WO2013111442A1 - 通信制御装置、送信電力割当て方法及びプログラム - Google Patents
通信制御装置、送信電力割当て方法及びプログラム Download PDFInfo
- Publication number
- WO2013111442A1 WO2013111442A1 PCT/JP2012/080737 JP2012080737W WO2013111442A1 WO 2013111442 A1 WO2013111442 A1 WO 2013111442A1 JP 2012080737 W JP2012080737 W JP 2012080737W WO 2013111442 A1 WO2013111442 A1 WO 2013111442A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power allocation
- primary system
- interference
- transmission power
- group
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 143
- 230000005540 biological transmission Effects 0.000 title claims abstract description 115
- 238000004891 communication Methods 0.000 title claims abstract description 107
- 230000001186 cumulative effect Effects 0.000 claims description 22
- 238000012545 processing Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000009467 reduction Effects 0.000 description 8
- 230000010267 cellular communication Effects 0.000 description 7
- 238000012937 correction Methods 0.000 description 7
- 230000002411 adverse Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 208000032369 Primary transmission Diseases 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/28—TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
- H04W52/283—Power depending on the position of the mobile
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/354—Adjacent channel leakage power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/22—TPC being performed according to specific parameters taking into account previous information or commands
- H04W52/228—TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
- H04W52/244—Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
Definitions
- the present disclosure relates to a communication control device, a transmission power allocation method, and a program.
- the secondary use of the frequency means that another system secondary uses a part or all of the frequency channel preferentially assigned to a certain system.
- a system to which frequency channels are preferentially assigned is called a primary system, and a system that secondary uses the frequency channels is called a secondary system.
- TV white space is an example of a frequency channel for which secondary use is being discussed (see Non-Patent Document 1).
- the TV white space refers to a channel that is not used by the TV broadcast system according to a region among frequency channels allocated to the TV broadcast system as the primary system. By opening up this TV white space to the secondary system, efficient use of frequency resources can be realized.
- Standards for the physical layer (PHY) and MAC layer for enabling secondary use of TV white space include, for example, IEEE 802.22, IEEE 802.11af, and ECMA (European Computer Manufacturer Association) -392 (CogNea). , See Non-patent Document 2 below).
- Patent Document 1 proposes a method of determining the maximum transmission power of the secondary system according to the path loss on the path between the base station of the secondary system and the receiving device of the primary system.
- a power allocation unit that allocates transmission power for secondary use of a frequency channel protected for a primary system to a secondary system, and the power allocation unit has a distance from the primary system.
- a communication control device that switches a power allocation method between a secondary system of a first group that is below a predetermined threshold and a secondary system of a second group that has a distance from the primary system that is above the predetermined threshold.
- a method for allocating transmission power for secondary use of a frequency channel protected for a primary system to a secondary system the distance of the secondary system from the primary system being acquired. And, when the acquired distance is below a predetermined threshold, allocating transmission power to the secondary system in a first power allocation scheme, and when the acquired distance is above the predetermined threshold, Allocating transmission power to the secondary system in a second power allocation scheme that has a lower computational cost than the first power allocation scheme.
- a program for causing a computer of a communication control device to function as a power allocation unit that allocates transmission power for secondary use of a frequency channel protected for a primary system to a secondary system includes: a first group of secondary systems whose distance from the primary system is less than a predetermined threshold; and a second group of secondary systems whose distance from the primary system is greater than the predetermined threshold;
- a program is provided that switches between power allocation schemes.
- the technique according to the present disclosure can appropriately prevent harmful interference to the primary system while suppressing a load for calculating the transmission power of the secondary system.
- FIG. 1 is an explanatory diagram for explaining interference received by a node of the primary system during secondary use of a frequency.
- a primary transmitting station 10 that provides a service of a primary system and a primary receiving station 20 that is located inside a boundary 12 of a service area of the primary system are shown.
- the primary transmitting station 10 may be, for example, a TV broadcasting station, or a wireless base station or a relay station of a cellular communication system.
- the cellular communication scheme may include GSM, UMTS, WCDMA, CDMA2000, LTE, LTE-Advanced, IEEE 802.16, WiMAX or WiMAX2.
- the primary receiving station 20 is a receiver having a TV broadcasting receiving antenna and a tuner.
- the primary transmitting station 10 is a wireless base station of a cellular communication system
- the primary receiving station 20 is a wireless terminal that operates according to the cellular communication system.
- the channel F1 is assigned to the primary transmitting station 10.
- the primary transmitting station 10 can provide a TV broadcast service, a wireless communication service, or some other wireless service by transmitting a wireless signal on the channel F1.
- a some frequency channel may be allocated to a primary system.
- FIG. 1 further shows master nodes 200a, 200b, 200c, and 200d that respectively operate the secondary systems.
- Each master node operates the secondary system using the channel F1 assigned to the primary system or the neighboring channel F2 or F3.
- Each master node may be a wireless access point that complies with or partially uses a wireless communication scheme such as IEEE 802.22, IEEE 802.11, or ECMA, or that complies with or conforms to a cellular communication scheme. It may be a wireless base station or a relay station that is partially used.
- the secondary system is operated according to the cellular communication system, the cellular communication system may be the same system as the primary system or a different system.
- the slave node supports the same wireless communication method as the master node that is the connection partner.
- the master node 200a located outside the boundary 14 of the guard area uses the channel F1.
- Master nodes 200b and 200c located inside the guard area use channels F2 and F3 in the vicinity of channel F1, respectively.
- the master node 200d located outside the boundary 14 of the guard area uses the channel F2.
- FIG. 2 is an explanatory diagram for describing intra-channel (in-band) interference and inter-channel interference.
- the channel F1 is a usage channel of the primary system.
- the master node 200a in FIG. 1 secondary uses the channel F1, interference within the same channel may occur.
- Channel F2 is a channel adjacent to channel F1.
- the channel F3 is a channel adjacent to the channel F2.
- a guard band is provided between the channel F1 and the channel F2 and between the channel F2 and the channel F3.
- the primary system is not subject to interference when other systems use these channels F2 and F3.
- non-negligible interference from nearby channels such as channels F2, F3, and other channels
- the transmission power of the secondary system can be controlled in the system illustrated in FIG. 3 so that such interference caused by the radio signal from the secondary system does not adversely affect the primary system to be protected.
- FIG. 3 is an explanatory diagram for explaining the configuration of the communication control system 1 according to an embodiment.
- the communication control system 1 includes a primary transmission station 10, a data server 30, a communication control device 100, and master nodes 200a and 200b.
- master nodes 200a and 200b are shown as master nodes that operate the secondary system, but more master nodes may actually exist.
- the master node 200 particularly when the master nodes 200a and 200b (and other master nodes) do not need to be distinguished from each other, they are referred to as the master node 200 by omitting the alphabet at the end of the reference numerals.
- the data server 30 is a server device having a database that stores data relating to secondary usage.
- the data server 30 receives access from the master node 200 and provides the master node 200 with data representing a channel that can be used secondarily and the location data of the transmission station 10 of the primary system.
- the master node 200 registers information related to the secondary system in the data server 30 when starting secondary usage. Communication between the data server 30 and the master node 200 may be performed via an arbitrary network such as the Internet, for example.
- Non-Patent Document 1 describing secondary use of TV white space.
- the communication control apparatus 100 has a role as a secondary system manager that allocates transmission power for secondary use of the frequency channel to the secondary system so that interference from the secondary system does not adversely affect the primary system.
- the communication control apparatus 100 can access the data server 30 via a network such as the Internet, for example, and acquires data used for transmission power allocation from the data server 30.
- Communication control device 100 is also communicably connected to each master node 200. And the communication control apparatus 100 adjusts the transmission power of a secondary system according to the request
- the communication control device 100 may be mounted on the same physical device as the data server 30 or any one of the master nodes 200 without being limited to the example of FIG.
- FIG. 4 is a sequence diagram illustrating an example of a schematic flow of communication control processing executed in the communication control system 1.
- the master node 200 registers information related to the secondary system in the data server 30 before starting the operation of the secondary system (step S10).
- the information registered here may include, for example, the device ID, class, and position data of the master node 200.
- the data server 30 stores the information for the configuration of the secondary system such as the list of channel numbers of the frequency channels that can be used secondarily, the maximum allowable transmission power, and the spectrum mask.
- the node 200 is notified. It should be noted that the cycle of access to the data server 30 by the master node 200 may be determined based on the provisions of laws relating to frequency usage regulations.
