、第1電極12と有機層13の一部の層とが表面に形成された基板11を用いることもできる。そして、第1電極12を下方にして基板11を適宜の支持部材にセットすることにより被蒸着体10を構成することができる。なお、搬送手段20を幅方向の各端部に配置されるローラーやベルトなどのコンベアで構成し、基板1の幅方向の端部をコンベア上に載せて搬送するようにしてもよい。蒸着にあたっては、被蒸着体10の下部表面にマスクを重ねるようにしてもよい。それにより、被蒸着体10の外周部に蒸着されないようにしたり、薄膜層6を適宜のパターンで積層したりすることができる。 The organic EL manufacturing apparatus includes transport means 20 for transporting the deposition target 10. The transport means 20 is configured by an appropriate transport mechanism such as a conveyor, whereby the deposition target 10 sequentially passes above the respective vapor deposition units 1 from the upstream side to the downstream side in the transport direction X along the line. Can do. As the conveying means 20, a supporting member that supports the end of the vapor deposition body 10 in the width direction and conveys the entire supporting member so that the lower surface of the vapor deposition body 10 is exposed to the outside is used. Can do. Since the lower surface of the body to be vapor-deposited 10 is exposed, the thin film layer 6 can be formed by vapor-depositing the vapor deposition material released from the cylindrical body 3 on this surface. The vapor-deposited body 10 includes at least the substrate 11. For example, the substrate 11 on which the first electrode 12 is formed can be used. Moreover, the board | substrate 11 with which the 1st electrode 12 and the one part layer of the organic layer 13 were formed in the surface can also be used. And the to-be-deposited body 10 can be comprised by setting the board | substrate 11 to a suitable supporting member with the 1st electrode 12 facing down. In addition, the conveyance means 20 may be configured by a conveyor such as a roller or a belt disposed at each end in the width direction, and the end in the width direction of the substrate 1 may be placed on the conveyor and conveyed. In vapor deposition, a mask may be stacked on the lower surface of the vapor-deposited body 10. Thereby, it can be made not to vapor-deposit on the outer peripheral part of the to-be-deposited body 10, or the thin film layer 6 can be laminated | stacked by a suitable pattern.
 有機EL製造装置では、開口部4に放出量調整板5が設けられた蒸着ユニット1により順次に薄膜層6を形成するのであるが、放出量調整板5によって開口部4の一部を遮断したとしても、単独の各薄膜層6について、幅方向の中央部から側部にかけて一定の厚みで蒸着材料を積層することは難しい。特に、有機層3を構成する全ての薄膜層6の幅方向における厚みを一定に揃えることは困難である。そこで、本形態では、複数の蒸着ユニット1において、放出量調整板5による開口部4の部分的な遮断状態を変えて放出量の分布を調整し、積層体全体の厚みをより一定に近づけるのである。なお、放出量調整板5を設けたとしても開口部4を遮断する割合が小さい場合には、通常、薄膜層6は凸型の膜厚分布で形成されるため、図16に示すような有機EL素子Aが製造されるものである。 In the organic EL manufacturing apparatus, the thin film layer 6 is sequentially formed by the vapor deposition unit 1 in which the discharge amount adjusting plate 5 is provided in the opening 4. A part of the opening 4 is blocked by the discharge amount adjusting plate 5. Even so, it is difficult to stack the vapor deposition material with a certain thickness from the central part to the side part in the width direction for each single thin film layer 6. In particular, it is difficult to make all the thin film layers 6 constituting the organic layer 3 uniform in thickness in the width direction. Therefore, in this embodiment, in the plurality of vapor deposition units 1, the distribution of the discharge amount is adjusted by changing the partial blocking state of the opening 4 by the discharge amount adjusting plate 5, and the thickness of the entire stacked body is made more uniform. is there. Note that, even when the discharge amount adjusting plate 5 is provided, when the ratio of blocking the opening 4 is small, the thin film layer 6 is usually formed with a convex film thickness distribution, so that the organic layer as shown in FIG. The EL element A is manufactured.
 本形態では、複数の蒸着ユニット1が、放出量調整板5によって調整された薄膜層6の膜厚分布が凸形状になる凸型分布蒸着ユニット1a(以下、単に「ユニット1a」と記載する)と、放出量調整板5によって調整された薄膜層6の膜厚分布が凹形状になる凹型分布蒸着ユニット1b(以下、単に「ユニット1b」と記載する)とを有するようにする。すなわち、複数の蒸着ユニット1のうちの一部がユニット1aであり、残りのうちの全部又は一部がユニット1bである。それにより、凸形状の膜厚分布を有する薄膜層6(凸型薄膜層6a)と凹形状の膜厚分布を有する薄膜層(凹型薄膜層6b)とが積層されるので、蒸着されて形成される積層体全体の厚みの分布を一定に近づけることができる。そして、積層体である有機層13における中央部の厚みと側部の厚みとが一定に近づくと、中央部と側部との発光輝度がより同じ程度に近づく。すなわち、光は干渉を利用して素子外部に取り出されることが多く、有機層13の中央部と側部とで膜厚が略同じになると干渉の度合いが略同じになることになり、発光輝度が表面全体において一定に近づく。それにより、面内の発光がより均一な有機EL素子を製造することができるのである。なお、複数の蒸着ユニット1の中には、ユニット1a及びユニット1bに加えて、膜厚分布が平坦な平坦分布蒸着ユニットが含まれていてもよい。また、高温蒸着ユニットが、ユニット1a及びユニット1bが並ぶ列の間に配置されていてもよい。高温蒸着ユニットは、ユニット1a及びユニット1bのようなホットウォールでの蒸着よりも高い蒸着温度で蒸着するユニットである。金属など蒸着温度が高温な場合には、ホットウォールでの蒸着はできないため、高温蒸着ユニットが適している。例えば、陰極に用いるAlなどの金属や、有機層13内の金属含有層(Mg、ITO、MoO、LiMoOなど)の蒸着に高温蒸着ユニットを用いることができる。高温蒸着ユニットで形成した薄膜層6は、幅方向の厚み分布が均一なものであってよく、あるいは凸型又は凹型であってもよい。 In this embodiment, the plurality of vapor deposition units 1 are convex distribution vapor deposition units 1a (hereinafter, simply referred to as “unit 1a”) in which the film thickness distribution of the thin film layer 6 adjusted by the discharge amount adjusting plate 5 is convex. And a concave distributed vapor deposition unit 1b (hereinafter simply referred to as “unit 1b”) in which the film thickness distribution of the thin film layer 6 adjusted by the discharge amount adjusting plate 5 is concave. That is, a part of the plurality of vapor deposition units 1 is the unit 1a, and the whole or a part of the remaining part is the unit 1b. As a result, the thin film layer 6 having a convex thickness distribution (convex thin film layer 6a) and the thin film layer having a concave thickness distribution (concave thin film layer 6b) are laminated, and thus formed by vapor deposition. It is possible to make the distribution of the thickness of the entire laminate close to a constant value. And when the thickness of the center part in the organic layer 13 which is a laminated body and the thickness of a side part approach constant, the light emission luminance of a center part and a side part will approach the same grade more. That is, light is often extracted to the outside of the element using interference, and when the film thickness is substantially the same at the central part and the side part of the organic layer 13, the degree of interference becomes substantially the same, and the light emission luminance Approaches constant over the entire surface. Thereby, an organic EL element with more uniform in-plane light emission can be manufactured. In addition to the units 1a and 1b, the plurality of vapor deposition units 1 may include a flat distribution vapor deposition unit having a flat film thickness distribution. Moreover, the high temperature vapor deposition unit may be arrange | positioned between the row | line | columns where the unit 1a and the unit 1b are located in a line. The high temperature vapor deposition unit is a unit for vapor deposition at a higher vapor deposition temperature than the vapor deposition on a hot wall such as the unit 1a and the unit 1b. When the vapor deposition temperature is high, such as metal, high temperature vapor deposition unit is suitable because vapor deposition on a hot wall is not possible. For example, a high-temperature vapor deposition unit can be used for vapor deposition of a metal such as Al used for the cathode or a metal-containing layer (Mg, ITO, MoO 3 , Li 2 MoO 3, etc.) in the organic layer 13. The thin film layer 6 formed by the high temperature vapor deposition unit may have a uniform thickness distribution in the width direction, or may be convex or concave.
 図8は、薄膜層6の一例を示している。図8Aは、ユニット1aによって形成される凸型薄膜層6aの一例である。凸型薄膜層6aでは、両側部から中央部に近づくにつれて徐々に厚みが厚くなっており、中央部が厚み方向に突出している。このようにユニット1aは、平坦な表面に薄膜層6を形成した際に、凸型の膜厚分布を示す層を形成するものである。また、図8Bは、ユニット1bによって形成される凹型薄膜層6bの一例である。凹型薄膜層6bでは、両側部から中央部に近づくにつれて徐々に厚みが薄くなっており、中央部が厚み方向で凹んでいる。このようにユニット1bは、平坦な表面に薄膜層6を形成した際に、凹型の膜厚分布を示す層を形成するものである。 FIG. 8 shows an example of the thin film layer 6. FIG. 8A is an example of the convex thin film layer 6a formed by the unit 1a. In the convex thin film layer 6a, the thickness gradually increases as it approaches the central portion from both side portions, and the central portion protrudes in the thickness direction. Thus, the unit 1a forms a layer having a convex film thickness distribution when the thin film layer 6 is formed on a flat surface. FIG. 8B is an example of the concave thin film layer 6b formed by the unit 1b. In the concave thin film layer 6b, the thickness is gradually reduced from the both sides toward the center, and the center is recessed in the thickness direction. Thus, the unit 1b forms a layer having a concave thickness distribution when the thin film layer 6 is formed on a flat surface.
 ここで、ユニット1bは、側部から中央部に近づくにつれて厚みが小さくなって凹んだ部分を有する膜厚分布で薄膜層6を形成するものであればよい。蒸着ユニット1による蒸着では、開口部4の端縁部において蒸着量が減少することがあり、その場合、図8Cのように、側端部において薄膜層6の厚みが薄くなることがあるが、このような薄膜層6も中央部に凹部があるため、凹型薄膜層6bとなる。また、積層する面積が大きくなると放出量調整板5による中央部分における遮断効果が少なくなり、その場合、図8Dのように、中央部において薄膜層6の厚みが厚くなることがあるが、このような薄膜層6も中央部近傍に凹部があるため、凹型薄膜層6bとなる。ただし、図8Dの場合、中央部で突出する部分の厚みは、側部において突出する部分の厚みよりも小さいことが好ましい。 Here, the unit 1b should just form the thin film layer 6 by the film thickness distribution which has a recessed part which thickness became small as it approached the center part from the side part. In vapor deposition by the vapor deposition unit 1, the amount of vapor deposition may decrease at the edge of the opening 4. In this case, the thickness of the thin film layer 6 may be reduced at the side edge as shown in FIG. Since such a thin film layer 6 also has a recess at the center, it becomes a concave thin film layer 6b. Further, when the area to be stacked increases, the blocking effect at the central portion by the discharge amount adjusting plate 5 decreases, and in this case, as shown in FIG. 8D, the thickness of the thin film layer 6 may increase at the central portion. Since the thin film layer 6 also has a recess in the vicinity of the center, it becomes a concave thin film layer 6b. However, in the case of FIG. 8D, the thickness of the portion protruding at the center is preferably smaller than the thickness of the portion protruding at the side.
 凸型薄膜層6a及び凹型薄膜層6bを形成するためには、ユニット1aにおける放出量調整板5の遮断面積と、ユニット1bにおける放出量調整板5の遮断面積とが異なるようにすることが好ましい。それにより、簡単に薄膜層6を凸型又は凹型に形成することができる。例えば、ユニット1bにおける放出量調整板5の遮断面積を、ユニット1aにおける放出量調整板5の遮断面積よりも大きくして、中央部において蒸着材料の放出が側部よりも遮断されて蒸着量が少なくなるようにする。すると、凹型の膜厚分布で蒸着材料が積層して凹型薄膜層6bを形成することができる。 In order to form the convex thin film layer 6a and the concave thin film layer 6b, it is preferable that the blocking area of the discharge amount adjusting plate 5 in the unit 1a is different from the blocking area of the discharge amount adjusting plate 5 in the unit 1b. . Thereby, the thin film layer 6 can be easily formed in a convex shape or a concave shape. For example, the blocking area of the discharge amount adjusting plate 5 in the unit 1b is made larger than the blocking area of the discharge amount adjusting plate 5 in the unit 1a, and the discharge of the vapor deposition material is blocked from the side portion in the central portion, so that the deposition amount is reduced. Try to reduce it. Then, the vapor deposition material can be laminated with a concave film thickness distribution to form the concave thin film layer 6b.
 図2の形態においては、筒状体3の開口部4に配置される部分円盤型の放出量調整板5により、容易に薄膜層6の膜厚分布を凸型又は凹型にすることができる。この形態では、複数の蒸着ユニット1における放出量調整板5は、外縁が円弧状になって搬送方向Xと平行な方向に沿って突出して開口部4を遮断している。遮断する外縁が円弧状になることにより、側部から中央部にかけて膜厚分布を滑らかに変化させることができる。図2の遮断構造では、円弧状になった放出量調整板5の外縁は、矩形状の開口部4における幅方向に配置された角部4a,4aを通って湾曲した曲線となっている。この曲線は円の一部であってもよいし、楕円の一部であってもよい。このような外縁が円弧状の放出量調整板5を用いることにより、簡単に放出量調整板5による開口部5の遮断面積を蒸着ユニット1ごとに変化させることができ、蒸着材料の放出量分布を制御できる。 In the form of FIG. 2, the film thickness distribution of the thin film layer 6 can be easily made convex or concave by the partial disk type discharge amount adjusting plate 5 disposed in the opening 4 of the cylindrical body 3. In this embodiment, the discharge amount adjusting plate 5 in the plurality of vapor deposition units 1 has an outer edge formed in an arc shape and protrudes along a direction parallel to the transport direction X to block the opening 4. By forming the outer edge to be blocked into an arc shape, the film thickness distribution can be smoothly changed from the side to the center. In the blocking structure of FIG. 2, the outer edge of the discharge amount adjusting plate 5 having an arc shape is a curved curve passing through the corner portions 4 a and 4 a arranged in the width direction in the rectangular opening 4. This curve may be part of a circle or part of an ellipse. By using the discharge amount adjusting plate 5 whose outer edge is arcuate, the blocking area of the opening 5 by the discharge amount adjusting plate 5 can be easily changed for each vapor deposition unit 1, and the discharge amount distribution of the vapor deposition material Can be controlled.
 また、図2の形態では、放出量調整板5による遮断領域Sの搬送方向Xの長さL1及び搬送方向Xに垂直な長さL2の少なくとも一方を複数の蒸着ユニット1で異ならせることで、開口部4の遮断状態を変化させることができる。もちろん、長さL1とL2の両方を異ならせてもよい。 Further, in the form of FIG. 2, at least one of the length L1 in the transport direction X and the length L2 perpendicular to the transport direction X of the blocking region S by the discharge amount adjusting plate 5 is made different among the plurality of vapor deposition units 1. The blocking state of the opening 4 can be changed. Of course, both the lengths L1 and L2 may be different.
 図3により、放出量調整板5による遮断状態の変化を説明する。図2及び図3Aに示すように、例えば、放出量調整板5による遮断領域Sの搬送方向Xの長さL1を、ユニット1aとユニット1bとで異ならせることにより、開口部4の遮断状態を変化させることができる。また、この場合、簡単に遮断面積を異ならせることができる。すなわち、ユニット1aにおける放出量調整板5による遮断領域Sの搬送方向Xの長さL1よりも、ユニット1bにおける放出量調整板5による遮断領域Sの搬送方向Xの長さL1が長いようにする。このとき、図2の形態は、ユニット1bの開口部4を示し、図3Aの形態は、ユニット1aの開口部4を示すことになる。図3Aの形態では、開口部4の幅方向の中央部は、搬送方向Xの開口長さが、図2のものよりも長くなる。そして、開口部4の中央部においては、より多くの蒸着材料が放出されて、薄膜層6を厚く形成し、図8Aに示すような凸形状の膜厚分布を形成することができる。一方、図2の形態では、開口部4の幅方向の中央部は、搬送方向Xの開口長さが、図3Aの形態よりも短いので、開口部4の中央部においては、蒸着材料の放出量が少なくなり、薄膜層6を薄く形成し、図8Bなどに示すような凹形状の膜厚分布を形成することができる。このように、放出量調整板5による遮断領域Sの搬送方向Xの長さL1を変化させることにより、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができるものである。 Referring to FIG. 3, the change in the blocking state by the discharge amount adjusting plate 5 will be described. As shown in FIG. 2 and FIG. 3A, for example, by changing the length L1 in the transport direction X of the blocking area S by the discharge amount adjusting plate 5 between the unit 1a and the unit 1b, the blocking state of the opening 4 is changed. Can be changed. In this case, the blocking area can be easily changed. That is, the length L1 in the transport direction X of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b is longer than the length L1 in the transport direction X of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a. . At this time, the form of FIG. 2 shows the opening 4 of the unit 1b, and the form of FIG. 3A shows the opening 4 of the unit 1a. In the form of FIG. 3A, the opening length in the transport direction X is longer than that in FIG. In the central portion of the opening 4, more vapor deposition material is released, and the thin film layer 6 can be formed thick, so that a convex thickness distribution as shown in FIG. 8A can be formed. On the other hand, in the form of FIG. 2, the central part in the width direction of the opening 4 has a shorter opening length in the transport direction X than the form of FIG. The amount is reduced, the thin film layer 6 can be formed thin, and a concave thickness distribution as shown in FIG. 8B or the like can be formed. In this way, by changing the length L1 of the blocking region S in the transport direction X by the discharge amount adjusting plate 5, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape. It is.
 また、図2及び図3Bに示すように、放出量調整板5による遮断領域Sの搬送方向Xに垂直な方向(幅方向)の長さL2を、ユニット1aとユニット1bとで異ならせることによっても、開口部4の遮断状態を変化させることができる。また、この場合、簡単に遮断面積を異ならせることができる。すなわち、ユニット1aにおける放出量調整板5による遮断領域Sの幅方向の長さL2よりも、ユニット1bにおける放出量調整板5による遮断領域Sの幅方向の長さL2が短いようにする。このとき、図2の形態は、ユニット1aの開口部4を示し、図3Bの形態は、ユニット1bの開口部4を示すことになる。図3Bの形態では、開口部4の幅方向の側部では、開口面積が、図2のものよりも大きくなる。そして、開口部4の側部においては、より多くの蒸着材料が放出されて、薄膜層6を厚く形成し、図8Bなどに示すような凹形状の膜厚分布を形成することができる。一方、図2の形態では、開口部4の幅方向の側部は、開口面積が、図3Bの形態よりも小さいので、開口部4の側部においては、蒸着材料の放出量が少なくなり、薄膜層6を薄く形成し、図8Aに示すような凸形状の膜厚分布を形成することができる。このように、放出量調整板5による遮断領域Sの幅方向の長さL2を変化させることにより、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができるものである。なお、図3Bの形態では、遮断領域Sの円弧の外縁と開口部4の縁部との交点は角部4aよりも内側に配置されることになる。 Further, as shown in FIGS. 2 and 3B, the unit 1a and the unit 1b have different lengths L2 in the direction (width direction) perpendicular to the transport direction X of the blocking region S by the discharge amount adjusting plate 5. Also, the blocking state of the opening 4 can be changed. In this case, the blocking area can be easily changed. That is, the length L2 in the width direction of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b is shorter than the length L2 in the width direction of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a. At this time, the form of FIG. 2 shows the opening 4 of the unit 1a, and the form of FIG. 3B shows the opening 4 of the unit 1b. In the form of FIG. 3B, the opening area is larger than that of FIG. 2 at the side of the opening 4 in the width direction. Then, at the side of the opening 4, more vapor deposition material is released, so that the thin film layer 6 can be formed thick, and a concave film thickness distribution as shown in FIG. 8B or the like can be formed. On the other hand, in the form of FIG. 2, since the opening area of the side part in the width direction of the opening part 4 is smaller than that of the form of FIG. 3B, the emission amount of the vapor deposition material is reduced at the side part of the opening part 4, The thin film layer 6 can be formed thin to form a convex thickness distribution as shown in FIG. 8A. Thus, by changing the length L2 of the blocking region S in the width direction by the discharge amount adjusting plate 5, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape. is there. 3B, the intersection of the outer edge of the arc of the blocking area S and the edge of the opening 4 is arranged inside the corner 4a.
 また、図2の形態において、放出量調整板5は、円形の一部が切り出されて外縁が円弧状になって搬送方向Xと平行な方向に沿って突出して開口部4を遮断する場合には、図4に示す放出量調整板5により描かれる円形の半径Rを、蒸着ユニット1ごとに異ならせてもよい。すなわち、ユニット1aにおける放出量調整板5による円形の半径Rと、ユニット1bにおける放出量調整板5による円形の半径とを異ならせるようにするのである。それにより、開口部4の遮断状態を変化させることができる。また、この場合、簡単に遮断面積を異ならせることができる。例えば、ユニット1aにおける放出量調整板5による円形の半径Rよりも、ユニット1bにおける放出量調整板5による円形の半径Rの方が小さくなるようにする。すると、ユニット1aにおいては、円の外縁と中心との距離が短くなり外縁の描く曲率半径(R)がより小さくなって遮断領域がより突出した形状になるため、開口部4の幅方向の中央部では、開口割合が、ユニット1aよりも小さくなる。そして、ユニット1bでは、開口部4の中央部においては、蒸着材料の放出量が少なくなり、薄膜層6を薄く形成し、図8Bなどに示すような凹形状の膜厚分布を形成することができる。一方、ユニット1aでは、遮断領域Sの突出が小さいために、開口部4の中央部では、開口割合が、ユニット1bよりも大きくなるので、開口部4の中央部においては、蒸着材料の放出量が多くなる。そのため、薄膜層6を厚く形成し、図8Aに示すような凸形状の膜厚分布を形成することができる。このように、放出量調整板5の半径Rを変化させることにより、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができるものである。なお、半径Rを変化させるときは、各放出量調整板5による遮断領域Sの外縁が開口部4の角部4a,4aを通るようにすることができる。 In addition, in the form of FIG. 2, the discharge amount adjusting plate 5 is formed when a part of a circle is cut out and the outer edge has an arc shape and projects along a direction parallel to the transport direction X to block the opening 4. May vary the circular radius R drawn by the discharge amount adjusting plate 5 shown in FIG. That is, the circular radius R by the discharge amount adjusting plate 5 in the unit 1a is made different from the circular radius by the discharge amount adjusting plate 5 in the unit 1b. Thereby, the interruption | blocking state of the opening part 4 can be changed. In this case, the blocking area can be easily changed. For example, the circular radius R by the discharge amount adjusting plate 5 in the unit 1b is made smaller than the circular radius R by the discharge amount adjusting plate 5 in the unit 1a. Then, in the unit 1a, the distance between the outer edge and the center of the circle becomes shorter, the radius of curvature (R) drawn by the outer edge becomes smaller, and the blocking region protrudes more. In the portion, the opening ratio is smaller than that of the unit 1a. In the unit 1b, in the central portion of the opening 4, the amount of the vapor deposition material released is reduced, the thin film layer 6 is formed thin, and a concave thickness distribution as shown in FIG. 8B or the like is formed. it can. On the other hand, in the unit 1a, since the protrusion of the blocking region S is small, the opening ratio is larger in the central part of the opening 4 than in the unit 1b. Will increase. Therefore, the thin film layer 6 can be formed thick and a convex thickness distribution as shown in FIG. 8A can be formed. Thus, by changing the radius R of the discharge amount adjusting plate 5, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape. When the radius R is changed, the outer edge of the blocking region S by each discharge amount adjusting plate 5 can pass through the corners 4 a and 4 a of the opening 4.
 なお、放出量調整板5による遮断領域Sの外縁が楕円形の一部が切り出されたものである場合には、楕円の短軸の長さ(短径)又は長軸の長さ(長径)を、上記の円の半径Rの場合と同様の要領で変化させることで薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができる。また、楕円の長軸と短軸の長さの比を変化させることによっても、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができる。 When the outer edge of the blocking region S by the discharge amount adjusting plate 5 is a part of an ellipse cut out, the length of the ellipse minor axis (minor axis) or the length of the major axis (major axis) Is changed in the same manner as in the case of the radius R of the circle, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape. Also, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape by changing the ratio of the major axis to the minor axis length of the ellipse.
 図5は、放出量調整板5の他の一例である。この形態では、放出量調整板5は、台形状になって搬送方向Xと平行な方向に沿って突出して開口部5を遮断している。遮断領域Sが台形状になることになることにより、側部においては中央部に近づくほど蒸着材料の放出量を減らすとともに、中央部においては蒸着材料の放出量が少なくなりすぎないようにして、薄膜層6を形成することができる。 FIG. 5 shows another example of the discharge amount adjusting plate 5. In this embodiment, the discharge amount adjusting plate 5 is trapezoidal and protrudes along a direction parallel to the transport direction X to block the opening 5. As the blocking region S becomes trapezoidal, the amount of the vapor deposition material released in the side portion is reduced toward the center portion, and the amount of the vapor deposition material emission is not reduced too much in the center portion. A thin film layer 6 can be formed.
 また、図2の形態と同様に、各蒸着ユニット1においては、一対となった二つの放出量調整板5が、搬送方向Xと平行な方向に沿って配置されている。すなわち、搬送方向の上流側には、上流側の放出量調整板5aが配置されるとともに、搬送方向Xの下流側には、下流側の放出量調整板5bが配置されている。上流側の放出量調整板5aは、開口部4の上流側縁部から下流側に向けて突出し、開口部4の上流側を遮断している。また、下流側の放出量調整板5bは、開口部4の下流側縁部から上流側に向けて突出し、開口部4の下流側を遮断している。そして、放出量調整板5による開口部4の遮断の度合は、幅方向の側部よりも中央部において大きくなっている。このような放出量調整板5が設けられることによって、被蒸着体10に対する蒸着量を中央部と側部とでより近い値に近づけることができる。 2, in each vapor deposition unit 1, a pair of two discharge amount adjustment plates 5 are arranged along a direction parallel to the transport direction X. That is, an upstream discharge amount adjusting plate 5a is disposed on the upstream side in the transport direction, and a downstream discharge amount adjusting plate 5b is disposed on the downstream side in the transport direction X. The upstream discharge amount adjusting plate 5 a protrudes from the upstream edge of the opening 4 toward the downstream side, and blocks the upstream side of the opening 4. The downstream discharge amount adjusting plate 5 b protrudes from the downstream edge of the opening 4 toward the upstream side, and blocks the downstream side of the opening 4. The degree of blocking of the opening 4 by the discharge amount adjusting plate 5 is greater at the center than at the side in the width direction. By providing such a discharge amount adjusting plate 5, it is possible to bring the deposition amount on the deposition target 10 closer to a value closer to the central portion and the side portion.
 図5の遮断構造では、放出量調整板5により形成される遮断領域Sの台形の下辺は、矩形状の開口部4における幅方向の角部4a,4aによって形成される線分と等しくなっている。このような遮断領域Sが台形状となる放出量調整板5を用いることにより、簡単に放出量調整板5による開口部4の遮断状態を蒸着ユニット1ごとに変化させることができ、蒸着材料の放出量分布を制御できる。 In the blocking structure of FIG. 5, the lower side of the trapezoid of the blocking area S formed by the discharge amount adjusting plate 5 is equal to the line segment formed by the corners 4 a and 4 a in the width direction in the rectangular opening 4. Yes. By using the discharge amount adjusting plate 5 having such a blocking region S having a trapezoidal shape, the blocking state of the opening 4 by the discharge amount adjusting plate 5 can be easily changed for each vapor deposition unit 1. Controlled release distribution.
 図5の形態では、ユニット1aにおける放出量調整板5による遮断領域Sの面積と、ユニット1bにおける放出量調整板5による遮断領域Sの面積とを異ならせることにより、薄膜層6の膜厚分布を凸型又は凹型に調整することができる。また、遮断領域Sの面積が同じであっても、中央部における遮断領域Sの割合が変化するように台形の形状を変化するようにすれば、薄膜層6の膜厚分布を凸型又は凹型に調整することができる。すなわち、遮断領域Sが台形状であるので、この台形による中央部での遮断割合を増加させれば、容易に中央部近傍における蒸着材料の放出量を少なくすることができ、膜厚分布を凹型にすることができる。 In the form of FIG. 5, the film thickness distribution of the thin film layer 6 is made different from the area of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a and the area of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b. Can be adjusted to a convex shape or a concave shape. Further, even if the area of the blocking region S is the same, if the trapezoidal shape is changed so that the ratio of the blocking region S in the central portion is changed, the film thickness distribution of the thin film layer 6 is convex or concave. Can be adjusted. That is, since the blocking region S has a trapezoidal shape, if the blocking ratio at the central portion due to this trapezoid is increased, the amount of vapor deposition material released in the vicinity of the central portion can be easily reduced, and the film thickness distribution is concave. Can be.
 具体的には、放出量調整板5による遮断領域Sの搬送方向の長さL1及び搬送方向に垂直な長さL2の少なくとも一方を複数の蒸着ユニット1で異ならせることで、開口部4の遮断状態を変化させることができる。もちろん、長さL1とL2の両方を異ならせてもよい。本形態では、放出量調整板5による遮断領域Sは台形状であるため、長さL1は台形の高さとなり、長さL2は台形の下辺の長さとなる。 Specifically, the opening 4 is blocked by making at least one of the length L1 in the transport direction and the length L2 perpendicular to the transport direction of the blocking region S by the discharge amount adjusting plate 5 different in the plurality of vapor deposition units 1. The state can be changed. Of course, both the lengths L1 and L2 may be different. In this embodiment, since the blocking area S by the discharge amount adjusting plate 5 is trapezoidal, the length L1 is the height of the trapezoid, and the length L2 is the length of the lower side of the trapezoid.
 図6により、放出量調整板5による遮断状態の変化を説明する。図5及び図6Aに示すように、例えば、放出量調整板5による遮断領域Sの搬送方向の長さL1を、ユニット1aとユニット1bとで異ならせることにより、開口部4の遮断状態を変化させることができる。また、この場合、簡単に遮断面積を異ならせることができる。すなわち、ユニット1aにおける放出量調整板5による遮断領域Sの搬送方向Xの長さL1よりも、ユニット1bにおける放出量調整板5による遮断領域Sの搬送方向Xの長さL1が長いようにする。このとき、図5の形態は、ユニット1bの開口部4を示し、図6Aの形態は、ユニット1aの開口部4を示すことになる。図6Aの形態では、開口部4の幅方向の中央部は、搬送方向Xの開口長さが、図5のものよりも長くなる。そして、開口部4の中央部においては、より多くの蒸着材料が放出されて、薄膜層6を厚く形成し、図8Aに示すような凸形状の膜厚分布を形成することができる。一方、図5の形態では、開口部4の幅方向の中央部は、搬送方向の開口長さが、図6Aの形態よりも短いので、開口部4の中央部においては、蒸着材料の放出量が少なくなり、薄膜層6を薄く形成し、図8Bなどに示すような凹形状の膜厚分布を形成することができる。このように、放出量調整板5による遮断領域Sの搬送方向Xの長さL1、すなわち遮断領域Sにおける台形の高さを変化させることにより、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができるものである。 Referring to FIG. 6, the change in the blocking state by the discharge amount adjusting plate 5 will be described. As shown in FIGS. 5 and 6A, for example, the blocking state of the opening 4 is changed by changing the length L1 of the blocking region S in the transport direction by the discharge amount adjusting plate 5 between the unit 1a and the unit 1b. Can be made. In this case, the blocking area can be easily changed. That is, the length L1 in the transport direction X of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b is longer than the length L1 in the transport direction X of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a. . At this time, the form of FIG. 5 shows the opening 4 of the unit 1b, and the form of FIG. 6A shows the opening 4 of the unit 1a. In the form of FIG. 6A, the opening length in the conveyance direction X is longer than that in FIG. In the central portion of the opening 4, more vapor deposition material is released, and the thin film layer 6 can be formed thick, so that a convex thickness distribution as shown in FIG. 8A can be formed. On the other hand, in the form of FIG. 5, the central part in the width direction of the opening 4 has an opening length in the transport direction shorter than that in the form of FIG. 6A. Therefore, the thin film layer 6 can be formed thin, and a concave film thickness distribution as shown in FIG. 8B can be formed. Thus, by changing the length L1 of the blocking region S in the transport direction X by the discharge amount adjusting plate 5, that is, the height of the trapezoid in the blocking region S, the film thickness distribution of the thin film layer 6 is changed to a convex shape and a concave shape. And can be formed separately.
 また、図5及び図6Bに示すように、放出量調整板5による遮断領域Sの搬送方向Xに垂直な方向(幅方向)の長さL2を、ユニット1aとユニット1bとで異ならせることによっても、開口部4の遮断状態を変化させることができる。また、この場合、簡単に遮断面積を異ならせることができる。すなわち、ユニット1aにおける放出量調整板5による遮断領域Sの幅方向の長さL2よりも、ユニット1bにおける放出量調整板5による遮断領域Sの幅方向の長さL2が短いようにする。このとき、図5の形態は、ユニット1aの開口部4を示し、図6Bの形態は、ユニット1bの開口部4を示すことになる。図6Bの形態では、開口部4の幅方向の側部では、開口面積が、図5のものよりも大きくなる。そして、開口部4の側部においては、より多くの蒸着材料が放出されて、薄膜層6を厚く形成し、図8Bなどに示すような凹形状の膜厚分布を形成することができる。一方、図5の形態では、開口部4の幅方向の側部は、開口面積が、図6Bの形態よりも小さいので、開口部4の側部においては、蒸着材料の放出量が少なくなり、薄膜層6を薄く形成し、図8Aに示すような凸形状の膜厚分布を形成することができる。このように、放出量調整板5による遮断領域Sの幅方向の長さL2、すなわち遮断領域Sにおける台形の下辺の長さを変化させることにより、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができるものである。なお、図6Bの形態では、遮断領域Sの台形の下辺は開口部4の幅方向の長さよりも短くなり、角部4aよりも内側に配置されることになる。 Further, as shown in FIGS. 5 and 6B, the length L2 in the direction (width direction) perpendicular to the conveying direction X of the blocking area S by the discharge amount adjusting plate 5 is made different between the unit 1a and the unit 1b. Also, the blocking state of the opening 4 can be changed. In this case, the blocking area can be easily changed. That is, the length L2 in the width direction of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b is shorter than the length L2 in the width direction of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a. At this time, the form of FIG. 5 shows the opening 4 of the unit 1a, and the form of FIG. 6B shows the opening 4 of the unit 1b. In the form of FIG. 6B, the opening area is larger than that of FIG. Then, at the side of the opening 4, more vapor deposition material is released, so that the thin film layer 6 can be formed thick, and a concave film thickness distribution as shown in FIG. 8B or the like can be formed. On the other hand, in the form of FIG. 5, since the opening area of the side part in the width direction of the opening part 4 is smaller than that of the form of FIG. 6B, the emission amount of the vapor deposition material is reduced at the side part of the opening part 4, The thin film layer 6 can be formed thin to form a convex thickness distribution as shown in FIG. 8A. Thus, by changing the length L2 of the blocking region S in the width direction by the discharge amount adjusting plate 5, that is, the length of the lower side of the trapezoid in the blocking region S, the film thickness distribution of the thin film layer 6 is changed to a convex shape and a concave shape. It can be formed separately into shapes. In the form of FIG. 6B, the lower side of the trapezoid of the blocking region S is shorter than the length of the opening 4 in the width direction, and is disposed on the inner side of the corner 4a.
 なお、放出量調整板5による遮断領域Sが台形状である場合には、図6Bに示す台形の上辺の長さL3を、上記の台形の下辺の場合と同様の要領により変化させることによっても、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができる。すなわち、上辺の長さL3をより長くすれば、幅方向の中央部における蒸着材料の放出量が少なくなるので、薄膜層6の膜厚分布を凹型に近づけることができる。 When the blocking area S by the discharge amount adjusting plate 5 is trapezoidal, the length L3 of the upper side of the trapezoid shown in FIG. 6B can be changed by the same procedure as that of the lower side of the trapezoid. The film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape. That is, if the length L3 of the upper side is made longer, the amount of vapor deposition material released at the central portion in the width direction is reduced, so that the film thickness distribution of the thin film layer 6 can be made closer to a concave shape.
 また、図5の形態では、ユニット1aにおける放出量調整板5による開口部4の中央部での遮断割合よりも、ユニット1bにおける放出量調整板5による開口部4の中央部での遮断割合の方が大きいことが好ましい。この形態では、遮断領域Sが台形状であるので、この台形による中央部での遮断割合を増減させれば、容易に中央部近傍における蒸着材料の放出量を制御することができ、膜厚分布を凸型又は凹型にすることができるものである。 Moreover, in the form of FIG. 5, the blocking ratio at the center of the opening 4 by the discharge amount adjusting plate 5 in the unit 1b is higher than the blocking ratio at the center of the opening 4 by the discharging amount adjusting plate 5 in the unit 1a. It is preferable that it is larger. In this embodiment, since the blocking region S is trapezoidal, the amount of vapor deposition material released in the vicinity of the central portion can be easily controlled by increasing or decreasing the blocking ratio at the central portion due to the trapezoid, and the film thickness distribution. Can be convex or concave.
 また、図5の形態では、ユニット1aにおける放出量調整板5による遮断領域Sの面積よりも、ユニット1bにおける放出量調整板5による遮断領域Sの面積の方が大きいようにすることも好ましい。この形態では、遮断領域Sが台形状であるので、この台形により形成される遮断領域Sの面積を増加させれば、容易に中央部近傍における蒸着材料の放出量を減少させることができ、膜厚分布を凹型にすることができるものである。例えば、遮断領域Sの台形の下辺を、開口部4の幅方向の角部4a,4aの線分として固定し、台形の高さ(長さL1)を高くすれば、台形の面積を増加させて中央部近傍の放出量を減少させ、膜厚分布を凹型にすることができる。 In the form of FIG. 5, it is also preferable that the area of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b is larger than the area of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a. In this embodiment, since the blocking region S has a trapezoidal shape, if the area of the blocking region S formed by the trapezoid is increased, the amount of the vapor deposition material released in the vicinity of the central portion can be easily reduced. The thickness distribution can be made concave. For example, if the lower side of the trapezoid of the blocking region S is fixed as a line segment of the corners 4a and 4a in the width direction of the opening 4, and the height (length L1) of the trapezoid is increased, the area of the trapezoid is increased. Thus, the amount of discharge near the center can be reduced, and the film thickness distribution can be made concave.
 また、図5の形態では、ユニット1aにおける放出量調整板5による遮断領域Sの面積よりも、ユニット1bにおける放出量調整板5による遮断領域Sの面積の方が小さいようにすることも好ましい。この形態では、遮断領域Sが台形状であるので、この台形により形成される遮断領域Sの面積を減少させれば、容易に側部における蒸着材料の放出量を増加させることができ、膜厚分布を凹型にすることができるものである。例えば、遮断領域Sの台形の高さ(長さL1)を固定し、台形の下辺(長さL2)を短くすれば、台形の面積を減少させて側部における放出量を増加させ、膜厚分布を凹型にすることができる。 In the form of FIG. 5, it is also preferable that the area of the blocking region S by the discharge amount adjusting plate 5 in the unit 1b is smaller than the area of the blocking region S by the discharge amount adjusting plate 5 in the unit 1a. In this embodiment, the blocking region S has a trapezoidal shape. Therefore, if the area of the blocking region S formed by the trapezoid is reduced, the amount of the vapor deposition material released from the side portion can be easily increased. The distribution can be concave. For example, if the height (length L1) of the trapezoid of the blocking region S is fixed and the lower side (length L2) of the trapezoid is shortened, the area of the trapezoid is reduced and the discharge amount at the side is increased. The distribution can be concave.
 ところで、上記の各形態では、各蒸着ユニット1において、一対となった二つの放出量調整板5が、搬送方向Xと平行な方向に沿って配置され、搬送方向Xと平行な方向(搬送方向と同方向及び逆方向)に沿って突出しているものを示した。しかしながら、放出量調整板5の形態はこれに限定されるものではない。図7に、一個の放出量調整板5を開口部4に配置する場合の形態の一例を示す。 By the way, in each said form, in each vapor deposition unit 1, the two discharge | emission amount adjustment plates 5 used as a pair are arrange | positioned along the direction parallel to the conveyance direction X, and a direction parallel to the conveyance direction X (conveyance direction). Projecting along the same direction and the opposite direction). However, the form of the discharge amount adjusting plate 5 is not limited to this. FIG. 7 shows an example of a form in the case where one discharge amount adjusting plate 5 is disposed in the opening 4.
 図7の形態は、開口部4の搬送方向Xの中央部に、幅方向に跨るように木の葉状の放出量調整板5を配置した例である。それにより、幅方向の中央部において開口割合が小さくなった開口部4が、搬送方向の上流側と下流側とで二つ形成されている。図7Aは、二つの円弧状の外縁が開口部4の縁部において結合したような遮断領域を示す放出量調整板5を用いた例である。また、図7Bは、上流側及び下流側に突出する二つの台形が下辺において結合したような遮断領域Sを示す放出量調整板5を用いた例である。 7 is an example in which a leaf-shaped discharge amount adjusting plate 5 is arranged at the center in the transport direction X of the opening 4 so as to straddle the width direction. Thereby, two openings 4 having a small opening ratio in the center in the width direction are formed on the upstream side and the downstream side in the transport direction. FIG. 7A is an example using the discharge amount adjusting plate 5 showing a blocking region where two arcuate outer edges are joined at the edge of the opening 4. Moreover, FIG. 7B is an example using the discharge | emission amount adjustment plate 5 which shows the interruption | blocking area | region S where two trapezoids which protrude in the upstream and downstream are connected in the lower side.
 そして、図7の形態においては、搬送方向Xの長さL1を変化させることにより、薄膜層6の膜厚分布を変化させて薄膜層6を凸型又は凹型に形成することができるものである。すなわち、搬送方向Xの長さL1を長くすれば、幅方向の中央部分の蒸着材料の放出量を少なくすることができ、薄膜層6を凹型に近づけることができる。なお、この形態では、放出量調整板5は開口部4を幅方向に跨ぐため、幅方向の長さL2を調整することは難しいが、放出量調整板5を搬送方向Xで跨ぐように配置したりすれば、幅方向の長さL2を調整することも可能である。 And in the form of FIG. 7, the film thickness distribution of the thin film layer 6 can be changed by changing the length L1 of the conveyance direction X, and the thin film layer 6 can be formed in a convex type or a concave type. . That is, if the length L1 in the transport direction X is increased, the amount of the vapor deposition material released from the central portion in the width direction can be reduced, and the thin film layer 6 can be brought close to a concave shape. In this embodiment, since the discharge amount adjusting plate 5 straddles the opening 4 in the width direction, it is difficult to adjust the length L2 in the width direction, but the discharge amount adjusting plate 5 is disposed so as to straddle the transport direction X. If so, the length L2 in the width direction can be adjusted.
 上記の各形態においては、開口部4の遮断領域Sは、開口部4を幅方向で2分した線において線対称になることが好ましい。それにより、幅方向の側部から中央部にかけての放出量分布が幅方向で左右対称となり、積層体全体の膜厚の調整が容易になる。また、開口部4の遮断領域Sは、開口部4を搬送方向Xで2分した線において線対称になることが好ましい。それにより、搬送方向Xにおいて膜厚がばらつくことを抑制することができる。線対称な遮断領域Sを得るためには、例えば、図2及び図5の形態においては、放出量調整板5で遮断される二つの遮断領域Sを同形状にすることができる。 In each of the above embodiments, the blocking region S of the opening 4 is preferably line-symmetric with respect to a line that bisects the opening 4 in the width direction. Thereby, the emission amount distribution from the side part in the width direction to the center part becomes symmetrical in the width direction, and adjustment of the film thickness of the entire laminate is facilitated. Further, the blocking region S of the opening 4 is preferably line-symmetric with respect to a line obtained by dividing the opening 4 into two in the transport direction X. Thereby, it is possible to prevent the film thickness from varying in the transport direction X. In order to obtain a line-symmetric blocking region S, for example, in the form of FIGS. 2 and 5, the two blocking regions S blocked by the discharge amount adjusting plate 5 can have the same shape.
 また、複数の蒸着ユニット1における放出量調整板5の形状は可変性を有することが好ましい。放出量調整板5の形状が可変性を有することにより、遮断領域の面積を簡単に増減させたり、遮断領域Sにおける搬送方向Xの長さL1や幅方向の長さL2を簡単に変化させたりすることができ、容易に蒸着材料の放出量分布を調節することができる。例えば、放出量調整板5は開口部4に着脱自在に挿入するものにすることができる。この場合、形状の異なる放出量調整板5を複数用いて遮断領域Sの形状を変化させることができる。例えば、部分円盤状の放出量調整板5を用いる場合には、半径Rの異なる放出量調整板5を蒸着ユニット1に挿入して、放出量分布を調整できる。また、例えば、台形状の放出量調整板5を用いる場合には、台形の高さが異なったり上辺の長さが異なったりした放出量調整板5を蒸着ユニット1に挿入することにより、放出量分布を調整できる。また、挿入深さを調整できるものである場合、同一形状の放出量調整板5によっても放出量分布を調整することができる。例えば、放出量調整板5をより深く開口部4に挿入すれば、遮断領域の搬送方向の長さL1を長くしたり、遮断領域Sの面積を大きくしたりして、中央部の放出量を少なくすることが可能である。 Moreover, it is preferable that the shape of the discharge amount adjusting plate 5 in the plurality of vapor deposition units 1 has variability. Since the shape of the discharge amount adjusting plate 5 has variability, the area of the blocking area can be easily increased or decreased, or the length L1 in the conveying direction X and the length L2 in the width direction in the blocking area S can be easily changed. It is possible to easily adjust the emission amount distribution of the vapor deposition material. For example, the discharge amount adjusting plate 5 can be detachably inserted into the opening 4. In this case, the shape of the blocking region S can be changed using a plurality of discharge amount adjusting plates 5 having different shapes. For example, when using a partial disk-shaped discharge amount adjustment plate 5, the discharge amount distribution plate 5 having a different radius R can be inserted into the vapor deposition unit 1 to adjust the discharge amount distribution. Further, for example, when the trapezoidal discharge amount adjusting plate 5 is used, the discharge amount adjusting plate 5 having a different trapezoidal height or a different upper side length is inserted into the vapor deposition unit 1 to thereby release the discharge amount. The distribution can be adjusted. Further, when the insertion depth can be adjusted, the discharge amount distribution can be adjusted also by the discharge amount adjusting plate 5 having the same shape. For example, if the discharge amount adjusting plate 5 is inserted deeper into the opening 4, the length L1 in the transport direction of the blocking region is increased, or the area of the blocking region S is increased, so that the discharge amount in the central portion is increased. It can be reduced.
 図9は、本発明による有機EL製造装置を用いて製造された有機EL素子Aの一例である。有機EL素子Aは、図1に示すように、基板11を含む被蒸着体10を搬送しながら、この被蒸着体10の表面に、複数の蒸着ユニット1から薄膜層6を蒸着により順次に積層することにより製造することができる。 FIG. 9 is an example of the organic EL element A manufactured using the organic EL manufacturing apparatus according to the present invention. As shown in FIG. 1, the organic EL element A sequentially stacks the thin film layers 6 from the plurality of vapor deposition units 1 on the surface of the vapor deposition target 10 while conveying the vapor deposition target 10 including the substrate 11. Can be manufactured.
 図9の有機EL素子Aでは、基板11の表面に、陽極となる第1電極12が形成され、その表面に、有機層13、及び、陰極となる第2電極14が積層されて形成されている。この形態では、有機層13は、基板11側から、ホール輸送層13a、発光層13b、電子輸送層13c、中間層13d、ホール輸送層13e、発光層13f、電子輸送層13gの順に積層されており、これらの各層は蒸着によって形成されている。また、第2電極14は、電子輸送層13gの表面に電極材料が蒸着されることによって形成されている。したがって、上記の有機EL製造装置により、基板11に形成された第1電極2の表面に、少なくとも有機層13の各層を薄膜層6として適宜に凸形状又は凹形状になるように蒸着して積層することにより、有機EL素子Aを製造することができる。また、第2電極14についても、凸形状又は凹形状に膜厚分布が調整されてもよい。なお、図9の形態では、発光層が二段構成となっているが、一段であっても、あるいは、三段以上であってもよい。 In the organic EL element A of FIG. 9, a first electrode 12 serving as an anode is formed on the surface of a substrate 11, and an organic layer 13 and a second electrode 14 serving as a cathode are stacked on the surface. Yes. In this embodiment, the organic layer 13 is laminated in the order of the hole transport layer 13a, the light emitting layer 13b, the electron transport layer 13c, the intermediate layer 13d, the hole transport layer 13e, the light emitting layer 13f, and the electron transport layer 13g from the substrate 11 side. Each of these layers is formed by vapor deposition. The second electrode 14 is formed by evaporating an electrode material on the surface of the electron transport layer 13g. Therefore, by the above-described organic EL manufacturing apparatus, at least each layer of the organic layer 13 is vapor-deposited on the surface of the first electrode 2 formed on the substrate 11 as a thin film layer 6 so as to be appropriately convex or concave. By doing so, the organic EL element A can be manufactured. In addition, the film thickness distribution of the second electrode 14 may be adjusted to a convex shape or a concave shape. In addition, in the form of FIG. 9, the light emitting layer has a two-stage structure, but it may be a single stage or three or more stages.