- the access cycle to the data server 30 may be set to a longer cycle (for example, an integral multiple of a prescribed cycle). Further, the access period may be dynamically set according to the number of active nodes (for example, when the number of nodes is small, the period may be set longer because the risk of interference is low). The access cycle may be instructed to the master node 200 by the data server 30 at the time of initial registration of information related to the secondary system, for example.
- the communication control apparatus 100 receives information on the primary system from the data server 30, and updates the information stored in the own apparatus using the received information (step S11).
- Information received here includes position data of the transmitting station 10 of the primary system, antenna height, guard area width, frequency channel channel number list, allowable interference amount of the primary system, and interference calculation described later. Reference point position data, registered master node 200 ID list and other parameters (for example, adjacent channel leakage rate (ACLR: Adjacent Channel Leakage Ratio), fading margin, shadowing margin, protection ratio, ACS (Adjacent Channel 1) or the like).
- ACLR Adjacent Channel Leakage Ratio
- fading margin for example, fading margin
- shadowing margin protection ratio
- ACS Adjacent Channel 1
- the communication control apparatus 100 may receive all or part of the information related to the primary system indirectly (for example, a list of channel numbers) from the master node 200.
- the master node 200 configures a secondary system based on the information notified from the data server 30 (step S12). For example, the master node 200 selects one or a plurality of channels from the secondary available frequency channels as the usage channels of the secondary system. Then, a power allocation request is transmitted from the master node 200 (or the data server 30) to the communication control apparatus 100 (step S13).
- step S14 When a response is returned to the request for power allocation, mutual authentication and application level information exchange are performed between the communication control device 100 and the master node 200 (step S14).
- information about the secondary system is transmitted from the master node 200 to the communication control apparatus 100 (step S15).
- the information transmitted here includes, for example, the device ID, class, location data of the master node 200, the channel number of the frequency channel (used channel) selected by the master node 200, and communication quality requirements (QoS (Quality of Service)). Information), priority information, communication history, and the like.
- the communication control apparatus 100 executes power allocation processing based on the information acquired from the data server 30 and the master node 200 (step S16).
- the power allocation processing by the communication control apparatus 100 here will be described in detail later.
- the communication control apparatus 100 transmits a power notification message for notifying the newly allocated transmission power to the master node 200 (step S17).
- the master node 200 When the master node 200 receives the power notification message, the master node 200 sets the output level of the transmission circuit of its own device according to the notified transmission power value (step S18). Further, the master node 200 may instruct a value of transmission power to be used to a slave node connected to the own device.
- the master node 200 finishes setting the transmission power, the master node 200 reports the configuration of the secondary system to the communication control device 100 (step S19). And the communication control apparatus 100 updates the information regarding the secondary system which the self apparatus has memorize
- the first viewpoint is path loss for each secondary system.
- the greater the path loss on the path from the secondary system to the primary system the lower the interference level received by the primary system. Therefore, the throughput of the secondary system can be increased by assigning a larger transmission power to the secondary system located farther from the primary system.
- the output power that can be output from the nodes of the secondary system both master node and slave node
- path loss will no longer be considered. Is no longer meaningful.
- the second viewpoint is cumulative interference from a plurality of secondary systems to the primary system.
- the transmission power is reduced so that the cumulative interference from the multiple secondary systems does not adversely affect the primary system. It is desirable to be controlled.
- calculating the cumulative interference up to the secondary system whose interference level is sufficiently small compared with the allowable interference level of the primary system also brings a demerit of an increase in calculation load.
- the third viewpoint is interference between channels.
- the transmission power is controlled so that interference from the secondary system does not adversely affect the primary system after adequately evaluating the interference between channels. It is desirable. However, when only the interference on the same channel is considered, it is possible to easily calculate the transmission power independent for each channel. On the other hand, when considering the interference between channels, different channels are used. It is required to comprehensively distribute transmission power over a plurality of secondary systems that are used secondary. As the number of channels increases, the number of combinations of channels that can cause inter-channel interference also increases. Therefore, the calculation load becomes very large. Therefore, for secondary systems with low interference levels, it is also a useful option not to consider inter-channel interference.
- the communication control apparatus 100 switches the power allocation method according to the distance from the primary system of the secondary system, thereby suppressing the calculation load and detrimental to the primary system. Prevent interference.
- FIG. 5 is a block diagram illustrating an example of the configuration of the communication control apparatus 100 (ie, the secondary system manager) illustrated in FIG.
- the communication control apparatus 100 includes a communication unit 110, a storage unit 120, and a control unit 130.
- Control unit 130 includes a power allocation unit 140.
- the communication unit 110 is a communication interface for communication between the data server 30 and the master node 200 by the communication control apparatus 100. Communication between the communication control apparatus 100 and the data server 30 and the master node 200 may be realized by any of wired communication, wireless communication, or a combination thereof.
- the storage unit 120 stores a program and data for the operation of the communication control apparatus 100 using a storage medium such as a hard disk or a semiconductor memory.
- the storage unit 120 stores information about the primary system received from the data server 30 and information about the secondary system received from the master node 200 of each secondary system.
- the control unit 130 corresponds to a processor such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).
- the control unit 130 operates various functions of the communication control apparatus 100 by executing a program stored in the storage unit 120 or another storage medium.
- the power allocation unit 140 allocates transmission power for secondary use of the frequency channel protected for the primary system to the secondary system.
- the frequency channels protected for the primary system may include one or more frequency channels assigned to the primary system and nearby frequency channels.
- the power allocation unit 140 includes a first group of secondary systems in which the distance from the primary system is less than a predetermined distance threshold, and a second group of secondary systems in which the distance from the primary system is greater than the distance threshold. Switch the power allocation method.
- the distance from the primary system of the secondary system may be, for example, the distance from the center of the service area of the primary system, or may be the distance from the outer edge of the service area or the guard area.
- Example of power allocation method In this specification, the following four methods are mainly described as the power allocation method by the power allocation unit 140. However, these are only examples, and other power allocation methods may be used.
- First method fixed power allocation
- Second method Considering path loss
- Third method Considering accumulated interference
- Fourth method Considering inter-channel interference
- a fixed transmission power value or a transmission power value requested from the secondary system is assigned to each secondary system.
- the fixed transmission power value may be defined in common for all secondary systems, or may be defined for each attribute such as a device type or class. In this case, the calculation cost required for calculating the transmission power is substantially close to zero.
- Second Method In the second method, a larger transmission power value is assigned to each secondary system as the path loss from the secondary system to the primary system increases.
- the calculation formula of the transmission power allocated to each secondary system may be, for example, the calculation formula described in Patent Document 1. Another example of the calculation formula will be described later. In this case, the calculation cost required for calculating the transmission power is not zero, but is relatively small.
- transmission power is transmitted to each secondary system so that the cumulative interference amount on the same channel from a plurality of secondary systems to the primary system does not exceed the allowable interference amount of the primary system. Is allocated.
- the third method may be a method based on an interference control model described below, for example.
- an interference control model described below, for example.
- this interference control model can also cope with the decibel value expression by converting the mathematical expression.
- a reference point (reference point) in interference calculation is i
- a frequency channel assigned to the primary system is f j
- an acceptable interference amount of the primary system is I acceptable (i, f j ).
- a single secondary system k that secondary uses the channel f j is located on the outer periphery of the guard area.
- the maximum transmission power P max (f j , k) of the secondary system, the path loss L (i, f j , k) for the minimum separation distance (guard area width), and the allowable interference amount I acceptable i, f
- the following relational expression holds during j ).
- the position of the reference point can be determined based on information received from the data server 30 by the communication control device 100 in step S11 of FIG.
- position data for example, latitude and longitude
- the communication control apparatus 100 moves the position of the reference point using the primary system node, the service area or guard area position data received from the data server 30, and the position data received from each master node 200. May be determined automatically.
- the transmission power allocation to each secondary system is as follows by expanding equation (1) for each frequency channel: It is required to satisfy (evaluation formula for cumulative interference amount).
- Equation (2) represents the total amount of interference caused by the secondary system that secondarily uses the same channel as the channel f j allocated to the primary system.
- M j is the number of secondary systems that secondary use the same channel
- P (f j , k) is the power allocated to the kth secondary system
- L (i, f j , k) is the primary of the kth secondary system and primary A path loss to the reference point i of the system, G (f j , k), is a gain component.
- M j may be the number of active secondary systems (or master nodes).
- the power allocation unit 140 tentatively allocates transmission power to the secondary system that secondary uses the frequency channel for each frequency channel, and then distributes the allocated transmission power to the cumulative interference. Modify so that the quantity evaluation formula is satisfied.
- the provisional distribution of transmission power may be performed according to any of the three types of methods, for example, the fixed margin method, the equal method, and the unequal method described below. Note that the power distribution formula in these methods may be used as a transmission power calculation formula for the second power allocation scheme.
- the first method is a fixed margin method.
- the transmission power distributed to each secondary system is calculated using a distribution margin MI (and safety margin SM) fixedly set in advance.
- the transmission power P (f j , k) allocated to the kth secondary system using the frequency channel f j is derived by the following equation.
- the second method is an equal method.
- the transmission power distributed to each secondary system is equal to each other. That is, transmission power is distributed fairly to a plurality of secondary systems.
- the transmission power P (f j , k) allocated to the kth secondary system using the frequency channel f j is derived by the following equation.
- the third method is an unequal method.
- more transmission power is allocated to a secondary system having a larger distance from the primary system. Thereby, the opportunity of secondary use can be further increased as a whole.
- the transmission power P (f j , k) allocated to the kth secondary system using the frequency channel f j is derived by the following equation.
- the equal method and the unequal method may be combined with an interference margin reduction method described below.
- the interference margin reduction method is a method of adding a safety margin SM for reducing the risk of interference, and can be used in combination with the above-described equal method or non-uniform method.
- the transmission power P (f j , k) is derived from the following equation (6) for the combination with the equal method and the following equation (7) for the combination with the unequal method.
- SM represents a safety margin set in advance or notified from the master node 200.
- each method described above may be combined with a weighted distribution method described below.
- the weighting distribution method is a method of weighting transmission power distribution according to the priority of each secondary system.
- the transmission power P (f j , k) is derived from the following equation (8) for the combination with the equal method and the following equation (9) for the combination with the unequal method.
- the transmission power P (f j , k) is the following equation (8 ′) for the combination with the equal method and the interference margin reduction method, and It is derived by the equation (9 ′).
- w k represents a weight according to the priority. Instead of the weight w k for each secondary system, the weight w j for each frequency channel may be used.
- the allowable interference amount I acceptable (i, f jj ) of the frequency channel f jj is defined and the allowable interference amount of the nearby frequency channel f j is not defined.
- I acceptable i, f jj
- the allowable interference amount of the nearby frequency channel f j is not defined.
- such a case may occur when the frequency channel f jj is a channel assigned to the primary system and its neighboring channel f j is a channel that is not used by the primary system but is protected.
- allocation type for allocating transmit power to the secondary system to the secondary use of near channel f j in each allocation type described above, the allowable interference amount I acceptable (i, f j) the I Acceptable (i, is replaced with the f jj), section L (i pathloss and gain component, f j, k) ⁇ G (f j, term shall be included loss component k) L (i, f j , k) ⁇ G ( f j , k) / H (f jj , f j , k).
- the allocation method of the fixed margin method can be modified as follows.
- the power allocation unit 140 searches for a point where the interference amount evaluated based on the allocated transmission power is the strictest in the service area of the primary system. For example, the point i ′ with the most severe interference amount is searched for as in the following equation (10) or equation (10 ′).
- the power allocation unit 140 calculates a power distribution correction coefficient ⁇ based on the total interference amount at the point i ′ and the allowable interference amount I acceptable (i, f j ) as follows:
- the power allocation unit 140 corrects the transmission power using the calculated correction coefficient ⁇ according to the following equation, and derives the allowable transmission power P ′ (f j , k) of the secondary system k.
- the total interference amount on the same channel from a plurality of secondary systems to the primary system and the sum of the cumulative interference amounts between channels are the allowable interference amount of the primary system. Transmission power is distributed to each secondary system so as not to exceed.
- the evaluation formula for the cumulative interference amount in the fourth scheme may be the following formula in which the term of interchannel interference is introduced on the right side of the formula (2) in the third scheme.
- Equation (13) represents the total amount of interference caused by the secondary system that secondary uses a nearby channel different from channel f j .
- O j is the number of neighboring channels
- jj is the index of neighboring channels
- N jj is the number of secondary systems that secondary use neighboring channels
- kk is the index of secondary systems that secondary use neighboring channels
- H (f j , f jj, kk) is the loss component of the secondary system kk from neighboring channel f jj to the channel f j.
- N jj may be the number of active secondary systems (or master nodes).
- the gain component G in Equation (13) can be determined mainly based on the factors shown in Table 1 below.
- the following concept can be applied to the protection ratio PR in Table 1. That is, the allowable amount of interference from the secondary system to the secondary use of the channel f CR to the primary system utilizing a channel f BS and I Acceptable. Also, let the required received power of the primary system be P req (f BS ). The following formula is established between these parameters.
- the loss component H in Equation (13) depends on, for example, the selectivity and leakage ratio of neighboring channels. For details of these gain components and loss components, see Non-Patent Document 1 above.
- the power allocation unit 140 tentatively allocates the transmission power to the secondary system that secondary uses the frequency channel for each frequency channel, and then considers the influence of inter-channel interference and temporarily Reallocate the transmission power that is allocated in a distributed manner. Then, the power allocation unit 140 corrects the transmission power after redistribution so that the evaluation formula is satisfied.
- the power allocation unit 140 performs one of the methods described in relation to the third power allocation method (for example, Equations (3) to (3)) for each frequency channel used by the secondary system.
- the transmission power is provisionally allocated.
- the power allocation unit 140 redistributes transmission power among the secondary systems by taking into account inter-channel interference.
- the redistribution of transmission power in the equal method may be performed according to the following equation (16) (equation (16 ′) in the case of a combination with the interference margin reduction method).
- Equation (16) means that the allowable interference amount remaining after subtracting the interference amount due to the use of the neighboring channel from the allowable interference amount of the primary system is redistributed among the remaining secondary systems.
- the transmission power redistribution in the unequal scheme may be performed according to the following equation (17) (equation (17 ′) in the case of a combination with the interference margin reduction method).
- weights in the weighted distribution method may be further applied to the above-described equations for redistribution.
- the power allocation unit 140 searches for a point in the service area of the primary system where the interference amount evaluated based on the redistributed transmission power is the strictest. For example, the point i ′ with the most severe interference amount is searched for as in the following equation (18) or equation (18 ′).
- the power allocation unit 140 calculates a power distribution correction coefficient ⁇ based on the total interference amount at the point i ′ and the allowable interference amount I acceptable (i, f j ) as follows:
- the power allocation unit 140 corrects the transmission power using the calculated correction coefficient ⁇ according to the following equation, and derives the allowable transmission power P ′′ (f j , k) of the secondary system k.
- the power allocation unit 140 applies, for example, any one of the second to fourth power allocation methods to a group of secondary systems whose distance from the primary system is less than the distance threshold, and applies the first method to other secondary systems. May be applied. Further, the power allocation unit 140 applies the third or fourth method to a group of secondary systems whose distance from the primary system is below the distance threshold, and applies the first or second method to other secondary systems. May be. In addition, the power allocation unit 140 applies the fourth method to a group of secondary systems whose distance from the primary system is less than the distance threshold, and applies any one of the first to third power allocation methods to other secondary systems. May be applied.
- the table below shows examples of combinations of power allocation schemes that can be respectively applied to two groups of secondary systems. Combinations circled in the table may be selected by the power allocation unit 140.
- the allowable interference amount is the distance or path loss from a certain reference point to the representative system of each group. It may be distributed to each group according to.
- the reference point used for allocating the allowable interference amount between the groups may be defined in advance or may be dynamically determined according to the position of the secondary system.
- the correction of the allowable transmission power in Expression (10) to Expression (12) may be omitted.
- the correction of the allowable transmission power in Expression (18) to Expression (20) may be omitted.
- a method in which correction of the allowable transmission power is omitted is adopted, and the method is applied to a group closer to or farther from the primary system. May be.
- the power allocation unit 140 may group the secondary systems into three or more groups using a plurality of distance thresholds, and select different power allocation methods for the three or more groups.
- the distance threshold used by the power allocation unit 140 may be fixedly defined. Instead, the distance threshold may be set dynamically depending on parameters such as the primary system status (eg, service area size, primary receiving station location or number of primary receiving stations) or the number of secondary systems. Good.
- the power allocation unit 140 is a method that is selected according to the distance to the primary system, and thus calculates the value of transmission power allocated to each secondary system, and the calculated transmission power value is transmitted to the communication unit 110. To each secondary system.