 図9の形態では、有機層13のうち、ホール輸送層13a、中間層13d、ホール輸送層13e、発光層13fの4つの層が、凸型薄膜層6aとして形成されている。また、発光層13b、電子輸送層13c、電子輸送層13gの3つの層が、凹型薄膜層6bとして形成されている。このような有機層13は、有機層13の各層を構成する薄膜層6の凸型及び凹型に対応して、ユニット1a及びユニット1bを搬送方向に並べて配置し、順次に各薄膜層6を蒸着して積層させることにより、形成することができる。凸型薄膜層6aの層数と凹型薄膜層6bの層数とは数が近い方がよい。凸型薄膜層6aの層数と凹型薄膜層6bの層数が同数か同数と一つ又は二つ違い程度であると、凸型の層の厚みの総計と凹型の層の厚みの総計とが近くなり、積層体全体の膜厚分布の調整がより容易になる。ただし、全体の厚みが調整できるのであれば、凹型薄膜層6bが一つ又は少数であったり、逆に、凸型薄膜層6aが一つ又は少数であったりしてもよい。 In the form of FIG. 9, among the organic layer 13, four layers of the hole transport layer 13a, the intermediate layer 13d, the hole transport layer 13e, and the light emitting layer 13f are formed as the convex thin film layer 6a. Further, the three layers of the light emitting layer 13b, the electron transport layer 13c, and the electron transport layer 13g are formed as the concave thin film layer 6b. In such an organic layer 13, the units 1a and 1b are arranged side by side in the transport direction corresponding to the convex type and concave type of the thin film layer 6 constituting each layer of the organic layer 13, and the thin film layers 6 are sequentially deposited. Then, they can be formed by laminating. The number of convex thin film layers 6a and the number of concave thin film layers 6b should be close to each other. If the number of convex thin film layers 6a and the number of concave thin film layers 6b are the same or the same, the total thickness of the convex layers and the total thickness of the concave layers are as follows. This makes it easier to adjust the film thickness distribution of the entire laminate. However, if the overall thickness can be adjusted, the number of the concave thin film layers 6b may be one or a small number, or conversely, the number of the convex thin film layers 6a may be one or a small number.
 ところで、有機EL素子Aにおいては、凹型薄膜層6bとして形成された層が、積層されて形成された有機層13の断面においても凹型の層になっていることも好ましい。すなわち、ユニット1bは、単独に薄膜層6を形成する場合だけではなく、他の層との積層状態においても凹型の膜厚分布の層として薄膜層6を積層するものであることが好ましい。図9の形態では、凹型薄膜層6bとして形成された発光層13b、電子輸送層13c及び電子輸送層13gは、単独の層の断面(図8参照)だけではなく、有機層13全体の断面においても凹型の膜厚分布になっている。それにより、より端部側の膜厚を中央部と同じ厚みに近づけることができる。また、凸型薄膜層6aとして形成された層が、積層されて形成された有機層13の断面においても凸型の層になっていてもよい。すなわち、ユニット1aは、単独に薄膜層6を形成する場合だけではなく、他の層との積層状態においても凸型の膜厚分布の層として薄膜層6を積層するものであってもよい。 By the way, in the organic EL element A, the layer formed as the concave thin film layer 6b is preferably a concave layer even in the cross section of the organic layer 13 formed by being laminated. That is, it is preferable that the unit 1b is not only for forming the thin film layer 6 alone, but also for laminating the thin film layer 6 as a layer having a concave film thickness distribution even in a stacked state with other layers. In the form of FIG. 9, the light emitting layer 13b, the electron transport layer 13c, and the electron transport layer 13g formed as the concave thin film layer 6b are not only in the cross section of a single layer (see FIG. 8) but in the cross section of the entire organic layer 13. Has a concave film thickness distribution. Thereby, the film thickness at the end side can be made closer to the same thickness as the central part. Moreover, the layer formed as the convex thin film layer 6a may also be a convex layer in the cross section of the organic layer 13 formed by being laminated. That is, the unit 1a is not limited to the case where the thin film layer 6 is formed alone, but may be the one in which the thin film layer 6 is laminated as a layer having a convex film thickness distribution even in a laminated state with other layers.
 なお、有機EL素子Aにおいて、有機層13を構成する個々の薄膜層6が凸型なのか凹型なのかは、その薄膜層6の側部における厚みと中央部における厚みとを比較することによって判定することができる。図9に示すように、有機層13内部の薄膜層6は、それまでに積層されて形成された凸型又は凹型の面に形成され得るものであり、通常、図8のような平坦面には形成されない。しかしながら、薄膜層6は凸型又は凹型の面に、図8に示すような厚み分布で積層されるものであるため、薄膜層6における厚みを側部とで中央部とで比較することで凸型か、あるいは凹型かを判定できる。すなわち、側部よりも中央部の厚みが厚い場合は凸型の層と判定でき、逆に、側部よりの中央部の厚みが薄い場合は凹型と判定できるのである。 In the organic EL element A, whether each thin film layer 6 constituting the organic layer 13 is a convex type or a concave type is determined by comparing the thickness at the side portion of the thin film layer 6 with the thickness at the central portion. can do. As shown in FIG. 9, the thin film layer 6 inside the organic layer 13 can be formed on a convex or concave surface that has been laminated so far, and is usually formed on a flat surface as shown in FIG. Is not formed. However, since the thin film layer 6 is laminated on a convex or concave surface with a thickness distribution as shown in FIG. 8, the thickness of the thin film layer 6 is compared between the side portion and the central portion. Whether it is a mold or a concave type can be determined. That is, when the thickness of the center part is thicker than the side part, it can be determined as a convex layer, and conversely, when the thickness of the center part from the side part is thinner, it can be determined as a concave type.
 このようにして蒸着して形成された有機層13においては、有機層13全体の膜厚の厚みが中央部と側部とにおいて、より等しい厚みに近づく。図10に示すように、従来の有機EL製造装置では、有機層13を構成する各層は凸型の膜厚分布で形成されるので、有機層13全体においても、中央部で厚みが厚くなるとともに側部になるほど厚みが薄くなる凸形状の厚み分布となる。そして、基板中央と基板端部とを比較した際、数十nmの膜厚差が生じてしまうおそれがある。しかしながら、図9に示すように、上記の有機EL製造装置で形成された有機EL素子では、複数の薄膜層6が適宜に凸型又は凹型に形成されるので、有機層13の厚みを側部と中央部とにおいてより近くすることができる。そのため、基板中央と基板端部とを比較した際の膜厚差を小さくすることができる。そして、積層体の厚みが全体として均一に近づくと、中央部と端部とでの発光輝度がより近くなり、面内の発光が均一に近づく。すなわち、光は干渉を利用して素子外部に取り出されることが多く、基板中央部と基板端部とで膜厚が近いと、干渉の度合いが近くなり、発光輝度がより均一になる。したがって、上記の有機EL製造装置では、面内の発光がより均一性の高い有機EL素子を製造することができる。そして、比較的大きな面積で発光するような発光パネルなどにおいては、面内の発光の均一性のためには有機層13全体の厚みの均一性が重要であり、面積の大きい発光面を有する有機EL素子Aにおいて、面内の発光の均一性を高めることができるものである。 In the organic layer 13 formed by vapor deposition in this way, the thickness of the entire organic layer 13 is closer to the same thickness in the central portion and the side portion. As shown in FIG. 10, in the conventional organic EL manufacturing apparatus, each layer constituting the organic layer 13 is formed with a convex film thickness distribution. It becomes a convex thickness distribution in which the thickness becomes thinner toward the side. When the substrate center and the substrate edge are compared, there is a possibility that a film thickness difference of several tens of nanometers may occur. However, as shown in FIG. 9, in the organic EL element formed by the organic EL manufacturing apparatus described above, the plurality of thin film layers 6 are appropriately formed in a convex shape or a concave shape. And the central part can be closer. Therefore, the difference in film thickness when comparing the substrate center and the substrate edge can be reduced. And if the thickness of a laminated body approaches uniformly as a whole, the light emission luminance in a center part and an edge part will become closer, and in-plane light emission will approach uniformly. That is, light is often extracted to the outside of the element using interference, and when the film thickness is close between the central portion of the substrate and the end portion of the substrate, the degree of interference becomes close and the emission luminance becomes more uniform. Therefore, in the organic EL manufacturing apparatus described above, an organic EL element with higher uniformity of in-plane light emission can be manufactured. In a light emitting panel that emits light in a relatively large area, the uniformity of the entire thickness of the organic layer 13 is important for in-plane light emission uniformity, and an organic material having a light emitting surface with a large area. In the EL element A, the uniformity of in-plane light emission can be improved.
 ここで、有機EL素子Aにおいては、第2電極14も蒸着により形成され得るが、第2電極14含んだ積層体の厚みよりも、有機層13の膜厚の均一性の方が重要である。第1電極12が光透過性電極であり、第2電極4が反射性電極である場合、発光層において発光した光は、直接、又は、第2電極14で反射して、透明な基板11から外部に取り出されることになる。したがって、光干渉の度合を近づけるためには、反射性電極である第2電極14と有機層13との界面と、光透過性電極である第1電極12と有機層13との界面との距離がより一定になる方が有利となる。そのため、有機層13の厚みを発光領域の面内で揃えることが重要なのである。ただし、第2電極14を含めた蒸着材料全体の積層体の厚みが揃っていてもよい。また、発光源からの距離を揃えるためには、発光層がより平坦な層(膜厚差の小さい層)となっている方が有利である。すなわち、発光層が極端に凸型又は凹型になっていると、光の移動距離が基板中央部と基板端部とで大きく異なりやすなり、干渉の度合が異なってきやすくなる。しかしながら、層の膜厚差が小さいと、光の移動距離がより近くなって干渉性が近づくので、発光がより均一なものになる。そのため、薄膜層6を形成する際に、凸型又は凹型を調整して、発光層をより平坦化させて形成することがより好ましいものである。 Here, in the organic EL element A, the second electrode 14 can also be formed by vapor deposition, but the uniformity of the film thickness of the organic layer 13 is more important than the thickness of the stacked body including the second electrode 14. . When the first electrode 12 is a light transmissive electrode and the second electrode 4 is a reflective electrode, the light emitted from the light emitting layer is reflected directly or by the second electrode 14 from the transparent substrate 11. It will be taken out to the outside. Therefore, in order to reduce the degree of optical interference, the distance between the interface between the second electrode 14 that is a reflective electrode and the organic layer 13 and the interface between the first electrode 12 that is a light transmissive electrode and the organic layer 13 is used. It is advantageous that becomes more constant. Therefore, it is important to make the thickness of the organic layer 13 uniform in the plane of the light emitting region. However, the thickness of the entire stack of vapor deposition materials including the second electrode 14 may be uniform. In order to make the distance from the light emitting source uniform, it is advantageous that the light emitting layer is a flatter layer (a layer having a small film thickness difference). That is, if the light emitting layer is extremely convex or concave, the light moving distance is likely to be greatly different between the central portion of the substrate and the end portion of the substrate, and the degree of interference is likely to be different. However, when the layer thickness difference is small, the distance of light movement becomes shorter and the coherence becomes closer, so that the light emission becomes more uniform. Therefore, when forming the thin film layer 6, it is more preferable to adjust the convex type or the concave type to further flatten the light emitting layer.
 図10及び図11は、有機エレクトロルミネッセンス素子製造装置(以下「有機EL製造装置」ともいう)の他の実施の形態の一例を示している。この有機EL製造装置は、搬送される被蒸着体(ワーク)10に、複数の蒸着ユニット1から薄膜層6(図8、9参照)を蒸着により順次に積層して有機層13を形成することにより、有機エレクトロルミネッセンス素子(有機EL素子)を製造するものである。図10には、被蒸着体10の搬送方向(白抜き矢印)Xの上流から下流に向けて3個の蒸着ユニット1が順に配置された様子が図示されているが、蒸着ユニット1は4個以上であってもよい。例えば、蒸着して形成する薄膜層6の数と同じ数の蒸着ユニット1を用いることができる。なお、蒸着ユニット1は二つ以上であることが必要である。 10 and 11 show an example of another embodiment of an organic electroluminescence element manufacturing apparatus (hereinafter also referred to as “organic EL manufacturing apparatus”). This organic EL manufacturing apparatus forms an organic layer 13 by sequentially laminating thin film layers 6 (see FIGS. 8 and 9) from a plurality of vapor deposition units 1 on a transported deposition target (work) 10 by vapor deposition. Thus, an organic electroluminescence element (organic EL element) is manufactured. FIG. 10 shows a state in which three vapor deposition units 1 are sequentially arranged from the upstream side to the downstream side in the conveyance direction (white arrow) X of the vapor deposition target 10, but there are four vapor deposition units 1. It may be the above. For example, the same number of vapor deposition units 1 as the number of thin film layers 6 formed by vapor deposition can be used. In addition, the vapor deposition unit 1 needs to be two or more.
 複数の蒸着ユニット1における各蒸着ユニット1は、薄膜層6を形成するための蒸着材料を放射する蒸着源2と、蒸着材料が気化される温度に加熱され、蒸着源2から放射された蒸着材料を被蒸着体10に向けて放出する筒状体3とを備えている。筒状体3は、断面矩形状の空洞を有する縦型の筒形状に形成されており、下部では蒸着源2と接続されるとともに、上部には気化した蒸着材料を上方に放出する開口部4が設けられている。このように筒状体3によって蒸着材料を被蒸着体10に向かって放出すれば、被蒸着体10に薄膜層6を積層することが可能になる。また、筒状体3が蒸着材料の気化温度以上の温度で加熱されていることにより、蒸着材料を筒状体3の内部に付着せずに開口部4から放出することができる。筒状体3は金属製にすることができる。また、蒸着は真空蒸着であってもよい。図10では、蒸着材料の放出を黒矢印で示している。 Each of the vapor deposition units 1 in the plurality of vapor deposition units 1 includes a vapor deposition source 2 that radiates a vapor deposition material for forming the thin film layer 6, and a vapor deposition material that is heated to a temperature at which the vapor deposition material is vaporized and emitted from the vapor deposition source 2. And a cylindrical body 3 that discharges toward the deposition target body 10. The cylindrical body 3 is formed in a vertical cylindrical shape having a cavity with a rectangular cross section, and is connected to the vapor deposition source 2 at the lower part and has an opening part 4 for discharging vaporized vapor deposition material upward at the upper part. Is provided. If the vapor deposition material is discharged toward the vapor deposition target 10 by the cylindrical body 3 in this way, the thin film layer 6 can be laminated on the vapor deposition target 10. Further, since the cylindrical body 3 is heated at a temperature equal to or higher than the vaporization temperature of the vapor deposition material, the vapor deposition material can be discharged from the opening 4 without adhering to the inside of the cylindrical body 3. The cylindrical body 3 can be made of metal. The vapor deposition may be vacuum vapor deposition. In FIG. 10, the release of the vapor deposition material is indicated by black arrows.
 筒状体3は四面の側壁30を有する略角筒状に形成することができる。側壁30は、一対の第一側壁30aと、一対の第二側壁30bとで構成されている。一対の第一側壁30aの対向する方向は被蒸着体10の搬送方向Xと平行な方向である。一対の第二側壁30bの対向する方向は被蒸着体10の搬送方向Xと垂直な方向である。筒状体3は側壁30が蒸着材料の気化温度以上の温度で加熱されるホットウォール構造を有する。各第一側壁30aには湾曲部31が形成されている。図11に示す第一側壁30aはその全体が湾曲部31として形成されている。従って、第一側壁30aは湾曲板状に形成されている。第二側壁30bは平板状に形成されている。 The cylindrical body 3 can be formed in a substantially rectangular tube shape having four side walls 30. The side wall 30 includes a pair of first side walls 30a and a pair of second side walls 30b. The direction in which the pair of first side walls 30 a face each other is a direction parallel to the transport direction X of the deposition target 10. A direction in which the pair of second side walls 30 b face each other is a direction perpendicular to the transport direction X of the deposition target 10. The cylindrical body 3 has a hot wall structure in which the side wall 30 is heated at a temperature equal to or higher than the vaporization temperature of the vapor deposition material. A curved portion 31 is formed on each first side wall 30a. The entire first side wall 30 a shown in FIG. 11 is formed as a curved portion 31. Therefore, the first side wall 30a is formed in a curved plate shape. The second side wall 30b is formed in a flat plate shape.
 図11に示すように、本形態では、開口部4は、被蒸着体10の搬送方向Xと平行に短辺が配置されるとともに、被蒸着体10の搬送方向Xにほぼ垂直な方向に長い長辺が配置された形状に形成されている。それにより、搬送される被蒸着体10表面に、より均一な膜厚で薄膜層6を形成することができる。開口部4の短辺は第二側壁30bの上端縁部で形成されている。開口部4の長辺は第一側壁30aの上端縁部で形成されている。本形態では、開口部4の全体が蒸着材料が放出される放出領域Hとして形成されている。本形態の放出領域Hは、図2に示す実施の形態の放出領域Hと同一形状である。開口部4の一対の長辺の対向する中央部の間の寸法は、開口部4の短辺の寸法よりも短く形成されている。 As shown in FIG. 11, in this embodiment, the opening 4 has a short side parallel to the transport direction X of the deposition target 10 and is long in a direction substantially perpendicular to the transport direction X of the deposition target 10. It is formed in a shape in which long sides are arranged. Thereby, the thin film layer 6 can be formed with a more uniform film thickness on the surface of the vapor-deposited body 10 to be conveyed. The short side of the opening 4 is formed by the upper edge of the second side wall 30b. The long side of the opening 4 is formed by the upper edge of the first side wall 30a. In this embodiment, the entire opening 4 is formed as an emission region H from which the vapor deposition material is released. The emission region H of this embodiment has the same shape as the emission region H of the embodiment shown in FIG. The dimension between the opposed central parts of the pair of long sides of the opening 4 is formed shorter than the dimension of the short side of the opening 4.
 また、各蒸着ユニット1は、筒状体3からの蒸着材料の放出量分布を調整する放出量調整構造50を備えている。すなわち、各蒸着ユニット1は、放出量調整構造50として、上記第一側壁30aを備えている。この第一側壁30aは筒状体3の開口部4の平面視形状を矩形状から変形して筒状体3からの蒸着材料の放出量分布を調整する。 Each vapor deposition unit 1 includes a discharge amount adjustment structure 50 that adjusts the discharge amount distribution of the vapor deposition material from the cylindrical body 3. That is, each vapor deposition unit 1 includes the first side wall 30 a as the discharge amount adjusting structure 50. The first side wall 30 a adjusts the amount of vapor deposition material released from the cylindrical body 3 by changing the shape of the opening 4 of the cylindrical body 3 in a plan view from a rectangular shape.
 この蒸着ユニット1では、筒状体3の開口部4の長辺を湾曲させることによって、開口部4の一対の長辺の対向する中央部の間の寸法は、開口部4の短辺の寸法よりも短く形成されている。従って、筒状体3の放出領域Hの平面視形状は第一側壁30aの形状等により変形することができ、これにより、放出領域Hからの蒸着材料の放出分布を調整することができる。つまり、蒸着ユニット1にあっては、第一側壁30aは湾曲部31により湾曲させることで、簡単に蒸着材料の放出分布を調整し、蒸着量の分布を調整することができる。すなわち、矩形状の開口部4の全体が開口した蒸着ユニット1を用いた場合、被蒸着体10の搬送方向に垂直な方向(幅方向)の中央部分では蒸着材料が多く放出されるとともに、幅方向の側部には蒸着材料が少なく放出されることになる。すると、薄膜層6は膜厚分布が極端に突出する凸形状になって形成されることなり、薄膜層6の中央部が大きく突出した層となる。そこで、薄膜層6の中央部と側部との蒸着量をより近づけるために、開口部4の平面視形状を変えることによって、簡単に薄膜層6の膜厚の分布を調整することができ、薄膜層6の中央部と側部との蒸着量を近づけることができる。 In the vapor deposition unit 1, the long side of the opening 4 of the cylindrical body 3 is curved, so that the dimension between the opposed central parts of the pair of long sides of the opening 4 is the dimension of the short side of the opening 4. It is formed shorter. Therefore, the planar view shape of the discharge region H of the cylindrical body 3 can be deformed by the shape of the first side wall 30a and the like, and thereby the discharge distribution of the vapor deposition material from the discharge region H can be adjusted. That is, in the vapor deposition unit 1, the first side wall 30 a is curved by the curved portion 31, so that the release distribution of the vapor deposition material can be easily adjusted and the vapor deposition amount distribution can be adjusted. That is, when the vapor deposition unit 1 in which the entire rectangular opening 4 is opened is used, a large amount of vapor deposition material is released in the center portion in the direction (width direction) perpendicular to the transport direction of the vapor deposition target 10, and the width Less vapor deposition material will be released to the side of the direction. Then, the thin film layer 6 is formed in a convex shape in which the film thickness distribution is extremely protruded, and the central portion of the thin film layer 6 is a layer protruding greatly. Therefore, in order to make the deposition amount between the central portion and the side portion of the thin film layer 6 closer, it is possible to easily adjust the film thickness distribution of the thin film layer 6 by changing the shape of the opening 4 in plan view. The amount of vapor deposition between the central portion and the side portion of the thin film layer 6 can be made closer.
 本形態では、各蒸着ユニット1において、一対となった二つの第一側壁30aが、被蒸着体10の搬送方向Xと平行な方向に沿って配置されている。すなわち、被蒸着体10の搬送方向Xの上流側には、上流側の第一側壁30aが配置されるとともに、被蒸着体10の搬送方向Xの下流側には、下流側の第一側壁30aが配置されている。上流側の第一側壁30aは搬送方向Xの上流側から下流側に向けて凸曲する湾曲部31が形成されている。すなわち、上流側の第一側壁30aはその幅方向(搬送方向Xと垂直な方向)の中央部が幅方向の端部よりも搬送方向Xの上流側から下流側に向けて突出するように湾曲している。また、下流側の第一側壁30aは搬送方向Xの下流側から上流側に向けて凸曲する湾曲部31が形成されている。すなわち、下流側の第一側壁30aはその幅方向(搬送方向Xと垂直な方向)の中央部が幅方向の端部よりも搬送方向Xの下流側から上流側に向けて突出するように湾曲している。このような開口部4が設けられることによって、被蒸着体10に対する蒸着量を中央部と側部とでより近い値に近づけることができる。 In this embodiment, in each vapor deposition unit 1, two pairs of the first side walls 30 a are arranged along a direction parallel to the conveyance direction X of the vapor deposition target 10. That is, the upstream first side wall 30a is disposed on the upstream side in the transport direction X of the deposition target 10, and the downstream first side wall 30a is disposed on the downstream side in the transport direction X of the deposition target 10. Is arranged. The first side wall 30a on the upstream side is formed with a curved portion 31 that curves from the upstream side in the transport direction X toward the downstream side. That is, the first side wall 30a on the upstream side is curved so that the center portion in the width direction (direction perpendicular to the transport direction X) protrudes from the upstream side in the transport direction X toward the downstream side than the end portion in the width direction. is doing. In addition, the first side wall 30a on the downstream side is formed with a curved portion 31 that bends from the downstream side in the transport direction X toward the upstream side. That is, the first side wall 30a on the downstream side is curved so that the center portion in the width direction (direction perpendicular to the transport direction X) protrudes from the downstream side in the transport direction X toward the upstream side from the end portion in the width direction. is doing. By providing such an opening 4, the amount of vapor deposition on the vapor deposition target 10 can be made closer to a value closer to the center and the side.