- FIG. 6 is a flowchart illustrating an example of the flow of power allocation processing by the communication control apparatus 100.
- secondary systems are grouped into two groups using one distance threshold.
- the power allocation unit 140 acquires information about the primary system provided from the data server 30 (step S110). In addition, the power allocation unit 140 acquires information on the secondary system collected from the master node 200 (step S120). Next, the power allocation unit 140 repeats the processing of steps S132 to S138 for each secondary system to which power is allocated (step S130).
- the power allocation unit 140 calculates the distance of the target secondary system from the primary system (step S132). Next, the power allocation unit 140 compares the calculated distance with a predetermined distance threshold (step S134). Here, when the distance from the primary system of the target secondary system is below the distance threshold, the power allocation unit 140 classifies the target secondary system into the first group (step S136). On the other hand, when the distance from the primary system of the target secondary system does not exceed the distance threshold value, the power allocation unit 140 classifies the target secondary system into the second group (step S138).
- the power allocation unit 140 calculates the transmission power allocated to the secondary system belonging to the first group by a method with a higher calculation cost (step S140).
- the power allocation method selected here may be any of the second to fourth methods described above.
- the power allocation unit 140 calculates (or determines) the transmission power allocated to the secondary system belonging to the second group by a method having a calculation cost lower than that selected in step S140 (step S150).
- the power allocation method selected here may be any of the first to third methods described above.
- the power allocation unit 140 notifies the master node 200 of the secondary system via the communication unit 110 of the transmission power value calculated in steps S140 and S150 (step S160).
- the notification in step S160 in FIG. 6 may correspond to the transmission of the power notification message in step S17 in FIG.
- the notification of the transmission power value may be omitted.
- FIG. 7 is a block diagram illustrating an example of a configuration of the master node 200 that is a communication device that operates the secondary system using the transmission power allocated by the communication control device 100 described above.
- the master node 200 includes a communication unit 210, a control unit 220, a storage unit 230, and a wireless communication unit 240.
- the communication unit 210 operates as a communication interface for communication between the data server 30 and the communication control device 100 by the master node 200.
- the communication unit 210 transmits information on the secondary system to the data server 30 under the control of the control unit 220, for example, at the start of secondary usage. Further, the communication unit 210 receives information notified from the data server 30.
- the communication unit 210 transmits and receives a power allocation request and response to and from the communication control apparatus 100. Further, the communication unit 210 receives a power notification message from the communication control apparatus 100 and outputs the received message to the control unit 220.
- the control unit 220 corresponds to a processor such as a CPU or a DSP.
- the control unit 220 operates various functions of the master node 200 by executing a program stored in the storage unit 230 or another storage medium.
- the control unit 220 cooperates with the communication control apparatus 100 according to the sequence illustrated in FIG. 4 to suppress interference with the primary system when the secondary system is operated.
- the control unit 220 wirelessly transmits transmission power within the range of transmission power assigned to the master node 200 (or a secondary system operated by the master node 200) notified from the communication control device 100.
- the control unit 220 may further distribute the allocated transmission power among the nodes participating in the secondary system.
- the storage unit 230 stores a program and data used for cooperation with the communication control apparatus 100 and operation of the secondary system using a storage medium such as a hard disk or a semiconductor memory.
- the wireless communication unit 240 operates as a wireless communication interface for wireless communication between the master node 200 and a slave node connected to the master node 200.
- the radio communication unit 240 transmits / receives radio signals to / from one or more slave nodes according to, for example, IEEE 802.22, IEEE 802.11af, or ECMA-392.
- the transmission power of the radio signal transmitted by the radio communication unit 240 can be controlled by the control unit 220 within the range of the allocated transmission power described above.
- the simple power allocation method may be a method that does not depend on path loss on the path from the secondary system to the primary system, for example. In that case, the transmission power to be allocated to the secondary system can be determined for the secondary system farther away without accompanying a substantial calculation load.
- the simple power allocation method may be a method that does not consider cumulative interference with the primary system. In that case, transmission power can be easily assigned to a secondary system farther away by an independent calculation formula for each secondary system.
- the simple power allocation method may be a method that does not consider interference between channels from the secondary system to the primary system. In that case, transmission power can be allocated independently for each frequency channel for a distant secondary system.
- a series of control processing by each device described in this specification may be realized using any of software, hardware, and a combination of software and hardware.
- a program constituting the software is stored in advance in a storage medium provided inside or outside each device.
- Each program is read into a RAM (Random Access Memory) at the time of execution and executed by a processor such as a CPU.
- RAM Random Access Memory
- a power allocation unit that allocates transmission power for secondary use of a frequency channel protected for the primary system to the secondary system; With The power allocating unit is configured such that the distance from the primary system is less than a predetermined threshold value between the first group of secondary systems and the distance from the primary system is greater than the predetermined threshold value between the second group of secondary systems. Switch the power allocation method, Communication control device.
- the power allocation scheme selected for the first group is a scheme that depends on the path loss for each secondary system;
- the power allocation scheme selected for the second group is a scheme that does not depend on path loss for each secondary system,
- the communication control device according to (1).
- the power allocation scheme selected for the first group is a scheme that considers cumulative interference from a plurality of secondary systems to the primary system
- the power allocation scheme selected for the second group is a scheme that does not consider cumulative interference from a plurality of secondary systems to the primary system.
- the communication control device according to (1).
- the power allocation scheme selected for the first group is a scheme that considers both co-channel interference and inter-channel interference from the secondary system to the primary system
- the power allocation method selected for the second group is a method that does not consider interference between channels from the secondary system to the primary system.
- the communication control device according to (1).
- the power allocation method selected for the second group is a method for allocating a fixed value or a value requested from each secondary system to each secondary system as a transmission power value, and any one of (2) to (4) above
- the power allocation method selected for the second group is a method for allocating a larger transmission power value to each secondary system as the path loss from the secondary system to the primary system increases.
- the power allocation method selected for the second group is such that each secondary system has a cumulative interference amount on the same channel from a plurality of secondary systems to the primary system so as not to exceed the allowable interference amount of the primary system.
- the communication control apparatus according to (4), wherein the communication power is distributed.
- the power allocation method selected for the first group is such that the cumulative amount of interference on the same channel from a plurality of secondary systems to the primary system and the sum of cumulative amounts of interference between the channels are allowed by the primary system.
- the communication control device according to any one of (2) to (4), wherein the transmission power is distributed to each secondary system so as not to exceed an amount of interference.
- the power allocation method selected for the first group is such that the cumulative amount of interference on the same channel from a plurality of secondary systems to the primary system does not exceed the allowable amount of interference of the primary system.
- the communication control apparatus according to (2) or (3), wherein the transmission power is distributed.
- Control device (11) A method for allocating transmission power to a secondary system for secondary use of a frequency channel protected for a primary system, comprising: Obtaining a distance of the secondary system from the primary system; Allocating transmission power to the secondary system in a first power allocation scheme when the acquired distance is below a predetermined threshold; Allocating transmission power to the secondary system by a second power allocation method having a calculation cost lower than that of the first power allocation method when the acquired distance exceeds the predetermined threshold; Including methods.
- the computer of the communication control device A power allocation unit that allocates transmission power for secondary use of a frequency channel protected for the primary system to the secondary system; Is a program for functioning as The power allocating unit is configured such that the distance from the primary system is less than a predetermined threshold value between the first group of secondary systems and the distance from the primary system is greater than the predetermined threshold value between the second group of secondary systems. Switch the power allocation method, program.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
1.システムの概要
2.セカンダリシステムマネージャの構成例
2-1.各部の説明
2-2.処理の流れ
3.マスタノードの構成例
4.まとめ
まず、図1~図4を参照しながら、一実施形態に係る通信制御システムの概要を説明する。
図5は、図3に例示した通信制御装置100(即ち、セカンダリシステムマネージャ)の構成の一例を示すブロック図である。図5を参照すると、通信制御装置100は、通信部110、記憶部120及び制御部130を備える。制御部130は、電力割当て部140を含む。
通信部110は、通信制御装置100によるデータサーバ30及びマスタノード200との間の通信のための通信インタフェースである。通信制御装置100とデータサーバ30及びマスタノード200との間の通信は、それぞれ、有線通信若しくは無線通信又はそれらの組合せのいずれにより実現されてもよい。
本明細書では、電力割当て部140による電力割当て方式として、主に次の4つの方式を説明する。但し、これらは一例に過ぎず、他の電力割当て方式が用いられてもよい。
(1)第1の方式:固定的な電力割当て
(2)第2の方式:経路損失を考慮
(3)第3の方式:累積干渉を考慮
(4)第4の方式:チャネル間干渉を考慮
第1の方式では、各セカンダリシステムに、固定の送信電力値、又は当該セカンダリシステムから要求された送信電力値が割当てられる。固定の送信電力値は、全てのセカンダリシステムについて共通的に定義されてもよく、又はデバイスのタイプ若しくはクラスなどの属性ごとに定義されてもよい。この場合に送信電力の計算に要する計算コストは、実質的にゼロに近い。
第2の方式では、各セカンダリシステムに、当該セカンダリシステムからプライマリシステムへの経路損失が大きいほど大きい送信電力値が割当てられる。各セカンダリシステムに割当てられる送信電力の計算式は、例えば、上記特許文献1に記載されている計算式であってもよい。計算式の他の例を後にさらに示す。この場合に送信電力の計算に要する計算コストは、ゼロではないものの、比較的小さい。
第3の方式では、複数のセカンダリシステムからプライマリシステムへの同一チャネル上の累積的な干渉量がプライマリシステムの許容干渉量を超えないように、各セカンダリシステムに送信電力が配分される。
第1の手法は、固定マージン方式である。固定マージン方式の場合、予め固定的に設定される配分マージンMI(及びセーフティマージンSM)を用いて、各セカンダリシステムに配分される送信電力が算出される。周波数チャネルfjを利用するk番目のセカンダリシステムに配分される送信電力P(fj,k)は、次式により導かれる。
第2の手法は、均等方式である。均等方式の場合、各セカンダリシステムに配分される送信電力は互いに等しくなる。即ち、複数のセカンダリシステムに公平に送信電力が配分される。周波数チャネルfjを利用するk番目のセカンダリシステムに配分される送信電力P(fj,k)は、次式により導かれる。
第3の手法は、不均等方式である。不均等方式の場合、プライマリシステムとの間の距離が大きいセカンダリシステムほど多くの送信電力が配分される。それにより、全体として二次利用の機会をより高めることができる。周波数チャネルfjを利用するk番目のセカンダリシステムに配分される送信電力P(fj,k)は、次式により導かれる。
与干渉マージン低減方式は、干渉のリスクを低減するためのセーフティマージンSMを算入する方式であり、上述した均等方式又は不均等方式と組合せて用いられ得る。送信電力P(fj,k)は、均等方式との組合せについては次の式(6)、不均等方式との組合せについては次の式(7)により導かれる。なお、SMは、予め設定され又はマスタノード200から通知されるセーフティマージンを表す。
重み付け配分方式は、セカンダリシステムごとの優先度に応じて送信電力の配分を重み付けする方式である。送信電力P(fj,k)は、均等方式との組合せについては次の式(8)、不均等方式との組合せについては次の式(9)により導かれる。また、送信電力P(fj,k)は、均等方式及び与干渉マージン低減方式との組合せについては次の式(8´)、不均等方式及び与干渉マージン低減方式との組合せについては次の式(9´)により導かれる。なお、wkは、優先度に応じた重みを表す。なお、セカンダリシステムごとの重みwkの代わりに、周波数チャネルごとの重みwjが用いられてもよい。
第4の方式では、複数のセカンダリシステムからプライマリシステムへの同一チャネル上の累積的な干渉量及びチャネル間の累積的な干渉量の総和がプライマリシステムの許容干渉量を超えないように、各セカンダリシステムに送信電力が配分される。第4の方式における累積的な干渉量の評価式は、第3の方式における上記式(2)の右辺にチャネル間干渉の項を導入した次のような式であってよい。
電力割当て部140は、例えば、プライマリシステムからの距離が距離閾値を下回るセカンダリシステムのグループに上記第2~第4のいずれかの電力割当て方式を適用し、その他のセカンダリシステムに上記第1の方式を適用してもよい。また、電力割当て部140は、プライマリシステムからの距離が距離閾値を下回るセカンダリシステムのグループに上記第3又は第4の方式を適用し、その他のセカンダリシステムに上記第1又は第2の方式を適用してもよい。また、電力割当て部140は、プライマリシステムからの距離が距離閾値を下回るセカンダリシステムのグループに上記第4の方式を適用し、その他のセカンダリシステムに上記第1~第3のいずれかの電力割当て方式を適用してもよい。下表は、セカンダリシステムの2つのグループにそれぞれ適用され得る電力割当て方式の組合せの例を示している。表中で丸印を付された組合せが、電力割当て部140により選択され得る。
次に、図6を用いて、本実施形態に係る通信制御装置100による処理の流れについて説明する。図6は、通信制御装置100による電力割当て処理の流れの一例を示すフローチャートである。なお、ここでは一例として、セカンダリシステムが1つの距離閾値を用いて2つのグループにグルーピングされるものとする。
図7は、上述した通信制御装置100により割当てられる送信電力を用いてセカンダリシステムを運用する通信装置であるマスタノード200の構成の一例を示すブロック図である。図7を参照すると、マスタノード200は、通信部210、制御部220、記憶部230及び無線通信部240を備える。
ここまで、図1~図7を用いて本開示に係る技術の一実施形態について詳細に説明した。上述した実施形態によれば、プライマリシステムのために保護される周波数チャネルを二次利用するセカンダリシステムに送信電力を割当てる際、プライマリシステムからの距離が所定の閾値を下回る第1のグループのセカンダリシステムとプライマリシステムからの距離が当該閾値を上回る第2のグループのセカンダリシステムとの間で、電力割当て方式が切替えられる。従って、プライマリシステムからより遠いセカンダリシステムについては計算コストの低い簡易な電力割当て方式を採用して、電力割当てのための計算の負荷を抑制することができる。また、プライマリシステムからの距離が遠く、低いレベルの干渉しか引き起こさないセカンダリシステムについて、簡易な方式で送信電力を割当てたとしても、プライマリシステムへの有害な干渉は防止される。
(1)
プライマリシステムのために保護される周波数チャネルの二次利用のための送信電力をセカンダリシステムに割当てる電力割当て部、
を備え、
前記電力割当て部は、前記プライマリシステムからの距離が所定の閾値を下回る第1のグループのセカンダリシステムと前記プライマリシステムからの距離が前記所定の閾値を上回る第2のグループのセカンダリシステムとの間で、電力割当て方式を切り替える、
通信制御装置。
(2)
前記第1のグループについて選択される電力割当て方式は、各セカンダリシステムについての経路損失に依存する方式であり、
前記第2のグループについて選択される電力割当て方式は、各セカンダリシステムについての経路損失に依存しない方式である、
前記(1)に記載の通信制御装置。
(3)
前記第1のグループについて選択される電力割当て方式は、複数のセカンダリシステムから前記プライマリシステムへの累積的な干渉を考慮する方式であり、
前記第2のグループについて選択される電力割当て方式は、複数のセカンダリシステムから前記プライマリシステムへの累積的な干渉を考慮しない方式である、
前記(1)に記載の通信制御装置。
(4)
前記第1のグループについて選択される電力割当て方式は、セカンダリシステムから前記プライマリシステムへの同一チャネル上の干渉及びチャネル間の干渉の双方を考慮する方式であり、
前記第2のグループについて選択される電力割当て方式は、セカンダリシステムから前記プライマリシステムへのチャネル間の干渉を考慮しない方式である、
前記(1)に記載の通信制御装置。
(5)
前記第2のグループについて選択される電力割当て方式は、送信電力値として固定値又は各セカンダリシステムから要求された値を各セカンダリシステムに割当てる方式である、前記(2)~(4)のいずれか1項に記載の通信御装置。
(6)
前記第2のグループについて選択される電力割当て方式は、各セカンダリシステムに当該セカンダリシステムから前記プライマリシステムへの経路損失が大きいほど大きい送信電力値を割当てる方式である、前記(3)又は前記(4)に記載の通信御装置。
(7)
前記第2のグループについて選択される電力割当て方式は、複数のセカンダリシステムから前記プライマリシステムへの同一チャネル上の累積的な干渉量が前記プライマリシステムの許容干渉量を超えないように各セカンダリシステムに送信電力を配分する方式である、前記(4)に記載の通信御装置。
(8)
前記第1のグループについて選択される電力割当て方式は、複数のセカンダリシステムから前記プライマリシステムへの同一チャネル上の累積的な干渉量及びチャネル間の累積的な干渉量の総和が前記プライマリシステムの許容干渉量を超えないように各セカンダリシステムに送信電力を配分する方式である、前記(2)~(4)のいずれか1項に記載の通信御装置。
(9)
前記第1のグループについて選択される電力割当て方式は、複数のセカンダリシステムから前記プライマリシステムへの同一チャネル上の累積的な干渉量が前記プライマリシステムの許容干渉量を超えないように各セカンダリシステムに送信電力を配分する方式である、前記(2)又は前記(3)に記載の通信御装置。
(10)
前記第1のグループについて選択される電力割当て方式は、各セカンダリシステムに当該セカンダリシステムから前記プライマリシステムへの経路損失が大きいほど大きい送信電力値を割当てる方式である、前記(2)に記載の通信御装置。
(11)
プライマリシステムのために保護される周波数チャネルの二次利用のための送信電力をセカンダリシステムに割当てる方法であって、
前記セカンダリシステムの前記プライマリシステムからの距離を取得することと、
取得された前記距離が所定の閾値を下回る場合に、第1の電力割当て方式で前記セカンダリシステムに送信電力を割当てることと、
取得された前記距離が前記所定の閾値を上回る場合に、前記第1の電力割当て方式よりも計算コストの低い第2の電力割当て方式で前記セカンダリシステムに送信電力を割当てることと、
を含む方法。
(12)
通信制御装置のコンピュータを、