 有機EL製造装置は、被蒸着体10を搬送する搬送手段20を備えている。搬送手段20は、コンベア等の適宜の搬送機構によって構成され、これにより、被蒸着体10はラインに沿って搬送方向Xの上流側から下流側に順次に各蒸着ユニット1の上方を通過することができる。搬送手段20としては、支持部材により被蒸着体10の幅方向の端部を支持するとともに、被蒸着体10の下部表面が外部に露出するようにして支持部材ごと搬送するようなものを用いることができる。被蒸着体10の下部表面が露出していることにより、この表面に筒状体3から放出された蒸着材料を蒸着して薄膜層6を形成することができる。被蒸着体10は、少なくとも基板11を含むものであり、例えば、第1電極12が表面に形成された基板11を用いることができる。また、第1電極12と有機層13の一部の層とが表面に形成された基板11を用いることもできる。そして、第1電極12を下方にして基板1を適宜の支持部材にセットすることにより被蒸着体10を構成することができる。なお、搬送手段20を幅方向の各端部に配置されるローラーやベルトなどのコンベアで構成し、基板11の幅方向の端部をコンベア上に載せて搬送するようにしてもよい。蒸着にあたっては、被蒸着体10の下部表面にマスクを重ねるようにしてもよい。それにより、被蒸着体10の外周部に蒸着されないようにしたり、薄膜層6を適宜のパターンで積層したりすることができる。 The organic EL manufacturing apparatus includes transport means 20 for transporting the deposition target 10. The transport means 20 is configured by an appropriate transport mechanism such as a conveyor, whereby the deposition target 10 sequentially passes above the respective vapor deposition units 1 from the upstream side to the downstream side in the transport direction X along the line. Can do. As the conveying means 20, a supporting member that supports the end of the vapor deposition body 10 in the width direction and conveys the entire supporting member so that the lower surface of the vapor deposition body 10 is exposed to the outside is used. Can do. Since the lower surface of the body to be vapor-deposited 10 is exposed, the thin film layer 6 can be formed by vapor-depositing the vapor deposition material released from the cylindrical body 3 on this surface. The vapor-deposited body 10 includes at least the substrate 11. For example, the substrate 11 on which the first electrode 12 is formed can be used. Moreover, the board | substrate 11 with which the 1st electrode 12 and the one part layer of the organic layer 13 were formed in the surface can also be used. And the to-be-deposited body 10 can be comprised by setting the board | substrate 1 to a suitable supporting member with the 1st electrode 12 facing down. The conveying means 20 may be configured by a conveyor such as a roller or a belt disposed at each end in the width direction, and the end in the width direction of the substrate 11 may be placed on the conveyor and conveyed. In vapor deposition, a mask may be stacked on the lower surface of the vapor-deposited body 10. Thereby, it can be made not to vapor-deposit on the outer peripheral part of the to-be-deposited body 10, or the thin film layer 6 can be laminated | stacked by a suitable pattern.
 有機EL製造装置では、開口部4からの蒸着材料の放出量分布が調整された蒸着ユニット1により順次に薄膜層6を形成するのであるが、開口部4からの蒸着材料の放出量分布が調整されたとしても、単独の各薄膜層6について、幅方向の中央部から側部にかけて一定の厚みで蒸着材料を積層することは難しい。特に、有機層3を構成する全ての薄膜層6の幅方向における厚みを一定に揃えることは困難である。そこで、本形態では、複数の蒸着ユニット1において、開口部4からの蒸着材料の放出量分布を変えて放出量の分布を調整し、積層体全体の厚みをより一定に近づけるのである。なお、開口部4の平面視形状が矩形形状からの変形している割合が小さい場合には、通常、薄膜層6は凸型の膜厚分布で形成されるため、図16に示すような有機EL素子Aが製造されるものである。 In the organic EL manufacturing apparatus, the thin film layer 6 is sequentially formed by the vapor deposition unit 1 in which the amount distribution of the vapor deposition material from the opening 4 is adjusted, but the amount distribution of the vapor deposition material from the opening 4 is adjusted. Even if it was made, about each single thin film layer 6, it is difficult to laminate | stack vapor deposition material by fixed thickness from the center part of a width direction to a side part. In particular, it is difficult to make all the thin film layers 6 constituting the organic layer 3 uniform in thickness in the width direction. Therefore, in the present embodiment, in the plurality of vapor deposition units 1, the distribution of the emission amount is adjusted by changing the emission amount distribution of the vapor deposition material from the opening 4, and the thickness of the entire laminate is made closer to a constant value. When the ratio of the shape of the opening 4 in plan view that is deformed from the rectangular shape is small, the thin film layer 6 is usually formed with a convex film thickness distribution. The EL element A is manufactured.
 本形態では、複数の蒸着ユニット1が、開口部4からの蒸着材料の放出量分布が調整されることにより薄膜層6の膜厚分布が凸形状になる凸型分布蒸着ユニット1a(以下、単に「ユニット1a」と記載する)と、開口部4からの蒸着材料の放出量分布が調整されることにより薄膜層6の膜厚分布が凹形状になる凹型分布蒸着ユニット1b(以下、単に「ユニット1b」と記載する)とを有するようにする。すなわち、複数の蒸着ユニット1のうちの一部がユニット1aであり、残りのうちの全部又は一部がユニット1bである。それにより、凸形状の膜厚分布を有する薄膜層6(凸型薄膜層6a)と凹形状の膜厚分布を有する薄膜層(凹型薄膜層6b)とが積層されるので、蒸着されて形成される積層体全体の厚みの分布を一定に近づけることができる。そして、積層体である有機層13における中央部の厚みと側部の厚みとが一定に近づくと、中央部と側部との発光輝度がより同じ程度に近づく。すなわち、光は干渉を利用して素子外部に取り出されることが多く、有機層13の中央部と側部とで膜厚が略同じになると干渉の度合いが略同じになることになり、発光輝度が表面全体において一定に近づく。それにより、面内の発光がより均一な有機EL素子を製造することができるのである。なお、複数の蒸着ユニット1の中には、ユニット1a及びユニット1bに加えて、膜厚分布が平坦な平坦分布蒸着ユニットが含まれていてもよい。また、高温蒸着ユニットが、ユニット1a及びユニット1bが並ぶ列の間に配置されていてもよい。高温蒸着ユニットは、ユニット1a及びユニット1bのようなホットウォールでの蒸着よりも高い蒸着温度で蒸着するユニットである。金属など蒸着温度が高温な場合には、ホットウォールでの蒸着はできないため、高温蒸着ユニットが適している。例えば、陰極に用いるAlなどの金属や、有機層13内の金属含有層(Mg、ITO、MoO、LiMoOなど)の蒸着に高温蒸着ユニットを用いることができる。高温蒸着ユニットで形成した薄膜層6は、幅方向の厚み分布が均一なものであってよく、あるいは凸型又は凹型であってもよい。 In the present embodiment, the plurality of vapor deposition units 1 has a convex distribution vapor deposition unit 1a (hereinafter simply referred to as a film thickness distribution of the thin film layer 6 by adjusting the discharge amount distribution of the vapor deposition material from the opening 4). And a concave distribution vapor deposition unit 1b (hereinafter simply referred to as “unit”) in which the film thickness distribution of the thin film layer 6 is concaved by adjusting the amount distribution of the vapor deposition material from the opening 4. 1b ”). That is, a part of the plurality of vapor deposition units 1 is the unit 1a, and the whole or a part of the remaining part is the unit 1b. As a result, the thin film layer 6 having a convex thickness distribution (convex thin film layer 6a) and the thin film layer having a concave thickness distribution (concave thin film layer 6b) are laminated, and thus formed by vapor deposition. It is possible to make the distribution of the thickness of the entire laminate close to a constant value. And when the thickness of the center part in the organic layer 13 which is a laminated body and the thickness of a side part approach constant, the light emission luminance of a center part and a side part will approach the same grade more. That is, light is often extracted to the outside of the element using interference, and when the film thickness is substantially the same at the central part and the side part of the organic layer 13, the degree of interference becomes substantially the same, and the light emission luminance Approaches constant over the entire surface. Thereby, an organic EL element with more uniform in-plane light emission can be manufactured. In addition to the units 1a and 1b, the plurality of vapor deposition units 1 may include a flat distribution vapor deposition unit having a flat film thickness distribution. Moreover, the high temperature vapor deposition unit may be arrange | positioned between the row | line | columns where the unit 1a and the unit 1b are located in a line. The high temperature vapor deposition unit is a unit for vapor deposition at a higher vapor deposition temperature than the vapor deposition on a hot wall such as the unit 1a and the unit 1b. When the vapor deposition temperature is high, such as metal, high temperature vapor deposition unit is suitable because vapor deposition on a hot wall is not possible. For example, a high-temperature vapor deposition unit can be used for vapor deposition of a metal such as Al used for the cathode or a metal-containing layer (Mg, ITO, MoO 3 , Li 2 MoO 3, etc.) in the organic layer 13. The thin film layer 6 formed by the high temperature vapor deposition unit may have a uniform thickness distribution in the width direction, or may be convex or concave.
 図8は、薄膜層6の一例を示している。図8Aは、ユニット1aによって形成される凸型薄膜層6aの一例である。凸型薄膜層6aでは、両側部から中央部に近づくにつれて徐々に厚みが厚くなっており、中央部が厚み方向に突出している。このようにユニット1aは、平坦な表面に薄膜層6を形成した際に、凸型の膜厚分布を示す層を形成するものである。また、図8Bは、ユニット1bによって形成される凹型薄膜層6bの一例である。凹型薄膜層6bでは、両側部から中央部に近づくにつれて徐々に厚みが薄くなっており、中央部が厚み方向で凹んでいる。このようにユニット1bは、平坦な表面に薄膜層6を形成した際に、凹型の膜厚分布を示す層を形成するものである。 FIG. 8 shows an example of the thin film layer 6. FIG. 8A is an example of the convex thin film layer 6a formed by the unit 1a. In the convex thin film layer 6a, the thickness gradually increases as it approaches the central portion from both side portions, and the central portion protrudes in the thickness direction. Thus, the unit 1a forms a layer having a convex film thickness distribution when the thin film layer 6 is formed on a flat surface. FIG. 8B is an example of the concave thin film layer 6b formed by the unit 1b. In the concave thin film layer 6b, the thickness is gradually reduced from the both sides toward the center, and the center is recessed in the thickness direction. Thus, the unit 1b forms a layer having a concave thickness distribution when the thin film layer 6 is formed on a flat surface.
 ここで、ユニット1bは、側部から中央部に近づくにつれて厚みが小さくなって凹んだ部分を有する膜厚分布で薄膜層6を形成するものであればよい。蒸着ユニット1による蒸着では、開口部4の端縁部において蒸着量が減少することがあり、その場合、図8Cのように、側端部において薄膜層6の厚みが薄くなることがあるが、このような薄膜層6も中央部に凹部があるため、凹型薄膜層6bとなる。また、積層する面積が大きくなると開口部4の形状による放出量分布の調整による中央部分における遮断効果が少なくなり、その場合、図8Dのように、中央部において薄膜層6の厚みが厚くなることがあるが、このような薄膜層6も中央部近傍に凹部があるため、凹型薄膜層6bとなる。ただし、図8Dの場合、中央部で突出する部分の厚みは、側部において突出する部分の厚みよりも小さいことが好ましい。 Here, the unit 1b should just form the thin film layer 6 by the film thickness distribution which has a recessed part which thickness became small as it approached the center part from the side part. In vapor deposition by the vapor deposition unit 1, the amount of vapor deposition may decrease at the edge of the opening 4. In this case, the thickness of the thin film layer 6 may be reduced at the side edge as shown in FIG. Since such a thin film layer 6 also has a recess at the center, it becomes a concave thin film layer 6b. Further, when the area to be stacked increases, the blocking effect at the center portion by adjusting the emission amount distribution due to the shape of the opening 4 decreases, and in this case, the thickness of the thin film layer 6 increases at the center portion as shown in FIG. 8D. However, since such a thin film layer 6 also has a recess in the vicinity of the central portion, it becomes a concave thin film layer 6b. However, in the case of FIG. 8D, the thickness of the portion protruding at the center is preferably smaller than the thickness of the portion protruding at the side.
 凸型薄膜層6a及び凹型薄膜層6bを形成するためには、ユニット1aにおける開口部4の形状と、ユニット1bにおける開口部4の形状とが異なるようにすることが好ましい。それにより、簡単に薄膜層6を凸型又は凹型に形成することができる。例えば、ユニット1bにおける開口部4の面積を、ユニット1aにおける開口部4の開口面積よりも小さくして、開口部4の中央部において蒸着材料の放出が側部よりも蒸着量が少なくなるようにする。すると、凹型の膜厚分布で蒸着材料が積層して凹型薄膜層6bを形成することができる。 In order to form the convex thin film layer 6a and the concave thin film layer 6b, the shape of the opening 4 in the unit 1a is preferably different from the shape of the opening 4 in the unit 1b. Thereby, the thin film layer 6 can be easily formed in a convex shape or a concave shape. For example, the area of the opening 4 in the unit 1b is made smaller than the opening area of the opening 4 in the unit 1a, so that the amount of vapor deposition material is released in the central part of the opening 4 less than the side part. To do. Then, the vapor deposition material can be laminated with a concave film thickness distribution to form the concave thin film layer 6b.
 図11の形態においては、筒状体3の開口部4の平面視形状により、容易に薄膜層6の膜厚分布を凸型又は凹型にすることができる。この形態では、複数の蒸着ユニット1における筒状体3の第一側壁30aは、湾曲部31により、開口部4の開口縁部を構成する長辺が円弧状になって搬送方向と平行な方向に沿って突出している。開口部4の開口縁部を構成する第一側壁30aの長辺が円弧状になることにより、薄膜層6の側部から中央部にかけて膜厚分布を滑らかに変化させることができる。図11の開口部4の平面視形状では、円弧状になった第一側壁30aの長辺は、開口部4における幅方向に配置された角部4a,4aを通って湾曲した曲線となっている。この曲線は円の一部であってもよいし、楕円の一部であってもよい。このような長辺が円弧状の第一側壁30aを用いることにより、簡単に開口部4からの蒸着材料の放出分布を蒸着ユニット1ごとに変化させることができ、蒸着材料の放出量分布を制御できる。 In the form of FIG. 11, the film thickness distribution of the thin film layer 6 can be easily made convex or concave by the shape of the opening 4 of the cylindrical body 3 in plan view. In this embodiment, the first side wall 30a of the cylindrical body 3 in the plurality of vapor deposition units 1 is formed in a direction parallel to the transport direction so that the long side constituting the opening edge of the opening 4 becomes an arc shape by the curved portion 31. Projecting along. When the long side of the first side wall 30a constituting the opening edge of the opening 4 has an arc shape, the film thickness distribution can be smoothly changed from the side portion to the center portion of the thin film layer 6. In the plan view shape of the opening 4 in FIG. 11, the long side of the arc-shaped first side wall 30 a is a curved curve that passes through the corners 4 a and 4 a arranged in the width direction in the opening 4. Yes. This curve may be part of a circle or part of an ellipse. By using the first side wall 30a having such a long arc, the discharge distribution of the vapor deposition material from the opening 4 can be easily changed for each vapor deposition unit 1, and the discharge amount distribution of the vapor deposition material is controlled. it can.
 また、図11の形態では、搬送方向において対向する第一側壁30a、30a間の最も短い箇所の長さ(対向する湾曲部31,31の中央部間の長さ)L4及び各第一側壁30aにおける搬送方向に垂直な方向の長さ(湾曲部31の基部間の長さ)L2の少なくとも一方を複数の蒸着ユニット1で異ならせることで、開口部4の平面視形状を変化させることができる。もちろん、長さL4とL2の両方を異ならせてもよい。尚、第一側壁30aの全体が湾曲している場合、長さL2は角部4a,4a間の寸法である。 In the form of FIG. 11, the length of the shortest portion between the first side walls 30a, 30a facing each other in the transport direction (the length between the central portions of the facing curved portions 31, 31) L4 and each first side wall 30a. By changing at least one of the lengths L2 in the direction perpendicular to the transport direction (length between the base portions of the curved portion 31) L2 among the plurality of vapor deposition units 1, the planar view shape of the opening 4 can be changed. . Of course, both the lengths L4 and L2 may be different. When the entire first side wall 30a is curved, the length L2 is a dimension between the corner portions 4a and 4a.
 図12により、開口部4の平面視形状による放出量分布の変化を説明する。図11及び図12Aに示すように、例えば、搬送方向において対向する第一側壁30a、30a間の最も短い箇所の長さL4を、ユニット1aとユニット1bとで異ならせることにより、開口部4の平面視形状を変化させることができる。また、この場合、簡単に開口部4の放出量分布や放出量面積を異ならせることができる。すなわち、ユニット1aにおける長さL4よりも、ユニット1bにおける長さL4が短いようにする。このとき、図13の形態は、ユニット1bの開口部4を示し、図12Aの形態は、ユニット1aの開口部4を示すことになる。図12Aの形態では、開口部4の幅方向の中央部は、搬送方向の開口長さが、図11のものよりも長くなる。そして、開口部4の中央部においては、より多くの蒸着材料が放出されて、薄膜層6を厚く形成し、図8Aに示すような凸形状の膜厚分布を形成することができる。一方、図11の形態では、開口部4の幅方向の中央部は、搬送方向の開口長さが、図12Aの形態よりも短いので、開口部4の中央部においては、蒸着材料の放出量が少なくなり、薄膜層6を薄く形成し、図8Bなどに示すような凹形状の膜厚分布を形成することができる。このように、開口部4の搬送方向の長さL4を変化させることにより、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができるものである。 Referring to FIG. 12, the change in the emission amount distribution due to the shape of the opening 4 in plan view will be described. As shown in FIGS. 11 and 12A, for example, the length L4 of the shortest portion between the first side walls 30a and 30a facing each other in the transport direction is made different between the unit 1a and the unit 1b. The planar view shape can be changed. In this case, the emission amount distribution and the emission amount area of the opening 4 can be easily changed. That is, the length L4 in the unit 1b is shorter than the length L4 in the unit 1a. At this time, the form of FIG. 13 shows the opening 4 of the unit 1b, and the form of FIG. 12A shows the opening 4 of the unit 1a. In the form of FIG. 12A, the opening length in the transport direction is longer in the central portion in the width direction of the opening 4 than in FIG. In the central portion of the opening 4, more vapor deposition material is released, and the thin film layer 6 can be formed thick, so that a convex thickness distribution as shown in FIG. 8A can be formed. On the other hand, in the form of FIG. 11, since the opening length in the width direction of the opening 4 is shorter than the form of FIG. 12A, the amount of the vapor deposition material released in the center of the opening 4. Therefore, the thin film layer 6 can be formed thin, and a concave film thickness distribution as shown in FIG. 8B can be formed. As described above, by changing the length L4 of the opening 4 in the transport direction, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape.
 また、図11及び図12Bに示すように、第一側壁30aの湾曲部31の搬送方向に垂直な方向(幅方向)の長さ(湾曲部31の基部間の長さ)L2を、ユニット1aとユニット1bとで異ならせることによっても、開口部4の平面視形状を変化させることができる。また、この場合、簡単に開口部4の放出量分布や放出量面積を異ならせることができる。すなわち、ユニット1aにおける長さL2よりも、ユニット1bにおける長さL2が短いようにする。このとき、図11の形態は、ユニット1aの開口部4を示し、図12Bの形態は、ユニット1bの開口部4を示すことになる。図12Bの形態では、開口部4の幅方向の側部では、開口面積が、図11のものよりも大きくなる。そして、開口部4の側部においては、より多くの蒸着材料が放出されて、薄膜層6を厚く形成し、図8(b)などに示すような凹形状の膜厚分布を形成することができる。一方、図11の形態では、開口部4の幅方向の側部は、開口面積が、図12Bの形態よりも小さいので、開口部4の側部においては、蒸着材料の放出量が少なくなり、薄膜層6を薄く形成し、図8Aに示すような凸形状の膜厚分布を形成することができる。このように、第一側壁30aの湾曲部31の幅方向の長さL2を変化させることにより、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができる。なお、図12Bの形態では、第一側壁30aの湾曲部31の基部は角部4aよりも内側に配置されることになる。 Further, as shown in FIGS. 11 and 12B, the length (the length between the base portions of the curved portion 31) L2 in the direction (width direction) perpendicular to the conveying direction of the curved portion 31 of the first side wall 30a is set to the unit 1a. It is also possible to change the shape of the opening 4 in plan view by making it different between the unit 1b and the unit 1b. In this case, the emission amount distribution and the emission amount area of the opening 4 can be easily changed. That is, the length L2 in the unit 1b is made shorter than the length L2 in the unit 1a. At this time, the form of FIG. 11 shows the opening 4 of the unit 1a, and the form of FIG. 12B shows the opening 4 of the unit 1b. In the form of FIG. 12B, the opening area is larger than that of FIG. 11 at the side portion in the width direction of the opening 4. Then, on the side of the opening 4, more vapor deposition material is released to form the thin film layer 6 thicker, and to form a concave thickness distribution as shown in FIG. it can. On the other hand, in the form of FIG. 11, since the opening area of the side part in the width direction of the opening 4 is smaller than that of the form of FIG. 12B, the amount of the vapor deposition material released is reduced at the side part of the opening 4. The thin film layer 6 can be formed thin to form a convex thickness distribution as shown in FIG. 8A. Thus, by changing the length L2 in the width direction of the curved portion 31 of the first side wall 30a, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape. In addition, in the form of FIG. 12B, the base part of the curved part 31 of the 1st side wall 30a will be arrange | positioned inside the corner | angular part 4a.
 また、図11の形態において、第一側壁30aの湾曲部31は、その長辺が円形の一部が切り出されたような円弧状になって搬送方向と平行な方向に沿って突出して開口部4の開口縁部を形成している。この場合には、図13に示す湾曲部31により描かれる円形の半径Rを、蒸着ユニット1ごとに異ならせてもよい。すなわち、ユニット1aにおける湾曲部31による円形の半径Rと、ユニット1bにおける湾曲部31による円形の半径とを異ならせるようにするのである。それにより、開口部4の平面視形状を変化させることができる。また、この場合、簡単に開口部4の放出量分布や放出面積を異ならせることができる。例えば、ユニット1aにおける湾曲部31による円形の半径Rよりも、ユニット1bにおける湾曲部31による円形の半径Rの方が小さくなるようにする。すると、ユニット1aにおいては、円の外縁と中心との距離が短くなり外縁の描く曲率半径(R)がより小さくなって湾曲部31がより突出した形状になるため、開口部4の幅方向の中央部では、開口割合が、ユニット1aよりも小さくなる。そして、凹型分布蒸着ユニット1bでは、開口部4の中央部においては、蒸着材料の放出量が少なくなり、薄膜層6を薄く形成し、図8Bなどに示すような凹形状の膜厚分布を形成することができる。一方、ユニット1aでは、遮断領域の突出が小さいために、開口部4の中央部では、開口割合が、ユニット1bよりも大きくなるので、開口部4の中央部においては、蒸着材料の放出量が多くなる。そのため、薄膜層6を厚く形成し、図8Aに示すような凸形状の膜厚分布を形成することができる。このように、第一側壁30aの湾曲部31の半径Rを変化させることにより、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができるものである。なお、半径Rを変化させるときは、例えば、上記円形が開口部4の角部4a,4aを通るようにすることができる。 In the form of FIG. 11, the curved portion 31 of the first side wall 30a has an arc shape in which a long side is partially cut out and protrudes along a direction parallel to the conveying direction. 4 opening edges are formed. In this case, the circular radius R drawn by the curved portion 31 shown in FIG. 13 may be made different for each vapor deposition unit 1. That is, the circular radius R by the curved portion 31 in the unit 1a is made different from the circular radius by the curved portion 31 in the unit 1b. Thereby, the planar view shape of the opening part 4 can be changed. In this case, the emission amount distribution and the emission area of the opening 4 can be easily changed. For example, the circular radius R by the curved portion 31 in the unit 1b is made smaller than the circular radius R by the curved portion 31 in the unit 1a. Then, in the unit 1a, the distance between the outer edge and the center of the circle becomes shorter, the radius of curvature (R) drawn by the outer edge becomes smaller, and the curved portion 31 becomes more protruded. In the central portion, the opening ratio is smaller than that of the unit 1a. In the concave distribution vapor deposition unit 1b, the amount of the vapor deposition material is reduced at the center of the opening 4, the thin film layer 6 is formed thin, and a concave film thickness distribution as shown in FIG. 8B is formed. can do. On the other hand, in the unit 1a, since the projection of the blocking region is small, the opening ratio is larger in the center part of the opening part 4 than in the unit 1b. Become more. Therefore, the thin film layer 6 can be formed thick and a convex thickness distribution as shown in FIG. 8A can be formed. Thus, by changing the radius R of the curved portion 31 of the first side wall 30a, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape. When the radius R is changed, for example, the circular shape can pass through the corners 4 a and 4 a of the opening 4.
 なお、第一側壁30aの長辺(湾曲部31の縁部)が楕円形の一部が切り出されたものである場合には、楕円の短軸の長さ(短径)又は長軸の長さ(長径)を、上記の円の半径Rの場合と同様の要領で変化させることで薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができる。また、楕円の長軸と短軸の長さの比を変化させることによっても、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができる。 When the long side of the first side wall 30a (the edge of the curved portion 31) is partly cut out of an ellipse, the minor axis length (minor axis) of the ellipse or the major axis length By changing the length (major axis) in the same manner as in the case of the radius R of the circle, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape. Also, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape by changing the ratio of the major axis to the minor axis length of the ellipse.
 図14は、第一側壁30aの他の一例である。この形態では、第一側壁30aは、その中央部が両側部(角部4a)よりも、搬送方向と平行な方向に沿って突出して形成されている。すなわち、第一側壁30aとその両端の角部4a、4a同士を結ぶ仮想直線とを想定した平面視形状が台形状になっている。開口部4の平面視形状は、搬送方向Xにおける中央部の長さ(寸法)L4が、側部の長さよりも狭くなることにより、側部においては中央部に近づくほど蒸着材料の放出量を減らすとともに、中央部においては蒸着材料の放出量が少なくなりすぎないようにして、薄膜層6を形成することができる。図14に示す第一側壁30aはその全体が突出部32として形成されている。突出部32はその中央の平面部32aと、平面部32aの両側端部の傾斜部32bとを備えて形成されている。 FIG. 14 shows another example of the first side wall 30a. In this embodiment, the first side wall 30a is formed so that its central portion protrudes in a direction parallel to the transport direction from both side portions (corner portions 4a). That is, the plan view shape assuming the first side wall 30a and virtual straight lines connecting the corners 4a and 4a at both ends thereof is trapezoidal. The shape of the opening 4 in plan view is that the length (dimension) L4 of the central portion in the transport direction X is narrower than the length of the side portion, so that the amount of vapor deposition material released becomes closer to the central portion at the side portion. In addition to the reduction, the thin film layer 6 can be formed so that the amount of the vapor deposition material released does not become too small at the center. The first side wall 30a shown in FIG. The protruding portion 32 is formed to include a central flat portion 32a and inclined portions 32b at both end portions of the flat portion 32a.
 また、図11の形態と同様に、各蒸着ユニット1においては、一対となった二つの第一側壁30aが、被蒸着体10の搬送方向Xと平行な方向に沿って配置されている。すなわち、被蒸着体10の搬送方向Xの上流側には、上流側の第一側壁30aが配置されるとともに、被蒸着体10の搬送方向Xの下流側には、下流側の第一側壁30aが配置されている。上流側の第一側壁30aはその突出部32が搬送方向Xの上流側から下流側に向けて突出するように形成されている。すなわち、上流側の第一側壁30aはその幅方向(搬送方向Xと垂直な方向)の中央部が幅方向の端部よりも搬送方向Xの上流側から下流側に向けて突出するように形成されている。また、下流側の第一側壁30aはその突出部32が搬送方向Xの下流側から上流側に向けて突出するように形成されている。すなわち、下流側の第一側壁30aはその幅方向(搬送方向Xと垂直な方向)の中央部が幅方向の端部よりも搬送方向Xの下流側から上流側に向けて突出するように形成されている。このような開口部4が設けられることによって、被蒸着体10に対する蒸着量を中央部と側部とでより近い値に近づけることができる。 11, in each vapor deposition unit 1, two paired first side walls 30 a are arranged along a direction parallel to the transport direction X of the vapor deposition target 10. That is, the upstream first side wall 30a is disposed on the upstream side in the transport direction X of the deposition target 10, and the downstream first side wall 30a is disposed on the downstream side in the transport direction X of the deposition target 10. Is arranged. The upstream first side wall 30 a is formed such that the protruding portion 32 protrudes from the upstream side in the transport direction X toward the downstream side. That is, the first side wall 30a on the upstream side is formed such that the center portion in the width direction (direction perpendicular to the transport direction X) protrudes from the upstream side in the transport direction X toward the downstream side than the end portion in the width direction. Has been. Further, the first side wall 30a on the downstream side is formed such that the protruding portion 32 protrudes from the downstream side in the transport direction X toward the upstream side. That is, the downstream first side wall 30a is formed such that the center portion in the width direction (direction perpendicular to the transport direction X) protrudes from the downstream side in the transport direction X toward the upstream side from the end portion in the width direction. Has been. By providing such an opening 4, the amount of vapor deposition on the vapor deposition target 10 can be made closer to a value closer to the center and the side.
 図14の開口部4の平面視形状では、開口部4の幅方向の両端部が角部4a,4aの位置と等しくなっている。このような開口部4を用いることにより、簡単に開口部4の放出量分布や放出面積を蒸着ユニット1ごとに変化させることができ、蒸着材料の放出量分布を制御できる。 In the plan view shape of the opening 4 in FIG. 14, both ends in the width direction of the opening 4 are equal to the positions of the corners 4a and 4a. By using such an opening 4, the emission amount distribution and the emission area of the opening 4 can be easily changed for each vapor deposition unit 1, and the emission amount distribution of the vapor deposition material can be controlled.
 図14の形態では、ユニット1aにおける開口部4の面積と、ユニット1bにおける開口部4の面積とを異ならせることにより、薄膜層6の膜厚分布を凸型又は凹型に調整することができる。また、開口部4の面積が同じであっても、中央部における放出量分布の割合が変化するように、開口部4の形状を変化するようにすれば、薄膜層6の膜厚分布を凸型又は凹型に調整することができる。すなわち、開口部4の中央部において、対向する第一側壁30a、30aの間隔の長さ(対向する突出部32、32の平面部32a、32a間の長さ)L4を狭くすれば、容易に中央部近傍における蒸着材料の放出量を少なくすることができ、膜厚分布を凹型にすることができる。 In the form of FIG. 14, the film thickness distribution of the thin film layer 6 can be adjusted to be convex or concave by making the area of the opening 4 in the unit 1a different from the area of the opening 4 in the unit 1b. Further, even if the area of the opening 4 is the same, if the shape of the opening 4 is changed so that the ratio of the emission amount distribution in the center changes, the film thickness distribution of the thin film layer 6 is convex. It can be adjusted to mold or concave. In other words, in the central portion of the opening 4, the distance between the opposing first side walls 30 a, 30 a (the length between the planar portions 32 a, 32 a of the opposing protrusions 32, 32) L4 is easily reduced. The discharge amount of the vapor deposition material in the vicinity of the central portion can be reduced, and the film thickness distribution can be made concave.
 具体的には、搬送方向において対向する第一側壁30a、30a間の最も短い箇所の長さL4及び各第一側壁30aの突出部32の基部間(傾斜部32b、32bの端部間)における搬送方向に垂直な方向の長さL2の少なくとも一方を複数の蒸着ユニット1で異ならせることで、開口部4の平面視形状を変化させることができる。もちろん、長さL4とL2の両方を異ならせてもよい。 Specifically, the length L4 of the shortest portion between the first side walls 30a and 30a facing each other in the transport direction and between the bases of the protrusions 32 of each first side wall 30a (between the end portions of the inclined portions 32b and 32b). By changing at least one of the lengths L <b> 2 in the direction perpendicular to the transport direction among the plurality of vapor deposition units 1, the planar view shape of the opening 4 can be changed. Of course, both the lengths L4 and L2 may be different.
 図15により、放出量調整構造50による放出量分布の変化を説明する。図14及び図15Aに示すように、例えば、搬送方向Xにおける開口部4の中央部の長さL4を、ユニット1aとユニット1bとで異ならせることにより、開口部4の平面視形状を変化させることができる。また、この場合、簡単に開口部4からの放出量分布や放出面積を異ならせることができる。すなわち、ユニット1aにおける開口部4の中央部の長さL4よりも、ユニット1bにおける開口部4の中央部の長さL4が短いようにする。このとき、図14の形態は、ユニット1bの開口部4を示し、図15Aの形態は、ユニット1aの開口部4を示すことになる。図15Aの形態では、開口部4の幅方向の中央部は、搬送方向の長さL4が、図14のものよりも長くなる。そして、開口部4の中央部においては、より多くの蒸着材料が放出されて、薄膜層6を厚く形成し、図8Aに示すような凸形状の膜厚分布を形成することができる。一方、図14の形態では、開口部4の幅方向の中央部は、搬送方向の長さL4が、図15Aの形態よりも短いので、開口部4の中央部においては、蒸着材料の放出量が少なくなり、薄膜層6を薄く形成し、図8Bなどに示すような凹形状の膜厚分布を形成することができる。このように、開口部4の搬送方向の長さL4を変化させることにより、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができるものである。 Referring to FIG. 15, the change in the emission amount distribution by the emission amount adjusting structure 50 will be described. As shown in FIGS. 14 and 15A, for example, by changing the length L4 of the central portion of the opening 4 in the transport direction X between the unit 1a and the unit 1b, the planar view shape of the opening 4 is changed. be able to. In this case, the emission amount distribution and the emission area from the opening 4 can be easily changed. That is, the length L4 of the central portion of the opening 4 in the unit 1b is shorter than the length L4 of the central portion of the opening 4 in the unit 1a. At this time, the form of FIG. 14 shows the opening 4 of the unit 1b, and the form of FIG. 15A shows the opening 4 of the unit 1a. In the form of FIG. 15A, the length L4 in the transport direction is longer in the central portion in the width direction of the opening 4 than in FIG. In the central portion of the opening 4, more vapor deposition material is released, and the thin film layer 6 can be formed thick, so that a convex thickness distribution as shown in FIG. 8A can be formed. On the other hand, in the form of FIG. 14, the center part in the width direction of the opening 4 has a length L4 in the transport direction shorter than that of the form of FIG. 15A. Therefore, the thin film layer 6 can be formed thin, and a concave film thickness distribution as shown in FIG. 8B can be formed. As described above, by changing the length L4 of the opening 4 in the transport direction, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape.
 また、図14及び図15Bに示すように、開口部4の搬送方向に垂直な方向(幅方向)の長さL2を、ユニット1aとユニット1bとで異ならせることによっても、開口部4の平面視形状を変化させることができる。また、この場合、簡単に開口部4からの放出量分布や放出面積を異ならせることができる。すなわち、ユニット1aにおける第一側壁30aの突出部分の基部側の幅方向の長さL2よりも、ユニット1bにおける第一側壁30aの突出部分の基部側の幅方向の長さL2が短いようにする。このとき、図14の形態は、ユニット1aの開口部4を示し、図15Bの形態は、ユニット1bの開口部4を示すことになる。図15Bの形態では、開口部4の幅方向の側部では、開口面積が、図14のものよりも大きくなる。そして、開口部4の側部においては、より多くの蒸着材料が放出されて、薄膜層6を厚く形成し、図8Bなどに示すような凹形状の膜厚分布を形成することができる。一方、図14の形態では、開口部4の幅方向の側部は、開口面積が、図15Bの形態よりも小さいので、開口部4の側部においては、蒸着材料の放出量が少なくなり、薄膜層6を薄く形成し、図8Aに示すような凸形状の膜厚分布を形成することができる。このように、第一側壁30aの突出部分の幅方向の長さL2を変化させることにより、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができるものである。なお、図15Bの形態では、第一側壁30aの突出部32の基部間の長さL2は開口部4の幅方向の長さよりも短くなり、角部4aよりも内側に配置されることになる。 As shown in FIGS. 14 and 15B, the plane of the opening 4 can also be obtained by making the length L2 in the direction (width direction) perpendicular to the conveying direction of the opening 4 different between the unit 1a and the unit 1b. The visual shape can be changed. In this case, the emission amount distribution and the emission area from the opening 4 can be easily changed. That is, the length L2 in the width direction on the base side of the protruding portion of the first side wall 30a in the unit 1b is shorter than the length L2 in the width direction on the base side of the protruding portion of the first side wall 30a in the unit 1a. . At this time, the form of FIG. 14 shows the opening 4 of the unit 1a, and the form of FIG. 15B shows the opening 4 of the unit 1b. In the form of FIG. 15B, the opening area is larger than that of FIG. 14 at the side portion in the width direction of the opening 4. Then, at the side of the opening 4, more vapor deposition material is released, so that the thin film layer 6 can be formed thick, and a concave film thickness distribution as shown in FIG. 8B or the like can be formed. On the other hand, in the form of FIG. 14, since the opening area of the side part in the width direction of the opening 4 is smaller than that of the form of FIG. 15B, the emission amount of the vapor deposition material is reduced at the side part of the opening 4, The thin film layer 6 can be formed thin to form a convex thickness distribution as shown in FIG. 8A. Thus, the film thickness distribution of the thin film layer 6 can be divided into a convex shape and a concave shape by changing the length L2 in the width direction of the protruding portion of the first side wall 30a. In addition, in the form of FIG. 15B, the length L2 between the base parts of the protrusion part 32 of the 1st side wall 30a becomes shorter than the length of the width direction of the opening part 4, and will be arrange | positioned inside the corner | angular part 4a. .
 なお、図15Bに示す第一側壁30aの突出部32の平面部32aの幅方向の長さL3を、上記の基部側の長さL2の場合と同様の要領により変化させることによっても、薄膜層6の膜厚分布を凸形状と凹形状とに分けて形成することができる。すなわち、長さL3をより長くすれば、幅方向の中央部における蒸着材料の放出量が少なくなるので、薄膜層6の膜厚分布を凹型に近づけることができる。 The thin film layer can also be obtained by changing the width direction length L3 of the flat portion 32a of the protruding portion 32 of the first side wall 30a shown in FIG. 15B in the same manner as in the case of the length L2 on the base side. 6 can be divided into a convex shape and a concave shape. That is, if the length L3 is made longer, the amount of vapor deposition material released at the central portion in the width direction is reduced, so that the film thickness distribution of the thin film layer 6 can be made closer to a concave shape.
 また、図14の形態では、ユニット1aにおける開口部4の中央部での放出割合よりも、ユニット1bにおける開口部4の中央部での放出割合の方が小さいことが好ましい。この形態では、開口部4の中央部での放出割合を増減させれば、容易に中央部近傍における蒸着材料の放出量を制御することができ、膜厚分布を凸型又は凹型にすることができるものである。 Moreover, in the form of FIG. 14, it is preferable that the discharge ratio at the center of the opening 4 in the unit 1b is smaller than the discharge ratio at the center of the opening 4 in the unit 1a. In this embodiment, if the emission ratio at the center of the opening 4 is increased or decreased, the amount of the vapor deposition material released in the vicinity of the center can be easily controlled, and the film thickness distribution can be made convex or concave. It can be done.
 また、図14の形態では、ユニット1aにおける開口部4の放出領域Hの面積よりも、ユニット1bにおける開口部4の放出領域Hの面積の方が小さくようにすることも好ましい。この形態では、開口部4の放出領域Hの面積を減少させれば、容易に中央部近傍における蒸着材料の放出量を減少させることができ、膜厚分布を凹型にすることができるものである。例えば、開口部4の幅方向の角部4a,4aの線分として固定し、対向する第一側壁30a、30aの突出部32,32間の長さL4を小さくすれば、放出領域Hを減少させて中央部近傍の放出量を減少させ、膜厚分布を凹型にすることができる。 Further, in the form of FIG. 14, it is also preferable that the area of the emission region H of the opening 4 in the unit 1b is smaller than the area of the emission region H of the opening 4 in the unit 1a. In this embodiment, if the area of the emission region H of the opening 4 is reduced, the amount of vapor deposition material released in the vicinity of the center can be easily reduced, and the film thickness distribution can be made concave. . For example, if the length L4 between the protruding portions 32, 32 of the first side walls 30a, 30a facing each other is fixed as a line segment of the corners 4a, 4a in the width direction of the opening 4, and the emission region H is reduced. Thus, the amount of discharge in the vicinity of the central portion can be reduced, and the film thickness distribution can be made concave.
 また、図14の形態では、ユニット1aにおける開口部4の放出領域Hの面積よりも、ユニット1bにおける開口部4の放出領域Hの面積の方が大きいようにすることも好ましい。この形態では、開口部4の放出領域Hの面積を増加させれば、容易に側部における蒸着材料の放出量を増加させることができ、膜厚分布を凹型にすることができるものである。例えば、対向する第一側壁30a、30aの間の長さL4を固定し、開口部4の幅方向の長さL2を短くすれば、開口部4の開口部4の放出領域Hの面積を増加させて側部における放出量を増加させ、膜厚分布を凹型にすることができる。 Further, in the form of FIG. 14, it is also preferable that the area of the emission region H of the opening 4 in the unit 1b is larger than the area of the emission region H of the opening 4 in the unit 1a. In this embodiment, if the area of the emission region H of the opening 4 is increased, the amount of vapor deposition material released from the side can be easily increased, and the film thickness distribution can be made concave. For example, if the length L4 between the opposing first side walls 30a and 30a is fixed and the length L2 in the width direction of the opening 4 is shortened, the area of the emission region H of the opening 4 of the opening 4 is increased. Thus, the discharge amount at the side portion can be increased, and the film thickness distribution can be made concave.
 上記の各形態においては、開口部4の放出領域Hは、開口部4を幅方向で2分した線において線対称になることが好ましい。それにより、幅方向の側部から中央部にかけての放出量分布が幅方向で左右対称となり、積層体全体の膜厚の調整が容易になる。また、開口部4の放出領域Hは、開口部4を搬送方向Xで2分した線において線対称になることが好ましい。それにより、搬送方向において膜厚がばらつくことを抑制することができる。線対称な放出領域Hを得るためには、例えば、図11及び図14の形態においては、第一側壁30aを同形状にすることができる。 In each of the above embodiments, it is preferable that the emission region H of the opening 4 is line symmetric with respect to a line that bisects the opening 4 in the width direction. Thereby, the emission amount distribution from the side part in the width direction to the center part becomes symmetrical in the width direction, and adjustment of the film thickness of the entire laminate is facilitated. Moreover, it is preferable that the discharge region H of the opening 4 is line-symmetric with respect to a line obtained by dividing the opening 4 into two in the transport direction X. Thereby, it can suppress that a film thickness varies in a conveyance direction. In order to obtain the line-symmetric emission region H, for example, in the form of FIGS. 11 and 14, the first side wall 30a can have the same shape.
 また、複数の蒸着ユニット1における第一側壁30aの形状は可変性を有することが好ましい。第一側壁30aの形状が可変性を有することにより、開口部4の面積を簡単に増減させたり、開口部4における搬送方向の長さL4や幅方向の長さL2を簡単に変化させたりすることができ、容易に蒸着材料の放出量分布を調節することができる。 Moreover, it is preferable that the shape of the first side wall 30a in the plurality of vapor deposition units 1 has variability. Since the shape of the first side wall 30a has variability, the area of the opening 4 can be easily increased or decreased, or the length L4 in the transport direction and the length L2 in the width direction of the opening 4 can be easily changed. It is possible to easily adjust the emission amount distribution of the vapor deposition material.
 図9は、図10~15に示す本発明による有機EL製造装置を用いて製造された有機EL素子Aの一例である。有機EL素子Aは、上記と同様にして、図10に示すように、基板11を含む被蒸着体10を搬送しながら、この被蒸着体10の表面に、複数の蒸着ユニット1から薄膜層6を蒸着により順次に積層することにより製造することができる。 FIG. 9 is an example of an organic EL element A manufactured using the organic EL manufacturing apparatus according to the present invention shown in FIGS. In the same manner as described above, the organic EL element A is transported from the plurality of vapor deposition units 1 to the thin film layers 6 on the surface of the vapor deposition target 10 while conveying the vapor deposition target 10 including the substrate 11 as shown in FIG. Can be manufactured by sequentially stacking layers by vapor deposition.
 図10~15に示す実施の形態の有機エレクトロルミネッセンス素子製造装置は、以下の特徴を有するものである。 The organic electroluminescence device manufacturing apparatus of the embodiment shown in FIGS. 10 to 15 has the following characteristics.
 有機エレクトロルミネッセンス素子製造装置は、搬送される被蒸着体に、複数の蒸着ユニットから薄膜層を蒸着により順次に積層して有機層を形成するものである。また、前記複数の蒸着ユニットにおける各蒸着ユニットは、前記薄膜層を形成するための蒸着材料を放射する蒸着源と、前記蒸着材料が気化される温度に加熱され、前記蒸着源から放射された前記蒸着材料を被蒸着体に向けて放出する筒状体とを備えている。また、この筒状体は前記蒸着材料を放出する開口部を有し、この開口部は放出量調整構造により前記蒸着材料の放出量分布を調整可能に形成されている。また、前記複数の蒸着ユニットは、前記放出量調整構造によって調整された前記薄膜層の膜厚分布が凸形状になる凸型分布蒸着ユニットと、前記放出量調整構造によって調整された前記薄膜層の膜厚分布が凹形状になる凹型分布蒸着ユニットとを有する。そして、前記放出量調整構造は前記筒状体の側壁で形成され、この側壁は、前記開口部の平面視形状を変形することにより前記開口部からの前記蒸着材料の放出量分布を調整する。 The organic electroluminescence element manufacturing apparatus forms an organic layer by sequentially laminating thin film layers from a plurality of vapor deposition units on a conveyed vapor-deposited body. Each of the plurality of vapor deposition units includes a vapor deposition source that radiates a vapor deposition material for forming the thin film layer, and a temperature at which the vapor deposition material is vaporized, and is emitted from the vapor deposition source. And a cylindrical body that discharges the vapor deposition material toward the deposition target. Further, the cylindrical body has an opening for discharging the vapor deposition material, and the opening is formed so that the discharge amount distribution of the vapor deposition material can be adjusted by a discharge amount adjusting structure. The plurality of vapor deposition units may include a convex distributed vapor deposition unit in which a film thickness distribution of the thin film layer adjusted by the discharge amount adjusting structure is convex, and a thin film layer adjusted by the discharge amount adjusting structure. And a concave distributed vapor deposition unit having a concave thickness distribution. And the said discharge | emission amount adjustment structure is formed by the side wall of the said cylindrical body, and this side wall adjusts the discharge | release amount distribution of the said vapor deposition material from the said opening part by changing the planar view shape of the said opening part.
 上記の有機エレクトロルミネッセンス素子製造装置において、前記凸型分布蒸着ユニットにおける前記開口部の放出領域の面積と、前記凹型分布蒸着ユニットにおける前記開口部の放出領域の面積とが異なることが好ましい。 In the organic electroluminescence element manufacturing apparatus, it is preferable that an area of the emission region of the opening in the convex distributed vapor deposition unit is different from an area of the emission region of the opening in the concave distributed vapor deposition unit.
 上記の有機エレクトロルミネッセンス素子製造装置において、前記側壁は、前記被蒸着体の搬送方向と平行な方向に沿って突出することにより、前記開口部の平面視形状を変形することが好ましい。 In the above organic electroluminescence element manufacturing apparatus, it is preferable that the side wall projects along a direction parallel to the transport direction of the deposition target to deform the shape of the opening in plan view.
 上記の有機エレクトロルミネッセンス素子製造装置において、前記側壁は、円弧状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部の開口縁部を形成している。また、前記凸型分布蒸着ユニットにおける前記開口部の放出領域の前記搬送方向の長さよりも、前記凹型分布蒸着ユニットにおける前記開口部の放出領域の前記搬送方向の長さが短いことが好ましい。 In the organic electroluminescence element manufacturing apparatus, the side wall has an arc shape and projects along a direction parallel to the transport direction of the deposition target to form an opening edge of the opening. Moreover, it is preferable that the length of the discharge region of the opening in the concave distribution vapor deposition unit in the transport direction is shorter than the length of the discharge region of the opening in the convex distribution vapor deposition unit.
 上記の有機エレクトロルミネッセンス素子製造装置において、前記側壁は、円弧状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部の開口縁部を形成している。また、前記凸型分布蒸着ユニットにおける前記開口部の放出領域の前記搬送方向に垂直な方向の長さよりも、前記凹型分布蒸着ユニットにおける開口部の放出領域の前記搬送方向に垂直な方向の長さが長いことが好ましい。 In the organic electroluminescence element manufacturing apparatus, the side wall has an arc shape and projects along a direction parallel to the transport direction of the deposition target to form an opening edge of the opening. In addition, the length of the emission region of the opening in the concave distributed vapor deposition unit in the direction perpendicular to the conveyance direction is longer than the length of the emission region of the opening in the convex distributed vapor deposition unit in the direction perpendicular to the conveyance direction. Is preferably long.
 上記の有機エレクトロルミネッセンス素子製造装置において、前記側壁は、円形の一部が切り出されて円弧状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部の開口縁部を形成している。また、前記凸型分布蒸着ユニットにおける前記側壁の前記円形の半径よりも、前記凹型分布蒸着ユニットにおける前記側壁の前記円形の半径の方が小さいことが好ましい。 In the above organic electroluminescence element manufacturing apparatus, the side wall is cut out in a circular shape by partially cutting out a circular shape, and protrudes along a direction parallel to the transport direction of the vapor-deposited body. Is forming. Moreover, it is preferable that the circular radius of the side wall in the concave distributed vapor deposition unit is smaller than the circular radius of the side wall in the convex distributed vapor deposition unit.
 上記の有機エレクトロルミネッセンス素子製造装置において、前記側壁は突出部を有し、突出部が前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部の開口縁部を形成している。また、前記凸型分布蒸着ユニットにおける前記開口部の放出領域の前記搬送方向の長さよりも、前記凹型分布蒸着ユニットにおける前記開口部の放出領域の前記搬送方向の長さが短いことが好ましい。 In said organic electroluminescent element manufacturing apparatus, the said side wall has a protrusion part, and the protrusion part protrudes along the direction parallel to the conveyance direction of the said to-be-deposited body, and forms the opening edge part of the said opening part. . Moreover, it is preferable that the length of the discharge region of the opening in the concave distribution vapor deposition unit in the transport direction is shorter than the length of the discharge region of the opening in the convex distribution vapor deposition unit.
 上記の有機エレクトロルミネッセンス素子製造装置において、前記側壁は突出部を有し、突出部が前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部の開口縁部を形成している。また、前記凸型分布蒸着ユニットにおける前記開口部の放出領域の前記搬送方向に垂直な方向の長さよりも、前記凹型分布蒸着ユニットにおける前記開口部の放出領域の搬送方向に垂直な方向の長さが長いことが好ましい。 In said organic electroluminescent element manufacturing apparatus, the said side wall has a protrusion part, and the protrusion part protrudes along the direction parallel to the conveyance direction of the said to-be-deposited body, and forms the opening edge part of the said opening part. . Further, the length in the direction perpendicular to the transport direction of the discharge region of the opening in the concave distribution vapor deposition unit is longer than the length of the discharge region of the opening in the convex distribution vapor deposition unit in the direction perpendicular to the transport direction. Is preferably long.
 上記の有機エレクトロルミネッセンス素子製造装置において、前記側壁は突出部を有し、突出部が前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部の開口縁部を形成している。また、前記凸型分布蒸着ユニットにおける前記開口部の放出領域の放出割合よりも、前記凹型分布蒸着ユニットにおける前記開口部の放出領域の放出割合の方が小さいことが好ましい。 In said organic electroluminescent element manufacturing apparatus, the said side wall has a protrusion part, and the protrusion part protrudes along the direction parallel to the conveyance direction of the said to-be-deposited body, and forms the opening edge part of the said opening part. . In addition, it is preferable that the emission rate of the emission region of the opening in the concave distribution vapor deposition unit is smaller than the emission rate of the emission region of the opening in the convex distribution vapor deposition unit.
 (実施例1)
 図1に示すような複数の蒸着ユニット1を有する有機EL製造装置を用いて、インラインで有機層13を積層し、有機EL素子Aを製造した。各蒸着ユニット1における放出量調整板5としては、図2に示すような、搬送方向の上流及び下流の両側から、外縁が円弧状になって搬送方向と平行な方向に沿って突出して開口部4を遮断する部分円盤状のものを用いた。開口部4の搬送方向の長さは約100mm、幅方向の長さは300mmである。
(Example 1)
Using the organic EL manufacturing apparatus having a plurality of vapor deposition units 1 as shown in FIG. 1, the organic layer 13 was laminated in-line to manufacture the organic EL element A. As the discharge amount adjusting plate 5 in each vapor deposition unit 1, as shown in FIG. 2, the outer edge is arcuate and protrudes along a direction parallel to the transport direction from both the upstream and downstream sides in the transport direction. The thing of the partial disk shape which interrupts | blocks 4 was used. The length of the opening 4 in the transport direction is about 100 mm, and the length in the width direction is 300 mm.
 まず、透明基板11表面に、第1電極12(陽極)としてITOを形成した。この透明基板11を、第1電極12を下側にして配置し、被蒸着体10として搬送装置20によって搬送した。 First, ITO was formed on the surface of the transparent substrate 11 as the first electrode 12 (anode). The transparent substrate 11 was placed with the first electrode 12 facing down, and was transported by the transport device 20 as the deposition target 10.
 次に、第1電極12の表面に、各蒸着ユニット1から上方に蒸着材料を放出することにより、有機層13を構成する各層を順に積層して有機層13を形成した。本実施例では、有機層13は、第1ホール注入層、第1ホール輸送層、第1発光層、第2発光層、第1電子輸送層、電子注入層、第1中間層、第2中間層、第2ホール注入層、第2ホール輸送層、第3発光層、及び、第2電子輸送層、により構成される層(各薄膜層6)とした。 Next, the organic layer 13 was formed by sequentially laminating the layers constituting the organic layer 13 by discharging the vapor deposition material upward from the vapor deposition units 1 on the surface of the first electrode 12. In this embodiment, the organic layer 13 includes a first hole injection layer, a first hole transport layer, a first light emitting layer, a second light emitting layer, a first electron transport layer, an electron injection layer, a first intermediate layer, and a second intermediate layer. A layer (each thin film layer 6) composed of a layer, a second hole injection layer, a second hole transport layer, a third light emitting layer, and a second electron transport layer.
 ここで、第1ホール注入層としては、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)と酸化モリブデン(MoO)の共蒸着体を用い、厚み30nmで成膜した。第1ホール輸送層としては、α-NPDを用い、厚み40nmで成膜した。第1発光層としては、Alqにルブレンを7質量%共蒸着した層を用い、厚み20nmで成膜した。第2発光層としては、4,4’-ビス(2,2’-ジフェニル-エテン-1-イル)-ジフェニル(BPVBI)にbis[(4,6-difluorophenyl)-pyridinato-N,C2’](picorinate)iridium(III)(FIrpic)を10質量%共蒸着した層を用い、厚み20nmで成膜した。 Here, as the first hole injection layer, a co-evaporated body of 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl (α-NPD) and molybdenum oxide (MoO 3 ) is used. The film was formed with a thickness of 30 nm. As the first hole transport layer, α-NPD was used and formed with a thickness of 40 nm. As the first light-emitting layer, a layer in which 7% by mass of rubrene was co-evaporated on Alq 3 was used, and a film was formed with a thickness of 20 nm. As the second light-emitting layer, 4,4′-bis (2,2′-diphenyl-ethen-1-yl) -diphenyl (BPVBI) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] are used. A layer in which 10% by mass of (picorinate) iridium (III) (FIrpic) was co-evaporated was used to form a film with a thickness of 20 nm.
 そして、第1ホール注入層、ホール輸送層、第1発光層、第2発光層については、それぞれの層をユニット1aにより形成した。 And about the 1st hole injection layer, the hole transport layer, the 1st light emitting layer, and the 2nd light emitting layer, each layer was formed by unit 1a.
 また、第1電子輸送層としては、Alqを用い、厚み30nmで成膜した。そして、第1電子輸送層については、ユニット1bにより形成した。 In addition, as the first electron transporting layer, Alq 3 was used and formed with a thickness of 30 nm. And about the 1st electron carrying layer, it formed by the unit 1b.
 また、電子注入層としては、LiMoOを厚み3nmで成膜した。そして、電子注入層については、高温蒸着ユニットにより蒸着して形成した。 As the electron injecting layer was deposited Li 2 MoO 4 in a thickness 3 nm. The electron injection layer was formed by vapor deposition using a high temperature vapor deposition unit.
 また、第1中間層としては、Mgを用い、厚み1nmで成膜した。第2中間層としては、ITOを用い、厚み3nmで成膜した。第2ホール注入層としては、ホール注入性の金属酸化物であるMoOを用い、厚み1nmで成膜した。そして、第1中間層、第2中間層、第2ホール注入層については、それぞれの層を高温蒸着ユニットにより蒸着して形成した。 In addition, as the first intermediate layer, Mg was used and was formed with a thickness of 1 nm. As the second intermediate layer, ITO was used and formed into a film with a thickness of 3 nm. As the second hole injection layer, MoO 3 which is a hole injecting metal oxide was used and was formed to a thickness of 1 nm. And about the 1st intermediate | middle layer, the 2nd intermediate | middle layer, and the 2nd hole injection layer, each layer was vapor-deposited with the high temperature vapor deposition unit.
 また、第2ホール輸送層としては、α-NPDを用い、厚み40nmで成膜した。そして、第2ホール輸送層については、ユニット1aにより形成した。 In addition, as the second hole transport layer, α-NPD was used and formed with a thickness of 40 nm. And about the 2nd hole transport layer, it formed by the unit 1a.
 また、第3発光層としては、BPVBIに4-(Dicyanomethylene)-2-methyl-6-(julolidin-4-yl-vinyl)-4H-pyran(DCM2)を3質量%共蒸着した層を、厚み20nmで成膜した。第2電子輸送層としては、Alqを用い、厚み30nmで成膜した。 In addition, as the third light emitting layer, a layer obtained by co-evaporating 3% by mass of 4- (Dicyanomethylene) -2-methyl-6- (julolidin-4-yl-vinyl) -4H-pyran (DCM2) on BPVBI with a thickness of A film was formed at 20 nm. As the second electron transporting layer, Alq 3 was used and formed with a thickness of 30 nm.
 そして、第3発光層、第2電子輸送層については、ユニット1bにより形成した。 The third light emitting layer and the second electron transport layer were formed by the unit 1b.
 本実施例において、ユニット1aは、半径900mm(直径1800mm)の円形を切り出した形状の放出量調整板5を二つ用い、各放出量調整板5によって、幅方向の長さ300mm、搬送方向の長さ約12.59mmで開口部4を遮断したものである。 In this embodiment, the unit 1a uses two discharge amount adjusting plates 5 each having a shape with a radius of 900 mm (diameter 1800 mm) cut out, and each discharge amount adjusting plate 5 has a length of 300 mm in the width direction and a conveying direction. The opening 4 is cut off with a length of about 12.59 mm.
 また、ユニット1bは、半径750mm(直径1500mm)の円形を切り出した形状の放出量調整板5を二つ用い、各放出量調整板5によって、幅方向の長さ300mm、搬送方向の長さ約15.15mmで開口部4を遮断したものである。 Further, the unit 1b uses two discharge amount adjusting plates 5 each having a shape of a circular shape with a radius of 750 mm (diameter 1500 mm), and each discharge amount adjusting plate 5 has a length of 300 mm in the width direction and a length of about 10 mm in the transport direction. The opening 4 is cut off at 15.15 mm.
 そして、第2電極14(陰極)として、アルミニウムを用い、厚み100nmで成膜した。陰極の形成には高温蒸着ユニットを用いた。本実施例で用いた高温蒸着ユニットは、ユニット1a及びユニット1bよりも高温で蒸着を行う蒸着ユニットである。 Then, as the second electrode 14 (cathode), aluminum was used and a film was formed with a thickness of 100 nm. A high temperature vapor deposition unit was used to form the cathode. The high temperature vapor deposition unit used in this example is a vapor deposition unit that performs vapor deposition at a higher temperature than the units 1a and 1b.
 なお、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層、中間層、陰極の材料は他の材料によって形成しても、同様の有機EL素子を製造することができる。また、中間層は積層されていなくてもよい。 It should be noted that the same organic EL device can be manufactured even if the hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer, intermediate layer, and cathode are formed of other materials. Further, the intermediate layer may not be laminated.
 以上により有機EL素子Aが得られた。この有機EL素子Aでは、有機層13の断面においては、第1電子輸送層、第3発光層、及び、第2電子輸送層の膜厚分布が少なくとも凹型になった。 Thus, an organic EL element A was obtained. In the organic EL element A, in the cross section of the organic layer 13, the film thickness distributions of the first electron transport layer, the third light emitting layer, and the second electron transport layer are at least concave.
 こうして得られた有機EL素子Aでは、有機層13の面内膜厚分布は平均化され±3%以下となった。すなわち、平均膜厚に対しての膜厚の誤差は3%以下であり、平均膜厚を100%としたときの膜厚は、最小値97%以上で最大値103%以下の範囲に収まるものであった。ここで、従来の方法で製造した有機EL素子Aでは、有機層13の面内膜厚分布は±5%から±10%程度である。すなわち、平均膜厚に対しての膜厚の誤差は5%以上となってそれより小さくなることは難しく、膜厚誤差が10%程度になることもある。しかしながら、本実施例の有機EL素子Aでは、有機層13の面内膜厚分布は平均化されており、膜厚誤差が少なくなっている。したがって、面内の膜厚の均一性に優れ、面内の発光がより均一化した有機EL素子Aを得ることができた。 In the organic EL element A thus obtained, the in-plane film thickness distribution of the organic layer 13 was averaged to be ± 3% or less. That is, the error of the film thickness with respect to the average film thickness is 3% or less, and the film thickness when the average film thickness is 100% falls within the range of the minimum value of 97% or more and the maximum value of 103% or less. Met. Here, in the organic EL element A manufactured by the conventional method, the in-plane film thickness distribution of the organic layer 13 is about ± 5% to ± 10%. That is, the film thickness error with respect to the average film thickness is 5% or more, and it is difficult to make it smaller, and the film thickness error may be about 10%. However, in the organic EL element A of this example, the in-plane film thickness distribution of the organic layer 13 is averaged, and the film thickness error is reduced. Therefore, it was possible to obtain an organic EL element A having excellent in-plane film thickness uniformity and more uniform in-plane light emission.
 また、本実施例の有機EL素子Aは面内の発光の均一性に優れたものであるため、自己発光型表示装置や照明装置として有用であり、特に面発光の照明パネルとして利用できるものである。 Further, since the organic EL element A of the present example is excellent in in-plane light emission uniformity, it is useful as a self-luminous display device or a lighting device, and can be used particularly as a surface light-emitting lighting panel. is there.
 (実施例2)
 図10に示すような複数の蒸着ユニット1を有する有機EL製造装置を用いて、インラインで有機層13を積層し、有機EL素子Aを製造した。各蒸着ユニット1においては、図11に示すような、搬送方向の上流及び下流の両側から、第一側壁30aが円弧状になって搬送方向と平行な方向に沿って突出して開口部4を形成した。開口部4の搬送方向の長さは約100mm、幅方向の長さは300mmである。
(Example 2)
The organic layer 13 was laminated | stacked in-line using the organic electroluminescent manufacturing apparatus which has the some vapor deposition unit 1 as shown in FIG. In each vapor deposition unit 1, as shown in FIG. 11, the first side wall 30 a has an arc shape and protrudes along a direction parallel to the transport direction from both the upstream and downstream sides in the transport direction to form the opening 4. did. The length of the opening 4 in the transport direction is about 100 mm, and the length in the width direction is 300 mm.
 まず、透明基板11表面に、第1電極12(陽極)としてITOを形成した。この透明基板11を、第1電極12を下側にして配置し、被蒸着体10として搬送装置20によって搬送した。 First, ITO was formed on the surface of the transparent substrate 11 as the first electrode 12 (anode). The transparent substrate 11 was placed with the first electrode 12 facing down, and was transported by the transport device 20 as the deposition target 10.
 次に、第1電極12の表面に、各蒸着ユニット1から上方に蒸着材料を放出することにより、有機層13を構成する各層を順に積層して有機層13を形成した。本実施例では、有機層13は、第1ホール注入層、第1ホール輸送層、第1発光層、第2発光層、第1電子輸送層、電子注入層、第1中間層、第2中間層、第2ホール注入層、第2ホール輸送層、第3発光層、及び、第2電子輸送層、により構成される層(各薄膜層6)とした。 Next, the organic layer 13 was formed by sequentially laminating the layers constituting the organic layer 13 by discharging the vapor deposition material upward from the vapor deposition units 1 on the surface of the first electrode 12. In this embodiment, the organic layer 13 includes a first hole injection layer, a first hole transport layer, a first light emitting layer, a second light emitting layer, a first electron transport layer, an electron injection layer, a first intermediate layer, and a second intermediate layer. A layer (each thin film layer 6) composed of a layer, a second hole injection layer, a second hole transport layer, a third light emitting layer, and a second electron transport layer.
 ここで、第1ホール注入層としては、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)と酸化モリブデン(MoO)の共蒸着体を用い、厚み30nmで成膜した。第1ホール輸送層としては、α-NPDを用い、厚み40nmで成膜した。第1発光層としては、Alqにルブレンを7質量%共蒸着した層を用い、厚み20nmで成膜した。第2発光層としては、4,4’-ビス(2,2’-ジフェニル-エテン-1-イル)-ジフェニル(BPVBI)にbis[(4,6-difluorophenyl)-pyridinato-N,C2’](picorinate)iridium(III)(FIrpic)を10質量%共蒸着した層を用い、厚み20nmで成膜した。 Here, as the first hole injection layer, a co-evaporated body of 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl (α-NPD) and molybdenum oxide (MoO 3 ) is used. The film was formed with a thickness of 30 nm. As the first hole transport layer, α-NPD was used and formed with a thickness of 40 nm. As the first light-emitting layer, a layer in which 7% by mass of rubrene was co-evaporated on Alq 3 was used, and a film was formed with a thickness of 20 nm. As the second light-emitting layer, 4,4′-bis (2,2′-diphenyl-ethen-1-yl) -diphenyl (BPVBI) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] are used. A layer in which 10% by mass of (picorinate) iridium (III) (FIrpic) was co-evaporated was used to form a film with a thickness of 20 nm.
 そして、第1ホール注入層、ホール輸送層、第1発光層、第2発光層については、それぞれの層を凸型分布蒸着ユニット1aにより形成した。 And about the 1st hole injection layer, the hole transport layer, the 1st light emitting layer, and the 2nd light emitting layer, each layer was formed by convex distribution evaporation unit 1a.
 また、第1電子輸送層としては、Alqを用い、厚み30nmで成膜した。そして、第1電子輸送層については、凹型分布蒸着ユニット1bにより形成した。 In addition, as the first electron transporting layer, Alq 3 was used and formed with a thickness of 30 nm. And about the 1st electron carrying layer, it formed with the concave distributed vapor deposition unit 1b.
 また、電子注入層としては、LiMoOを厚み3nmで成膜した。そして、電子注入層については、高温蒸着ユニットにより蒸着して形成した。 As the electron injecting layer was deposited Li 2 MoO 4 in a thickness 3 nm. The electron injection layer was formed by vapor deposition using a high temperature vapor deposition unit.
 また、第1中間層としては、Mgを用い、厚み1nmで成膜した。第2中間層としては、ITOを用い、厚み3nmで成膜した。第2ホール注入層としては、ホール注入性の金属酸化物であるMoOを用い、厚み1nmで成膜した。そして、第1中間層、第2中間層、第2ホール注入層については、それぞれの層を高温蒸着ユニットにより蒸着して形成した。 In addition, as the first intermediate layer, Mg was used and was formed with a thickness of 1 nm. As the second intermediate layer, ITO was used and formed into a film with a thickness of 3 nm. As the second hole injection layer, MoO 3 which is a hole injecting metal oxide was used and was formed to a thickness of 1 nm. And about the 1st intermediate | middle layer, the 2nd intermediate | middle layer, and the 2nd hole injection layer, each layer was vapor-deposited with the high temperature vapor deposition unit.
 また、第2ホール輸送層としては、α-NPDを用い、厚み40nmで成膜した。そして、第2ホール輸送層については、凸型分布蒸着ユニット1aにより形成した。 In addition, as the second hole transport layer, α-NPD was used and formed with a thickness of 40 nm. The second hole transport layer was formed by the convex distributed vapor deposition unit 1a.
 また、第3発光層としては、BPVBIに4-(Dicyanomethylene)-2-methyl-6-(julolidin-4-yl-vinyl)-4H-pyran(DCM2)を3質量%共蒸着した層を、厚み20nmで成膜した。第2電子輸送層としては、Alqを用い、厚み30nmで成膜した。 In addition, as the third light emitting layer, a layer obtained by co-evaporating 3% by mass of 4- (Dicyanomethylene) -2-methyl-6- (julolidin-4-yl-vinyl) -4H-pyran (DCM2) on BPVBI with a thickness of A film was formed at 20 nm. As the second electron transporting layer, Alq 3 was used and formed with a thickness of 30 nm.
 そして、第3発光層、第2電子輸送層については、凹型分布蒸着ユニット1bにより形成した。 And about the 3rd light emitting layer and the 2nd electron carrying layer, it formed with the concave distributed vapor deposition unit 1b.
 本実施例において、ユニット1aは、半径900mm(直径1800mm)の円形の円弧を切り出した形状の第一側壁30aを二つ用い、幅方向の長さL2が300mm、搬送方向の長さL4が約87.41mmで開口部4の放出領域Hを形成したものである。 In this embodiment, the unit 1a uses two first side walls 30a having a shape obtained by cutting a circular arc having a radius of 900 mm (diameter 1800 mm), a length L2 in the width direction is 300 mm, and a length L4 in the transport direction is about The discharge region H of the opening 4 is formed at 87.41 mm.
 また、ユニット1bは、半径750mm(直径1500mm)の円形の円弧を切り出した形状の第一側壁30aを二つ用い、幅方向の長さ300mm、搬送方向の長さ約84.85mmで開口部4の放出領域Hを形成したものである。 Further, the unit 1b uses two first side walls 30a each having a shape of a circular arc having a radius of 750 mm (diameter 1500 mm), a length of 300 mm in the width direction, and a length of about 84.85 mm in the transport direction. The release region H is formed.
 そして、第2電極14(陰極)として、アルミニウムを用い、厚み100nmで成膜した。陰極の形成には高温蒸着ユニットを用いた。本実施例で用いた高温蒸着ユニットは、ユニット1a及びユニット1bよりも高温で蒸着を行う蒸着ユニットである。 Then, as the second electrode 14 (cathode), aluminum was used and a film was formed with a thickness of 100 nm. A high temperature vapor deposition unit was used to form the cathode. The high temperature vapor deposition unit used in this example is a vapor deposition unit that performs vapor deposition at a higher temperature than the units 1a and 1b.
 なお、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層、中間層、陰極の材料は他の材料によって形成しても、同様の有機EL素子を製造することができる。また、中間層は積層されていなくてもよい。 It should be noted that the same organic EL device can be manufactured even if the hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer, intermediate layer, and cathode are formed of other materials. Further, the intermediate layer may not be laminated.
 以上により有機EL素子Aが得られた。この有機EL素子Aでは、有機層13の断面においては、第1電子輸送層、第3発光層、及び、第2電子輸送層の膜厚分布が少なくとも凹型になった。 Thus, an organic EL element A was obtained. In the organic EL element A, in the cross section of the organic layer 13, the film thickness distributions of the first electron transport layer, the third light emitting layer, and the second electron transport layer are at least concave.
 こうして得られた有機EL素子Aでは、有機層13の面内膜厚分布は平均化され±3%以下となった。すなわち、平均膜厚に対しての膜厚の誤差は3%以下であり、平均膜厚を100%としたときの膜厚は、最小値97%以上で最大値103%以下の範囲に収まるものであった。ここで、従来の方法で製造した有機EL素子Aでは、有機層13の面内膜厚分布は±5%から±10%程度である。すなわち、平均膜厚に対しての膜厚の誤差は5%以上となってそれより小さくなることは難しく、膜厚誤差が10%程度になることもある。しかしながら、本実施例の有機EL素子Aでは、有機層13の面内膜厚分布は平均化されており、膜厚誤差が少なくなっている。したがって、面内の膜厚の均一性に優れ、面内の発光がより均一化した有機EL素子Aを得ることができた。 In the organic EL element A thus obtained, the in-plane film thickness distribution of the organic layer 13 was averaged to be ± 3% or less. That is, the error of the film thickness with respect to the average film thickness is 3% or less, and the film thickness when the average film thickness is 100% falls within the range of the minimum value of 97% or more and the maximum value of 103% or less. Met. Here, in the organic EL element A manufactured by the conventional method, the in-plane film thickness distribution of the organic layer 13 is about ± 5% to ± 10%. That is, the film thickness error with respect to the average film thickness is 5% or more, and it is difficult to make it smaller, and the film thickness error may be about 10%. However, in the organic EL element A of this example, the in-plane film thickness distribution of the organic layer 13 is averaged, and the film thickness error is reduced. Therefore, it was possible to obtain an organic EL element A having excellent in-plane film thickness uniformity and more uniform in-plane light emission.
 また、本実施例の有機EL素子Aは面内の発光の均一性に優れたものであるため、自己発光型表示装置や照明装置として有用であり、特に面発光の照明パネルとして利用できるものである。 Further, since the organic EL element A of the present example is excellent in in-plane light emission uniformity, it is useful as a self-luminous display device or a lighting device, and can be used particularly as a surface light-emitting lighting panel. is there.
 A   有機エレクトロルミネッセンス素子
 1   蒸着ユニット
 1a  凸型分布蒸着ユニット
 1b  凹型分布蒸着ユニット
 2   蒸着源
 3   筒状体
 4   開口部
 5   放出量調整板
 6   薄膜層
 6a  凸型薄膜層
 6b  凹型薄膜層
 10  被蒸着体
 11  基板
 12  第1電極
 13  有機層
 14  第2電極
 30  側壁
DESCRIPTION OF SYMBOLS A Organic electroluminescent element 1 Deposition unit 1a Convex distribution vapor deposition unit 1b Concave distribution vapor deposition unit 2 Deposition source 3 Cylindrical body 4 Opening part 5 Emission amount adjustment plate 6 Thin film layer 6a Convex thin film layer 6b Concave thin film layer 10 Deposited body 11 Substrate 12 First electrode 13 Organic layer 14 Second electrode 30 Side wall

Claims (13)

  1.  搬送される被蒸着体に、複数の蒸着ユニットから薄膜層を蒸着により順次に積層して有機層を形成する有機エレクトロルミネッセンス素子製造装置であって、
     前記複数の蒸着ユニットにおける各蒸着ユニットは、前記薄膜層を形成するための蒸着材料を放射する蒸着源と、前記蒸着材料が気化される温度に加熱され、前記蒸着源から放射された前記蒸着材料を被蒸着体に向けて放出する筒状体とを備え、この筒状体は前記蒸着材料を放出する開口部を有し、この開口部は放出量調整構造により前記蒸着材料の放出量分布を調整可能に形成され、
     前記複数の蒸着ユニットは、前記放出量調整構造によって調整された前記薄膜層の膜厚分布が凸形状になる凸型分布蒸着ユニットと、前記放出量調整構造によって調整された前記薄膜層の膜厚分布が凹形状になる凹型分布蒸着ユニットとを有することを特徴とする有機エレクトロルミネッセンス素子製造装置。
    An organic electroluminescence element manufacturing apparatus for forming an organic layer by sequentially laminating thin film layers from a plurality of vapor deposition units on a substrate to be transported,
    Each of the plurality of vapor deposition units includes a vapor deposition source that radiates a vapor deposition material for forming the thin film layer, and the vapor deposition material that is heated to a temperature at which the vapor deposition material is vaporized and radiated from the vapor deposition source. And a cylindrical body that discharges the vapor deposition material toward the deposition target body, and the cylindrical body has an opening that discharges the vapor deposition material. Formed to be adjustable,
    The plurality of vapor deposition units includes a convex distributed vapor deposition unit in which a film thickness distribution of the thin film layer adjusted by the discharge amount adjusting structure is convex, and a film thickness of the thin film layer adjusted by the discharge amount adjusting structure. An organic electroluminescence element manufacturing apparatus, comprising: a concave distributed vapor deposition unit having a concave distribution.
  2.  前記放出量調整構造は放出量調整板を有し、この放出量調整板は前記蒸着材料が気化される温度に加熱され、前記開口部を部分的に遮断して前記開口部からの前記蒸着材料の放出量分布を調整するものであることを特徴とする、請求項1に記載の有機エレクトロルミネッセンス素子製造装置。 The discharge amount adjusting structure includes a discharge amount adjusting plate, and the discharge amount adjusting plate is heated to a temperature at which the vapor deposition material is vaporized to partially block the opening and deposit the vapor deposition material from the opening. The organic electroluminescence element manufacturing apparatus according to claim 1, wherein the emission amount distribution is adjusted.
  3.  前記凸型分布蒸着ユニットにおける前記放出量調整板の遮断面積と、前記凹型分布蒸着ユニットにおける前記放出量調整板の遮断面積とが異なることを特徴とする、請求項2に記載の有機エレクトロルミネッセンス素子製造装置。 3. The organic electroluminescence device according to claim 2, wherein a cut-off area of the emission amount adjusting plate in the convex distributed vapor deposition unit is different from a cut-off area of the discharge amount adjustment plate in the concave distributed vapor deposition unit. Manufacturing equipment.
  4.  前記放出量調整板は、外縁が円弧状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部を部分的に遮断しており、
     前記凸型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向の長さよりも、前記凹型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向の長さが長いことを特徴とする、請求項2又は3に記載の有機エレクトロルミネッセンス素子製造装置。
    The discharge amount adjusting plate has an outer edge formed in an arc shape and protrudes along a direction parallel to the transport direction of the deposition target, and partially blocks the opening.
    The length in the transport direction of the blocking region by the discharge amount adjusting plate in the concave distribution vapor deposition unit is longer than the length in the transport direction of the blocking region by the discharge amount adjusting plate in the convex distributed deposition unit. The organic electroluminescence element manufacturing apparatus according to claim 2 or 3.
  5.  前記放出量調整板は、外縁が円弧状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部を部分的に遮断しており、
     前記凸型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向に垂直な方向の長さよりも、前記凹型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向に垂直な方向の長さが短いことを特徴とする、請求項2~4のいずれか1項に記載の有機エレクトロルミネッセンス素子製造装置。
    The discharge amount adjusting plate has an outer edge formed in an arc shape and protrudes along a direction parallel to the transport direction of the deposition target, and partially blocks the opening.
    A direction perpendicular to the carrying direction of the blocking region by the discharge amount adjusting plate in the concave distributed vapor deposition unit is longer than a length of the blocking region by the discharge amount adjusting plate in the convex distributed deposition unit in the direction perpendicular to the carrying direction. 5. The organic electroluminescence element manufacturing apparatus according to claim 2, wherein the length of the organic electroluminescence element is short.
  6.  前記放出量調整板は、円形の一部が切り出されて外縁が円弧状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部を部分的に遮断しており、
     前記凸型分布蒸着ユニットにおける前記放出量調整板による前記円形の半径よりも、前記凹型分布蒸着ユニットにおける前記放出量調整板による前記円形の半径の方が小さいことを特徴とする、請求項2~5のいずれか1項に記載の有機エレクトロルミネッセンス素子製造装置。
    The discharge amount adjusting plate is partially cut off by opening a part of a circle and projecting along a direction parallel to the transport direction of the vapor-deposited body with a circular outer edge.
    The circular radius by the discharge amount adjusting plate in the concave distributed vapor deposition unit is smaller than the circular radius by the discharge amount adjusting plate in the convex distributed vapor deposition unit. The organic electroluminescence element manufacturing apparatus according to any one of 5.
  7.  前記放出量調整板は、台形状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部を部分的に遮断しており、
     前記凸型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向の長さよりも、前記凹型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向の長さが長いことを特徴とする、請求項2又は3に記載の有機エレクトロルミネッセンス素子製造装置。
    The discharge amount adjusting plate has a trapezoidal shape and protrudes along a direction parallel to the transport direction of the vapor-deposited body to partially block the opening.
    The length in the transport direction of the blocking region by the discharge amount adjusting plate in the concave distribution vapor deposition unit is longer than the length in the transport direction of the blocking region by the discharge amount adjusting plate in the convex distributed deposition unit. The organic electroluminescence element manufacturing apparatus according to claim 2 or 3.
  8.  前記放出量調整板は、台形状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部を部分的に遮断しており、
     前記凸型分布蒸着ユニットにおける前記放出量調整板による遮断領域の前記搬送方向に垂直な方向の長さよりも、前記凹型分布蒸着ユニットにおける前記放出量調整板による遮断領域の搬送方向に垂直な方向の長さが短いことを特徴とする、請求項2、3、7のいずれか1項に記載の有機エレクトロルミネッセンス素子製造装置。
    The discharge amount adjusting plate has a trapezoidal shape and protrudes along a direction parallel to the transport direction of the vapor-deposited body to partially block the opening.
    In a direction perpendicular to the conveyance direction of the blocking area by the discharge amount adjusting plate in the concave distribution vapor deposition unit, the length in the direction perpendicular to the conveyance direction of the blocking area by the discharge amount adjusting plate in the convex distribution vapor deposition unit. The organic electroluminescence element manufacturing apparatus according to claim 2, wherein the length is short.
  9.  前記放出量調整板は、台形状になって前記被蒸着体の搬送方向と平行な方向に沿って突出して前記開口部を部分的に遮断しており、
     前記凸型分布蒸着ユニットにおける前記放出量調整板による前記開口部の中央部での遮断割合よりも、前記凹型分布蒸着ユニットにおける前記放出量調整板による前記開口部の中央部での遮断割合の方が大きいことを特徴とする、請求項2、3、7、8のいずれか1項に記載の有機エレクトロルミネッセンス素子製造装置。
    The discharge amount adjusting plate has a trapezoidal shape and protrudes along a direction parallel to the transport direction of the vapor-deposited body to partially block the opening.
    The blocking ratio at the central portion of the opening by the discharge amount adjusting plate in the concave distributed vapor deposition unit is more than the blocking ratio at the central portion of the opening by the discharge amount adjusting plate in the convex distributed vapor deposition unit. The organic electroluminescence element manufacturing apparatus according to any one of claims 2, 3, 7, and 8, wherein
  10.  前記放出量調整構造は前記筒状体の側壁で形成され、この側壁は、前記開口部の平面視形状を変形することにより前記開口部からの前記蒸着材料の放出量分布を調整するものであることを特徴とする、請求項1に記載の有機エレクトロルミネッセンス素子製造装置。 The discharge amount adjusting structure is formed by a side wall of the cylindrical body, and the side wall adjusts the discharge amount distribution of the vapor deposition material from the opening by changing the shape of the opening in plan view. The organic electroluminescent element manufacturing apparatus according to claim 1, characterized in that:
  11.  前記側壁は、前記被蒸着体の搬送方向と平行な方向に沿って突出することにより、前記開口部の平面視形状を変形することを特徴とする、請求項10に記載の有機エレクトロルミネッセンス素子製造装置。 11. The organic electroluminescence element manufacturing according to claim 10, wherein the side wall is deformed in a plan view of the opening by projecting along a direction parallel to a transport direction of the deposition target. apparatus.
  12.  前記複数の蒸着ユニットにおける前記放出量調整構造の形状が可変性を有することを特徴とする、請求項1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子製造装置。 The organic electroluminescence element manufacturing apparatus according to any one of claims 1 to 11, wherein a shape of the emission amount adjusting structure in the plurality of vapor deposition units is variable.
  13.  請求項1~12のいずれか1項に記載の有機エレクトロルミネッセンス素子製造装置を用いて、有機エレクトロルミネッセンス素子を製造することを特徴とする有機エレクトロルミネッセンス素子の製造方法。 An organic electroluminescent element manufacturing method using the organic electroluminescent element manufacturing apparatus according to any one of claims 1 to 12, wherein the organic electroluminescent element is manufactured.
PCT/JP2013/000375 2012-01-27 2013-01-25 Organic electroluminescent element manufacturing apparatus and organic electroluminescent element manufacturing method WO2013111600A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147019963A KR20140107501A (en) 2012-01-27 2013-01-25 Organic electroluminescent element manufacturing apparatus and organic electroluminescent element manufacturing mehtod
CN201380006851.0A CN104066866A (en) 2012-01-27 2013-01-25 Organic electroluminescent element manufacturing apparatus and organic electroluminescent element manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012015566 2012-01-27
JP2012-015566 2012-01-27

Publications (1)

Publication Number Publication Date
WO2013111600A1 true WO2013111600A1 (en) 2013-08-01

Family

ID=48873325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000375 WO2013111600A1 (en) 2012-01-27 2013-01-25 Organic electroluminescent element manufacturing apparatus and organic electroluminescent element manufacturing method

Country Status (5)

Country Link
JP (1) JPWO2013111600A1 (en)
KR (1) KR20140107501A (en)
CN (1) CN104066866A (en)
TW (1) TW201332181A (en)
WO (1) WO2013111600A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015120943A (en) * 2013-12-20 2015-07-02 パナソニックIpマネジメント株式会社 Vapor deposition method and vapor deposition apparatus
WO2017149985A1 (en) * 2016-03-04 2017-09-08 ソニー株式会社 Organic electroluminescent element and method for manufacturing organic electroluminescent element
CN110214471A (en) * 2017-01-23 2019-09-06 住友化学株式会社 The manufacturing method and film formation device of organic assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101699168B1 (en) * 2015-07-22 2017-01-31 주식회사 야스 Screen for linear source for preventing shadow effect
CN113186495B (en) * 2021-05-07 2023-03-03 辽宁分子流科技有限公司 Edge intelligent adjustable evaporation source
CN113782690A (en) * 2021-08-30 2021-12-10 合肥维信诺科技有限公司 Light emitting device and display panel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096762A (en) * 1983-10-28 1985-05-30 Sharp Corp Vapor deposition
JPH06299353A (en) * 1993-04-09 1994-10-25 Ishikawajima Harima Heavy Ind Co Ltd Continuous vacuum deposition device
JP2003297570A (en) * 2002-03-08 2003-10-17 Eastman Kodak Co Coating method for manufacturing organic light-emitting device and long and narrow thermophysical vapor deposition source
JP2004107764A (en) * 2002-09-20 2004-04-08 Ulvac Japan Ltd Thin film-forming apparatus
JP2007200626A (en) * 2006-01-24 2007-08-09 Harison Toshiba Lighting Corp Organic electroluminescent element
JP2007227359A (en) * 2006-01-27 2007-09-06 Canon Inc Vapor deposition device and deposition method
JP2011047035A (en) * 2009-08-25 2011-03-10 Samsung Mobile Display Co Ltd Thin film vapor deposition apparatus and method for manufacturing organic emission display by using the same
JP2011134723A (en) * 2005-02-18 2011-07-07 Semiconductor Energy Lab Co Ltd Deposition device and method for manufacturing el element
JP2011140717A (en) * 2010-01-11 2011-07-21 Samsung Mobile Display Co Ltd Thin film deposition apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI264473B (en) * 2001-10-26 2006-10-21 Matsushita Electric Works Ltd Vacuum deposition device and vacuum deposition method
JP2004107654A (en) * 2002-08-22 2004-04-08 Nippon Paint Co Ltd Cationic electrodeposition coating composition for galvanized steel sheet
CN101024875A (en) * 2006-01-27 2007-08-29 佳能株式会社 Vapor deposition system and vapor deposition method for an organic compound

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096762A (en) * 1983-10-28 1985-05-30 Sharp Corp Vapor deposition
JPH06299353A (en) * 1993-04-09 1994-10-25 Ishikawajima Harima Heavy Ind Co Ltd Continuous vacuum deposition device
JP2003297570A (en) * 2002-03-08 2003-10-17 Eastman Kodak Co Coating method for manufacturing organic light-emitting device and long and narrow thermophysical vapor deposition source
JP2004107764A (en) * 2002-09-20 2004-04-08 Ulvac Japan Ltd Thin film-forming apparatus
JP2011134723A (en) * 2005-02-18 2011-07-07 Semiconductor Energy Lab Co Ltd Deposition device and method for manufacturing el element
JP2007200626A (en) * 2006-01-24 2007-08-09 Harison Toshiba Lighting Corp Organic electroluminescent element
JP2007227359A (en) * 2006-01-27 2007-09-06 Canon Inc Vapor deposition device and deposition method
JP2011047035A (en) * 2009-08-25 2011-03-10 Samsung Mobile Display Co Ltd Thin film vapor deposition apparatus and method for manufacturing organic emission display by using the same
JP2011140717A (en) * 2010-01-11 2011-07-21 Samsung Mobile Display Co Ltd Thin film deposition apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015120943A (en) * 2013-12-20 2015-07-02 パナソニックIpマネジメント株式会社 Vapor deposition method and vapor deposition apparatus
WO2017149985A1 (en) * 2016-03-04 2017-09-08 ソニー株式会社 Organic electroluminescent element and method for manufacturing organic electroluminescent element
US10727448B2 (en) 2016-03-04 2020-07-28 Sony Corporation Organic electro-luminescence device, and method of manufacturing organic electro-luminescence device
CN110214471A (en) * 2017-01-23 2019-09-06 住友化学株式会社 The manufacturing method and film formation device of organic assembly
EP3573430A4 (en) * 2017-01-23 2020-10-14 Sumitomo Chemical Company, Limited Method for manufacturing organic device, and film forming device
US10944054B2 (en) 2017-01-23 2021-03-09 Sumitomo Chemical Company, Limited Method for manufacturing organic device, and film forming device

Also Published As

Publication number Publication date
KR20140107501A (en) 2014-09-04
CN104066866A (en) 2014-09-24
JPWO2013111600A1 (en) 2015-05-11
TW201332181A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
WO2013111600A1 (en) Organic electroluminescent element manufacturing apparatus and organic electroluminescent element manufacturing method
US11920233B2 (en) Thin film deposition apparatus
JP4909152B2 (en) Vapor deposition apparatus and vapor deposition method
JP5064810B2 (en) Vapor deposition apparatus and vapor deposition method
JP5417552B2 (en) Vapor deposition particle injection apparatus and vapor deposition apparatus
WO2017173874A1 (en) Method for manufacturing display substrate, display substrate, and display device
JP6186447B2 (en) OLED lighting device manufacturing method and apparatus
KR20100133678A (en) Apparatus for thin layer deposition
US20140349433A1 (en) Device and method for depositing organic material
WO2017156873A1 (en) Evaporation mask plate, method for patterning substrate with same, and display substrate
TW200814392A (en) Deposition apparatus
US20190067584A1 (en) Method of manufacturing display device using deposition mask assembly
US20100316801A1 (en) Thin film deposition apparatus
TWI611033B (en) Depositing apparatus and method for manufacturing organic light emitting diode display using the same
CN110923633B (en) Mask assembly, evaporation device and evaporation method
WO2013132794A1 (en) Vapor deposition device
JP5289396B2 (en) Method and apparatus for producing stoichiometric composition gradient layer and layer structure
JP2011068916A (en) Film deposition method and film deposition apparatus
TW201418507A (en) Deposition apparatus and method for manufacturing organic light emitting diode display using the same
WO2015169087A1 (en) Mask plate, manufacturing method therefor and mask assembly
WO2013035328A1 (en) In-line vapor deposition device
KR101648489B1 (en) Apparatus for depositing thin films and method using the same
CN110191976B (en) Evaporation crucible and evaporation equipment
WO2022243734A1 (en) Nozzle for a distributor of a material deposition source, material deposition source, vacuum deposition system and method for depositing material
TW200901534A (en) Apparatus for depositing organic thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555208

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147019963

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741650

Country of ref document: EP

Kind code of ref document: A1