プライマリシステムのために保護される周波数チャネルの二次利用のための送信電力をセカンダリシステムに割当てる電力割当て部、
として機能させるためのプログラムであって、
前記電力割当て部は、前記プライマリシステムからの距離が所定の閾値を下回る第1のグループのセカンダリシステムと前記プライマリシステムからの距離が前記所定の閾値を上回る第2のグループのセカンダリシステムとの間で、電力割当て方式を切り替える、
プログラム。
10 プライマリ送信局
20 プライマリ受信局
100 通信制御装置
140 電力割当て部
200 セカンダリシステムのマスタノード
Claims (12)
- プライマリシステムのために保護される周波数チャネルの二次利用のための送信電力をセカンダリシステムに割当てる電力割当て部、
を備え、
前記電力割当て部は、前記プライマリシステムからの距離が所定の閾値を下回る第1のグループのセカンダリシステムと前記プライマリシステムからの距離が前記所定の閾値を上回る第2のグループのセカンダリシステムとの間で、電力割当て方式を切り替える、
通信制御装置。 - 前記第1のグループについて選択される電力割当て方式は、各セカンダリシステムについての経路損失に依存する方式であり、
前記第2のグループについて選択される電力割当て方式は、各セカンダリシステムについての経路損失に依存しない方式である、
請求項1に記載の通信制御装置。 - 前記第1のグループについて選択される電力割当て方式は、複数のセカンダリシステムから前記プライマリシステムへの累積的な干渉を考慮する方式であり、
前記第2のグループについて選択される電力割当て方式は、複数のセカンダリシステムから前記プライマリシステムへの累積的な干渉を考慮しない方式である、
請求項1に記載の通信制御装置。 - 前記第1のグループについて選択される電力割当て方式は、セカンダリシステムから前記プライマリシステムへの同一チャネル上の干渉及びチャネル間の干渉の双方を考慮する方式であり、
前記第2のグループについて選択される電力割当て方式は、セカンダリシステムから前記プライマリシステムへのチャネル間の干渉を考慮しない方式である、
請求項1に記載の通信制御装置。 - 前記第2のグループについて選択される電力割当て方式は、送信電力値として固定値又は各セカンダリシステムから要求された値を各セカンダリシステムに割当てる方式である、請求項2に記載の通信御装置。
- 前記第2のグループについて選択される電力割当て方式は、各セカンダリシステムに当該セカンダリシステムから前記プライマリシステムへの経路損失が大きいほど大きい送信電力値を割当てる方式である、請求項3に記載の通信御装置。
- 前記第2のグループについて選択される電力割当て方式は、複数のセカンダリシステムから前記プライマリシステムへの同一チャネル上の累積的な干渉量が前記プライマリシステムの許容干渉量を超えないように各セカンダリシステムに送信電力を配分する方式である、請求項4に記載の通信御装置。
- 前記第1のグループについて選択される電力割当て方式は、複数のセカンダリシステムから前記プライマリシステムへの同一チャネル上の累積的な干渉量及びチャネル間の累積的な干渉量の総和が前記プライマリシステムの許容干渉量を超えないように各セカンダリシステムに送信電力を配分する方式である、請求項2に記載の通信御装置。
- 前記第1のグループについて選択される電力割当て方式は、複数のセカンダリシステムから前記プライマリシステムへの同一チャネル上の累積的な干渉量が前記プライマリシステムの許容干渉量を超えないように各セカンダリシステムに送信電力を配分する方式である、請求項2に記載の通信御装置。
- 前記第1のグループについて選択される電力割当て方式は、各セカンダリシステムに当該セカンダリシステムから前記プライマリシステムへの経路損失が大きいほど大きい送信電力値を割当てる方式である、請求項2に記載の通信御装置。
- プライマリシステムのために保護される周波数チャネルの二次利用のための送信電力をセカンダリシステムに割当てる方法であって、
前記セカンダリシステムの前記プライマリシステムからの距離を取得することと、
取得された前記距離が所定の閾値を下回る場合に、第1の電力割当て方式で前記セカンダリシステムに送信電力を割当てることと、
取得された前記距離が前記所定の閾値を上回る場合に、前記第1の電力割当て方式よりも計算コストの低い第2の電力割当て方式で前記セカンダリシステムに送信電力を割当てることと、
を含む方法。 - 通信制御装置のコンピュータを、
プライマリシステムのために保護される周波数チャネルの二次利用のための送信電力をセカンダリシステムに割当てる電力割当て部、
として機能させるためのプログラムであって、
前記電力割当て部は、前記プライマリシステムからの距離が所定の閾値を下回る第1のグループのセカンダリシステムと前記プライマリシステムからの距離が前記所定の閾値を上回る第2のグループのセカンダリシステムとの間で、電力割当て方式を切り替える、
プログラム。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280067358.5A CN104054367A (zh) | 2012-01-24 | 2012-11-28 | 通信控制装置、发送功率分配方法和程序 |
JP2013555140A JP5884835B2 (ja) | 2012-01-24 | 2012-11-28 | 通信制御装置、送信電力割当て方法及びプログラム |
US14/372,329 US9596657B2 (en) | 2012-01-24 | 2012-11-28 | Communication control device, transmission power allocation method and program |
EP12866905.8A EP2809096B1 (en) | 2012-01-24 | 2012-11-28 | Communication control device, transmission power allocation method and program |
AU2012367521A AU2012367521B2 (en) | 2012-01-24 | 2012-11-28 | Communication control device, transmission power allocation method and program |
SG11201404200UA SG11201404200UA (en) | 2012-01-24 | 2012-11-28 | Communication control device, transmission power allocation method and program |
US15/422,098 US10433264B2 (en) | 2012-01-24 | 2017-02-01 | Communication control device, transmission power allocation method and program |
US16/537,006 US10652837B2 (en) | 2012-01-24 | 2019-08-09 | Communication control device, transmission power allocation method and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012011736 | 2012-01-24 | ||
JP2012-011736 | 2012-01-24 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/372,329 A-371-Of-International US9596657B2 (en) | 2012-01-24 | 2012-11-28 | Communication control device, transmission power allocation method and program |
US15/422,098 Continuation US10433264B2 (en) | 2012-01-24 | 2017-02-01 | Communication control device, transmission power allocation method and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013111442A1 true WO2013111442A1 (ja) | 2013-08-01 |
Family
ID=48873183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/080737 WO2013111442A1 (ja) | 2012-01-24 | 2012-11-28 | 通信制御装置、送信電力割当て方法及びプログラム |
Country Status (7)
Country | Link |
---|---|
US (3) | US9596657B2 (ja) |
EP (1) | EP2809096B1 (ja) |
JP (2) | JP5884835B2 (ja) |
CN (2) | CN109905837B (ja) |
AU (1) | AU2012367521B2 (ja) |
SG (2) | SG10201602989SA (ja) |
WO (1) | WO2013111442A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2958357A1 (en) * | 2014-06-20 | 2015-12-23 | Sony Corporation | Radio resource management systems |
CN106461776A (zh) * | 2014-06-26 | 2017-02-22 | 诺基亚技术有限公司 | 用于保护雷达免受干扰的方法和装置 |
JP2019198055A (ja) * | 2018-05-07 | 2019-11-14 | 株式会社国際電気通信基礎技術研究所 | 通信制御装置、コンピュータに実行させるためのプログラム、プログラムを記録したコンピュータ読み取り可能な記録媒体およびデータ構造 |
JP2020509675A (ja) * | 2017-02-14 | 2020-03-26 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | 累積干渉の割り当て |
WO2020230659A1 (ja) * | 2019-05-15 | 2020-11-19 | ソニー株式会社 | 情報処理装置、情報処理方法、及び通信装置 |
JP2021158424A (ja) * | 2020-03-25 | 2021-10-07 | Kddi株式会社 | 柔軟な無線リソース割り当てのための制御装置、制御方法、及びプログラム |
US11388611B2 (en) | 2018-07-06 | 2022-07-12 | Sony Corporation | Communication control apparatus and communication control method |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5565082B2 (ja) * | 2009-07-31 | 2014-08-06 | ソニー株式会社 | 送信電力決定方法、通信装置及びプログラム |
JP5531767B2 (ja) | 2009-07-31 | 2014-06-25 | ソニー株式会社 | 送信電力制御方法、通信装置及びプログラム |
US11146966B2 (en) * | 2013-06-18 | 2021-10-12 | Itron Networked Solutions, Inc. | Configuring a network of devices to operate within a television whitespace spectrum |
US11159932B1 (en) * | 2016-09-16 | 2021-10-26 | Apple Inc. | Electronic devices with intuitive sharing capabilities |
CN108307395A (zh) * | 2017-01-13 | 2018-07-20 | 索尼公司 | 频谱管理装置、电子设备以及由其执行的方法 |
JP7207400B2 (ja) | 2018-03-26 | 2023-01-18 | ソニーグループ株式会社 | 通信制御装置及び通信制御方法 |
WO2020045131A1 (ja) * | 2018-08-28 | 2020-03-05 | ソニー株式会社 | 通信制御装置、及び通信制御方法 |
WO2020049992A1 (ja) * | 2018-09-05 | 2020-03-12 | ソニー株式会社 | 通信制御装置、通信制御方法、及び通信システム |
US20220360997A1 (en) | 2019-06-28 | 2022-11-10 | Sony Group Corporation | Communication control device, communication device, and communication control method |
US20230362970A1 (en) * | 2020-09-24 | 2023-11-09 | Sony Group Corporation | Communication control device, communication device, and communication control method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009100452A (ja) | 2007-09-28 | 2009-05-07 | Ntt Docomo Inc | 基地局装置、受信装置及び移動端末並びに周波数共用方法 |
JP2011055463A (ja) * | 2009-08-06 | 2011-03-17 | Sony Corp | 通信装置、送信電力制御方法、及びプログラム |
WO2011132760A1 (ja) * | 2010-04-19 | 2011-10-27 | 日本電気株式会社 | データベース、データ構造、二次利用可否判定システム、および二次利用可否判定方法 |
WO2011158502A1 (ja) * | 2010-06-18 | 2011-12-22 | 日本電気株式会社 | 無線制御装置、第二送信局送信電力決定方法およびプログラム |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8160020B2 (en) * | 2001-06-25 | 2012-04-17 | Airvana Network Solutions, Inc. | Radio network control |
TW583855B (en) * | 2002-08-22 | 2004-04-11 | Mediatek Inc | Wireless communication device for transmitting RF signals |
US7388845B2 (en) * | 2002-08-26 | 2008-06-17 | Qualcomm Incorporated | Multiple access wireless communications system using a multisector configuration |
WO2004045228A1 (en) * | 2002-11-07 | 2004-05-27 | Broadstorm Telecommunications, Inc. | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
FI20031702A0 (fi) * | 2003-11-21 | 2003-11-21 | Nokia Corp | Useiden kantoaaltojen allokointi usealle käyttäjälle viestintäjärjestelmässä |
JP2006186757A (ja) * | 2004-12-28 | 2006-07-13 | Nec Corp | 無線通信システムにおける送信電力制御方法およびその装置。 |
US20060178932A1 (en) * | 2005-02-07 | 2006-08-10 | Lang Brook W | Method and distribution system for location based wireless presentation of electronic coupons |
US7643843B2 (en) * | 2005-06-14 | 2010-01-05 | Interdigital Technology Corporation | Method and system for transmit power control in a multiple-input multiple-output wireless communication system |
US9955438B2 (en) * | 2005-09-27 | 2018-04-24 | Qualcomm Incorporated | Method and apparatus for carrier allocation and management in multi-carrier communication systems |
KR100705448B1 (ko) * | 2005-12-09 | 2007-04-09 | 한국전자통신연구원 | 다중 안테나로 구성된 ofdm에서 채널 정보 및 코드북을이용한 송신 전력 할당 방법 및 장치 |
JP4975818B2 (ja) * | 2006-08-17 | 2012-07-11 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | チャネル依存の時間領域及び周波数領域スケジューリングの方法 |
KR100843310B1 (ko) * | 2006-09-26 | 2008-07-03 | 인하대학교 산학협력단 | Ofdma/tdd 셀룰러 시스템에서의 하향링크의 동적 자원 할당 방법 |
GB2445599B (en) | 2006-11-20 | 2009-10-07 | Motorola Inc | Frequency reuse in communication systems |
WO2008084859A1 (ja) * | 2007-01-12 | 2008-07-17 | Panasonic Corporation | 無線通信基地局装置および無線通信方法 |
KR100944682B1 (ko) * | 2007-01-12 | 2010-02-26 | 삼성전자주식회사 | 무선통신 시스템에서 조인트 전력제어 장치 및 방법 |
KR100842620B1 (ko) * | 2007-01-25 | 2008-06-30 | 삼성전자주식회사 | 분산 무선 통신 시스템에서 직교 공간 시간 블록 코드를위한 심볼 에러율 기반 송신 전력 할당 방법 |
CA2679611A1 (en) * | 2007-03-01 | 2008-09-12 | Ntt Docomo, Inc. | Base station apparatus and communication control method |
US8041380B2 (en) * | 2007-04-26 | 2011-10-18 | Lingna Holdings Pte., Llc | Power control in cognitive radio systems based on spectrum sensing side information |
US8086258B2 (en) | 2007-09-28 | 2011-12-27 | Ntt Docomo, Inc. | Base station, receiving device, mobile terminal, and frequency sharing method |
WO2009059635A1 (en) * | 2007-11-06 | 2009-05-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Allocation of transmission power in an optical communication system |
EP2073398B1 (en) * | 2007-12-20 | 2017-03-29 | Sony Corporation | Improved transmit power allocation for adaptive multi-carrier multiplexing MIMO systems |
US8174959B2 (en) * | 2008-03-11 | 2012-05-08 | Nec Laboratories America, Inc. | Auction based resource allocation in wireless systems |
CN101335761B (zh) * | 2008-06-27 | 2012-11-28 | 西安交通大学 | Ad Hoc网络中远距离节点的通信方法 |
JP5078777B2 (ja) | 2008-06-30 | 2012-11-21 | 日本電信電話株式会社 | 無線通信システム、協調センシング方法、及び、総合判定局装置 |
US8391224B2 (en) * | 2009-03-03 | 2013-03-05 | Avaya Inc. | Proactive load distribution for 802.111-based wireless LANs |
JP5059798B2 (ja) * | 2009-03-03 | 2012-10-31 | 株式会社エヌ・ティ・ティ・ドコモ | 移動通信システムで使用される基地局装置及び方法 |
JP5526803B2 (ja) | 2009-05-29 | 2014-06-18 | ソニー株式会社 | 通信装置、通信制御方法、及びプログラム |
US8660498B2 (en) * | 2009-06-29 | 2014-02-25 | Motorola Solutions, Inc. | Method for database driven channel quality estimation in a cognitive radio network |
US20110021153A1 (en) * | 2009-07-10 | 2011-01-27 | Saeid Safavi | Centralized cross-layer enhanced method and apparatus for interference mitigation in a wireless network |
JP5609252B2 (ja) * | 2009-07-31 | 2014-10-22 | ソニー株式会社 | 送信電力割当て方法、通信装置及びプログラム |
JP5531767B2 (ja) * | 2009-07-31 | 2014-06-25 | ソニー株式会社 | 送信電力制御方法、通信装置及びプログラム |
KR20110019683A (ko) * | 2009-08-20 | 2011-02-28 | 주식회사 팬택 | 무선통신시스템에서 요소반송파별 자원 할당방법 및 단말의 통신방법 |
US8654656B2 (en) * | 2009-11-30 | 2014-02-18 | Panasonic Corporation | Communication device, method, integrated circuit, system, and program |
US20120020286A1 (en) * | 2010-01-21 | 2012-01-26 | Qualcomm Incorporated | Channel prioritization and power scaling in wireless communications |
US8509166B2 (en) * | 2010-01-28 | 2013-08-13 | Tti Inventions D Llc | System and method for resource allocation of a LTE network integrated with femtocells |
CN101808333B (zh) * | 2010-02-02 | 2013-09-04 | 深圳先进技术研究院 | 共享信道的方法及系统 |
CN102281621A (zh) * | 2010-06-09 | 2011-12-14 | 爱立信(中国)通信有限公司 | 在无线网络中实施发射功率控制的方法、基站和用户终端 |
JP5821208B2 (ja) | 2010-10-29 | 2015-11-24 | ソニー株式会社 | 通信制御装置、通信制御方法、通信装置、通信方法及び通信システム |
JP5464126B2 (ja) * | 2010-11-09 | 2014-04-09 | 日立金属株式会社 | 移動通信用基地局アンテナ、及び移動通信用基地局アンテナシステム |
JPWO2012063837A1 (ja) * | 2010-11-10 | 2014-05-12 | 京セラ株式会社 | 無線通信システム、無線基地局、ネットワーク装置及び通信制御方法 |
WO2012120797A1 (en) * | 2011-03-04 | 2012-09-13 | Nec Corporation | Base station, radio resource allocation method, and recording medium |
US20130250879A1 (en) * | 2012-03-22 | 2013-09-26 | Samsung Electronics Co., Ltd | Method and apparatus for transmission mode design for extension carrier of lte advanced |
GB2505038B (en) * | 2012-07-13 | 2014-10-08 | Korea Electronics Telecomm | Method and apparatus for allocating operating channel priority between frequency sharing systems cross-reference to related applications |
CN104519494B (zh) * | 2013-09-27 | 2019-07-26 | 索尼公司 | 无线电频谱管理设备、方法、系统以及次用户设备 |
-
2012
- 2012-11-28 CN CN201910035915.9A patent/CN109905837B/zh active Active
- 2012-11-28 AU AU2012367521A patent/AU2012367521B2/en active Active
- 2012-11-28 JP JP2013555140A patent/JP5884835B2/ja active Active
- 2012-11-28 EP EP12866905.8A patent/EP2809096B1/en active Active
- 2012-11-28 CN CN201280067358.5A patent/CN104054367A/zh active Pending
- 2012-11-28 SG SG10201602989SA patent/SG10201602989SA/en unknown
- 2012-11-28 SG SG11201404200UA patent/SG11201404200UA/en unknown
- 2012-11-28 WO PCT/JP2012/080737 patent/WO2013111442A1/ja active Application Filing
- 2012-11-28 US US14/372,329 patent/US9596657B2/en active Active
-
2016
- 2016-01-29 JP JP2016015260A patent/JP6115660B2/ja active Active
-
2017
- 2017-02-01 US US15/422,098 patent/US10433264B2/en active Active
-
2019
- 2019-08-09 US US16/537,006 patent/US10652837B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009100452A (ja) | 2007-09-28 | 2009-05-07 | Ntt Docomo Inc | 基地局装置、受信装置及び移動端末並びに周波数共用方法 |
JP2011055463A (ja) * | 2009-08-06 | 2011-03-17 | Sony Corp | 通信装置、送信電力制御方法、及びプログラム |
WO2011132760A1 (ja) * | 2010-04-19 | 2011-10-27 | 日本電気株式会社 | データベース、データ構造、二次利用可否判定システム、および二次利用可否判定方法 |
WO2011158502A1 (ja) * | 2010-06-18 | 2011-12-22 | 日本電気株式会社 | 無線制御装置、第二送信局送信電力決定方法およびプログラム |
Non-Patent Citations (3)
Title |
---|
"TECHNICAL AND OPERATIONAL REQUIREMENTS FOR THE POSSIBLE OPERATION OF COGNITIVE RADIO SYSTEMS IN THE", WHITE SPACES' OF THE FREQUENCY, vol. 470-790, January 2011 (2011-01-01) |
See also references of EP2809096A4 |
STANDARD ECMA-392 MAC AND PHY FOR OPERATION IN TV WHITE SPACE, 15 December 2011 (2011-12-15), Retrieved from the Internet <URL:URL:http://www.ecma-international.org/publications/standards/Ecma-392.htm>> |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2958357A1 (en) * | 2014-06-20 | 2015-12-23 | Sony Corporation | Radio resource management systems |
CN106461776A (zh) * | 2014-06-26 | 2017-02-22 | 诺基亚技术有限公司 | 用于保护雷达免受干扰的方法和装置 |
EP3161518A4 (en) * | 2014-06-26 | 2017-12-20 | Nokia Technologies Oy | Method and apparatus for protecting radars from interference |
CN106461776B (zh) * | 2014-06-26 | 2019-03-12 | 诺基亚技术有限公司 | 用于保护雷达免受干扰的方法和装置 |
JP2020509675A (ja) * | 2017-02-14 | 2020-03-26 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | 累積干渉の割り当て |
JP2019198055A (ja) * | 2018-05-07 | 2019-11-14 | 株式会社国際電気通信基礎技術研究所 | 通信制御装置、コンピュータに実行させるためのプログラム、プログラムを記録したコンピュータ読み取り可能な記録媒体およびデータ構造 |
JP7142326B2 (ja) | 2018-05-07 | 2022-09-27 | 株式会社国際電気通信基礎技術研究所 | 通信制御装置、コンピュータに実行させるためのプログラム、プログラムを記録したコンピュータ読み取り可能な記録媒体およびデータ構造 |
US11388611B2 (en) | 2018-07-06 | 2022-07-12 | Sony Corporation | Communication control apparatus and communication control method |
WO2020230659A1 (ja) * | 2019-05-15 | 2020-11-19 | ソニー株式会社 | 情報処理装置、情報処理方法、及び通信装置 |
JP7517332B2 (ja) | 2019-05-15 | 2024-07-17 | ソニーグループ株式会社 | 情報処理装置、情報処理方法、及びプログラム |
JP2021158424A (ja) * | 2020-03-25 | 2021-10-07 | Kddi株式会社 | 柔軟な無線リソース割り当てのための制御装置、制御方法、及びプログラム |
JP7355689B2 (ja) | 2020-03-25 | 2023-10-03 | Kddi株式会社 | 柔軟な無線リソース割り当てのための制御装置、制御方法、及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
US20140341150A1 (en) | 2014-11-20 |
SG11201404200UA (en) | 2014-10-30 |
EP2809096B1 (en) | 2020-02-19 |
EP2809096A1 (en) | 2014-12-03 |
US20190364515A1 (en) | 2019-11-28 |
US10652837B2 (en) | 2020-05-12 |
CN109905837A (zh) | 2019-06-18 |
JP5884835B2 (ja) | 2016-03-15 |
US20170150456A1 (en) | 2017-05-25 |
JP6115660B2 (ja) | 2017-04-19 |
US10433264B2 (en) | 2019-10-01 |
JPWO2013111442A1 (ja) | 2015-05-11 |
SG10201602989SA (en) | 2016-05-30 |
AU2012367521B2 (en) | 2017-05-18 |
EP2809096A4 (en) | 2016-01-20 |
AU2012367521A1 (en) | 2014-06-26 |
CN104054367A (zh) | 2014-09-17 |
JP2016123110A (ja) | 2016-07-07 |
US9596657B2 (en) | 2017-03-14 |
CN109905837B (zh) | 2021-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6115660B2 (ja) | 通信制御システム及び方法 | |
JP5821208B2 (ja) | 通信制御装置、通信制御方法、通信装置、通信方法及び通信システム | |
US10477491B2 (en) | Uplink interference management in shared spectrum networks | |
US10517131B2 (en) | Communication control device, communication control method, communication system and communication device | |
JP6007480B2 (ja) | 通信制御装置、通信制御方法及び通信制御システム | |
JP5212466B2 (ja) | 無線リソースの制御方法、無線局装置、無線局制御プログラム、及び無線通信システム | |
JP2013046328A (ja) | 通信制御装置、通信制御方法及び通信制御システム | |
JP2022542046A (ja) | セルラネットワークの基地局のための複数の同時帯域幅部分の帯域幅調整 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12866905 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013555140 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012866905 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2012367521 Country of ref document: AU Date of ref document: 20121128 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14372329 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |