WO2013111372A1 - Water treatment method and water treatment system - Google Patents

Water treatment method and water treatment system Download PDF

Info

Publication number
WO2013111372A1
WO2013111372A1 PCT/JP2012/073216 JP2012073216W WO2013111372A1 WO 2013111372 A1 WO2013111372 A1 WO 2013111372A1 JP 2012073216 W JP2012073216 W JP 2012073216W WO 2013111372 A1 WO2013111372 A1 WO 2013111372A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
filter aid
solid
filtration membrane
treated
Prior art date
Application number
PCT/JP2012/073216
Other languages
French (fr)
Japanese (ja)
Inventor
深谷 太郎
厚 山崎
剣治 堤
伊知郎 山梨
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2013111372A1 publication Critical patent/WO2013111372A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters

Definitions

  • the embodiment described herein relates to a water treatment method and a water treatment apparatus for purifying factory effluent and domestic effluent using a filter aid.
  • the membrane separation method is one of the most commonly employed methods for removing insoluble substances in water.
  • the membrane separation method is often used in the form of using a filter aid such as a so-called precoat method or body feed method from the viewpoint of protecting the filtration membrane or from the viewpoint of increasing the flow rate of water containing a hardly dehydrated substance. It is used.
  • the embodiments described herein are made to solve the above-described problems, and are a water treatment method and a water treatment capable of efficiently removing fine solids in water and easily reusing a filter aid.
  • An object is to provide an apparatus.
  • a water treatment method comprises: (a) a magnetic primary particle or an aggregate thereof, and a coating having the critical surface tension ⁇ c of 22 ⁇ 10 ⁇ 3 N / m or less, which coats the magnetic primary particle or the aggregate.
  • Preparing a filter aid containing a material (b) mixing a dispersion medium with the filter aid, producing a suspension in which the filter aid is dispersed in the dispersion medium, and (c) a filtration membrane
  • the suspension is filtered by the above, a precoat layer containing a filter aid is formed on the filter membrane, and then the water to be treated containing solids is passed through the precoat layer and the filter membrane.
  • the solid content is captured by adsorption, thereby separating the solid content from the water to be treated; and (d) the precoat layer is peeled off from the filtration membrane by pouring water into the precoat layer. , Solids trapped in the precoat and water poured into the precoat layer Obtaining a mixture, (e) magnetically separating the filter aid from the mixture, and (f) reusing the separated filter aid in the step (b) to make a suspension. .
  • the characteristic diagram which shows an example of the Zisman plot used when calculating
  • (A) is a cross-sectional schematic diagram which shows the aggregate which the magnetic particle aggregated
  • (b) is a cross-sectional schematic diagram which shows the magnetic particle coat
  • Schematic which shows an example of the apparatus used in the water treatment method which concerns on 1st Embodiment. Process drawing which shows an example of the water treatment method (precoat method) which concerns on 1st Embodiment. Schematic which shows an example of the apparatus used in the water treatment method which concerns on 2nd Embodiment. Process drawing which shows an example of the water treatment method (body feed method) which concerns on 2nd Embodiment.
  • a water treatment method comprises: (a) a magnetic primary particle or aggregate thereof and a magnetic primary particle or aggregate thereof, and a coating material having a critical surface tension ⁇ c of 22 ⁇ 10 ⁇ 3 N / m or less And (b) preparing a suspension in which the filter aid is dispersed in the dispersion medium, and (c) using a filter membrane.
  • the suspension is filtered, a precoat layer containing a filter aid is formed on the filter membrane, and then water to be treated containing solids is passed through the precoat layer and the filter membrane, and the solid is added to the filter aid of the precoat layer.
  • the water treatment method according to the first embodiment is a method corresponding to a so-called precoat method.
  • this water treatment method is a filtration comprising magnetic primary particles or aggregates thereof and a coating material having a critical surface tension ⁇ c of 20 ⁇ 10 ⁇ 3 N / m or less that coats the particles. Including providing an auxiliary agent.
  • the critical surface tension ⁇ c is a parameter related to the wettability of a solid liquid.
  • the solid is not wetted by a liquid having a surface tension ⁇ L greater than its critical surface tension ⁇ c .
  • the critical surface tension ⁇ c is obtained by dripping a liquid with various surface tensions onto a solid, obtaining the surface tension of the liquid whose contact angle becomes zero by extrapolation, and calculating the surface tension value of the liquid.
  • the critical surface tension can be obtained by the Zisman method.
  • it is good also as a literature value with a close composition. For example, values described in a plastic data book (Asahi Kasei Amidus Co., Ltd., “Plastics” editorial department, P. 35, (1999)) are used.
  • the critical surface tension ⁇ c can be determined using the Jisman method.
  • various liquids having a known surface tension ⁇ L are brought into contact with the surface of a solid that is difficult to wet with water, and the contact angle ⁇ is measured.
  • a value of cos ⁇ is obtained from the measured contact angle ⁇ , the obtained cos ⁇ value is taken on the vertical axis (Y axis), and the corresponding surface tension ⁇ L of the liquid is taken on the horizontal axis (X axis), for example, as shown in FIG.
  • each measurement result is plotted one after another on the XY coordinates. As a result, a figure with a large number of plots is completed.
  • the tendency of the plot group in the created figure is obtained by using a calculation method such as the least square method, and a straight line Z having the obtained inclination is drawn in the figure.
  • This straight line Z is called a Zisman plot.
  • the value (surface tension value) of the X-axis intercept of the obtained straight line Z is particularly called critical surface tension ⁇ c .
  • the solid is not wetted by a liquid having a surface tension ⁇ L greater than the critical surface tension ⁇ c .
  • the critical surface tension ⁇ c of 22 ⁇ 10 ⁇ 3 N / M or less is smaller than the surface tension of water. Therefore, by using a filter aid including a coating material having a critical surface tension ⁇ c of 22 ⁇ 10 ⁇ 3 N / M or less, the filter aid and solids in water can be easily obtained by performing simple operations. Can be separated. That is, since this filter aid has a low critical surface tension ⁇ c , solid matter in water can be separated into solid and liquid using stirring or ultrasonic waves in water, and only the filter aid is adsorbed on a magnet and recovered. Can do.
  • the shape of the magnetic particles can be various shapes such as a spherical shape and a polyhedron, but is not particularly limited. Alternatively, the magnetic particles may be indefinite. What is necessary is just to select suitably the particle size and shape of a magnetic particle desirable in use in view of manufacturing cost. In particular, a polyhedral structure having a spherical shape or rounded corners is preferable.
  • the specific gravity of the filter aid becomes relatively high.
  • a filter aid having a relatively large specific gravity is used in combination with sedimentation by gravity and centrifugal separation using a cyclone in combination with magnetic separation in the separation of the mixture containing the filter aid, the capture target and water. Filter aid can be quickly separated from the mixture.
  • Ferromagnetic materials can be generally used as the magnetic material.
  • iron, iron-base alloys, magnetite (magnetite), titanite (ilmenite), pyrrhotite (pilotite), magnesia ferrite, manganese magnesium ferrite, manganese Zinc ferrite, cobalt ferrite, nickel ferrite, nickel zinc ferrite, barium ferrite, copper zinc ferrite and the like can be used.
  • a ferrite-based compound such as magnetite, magnesia ferrite, or manganese magnesium ferrite having excellent stability in water.
  • Magnetite Fe 3 O 4
  • the magnetic particles may be single magnetic single particles (primary particles) or aggregates (secondary particles) obtained by aggregating the primary particles.
  • the average particle diameter of the primary particles is preferably in the range of 0.5 to 5 ⁇ m. If the average particle diameter of the magnetic primary particles is in the range of 0.5 to 5 ⁇ m, the distance between the particles becomes too large, and there is a risk of generating a through-pass that allows fine precipitates in water to be described later to pass through. Can be reduced. Further, when the average particle diameter of the magnetic primary particles is in the range of 0.5 to 5 ⁇ m, it becomes easy to provide an effective water flow rate due to the gaps between the particles.
  • a silicone resin or a fluororesin can be used as the covering material having a critical surface tension ⁇ c of 22 ⁇ 10 ⁇ 3 N / m or less.
  • Silicone resin is a polymer compound made of organopolysiloxane, and there are two types, one-pack type and two-pack type. Examples include the KE series and KR series, which are products of Shin-Etsu Chemical Co., Ltd.
  • Fluorine resin is a general term for fluorine-containing polymers.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • ETFE Tetrafluoroethylene-ethylene copolymer
  • PVDF polyvinylidene fluoride
  • ECTFE chlorotrifluoroethylene-ethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • PVF polyvinyl fluoride
  • the critical surface tension ⁇ c of PTFE is about 18 ⁇ 10 ⁇ 3 N / m.
  • a resin obtained by copolymerizing these resins with an epoxy resin, polyimide, polyamide or the like is used to improve the adhesion with the magnetic particles. Even when these resins are copolymerized, since the fluororesin is localized on the resin surface, the critical surface tension of the fluororesin may be used as the surface tension of the coating material.
  • the filter aid containing the magnetic primary particles can be obtained by, for example, applying a solution of these resins to the surface of the magnetic primary particles 11 and curing (solidifying) the resin, for example, as shown in FIG.
  • the filter aid 10 including the magnetic primary particles 11 and the coating material 12 covering the primary particles 11 can be produced.
  • the diameter of the filter aid containing the magnetic primary particles is D1.
  • a method of making a filter aid composed of aggregates a method of applying a coating material having a critical surface tension ⁇ c of 22 ⁇ 10 ⁇ 3 N / m or less after forming aggregates first with a granulator or the like, There is a method in which primary particles are granulated using a material having a surface tension ⁇ c of 22 ⁇ 10 ⁇ 3 N / m or less as a binder.
  • the former, the primary particles and an organic binder or an inorganic binder was kneaded by a spray dryer or a Henschel mixer, the after critical surface tension gamma c is 22 ⁇ 10 -3 N / m or less of the material that made granular material.
  • coating material is mentioned.
  • the latter is granulated directly with a Henschel mixer or spray dryer using a binder with a material with a critical surface tension of 22 ⁇ 10 ⁇ 3 N / m or less.
  • a filter aid containing aggregated magnetic particles 10 and a binder 13 that binds these primary particles 10 to each other is obtained.
  • the diameter of the filter aid made of the aggregate is D2.
  • the average particle size of the filter aid is preferably in the range of 1 to 50 ⁇ m.
  • a filter aid having an average particle size in the range of 1 to 50 ⁇ m fine particles in water can be captured by adsorption.
  • an effective amount of treated water can be obtained, and the possibility of spilling particles to be captured can be reduced.
  • the average particle size is in the range of 2 to 35 ⁇ m. When the average particle diameter is 2 ⁇ m or more, a more effective amount of treated water can be obtained. Further, when the average particle size is 35 ⁇ m or less, the particles to be captured can be captured more reliably by adsorption.
  • the average particle diameter of the filter aid is obtained by calculation using a plurality of actual measurement values measured by a laser diffraction method.
  • the particle size of the filter aid can be measured using a SALD-DS21 measuring device (product name) manufactured by Shimadzu Corporation.
  • the average particle diameter of a filter aid is a volume average particle diameter (Mean Volume Diameter).
  • the volume average particle size is a value obtained by calculating the average particle size based on the volume of the particles.
  • Such a filter aid is excellent in separability and durability, and the filter aid can be repeatedly used in a cycle of dispersion ⁇ adsorption ⁇ separation ⁇ recovery ⁇ dispersion.
  • FIG. 3 is a schematic view showing an example of an apparatus used in the water treatment method according to the first embodiment.
  • FIG. 4 is a process diagram showing an example of a water treatment method (precoat method) according to the first embodiment.
  • the water treatment apparatus 1 shown in FIG. 3 is an apparatus used in the precoat method, and is effectively used particularly when the concentration of a substance insoluble in water in the water to be treated is low.
  • the water treatment apparatus 1 includes a treated water tank 2, a solid-liquid separation apparatus 3, a magnetic separation tank 4, a filter aid supply apparatus 5, a mixing tank 6, an untreated water supply source (not shown), and a waste water storage tank. These devices and apparatuses are connected to each other by a plurality of piping lines L1 to L8.
  • Various pumps P1 to P9, valves V1 to V3, measuring instruments and sensors (not shown) are attached to the piping lines L1 to L8.
  • a detection signal is input from these measuring instruments and sensors to an input section of a controller (not shown), and control signals are output from the output section of the controller to pumps P1 to P9 and valves V1 to V3, respectively, and their operations are controlled. It has become so. As described above, the entire water treatment apparatus 1 is comprehensively controlled by a controller (not shown).
  • the treated water tank 2 has a stirring screw 21 for stirring the water to be treated.
  • treated water containing a substance insoluble in water for example, factory wastewater, is introduced from a treated water supply source (not shown) via the line L1.
  • the solid-liquid separator 3 has a built-in filtration membrane 33 that partitions the interior into an upper space 31 and a lower space 32.
  • the upper space 31 of the solid-liquid separator is connected to the treated water tank 2 via a treated water supply line L2 having a pressure pump P1. Further, a water supply line (first treated water utilization line) L31 having a pump P5 and a peeled material discharge line L4 are connected to the side portions of the upper space 31, respectively.
  • the lower space 32 of the solid-liquid separator is connected to a treated water distribution line L3 having three three-way valves V1, V2, and V3.
  • the separation water supply line (first treated water utilization line) L31 is branched from the treated water distribution line L3.
  • a treated water supply line L32 having a pump P2 branches off from the treated water distribution line L3 at the second three-way valve V2.
  • two lines L33 and L34 are branched from the treated water distribution line L3.
  • One branch line (second treated water utilization line) L33 has a pump P4 and is connected to a separation tank 4 described later.
  • the other branch line (third treated water utilization line) L34 has a pump P5 and is connected to a mixing tank 6 described later.
  • filtration membrane 33 various materials such as woven fabric, nonwoven fabric, paper, wire mesh (mesh), resin mesh (mesh), porous polymer membrane, porous ceramic membrane can be used.
  • a cloth is most preferred.
  • fabrics such as double weave, twill weave, plain weave and satin weave are used.
  • the material of the filter cloth may be any of synthetic fibers such as polypropylene, nylon and polyester, or natural fibers such as cotton and hemp.
  • the average pore size of the filtration membrane 33 is set to a size that does not allow the filtration aid to pass through.
  • Silicone resin and fluororesin that covers the surface of the filter aid are highly hydrophobic, so multiple particles of the filter aid adhere to each other and form a bridge, and even with a pore size larger than the average particle size, the layers are sufficiently laminated. Because it can.
  • the filtration membrane 33 preferably has a filtration surface orthogonal to the direction in which gravity acts.
  • the filter aid Since the above-mentioned filter aid has a low critical surface tension ⁇ c , it is difficult to hold the filter aid on the filter membrane 33. For this reason, if the surface is not perpendicular to the direction of gravity (that is, a horizontal surface), the filter aid slips on the filtration membrane 33 and may not be easily laminated to a uniform thickness. In the filtration membrane 33 having a filtration surface orthogonal to the direction of gravity, this worry is small.
  • the filtration surface of the filtration membrane 33 is orthogonal to the direction in which gravity acts, the gravity acts on the suspension and the water to be treated to the maximum, and the filtration action allows water molecules to pass through the filtration membrane 33. Is promoted.
  • the suspension or water to be treated is pressurized, the water flow rate passing through the filtration membrane 33 is increased, and the filtration efficiency is further improved.
  • the magnetic separation tank 4 has a stirring screw 41 for stirring the washing discharge water received from the upper space 31 of the solid-liquid separation device through the peeled material discharge line L4, and is separated into a solid and a filter aid.
  • the magnet 42 for carrying out is built in.
  • the magnet 42 is in a cylindrical pipe whose one end is closed, and is controlled by a controller (not shown).
  • the controller can control, for example, vertical movement of the magnet 42 and on / off of the magnetic field of the magnet 42.
  • a second treated water use line L33 branched from the treated water distribution line L3 is connected to the upper part of the magnetic separation tank 4, and has passed through the filter 33 of the solid-liquid separator. A part of the treated water is supplied to the magnetic separation tank 4, and a part of the treated water is reused in the magnetic separation tank 4.
  • a concentrated water discharge line L8 and a filter aid return line L5 are connected to the lower part of the magnetic separation tank 4, respectively.
  • the concentrated water discharge line L8 has a pump P9 and is a pipe for discharging water-insoluble matter concentrated water from the magnetic separation tank 4 to a storage tank (not shown).
  • the filter aid return line L5 is a pipe having a pump P6 for returning the filter aid separated and recovered from the magnetic separation tank 4 to the filter aid supply device 5.
  • the filter aid supply device 5 is newly replenished with a filter aid supply source (not shown), and the filter aid separated in the magnetic separation tank 4 passes through the filter aid return line L5 described above. It is supposed to be returned. Moreover, the filter aid supply apparatus 5 supplies an appropriate amount of filter aid to the mixing tank 6 through a filter aid supply line L6 having a pump P7.
  • the mixing tank 6 has a stirring screw 61 for stirring the filter aid and the dispersion medium.
  • the mixing tank 6 is configured to add a dispersion medium to the filter aid supplied from the filter aid supply device 5 and stir and mix using the stirring screw 61 to produce a suspension containing the filter aid. ing. It is preferable to use water as the dispersion medium.
  • a third treated water utilization line L34 branched from the treated water distribution line L3 is connected to the upper part of the mixing tank 6, and a part of the treated water that has passed through the filter 33 of the solid-liquid separator is supplied to the mixing tank 6. In the mixing tank 6, a part of the treated water is reused as a dispersion medium.
  • a suspension supply line L7 having a pump P8 communicates with an appropriate place of the mixing tank 6.
  • the suspension supply line L7 is connected and joined at an appropriate position of the treated water supply line L2.
  • the slurry suspension from the suspension supply line L7 is added to the water to be treated flowing through the water supply line L2.
  • the suspension supply line L7 is provided with a flow control valve (not shown) so that the flow rate of the suspension is adjusted by the controller.
  • the suspension supply line L7 does not have to be connected at an appropriate position of the to-be-treated water supply line L2.
  • the treated water can flow through the suspension supply line L7.
  • the suspension prepared in the mixing tank 6 has a large solid content, when this is directly sent from the line L7 to the filtration membrane of the solid-liquid separator, a part of the filter aid remains in the line L7.
  • the suspension supply line L7 is connected and joined at an appropriate position of the treated water supply line L2
  • the treated water can flow through the suspension supply line. Since the treated water is sent to the solid-liquid separation device together with the filter aid remaining in the line when passing the treated water, a prescribed precoat thickness can be obtained.
  • FIG. 4 is a process diagram showing an example of a water treatment method (precoat method) according to the first embodiment.
  • the water treatment apparatus 1 shown in FIG. 3 can be used.
  • the precoat method is particularly effective when the concentration of substances insoluble in water to be treated is low.
  • the substance insoluble in water contained in the water to be treated is not particularly limited to organic substances and inorganic substances. Even if the particles are hardly dewatering particles such as heavy metal hydroxides or contain non-water-removing components other than particles, such as oil, they can be easily filtered by the structure of the filter aid. In this case, it is preferable to appropriately select a coating material for the filter aid according to the properties of the wastewater that is the water to be treated.
  • the filter aid and the dispersion medium are mixed in the mixing tank 6 to prepare a suspension containing the filter aid (step S1).
  • the filter aid can be produced by the method described above.
  • water is mainly used as the dispersion medium, other dispersion medium can be appropriately used in addition to water.
  • the concentration of the filter aid in the suspension is not particularly limited as long as a precoat layer, that is, a filter aid deposited layer can be formed by the following operation, but is adjusted to, for example, about 10,000 to 200,000 mg / L.
  • the suspension is passed through the filtration membrane 33 of the solid-liquid separator 3, and the filter aid in the suspension is filtered off and left on the filtration membrane 33, and the particle deposition is formed by laminating the filter aid.
  • a layer (precoat layer) is formed (step S2).
  • the water flow to the filtration membrane 33 by the pressurization pump P1 is performed at a predetermined pressure.
  • the filtration membrane 33 is attached so as to close the inlet of the solid-liquid separation device 3, and the suspension membrane is filtered by the filtration membrane 33 so that the pressure drop of the suspension in the solid-liquid separation device 3 is minimized. Do it. Specifically, by reducing the upper space 31 defined by the container wall of the solid-liquid separator 3 and the filtration membrane 33 and pushing the pressurized suspension into the small space 31 with a small volume, Separation of solid (filter aid) and liquid by the filter membrane 33 is promoted. At this time, the liquid component of the suspension quickly permeates through the filtration membrane 33 and the solid component of the suspension (filter aid) passes through the filtration membrane 33 due to the synergistic action of the pressure and gravity caused by driving the pressurizing pump P1. As a result, a precoat layer is formed on the filtration membrane 33. The thickness of the precoat layer varies depending on the concentration of the liquid to be treated, but is about 0.1 to 10 mm.
  • the water to be treated is pumped from the treated water tank 2 to the solid-liquid separation device 3 through the line L2 by driving the pump P1, and the treated water is passed through the filter 33 and the precoat layer (step S3).
  • the water-insoluble solid in the water to be treated is captured by adsorption by the filter aid in the precoat layer.
  • the valve V1 When the water to be treated is filtered, the valve V1 is switched, the pump P3 is started, and the pump P3 is driven to pass a part or all of the treated water to the upper space 31 of the solid-liquid separator through the line L3 ⁇ L31. return.
  • the returned treated water is used as water for peeling the precoat layer from the filter 33.
  • Treated water is sprayed onto the precoat layer from the side of the upper space 31 to peel off the precoat layer from the filter 33. Further, treated water is sprayed onto the peeled material to decompose the peeled material apart, and the filter aid and solid content are dispersed Disperse in the medium (step S4).
  • the separation and decomposition of the precoat layer may be performed in a container in which a filter is installed, or may be performed in another container.
  • the precoat layer is peeled and decomposed in another container, the precoat layer is decomposed into a decomposed product having a certain size by using means such as an injection nozzle and then transported.
  • the line L31 may be replenished with water from another location.
  • Water is preferably used for peeling and decomposing the precoat layer, but it is also possible to exfoliate and decompose the precoat layer using a surfactant or an organic solvent.
  • the treated water generated from the solid-liquid separation device 3 is sent to the solid-liquid separation device 31 via the line L31, it can be effectively used as peeling water for peeling the precoat.
  • a treated water storage tank for temporarily storing the treated water is provided, and the solid-liquid separation device 3 is provided from the storage tank as necessary. The treated water can be sent to the upper space 31.
  • the water for peeling off the precoat layer does not include the treated water generated from the solid-liquid separator 3, and may be water from other places.
  • the suspension containing the peeled material of the precoat layer is sent from the upper space 31 to the magnetic separation tank 4 through the line L4, and the decomposition product of the precoat layer is stirred in the magnetic separation tank 4 by the stirring screw 41. Further break down to particle level and disperse filter aid and solids. When this stirring is sufficiently performed, the filter aid and the solid content are more uniformly dispersed in the suspension, and the filter aid is easily separated.
  • Magnetic separation methods include a method of collecting permanent magnets or electromagnets in the container of the magnetic separation tank 4 and a method of collecting particles by collecting them with a metal mesh magnetized by a magnet and releasing a magnetic field. Is mentioned.
  • the filter aid can be recovered by the following method.
  • the permanent magnet 42 is installed in a cylindrical pipe whose one end is closed, and the filter aid is adsorbed and fixed by the magnet 42 in the suspension.
  • the waste liquid containing the solid content is discharged from the container of the magnetic separation tank 4 to the storage tank (not shown) via the line L8.
  • the magnet 42 is pulled up by an air cylinder (not shown) attached to the upper part of the magnet 42 to turn off the magnetic field, and the filter aid is dropped from the magnet 42.
  • a part of the treated water is supplied from the solid-liquid separation device 3 into the container via the line L33, and the treated water is added to the dropped filter aid to form a slurry or suspension.
  • the liquid filter aid is sent from the separation tank 4 to the filter aid supply device 5 via the line L5.
  • the filter aid is moved to another container together with the magnet 42, the magnetic field of the magnet 42 is turned off in the other container, and the filter aid is removed from the magnet 42. It is possible to drop off and collect the filter aid in another container.
  • the recovered filter aid is supplied from the filter aid supply device 5 to the upper space 31 of the solid-liquid separation device 3 via the line L6, and the recovered filter aid is reused to form the precoat layer.
  • the filter aid can be used repeatedly in the cycle of precoat layer formation ⁇ filtration ⁇ separation ⁇ recovery ⁇ precoat layer formation.
  • the filter aid excellent in separability and durability since the filter aid excellent in separability and durability is used, the operation cost of water treatment and the maintenance cost of the water treatment device can be kept low.
  • the filter aid and the solid matter (water insoluble substance such as SS) captured by the magnetic adsorption means such as an electromagnet can be quickly and It can be reliably separated. Therefore, according to the first embodiment, the separated filter aid can be recovered efficiently and smoothly, and the recovered filter aid can be reused repeatedly. It is easy to reuse the filter aid, and fine solid matter in water can be removed without adding chemicals.
  • This water treatment method comprises: (A) a magnetic primary particle or an aggregate thereof and a magnetic primary particle or an aggregate thereof, and a coating material having a critical surface tension ⁇ c of 22 ⁇ 10 ⁇ 3 N / m or less Preparing a filter aid containing, and (B) mixing the water to be treated containing the solid content and the filter aid, producing a suspension in which the filter aid is dispersed in the water to be treated; (C) The suspension is filtered through a filtration membrane, a deposition layer containing a filter aid and solid content is formed on the filtration membrane, and the solid content is captured by adsorption in the filtration aid in the deposition layer.
  • the water treatment method according to the second embodiment is a method corresponding to the so-called body feed method.
  • the water to be treated is used as a dispersion medium for dispersing the filter aid, and the suspension containing the water to be treated and the filter aid is prepared without forming a precoat layer. It differs from the water treatment method according to the first embodiment in that it is filtered to form a deposition layer containing a filter aid and a solid content contained in the water to be treated.
  • the supply of the water-insoluble matter and the supply of the filter aid are performed at the same time, particularly when the amount of solid content in the water to be treated (suspension) is large. Therefore, the water-insoluble matter excessively adsorbed by the filter aid does not embed the gap of the filter aid. For this reason, the method according to the second embodiment can maintain the filtration rate for a long time. As a result, the water treatment method of the second embodiment is effective when the concentration of water insoluble matter in the water to be treated is high.
  • FIG. 5 is a schematic view showing an example of an apparatus used in the water treatment method according to the second embodiment.
  • FIG. 6 is a process diagram showing an example of a water treatment method (body feed method) according to the second embodiment.
  • 5A differs from the water treatment apparatus 1 shown in FIG. 3 in that there is no mixing tank 6 and in that a mixed raw water tank 2A is provided instead of the treated water tank 2.
  • the mixing raw water tank 2A has a function of temporarily storing the water to be treated and leveling the flow rate of the water to be treated, and a mixing function of adding a filter aid to the water to be treated and mixing them. Yes. That is, in the apparatus 1A of the present embodiment, the filter aid is directly supplied from the filter aid supply device 5 into the mixed raw water tank 2A via the line L6 without going through the mixing tank. .
  • FIG. 6 is a process diagram showing an example of a water treatment method (body feed method) according to the second embodiment.
  • the filter aid and the dispersion medium are first mixed to prepare a suspension, and the dispersion medium used in this case is treated water existing in the mixing raw water tank 2A. . That is, in the second embodiment, a filter aid is directly added to the water to be treated to prepare a suspension from the water to be treated (Step K1).
  • the concentration of the filter aid in the suspension is not particularly limited as long as a filtration layer can be formed by the following operation, but is adjusted to, for example, about 10,000 to 200,000 mg / L.
  • the suspension (water to be treated) is passed through the filtration membrane 33, the filter aid in the suspension is filtered off and left on the filter membrane 33, and the deposited layer formed by laminating the filter aid is formed.
  • Form (step K2) the water flow with respect to the filtration membrane 33 is performed under pressure. At this time, the formation of the deposited layer and the filtration treatment of the water to be treated are performed in parallel. In the method of the second embodiment, it is preferable that the filter surface is horizontal.
  • the filtering described above is performed by, for example, arranging the filtration membrane so as to close the container opening of the predetermined container, and the filtration thus arranged.
  • the filter aid remains on the membrane so that it can be aligned and stacked.
  • the deposited layer is formed and held by the external force from the wall surface of the container and the downward external force (gravity) due to the weight of the filter aid positioned above.
  • the filter layer is dispersed in the dispersion medium, the filter layer is decomposed into a filter aid, and the filter aid is washed (step K3).
  • This washing may be performed in a container in which the filtration membrane 33 is installed, or may be performed in another container.
  • the deposited layer is decomposed into a filter aid by means of cleaning or the like and then transported.
  • water is used for washing, washing with a surfactant or an organic solvent is also possible.
  • the washed filter aid is recovered using a magnetic separation method (step K4).
  • the method used for the magnetic separation method is not particularly limited, but a method of collecting a permanent magnet or an electromagnet in a container and a method of collecting particles by collecting them with a metal mesh magnetized by a magnet and releasing a magnetic field Etc.
  • the filter aid it is easy to reuse the filter aid, and fine solid matter in water can be removed without adding chemicals.
  • the filter aid constituting the deposition layer is contained in the water to be treated, that is, the suspension prepared using this water, and should be removed.
  • a filter aid is always supplied together with the water to be treated (suspension) containing water-insoluble solids.
  • the supply of the water-insoluble matter and the supply of the filter aid are performed at the same time even when the amount of solid content in the water to be treated (suspension) is large.
  • the filtration rate can be maintained for a long time.
  • the water treatment method of the second embodiment is effective when the concentration of water insoluble matter in the water to be treated is high.
  • (Preparation of filter aid) (Filter aid A) Manganese magnesium ferrite particles were placed in a Henschel mixer. Next, a resin dispersion containing 2% polyamide imide comprising a reaction product of maleic anhydride and diaminodiphenylmethane and 10% copolymer of fluorinated ethylene and fluorinated polypropylene is put into the Henschel mixer. The resin dispersion was sprayed onto the surface of the manganese magnesium ferrite particles. By hardening the ferrite particles coated with the resin dispersion on the surface at 200 ° C.
  • a filter aid containing manganese magnesium ferrite particles and a fluororesin coating coated on the surface of the particles was obtained ( Spherical, average particle size 35 ⁇ m).
  • the critical surface tension ⁇ c of the fluororesin coating was 18.5 ⁇ 10 ⁇ 3 N / m.
  • Filter aid E Manganese magnesium ferrite particles having an average particle diameter of 35 ⁇ m were prepared as filter aids for comparative examples.
  • Filter aid F a filter aid containing manganese magnesium ferrite particles and a fluororesin coating coated on the surface thereof was prepared (spherical, average particle size 14 ⁇ m).
  • (Filter aid G) A metal oxide mixture in which the molar ratio was adjusted to 40% manganese, 10% magnesium, and 50% iron was prepared. This was dispersed in water, and a granulated body having an average particle diameter of 40 ⁇ m was produced by spray drying at 200 ° C. using polyvinyl alcohol as a binder. The granulated body was sintered at 1200 ° C. to obtain a porous manganese magnesium ferrite. In the same manner as the filter aid A, this porous manganese magnesium ferrite was spray-coated with a fluororesin dispersion on the surface thereof and subjected to curing. As a result, a filter aid containing porous manganese magnesium ferrite and a fluororesin coating coated on the surface thereof was obtained (spherical, average particle size 40 ⁇ m).
  • Filter aid H a filter aid containing manganese magnesium ferrite particles and a fluororesin coating coated on the surface thereof was prepared (spherical, average particle diameter 85 ⁇ m).
  • Example 1 Water treatment equipment (Example 1) A device as schematically shown in FIG. 3 was produced.
  • the water to be treated containing solid matter is supplied to the treated water tank 2 and temporarily received in the tank.
  • the time fluctuation of the treated water is averaged by mixing with a mixer.
  • a filter aid is sent from the filter aid supply device 5 to the mixing tank 6 and mixed with treated water that is partially reused to produce a filter aid slurry.
  • This filter aid slurry is first sent to the solid-liquid separator 3 to form a filter aid membrane on the filter membrane 33.
  • a filter cloth made of woven cloth was used as the filter membrane.
  • the filtrate (treatment liquid) is the one from which the solid matter has been removed and may be drained after necessary treatment, but the washing water for the solid-liquid separation device 3 and the washing water for the magnet of the magnetic separation tank 4 are mixed. It can also be used as a liquid when preparing the filter aid slurry in the tank 6.
  • a filter aid and a solid deposit (cake) in water are present in the filter membrane 33 in the solid-liquid separator 3.
  • the magnetic separation tank 4 includes a stirring mechanism 41 and an electromagnet (magnetic separation mechanism) 42, and separates the filter aid and the solid matter while mixing and stirring, and collects and separates only the filter aid with the magnet 42.
  • the liquid collected from the filter aid is collected as concentrated water containing a high-concentration solid material, washed with the supplied wash water, and returned to the filter aid supply device 5.
  • the filter aid returned in this way is supplied again to the mixing tank 6 and is reused for producing a suspension for forming the precoat layer.
  • a simulated drainage containing 200 mg / L bentonite was prepared as the water to be treated. This was supplied to the treated water tank 2 and mixed. Moreover, the filter aid was supplied to the mixing tank 6 from the filter aid supply apparatus 5 filled with the filter aid A, and water was mixed, and the filter aid slurry was produced. This was supplied to the solid-liquid separator 3, and a precoat layer having an average thickness of 1 mm was produced on the filtration membrane 33. Then, when to-be-processed water was supplied from the treated water tank 2 to the solid-liquid separator 3, and it filtered, it has confirmed that 90% of the bentonite in filtered water (treated water) was removed.
  • Example 2 A test was conducted in the same manner as in Example 1 except that filter aid B was used instead of filter aid A.
  • the bentonite removal rate was 88%.
  • the water flow rate of the solid-liquid separator was 1.5 times that of Example 1, it could be operated without any problem, and the bentonite recovery rate was 99% or more.
  • Example 3 A test was conducted in the same manner as in Example 1 except that filter aid C was used instead of filter aid A. The removal rate of bentonite was 99% or more. Compared with Example 1, the water flow rate of the solid-liquid separator became almost 1/4, but it could be operated without any problem, and the bentonite recovery rate was 99% or more.
  • Example 4 A test was conducted in the same manner as in Example 1 except that filter aid D was used instead of filter aid A. The bentonite removal rate was 90%. Compared with Example 1, the water flow rate of the solid-liquid separator was almost the same, and the recovery rate of bentonite was 91%.
  • Example 5 A test was conducted in the same manner as in Example 1 except that filter aid F was used instead of filter aid A. The removal rate of bentonite was about 100%. Compared with Example 1, the water flow rate of the solid-liquid separator was almost the same, and the bentonite recovery rate was 96%.
  • Example 6 A test was conducted in the same manner as in Example 1 except that filter aid G was used instead of filter aid A. The bentonite removal rate was 98%. Compared with Example 1, the water flow rate of the solid-liquid separator was 1.5 times, and the recovery rate of bentonite was 90%.
  • Example 1 A test was conducted in the same manner as in Example 1 except that filter aid D was used instead of filter aid A.
  • the bentonite removal rate was 90%.
  • the water flow rate of the solid-liquid separator was about 80%, but the recovery rate of bentonite was 25%.
  • Example 7 An apparatus schematically shown in FIG. 5 was produced. Water to be treated containing bentonite as a solid is supplied to the mixed raw water tank 2A and temporarily received by the mixed raw water tank 2A. Further, the filter aid is supplied also from the filter aid supply device 5 to the mixed raw water tank 2A, and a mixed slurry of bentonite and filter aid is made. When this filter aid slurry is first sent to the solid-liquid separator 3, a deposited layer composed of the filter aid and bentonite is formed on the filter membrane 33. In this deposited layer, bentonite is trapped by the filter aid.
  • the filtrate (treated water) is a bentonite-removed liquid, it may be appropriately treated and drained, but it is also used as the separation water for the solid-liquid separator 3 and the washing water for the magnetic separation tank 4. Is possible.
  • a filter aid and a deposited bentonite layer (cake) are present in the filter membrane 33 in the solid-liquid separator 3.
  • peeling water is sprayed from the side of the filtration membrane 33 to peel the deposited layer (cake), and the peeled material is discharged to the magnetic separation tank 4.
  • the magnetic separation tank 4 includes a stirring mechanism 41 and a magnet 42 (magnetic separation mechanism), separates the filter aid and bentonite while mixing and stirring, and adsorbs and collects only the filter aid with the magnet 42.
  • the liquid collected from the filter aid is collected as concentrated water containing high-concentration bentonite, washed with the supplied wash water, and returned to the filter aid supply device 5.
  • the recovered filter aid was supplied to the mixing tank 6 and the same operation as described above was performed, but the recovered filter aid could be reused without any problem.
  • a simulated waste water containing 200 mg / L bentonite was prepared as the treated water. This was supplied to the mixing raw water tank 2A and mixed. Moreover, the filter aid was supplied to the mixed raw water tank 2A from the filter aid supply device 5 filled with the filter aid A so as to be 2000 mg / L, thereby preparing a slurry of the filter aid and bentonite. When this was supplied to the solid-liquid separator 3 and filtered on the filtration membrane 33, it was confirmed that 97% of bentonite in the filtrate (treated water) was recovered.
  • Example 8 A test was conducted in the same manner as in Example 1 except that filter aid H was used instead of filter aid A, cellulose particles having an average particle diameter of 50 ⁇ m and gear oil of the same amount were used instead of bentonite. The removal rate of cellulose was 100%. The cellulose recovery rate was 90%.
  • Example 2 A test was conducted in the same manner as in Example 8 except that filter aid E was used instead of filter aid H. Although the removal rate of cellulose was 100%, cellulose could not be separated from the magnetic material and cellulose could not be recovered.

Abstract

One embodiment of the present invention provides a water treatment method. This water treatment method comprises: a process wherein a filtration assistant, which contains magnetic material primary particles or aggregates thereof and a coating material that covers the magnetic material primary particles or aggregates thereof and that has a critical surface tension (γc) of 22 × 10-3 N/m or less, is prepared; a process wherein the filtration assistant is mixed with a dispersion medium, thereby forming a suspension in which the filtration assistant is dispersed in the dispersion medium; a process wherein the suspension is filtered through a filtration membrane so as to form a precoat layer containing the filtration assistant on the filtration membrane, and then water to be treated containing a solid content is caused to pass through the precoat layer and the filtration membrane so that the solid content is adsorbed and trapped by the filtration assistant in the precoat layer, thereby separating the solid content from the water to be treated; a process wherein water is poured onto the precoat layer so that the precoat layer is separated from the filtration membrane, thereby obtaining a mixture of the separated precoat layer, the solid content trapped in the precoat and the water poured in the precoat layer; and a process wherein the filtration assistant is magnetically separated from the mixture.

Description

水処理方法及び水処理装置Water treatment method and water treatment apparatus
 ここに記載する実施の形態は、ろ過助剤を用いて工場排水や生活排水などを浄化するための水処理方法及び水処理装置に関する。 The embodiment described herein relates to a water treatment method and a water treatment apparatus for purifying factory effluent and domestic effluent using a filter aid.
 近時、工業の発達や人口の増加により水資源の有効利用が求められるようになってきている。水資源の有効利用を図るためには工業排水や生活排水などのような各種の排水を浄化して再利用することが重要である。排水を浄化するためには水中に含まれる水不溶物や不純物を分離除去する必要がある。排水を浄化する方法として例えば膜分離法、遠心分離法、活性炭吸着法、オゾン処理法、凝集剤添加による浮遊物質の沈殿除去法などがある。これらの水処理方法を用いて、排水に含まれるリンや窒素などの環境に及ぼす影響の大きい化学物質を除去し、また水中に分散した油類やクレイなどを除去することができる。 Recently, the effective use of water resources has been required due to industrial development and population growth. In order to effectively use water resources, it is important to purify and reuse various wastewaters such as industrial wastewater and domestic wastewater. In order to purify the waste water, it is necessary to separate and remove water insoluble matters and impurities contained in the water. Examples of methods for purifying wastewater include membrane separation methods, centrifugal separation methods, activated carbon adsorption methods, ozone treatment methods, and suspended matter precipitation removal methods by adding flocculants. By using these water treatment methods, chemical substances having a great influence on the environment such as phosphorus and nitrogen contained in the wastewater can be removed, and oils and clays dispersed in water can be removed.
 上述した各種水処理方法のうち膜分離法は、水中の不溶物質を除去するのに最も一般的に採用されている方法の1つである。膜分離法は、ろ過膜の保護の観点から、あるいは難脱水性の物質を含む水の通水速度を上げる観点から、所謂プレコート法やボディーフィード法のようなろ過助剤を利用する形態でしばしば用いられている。 Among the various water treatment methods described above, the membrane separation method is one of the most commonly employed methods for removing insoluble substances in water. The membrane separation method is often used in the form of using a filter aid such as a so-called precoat method or body feed method from the viewpoint of protecting the filtration membrane or from the viewpoint of increasing the flow rate of water containing a hardly dehydrated substance. It is used.
 一般的にケイ砂などのろ過助剤を用いる場合は、使用済みのろ過助剤は再利用することなく廃棄される。また、ろ過助剤を再利用しようとする場合であっても、ろ過助剤の回収や洗浄のために多くのプロセス工程が必要になり、実用的でないという問題点があった。 Generally, when a filter aid such as silica sand is used, the used filter aid is discarded without being reused. Even when the filter aid is to be reused, many process steps are required for the recovery and washing of the filter aid, which is not practical.
特開2006-218381号公報JP 2006-218381 A
 ここに記載する実施の形態は上記の課題を解決するためになされたものであり、微細な水中の固形分を効率よく除去でき、ろ過助剤の再利用が容易にできる水処理方法および水処理装置を提供することを目的とする。 The embodiments described herein are made to solve the above-described problems, and are a water treatment method and a water treatment capable of efficiently removing fine solids in water and easily reusing a filter aid. An object is to provide an apparatus.
 一実施形態によると、水処理方法が提供される。この水処理方法は、(a)磁性体一次粒子又はその凝集体と、前記磁性体一次粒子又はその凝集体を被覆し、22×10-3N/m以下の臨界表面張力γcを有する被覆材とを含むろ過助剤を準備することと、(b)ろ過助剤に分散媒を混合し、分散媒中にろ過助剤が分散した懸濁液を作製することと、(c)ろ過膜により懸濁液をろ過し、ろ過膜の上にろ過助剤を含むプレコート層を形成し、次いで固体分を含む被処理水をプレコート層およびろ過膜に通過させ、プレコート層のろ過助剤に前記固体分を吸着により捕捉させ、これにより被処理水から固体分を分離することと、(d)水をプレコート層に注いでろ過膜から前記プレコート層を剥離させ、これによりプレコート層の剥離物と、プレコートに捕捉された固形分と、プレコート層に注いだ水との混合物を得ることと、(e)混合物からろ過助剤を磁気的に分離することと、(f)分離したろ過助剤を(b)工程において懸濁液の作製に再利用することとを含む。 According to one embodiment, a water treatment method is provided. This water treatment method comprises: (a) a magnetic primary particle or an aggregate thereof, and a coating having the critical surface tension γ c of 22 × 10 −3 N / m or less, which coats the magnetic primary particle or the aggregate. Preparing a filter aid containing a material, (b) mixing a dispersion medium with the filter aid, producing a suspension in which the filter aid is dispersed in the dispersion medium, and (c) a filtration membrane The suspension is filtered by the above, a precoat layer containing a filter aid is formed on the filter membrane, and then the water to be treated containing solids is passed through the precoat layer and the filter membrane. The solid content is captured by adsorption, thereby separating the solid content from the water to be treated; and (d) the precoat layer is peeled off from the filtration membrane by pouring water into the precoat layer. , Solids trapped in the precoat and water poured into the precoat layer Obtaining a mixture, (e) magnetically separating the filter aid from the mixture, and (f) reusing the separated filter aid in the step (b) to make a suspension. .
固液間の臨界表面張力γcを求めるときに用いられるジスマン・プロットの一例を示す特性線図。The characteristic diagram which shows an example of the Zisman plot used when calculating | requiring the critical surface tension (gamma) c between solid-liquid. (a)は磁性粒子が凝集した凝集体を示す断面模式図、(b)は疎水性被覆材で被覆された磁性粒子を示す断面模式図。(A) is a cross-sectional schematic diagram which shows the aggregate which the magnetic particle aggregated, (b) is a cross-sectional schematic diagram which shows the magnetic particle coat | covered with the hydrophobic coating material. 第1の実施形態に係る水処理方法において用いる装置の一例を示す概略図。Schematic which shows an example of the apparatus used in the water treatment method which concerns on 1st Embodiment. 第1の実施形態に係る水処理方法(プレコート法)の一例を示す工程図。Process drawing which shows an example of the water treatment method (precoat method) which concerns on 1st Embodiment. 第2の実施形態に係る水処理方法において用いる装置の一例を示す概略図。Schematic which shows an example of the apparatus used in the water treatment method which concerns on 2nd Embodiment. 第2の実施形態に係る水処理方法(ボディーフィード法)の一例を示す工程図。Process drawing which shows an example of the water treatment method (body feed method) which concerns on 2nd Embodiment.
 種々の実施の形態を以下に説明する。 Various embodiments will be described below.
 [第1の実施の形態]
 第1の実施の形態によれば、水処理方法が提供される。この水処理方法は、(a)磁性体一次粒子又はその凝集体と、磁性体一次粒子又はその凝集体を被覆し、22×10-3N/m以下の臨界表面張力γcを有する被覆材とを含むろ過助剤を準備することと、(b)ろ過助剤に分散媒を混合し、分散媒中にろ過助剤が分散した懸濁液を作製することと、(c)ろ過膜により懸濁液をろ過し、ろ過膜の上にろ過助剤を含むプレコート層を形成し、次いで固体分を含む被処理水をプレコート層およびろ過膜に通過させ、プレコート層のろ過助剤に前記固体分を吸着により捕捉させ、これにより被処理水から固体分を分離することと、(d)水をプレコート層に注いでろ過膜から前記プレコート層を剥離させ、これによりプレコート層の剥離物と、プレコートに捕捉された固形分と、プレコート層に注いだ水との混合物を得ることと、(e)混合物からろ過助剤を磁気的に分離することと、(f)分離したろ過助剤を(b)工程において懸濁液の作製に再利用することとを含む。
[First Embodiment]
According to the first embodiment, a water treatment method is provided. This water treatment method comprises: (a) a magnetic primary particle or aggregate thereof and a magnetic primary particle or aggregate thereof, and a coating material having a critical surface tension γ c of 22 × 10 −3 N / m or less And (b) preparing a suspension in which the filter aid is dispersed in the dispersion medium, and (c) using a filter membrane. The suspension is filtered, a precoat layer containing a filter aid is formed on the filter membrane, and then water to be treated containing solids is passed through the precoat layer and the filter membrane, and the solid is added to the filter aid of the precoat layer. Separating the solid component from the water to be treated, and (d) separating the precoat layer from the filtration membrane by pouring water into the precoat layer, thereby removing the precoat layer, Mixing of solids trapped in the precoat and water poured into the precoat layer And (e) magnetically separating the filter aid from the mixture; and (f) reusing the separated filter aid in the step (b) for making a suspension. .
 第1の実施形態に係る水処理方法は、いわゆる、プレコート法に対応する方法である。 The water treatment method according to the first embodiment is a method corresponding to a so-called precoat method.
 この水処理方法は、上で述べたように、磁性体一次粒子又はその凝集体と、これを被覆する20×10-3N/m以下の臨界表面張力γcを有する被覆材とを含むろ過助剤を準備することを含む。 As described above, this water treatment method is a filtration comprising magnetic primary particles or aggregates thereof and a coating material having a critical surface tension γ c of 20 × 10 −3 N / m or less that coats the particles. Including providing an auxiliary agent.
 ここで臨界表面張力γcとは、固体の液体に対する濡れ性に関するパラメータである。固体は、その臨界表面張力γcより大きい表面張力γLをもつ液体に濡らされない。 Here, the critical surface tension γ c is a parameter related to the wettability of a solid liquid. The solid is not wetted by a liquid having a surface tension γ L greater than its critical surface tension γ c .
 臨界表面張力γcは、様々な表面張力を持つ液体を固体上に滴下し、その接触角が零(ゼロ)になる液体の表面張力を外挿法で求め、その液体の表面張力の値を臨界表面張力とするジスマン(Zisman)法により求めることができる。また、測定が困難な場合は、組成の近い文献値としてもよい。例えば、プラスチック・データブック(旭化成アミダス(株)「プラスチックス」編集部編,P.35,(1999))などに記載されている値を用いる。 The critical surface tension γ c is obtained by dripping a liquid with various surface tensions onto a solid, obtaining the surface tension of the liquid whose contact angle becomes zero by extrapolation, and calculating the surface tension value of the liquid. The critical surface tension can be obtained by the Zisman method. Moreover, when measurement is difficult, it is good also as a literature value with a close composition. For example, values described in a plastic data book (Asahi Kasei Amidus Co., Ltd., “Plastics” editorial department, P. 35, (1999)) are used.
 以下に、図1を参照して臨界表面張力γcを求める手順と方法とを詳細に説明する。 Hereinafter, a procedure and a method for obtaining the critical surface tension γ c will be described in detail with reference to FIG.
 臨界表面張力γcはジスマン法を用いて求めることができる。ジスマン法では、水に濡れにくい性質をもつ固体の表面に表面張力γLが既知の種々の液体をそれぞれ接触させ、その接触角θをそれぞれ測定する。測定した接触角θからcosθの値をそれぞれ求め、求めたcosθ値を縦軸(Y軸)にとり、それに対応する液体の表面張力γLを横軸(X軸)にとって、例えば図1に示すように、XY座標上に各測定結果を次々にプロットする。これにより、多数のプロットが記入された図ができあがる。作成した図中のプロット群の傾向を最小二乗法等の計算手法を用いて求め、求めた傾きをもつ直線Zを図中に引く。この直線Zをジスマン・プロット(Zisman plot)という。次いで、作成した直線Z上においてcosθの値が1と等しくなるときの表面張力を求める。すなわち、cosθ=1となるときの直線ZのX軸切片を求める。求めた直線ZのX軸切片の値(表面張力値)をとくに臨界表面張力γcという。 The critical surface tension γ c can be determined using the Jisman method. In the Jisman method, various liquids having a known surface tension γ L are brought into contact with the surface of a solid that is difficult to wet with water, and the contact angle θ is measured. A value of cos θ is obtained from the measured contact angle θ, the obtained cos θ value is taken on the vertical axis (Y axis), and the corresponding surface tension γ L of the liquid is taken on the horizontal axis (X axis), for example, as shown in FIG. In addition, each measurement result is plotted one after another on the XY coordinates. As a result, a figure with a large number of plots is completed. The tendency of the plot group in the created figure is obtained by using a calculation method such as the least square method, and a straight line Z having the obtained inclination is drawn in the figure. This straight line Z is called a Zisman plot. Next, the surface tension when the value of cos θ is equal to 1 on the created straight line Z is obtained. That is, the X-axis intercept of the straight line Z when cos θ = 1 is obtained. The value (surface tension value) of the X-axis intercept of the obtained straight line Z is particularly called critical surface tension γ c .
 上で述べたように、固体は、臨界表面張力γcより大きい表面張力γLをもつ液体に濡らされない。22×10-3N/M以下の臨界表面張力γcは、水の表面張力よりも小さい。そのため、22×10-3N/M以下の臨界表面張力γcを有する被覆材を含むろ過助剤を用いることにより、簡単な操作を行なうだけでろ過助剤と水中の固形物とを容易に分離することができる。すなわち、このろ過助剤は、臨界表面張力γcが低いため、水中で撹拌や超音波などを用いて水中の固形物を固液分離でき、ろ過助剤のみを磁石に吸着させて回収することができる。 As stated above, the solid is not wetted by a liquid having a surface tension γ L greater than the critical surface tension γ c . The critical surface tension γ c of 22 × 10 −3 N / M or less is smaller than the surface tension of water. Therefore, by using a filter aid including a coating material having a critical surface tension γ c of 22 × 10 −3 N / M or less, the filter aid and solids in water can be easily obtained by performing simple operations. Can be separated. That is, since this filter aid has a low critical surface tension γ c , solid matter in water can be separated into solid and liquid using stirring or ultrasonic waves in water, and only the filter aid is adsorbed on a magnet and recovered. Can do.
 磁性体粒子の形状は、球状、多面体など種々の形状を取り得るが特に限定されない。或いは、磁性体粒子は不定形でもよい。用いるに当って望ましい磁性体粒子の粒径や形状は、製造コストなどに鑑みて適宜選択すればよい。特に球状または角が丸い多面体構造であることが好ましい。球状または角が丸い多面体構造の磁性体を組み込むことにより、相対的にろ過助剤の比重が高くなる。比重が比較的大きいろ過助剤は、該ろ過助剤、捕捉対象物および水を含む混合物の分離において、重力による沈降や、サイクロンを用いた遠心力による分離を、磁気による分離と併用して、ろ過助剤を混合物から迅速に分離することができる。 The shape of the magnetic particles can be various shapes such as a spherical shape and a polyhedron, but is not particularly limited. Alternatively, the magnetic particles may be indefinite. What is necessary is just to select suitably the particle size and shape of a magnetic particle desirable in use in view of manufacturing cost. In particular, a polyhedral structure having a spherical shape or rounded corners is preferable. By incorporating a magnetic body having a spherical or rounded polyhedral structure, the specific gravity of the filter aid becomes relatively high. A filter aid having a relatively large specific gravity is used in combination with sedimentation by gravity and centrifugal separation using a cyclone in combination with magnetic separation in the separation of the mixture containing the filter aid, the capture target and water. Filter aid can be quickly separated from the mixture.
 磁性体としては、強磁性物質を全般的に用いることができ、例えば鉄、鉄基合金、磁鉄鉱(マグネタイト)、チタン鉄鉱(イルメナイト)、磁硫鉄鉱(ピロータイト)、マグネシアフェライト、マンガンマグネシウムフェライト、マンガン亜鉛フェライト、コバルトフェライト、ニッケルフェライト、ニッケル亜鉛フェライト、バリウムフェライト、銅亜鉛フェライトなどを用いることができる。これらのうち水中での安定性に優れたマグネタイト、マグネシアフェライト、マンガンマグネシウムフェライトなどのフェライト系化合物を用いることが最も好ましい。マグネタイト(Fe34)は、安価であるだけでなく、水中でも磁性体として安定した性質を示し、毒性のない安全な元素ばかりで構成されているため、水処理に使用するのに適している。 Ferromagnetic materials can be generally used as the magnetic material. For example, iron, iron-base alloys, magnetite (magnetite), titanite (ilmenite), pyrrhotite (pilotite), magnesia ferrite, manganese magnesium ferrite, manganese Zinc ferrite, cobalt ferrite, nickel ferrite, nickel zinc ferrite, barium ferrite, copper zinc ferrite and the like can be used. Of these, it is most preferable to use a ferrite-based compound such as magnetite, magnesia ferrite, or manganese magnesium ferrite having excellent stability in water. Magnetite (Fe 3 O 4 ) is not only inexpensive, but also exhibits stable properties as a magnetic substance in water and is composed of only safe and non-toxic elements, making it suitable for use in water treatment. Yes.
 磁性体粒子は、単一の磁性体単体粒子(一次粒子)であってもよいし、またはこの一次粒子を凝集させた凝集体(二次粒子)であってもよい。凝集体では凝集させた一次粒子の間に隙間があると、この隙間をろ液が通過するために処理水量を上げることができる。一次粒子の平均粒子径は、0.5~5μmの範囲にあることが好ましい。磁性体一次粒子の平均粒子径が0.5~5μmの範囲内にあると、粒子間の相互間距離が大きくなりすぎて後述する水中の微細な析出物を通過させてしまうスルーパスを生じるおそれを低減することができる。また、磁性体一次粒子の平均粒子径が0.5~5μmの範囲内にあると、粒子間の隙間により、実効的な通水量を提供することが容易になる。 The magnetic particles may be single magnetic single particles (primary particles) or aggregates (secondary particles) obtained by aggregating the primary particles. In the aggregate, if there is a gap between the aggregated primary particles, the filtrate passes through this gap, so that the amount of treated water can be increased. The average particle diameter of the primary particles is preferably in the range of 0.5 to 5 μm. If the average particle diameter of the magnetic primary particles is in the range of 0.5 to 5 μm, the distance between the particles becomes too large, and there is a risk of generating a through-pass that allows fine precipitates in water to be described later to pass through. Can be reduced. Further, when the average particle diameter of the magnetic primary particles is in the range of 0.5 to 5 μm, it becomes easy to provide an effective water flow rate due to the gaps between the particles.
 臨界表面張力γcが22×10-3N/m以下の被覆材としては、シリコーン樹脂またはフッ素樹脂を用いることができる。シリコーン樹脂は、オルガノポリシロキサンからなる高分子化合物であり、一液型と二液型の2つがある。例えば信越化学工業株式会社の製品であるKEシリーズやKRシリーズなどが挙げられる。フッ素樹脂は、フッ素を含む高分子の総称であり、例えばポリテトラフルオロエチレン(PTFE),テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA),テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP),テトラフルオロエチレン-エチレン共重合体(ETFE),ポリビニリデンフルオライド(PVDF),クロロトリフルオロエチレン-エチレン共重合体(ECTFE),ポリクロロトリフルオロエチレン(PCTFE),ポリビニルフルオライド(PVF)及びこれらの複合体を含むものである。例えばPTFE の臨界表面張力γcは18×10-3N/m程度である。必要に応じて、これらの樹脂とエポキシ樹脂やポリイミド、ポリアミドなどを共重合させたものを使用し、磁性体粒子との接着性を改善する。なお、これらの樹脂を共重合させた場合でも、樹脂表面にはフッ素樹脂が局在するため、被覆材の表面張力としてフッ素樹脂の臨界表面張力を使用しても差し支えない。 As the covering material having a critical surface tension γ c of 22 × 10 −3 N / m or less, a silicone resin or a fluororesin can be used. Silicone resin is a polymer compound made of organopolysiloxane, and there are two types, one-pack type and two-pack type. Examples include the KE series and KR series, which are products of Shin-Etsu Chemical Co., Ltd. Fluorine resin is a general term for fluorine-containing polymers. For example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) ), Tetrafluoroethylene-ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), chlorotrifluoroethylene-ethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), polyvinyl fluoride (PVF) And a complex thereof. For example, the critical surface tension γ c of PTFE is about 18 × 10 −3 N / m. If necessary, a resin obtained by copolymerizing these resins with an epoxy resin, polyimide, polyamide or the like is used to improve the adhesion with the magnetic particles. Even when these resins are copolymerized, since the fluororesin is localized on the resin surface, the critical surface tension of the fluororesin may be used as the surface tension of the coating material.
 磁性体一次粒子を含むろ過助剤は、例えば、これらの樹脂の溶液を磁性体一次粒子11の表面に塗布し、樹脂を硬化(固化)させることにより、例えば図2(a)に示すような、磁性体一次粒子11とそれを被覆する被覆材12とを含むろ過助剤10を作製することができる。磁性体一次粒子を含むろ過助剤の径はD1である。 The filter aid containing the magnetic primary particles can be obtained by, for example, applying a solution of these resins to the surface of the magnetic primary particles 11 and curing (solidifying) the resin, for example, as shown in FIG. The filter aid 10 including the magnetic primary particles 11 and the coating material 12 covering the primary particles 11 can be produced. The diameter of the filter aid containing the magnetic primary particles is D1.
 凝集体からなるろ過助剤の作り方としては、造粒機などで先に凝集体を形成した後に臨界表面張力γcが22×10-3N/m以下の被覆材を塗布する方法と、臨界表面張力γcが22×10-3N/m以下の材料をバインダーとして一次粒子を造粒する方法とがある。前者は、一次粒子と有機系バインダーまたは無機系バインダーとをスプレードライヤーまたはヘンシェルミキサーなどにより混練し、造粒体を作ったあと臨界表面張力γcが22×10-3N/m以下の材料を塗布して100℃~200℃で反応させる方法や、磁性体原料をスプレードライなどでポーラス状にして焼結させ、ポーラス状の磁性体を作製した後に、22×10-3N/m以下の材料を塗布する方法が挙げられる。後者は、バインダーに臨界表面張力が22×10-3N/m以下の材料を用いてヘンシェルミキサーやスプレードライヤーなどで直接造粒する。後者によると、例えば図2(b)に示すような、凝集した磁性体粒子10と、これらの一次粒子10を互いに結合させているバインダー13とを含むろ過助剤が得られる。凝集体からなるろ過助剤の径はD2である。 As a method of making a filter aid composed of aggregates, a method of applying a coating material having a critical surface tension γ c of 22 × 10 −3 N / m or less after forming aggregates first with a granulator or the like, There is a method in which primary particles are granulated using a material having a surface tension γ c of 22 × 10 −3 N / m or less as a binder. The former, the primary particles and an organic binder or an inorganic binder was kneaded by a spray dryer or a Henschel mixer, the after critical surface tension gamma c is 22 × 10 -3 N / m or less of the material that made granular material The method of applying and reacting at 100 ° C to 200 ° C, or making the porous magnetic body by sintering the magnetic raw material into a porous form by spray drying or the like, and then producing a porous magnetic body of 22 × 10 -3 N / m or less The method of apply | coating material is mentioned. The latter is granulated directly with a Henschel mixer or spray dryer using a binder with a material with a critical surface tension of 22 × 10 −3 N / m or less. According to the latter, for example, as shown in FIG. 2 (b), a filter aid containing aggregated magnetic particles 10 and a binder 13 that binds these primary particles 10 to each other is obtained. The diameter of the filter aid made of the aggregate is D2.
 ろ過助剤の平均粒子径は、1~50μmの範囲にあることが好ましい。平均粒子径が1~50μmの範囲にあるろ過助剤を用いると、水中の微細な粒子を吸着により捕捉することができる。また、平均粒子径が1~50μmの範囲にあるろ過助剤を用いると、実効的な処理水量が得られ、捕捉したい粒子をとりこぼしてしまう可能性を低くすることができる。さらに、好ましくは、平均粒子径が2~35μmの範囲である。平均粒子径が2μm以上では、より実効的な処理水量が得られる。また、平均粒子径が35μm以下では、捕捉したい粒子をより確実に吸着により捕捉することができるからである。 The average particle size of the filter aid is preferably in the range of 1 to 50 μm. When a filter aid having an average particle size in the range of 1 to 50 μm is used, fine particles in water can be captured by adsorption. In addition, when a filter aid having an average particle size in the range of 1 to 50 μm is used, an effective amount of treated water can be obtained, and the possibility of spilling particles to be captured can be reduced. More preferably, the average particle size is in the range of 2 to 35 μm. When the average particle diameter is 2 μm or more, a more effective amount of treated water can be obtained. Further, when the average particle size is 35 μm or less, the particles to be captured can be captured more reliably by adsorption.
 ここで、ろ過助剤の平均粒子径は、レーザー回折法により測定した複数の実測値を用いて算出して求めたものである。具体的には、株式会社島津製作所のSALD-DS21型測定装置(製品名)を用いてろ過助剤の粒子径を測定することができる。なお、ろ過助剤の平均粒子径は、体積平均粒子径(Mean Volume Diameter)のことである。体積平均粒子径とは、粒子の体積を基準に平均粒子径を算出したものである。 Here, the average particle diameter of the filter aid is obtained by calculation using a plurality of actual measurement values measured by a laser diffraction method. Specifically, the particle size of the filter aid can be measured using a SALD-DS21 measuring device (product name) manufactured by Shimadzu Corporation. In addition, the average particle diameter of a filter aid is a volume average particle diameter (Mean Volume Diameter). The volume average particle size is a value obtained by calculating the average particle size based on the volume of the particles.
 このようなろ過助剤は、分離性及び耐久性に優れ、分散→吸着→分離→回収→分散のサイクルでろ過助剤を繰り返し使用することができる。 Such a filter aid is excellent in separability and durability, and the filter aid can be repeatedly used in a cycle of dispersion → adsorption → separation → recovery → dispersion.
 次に、図を参照しながら、第1の実施形態に係る水処理方法の一例を説明する。 Next, an example of the water treatment method according to the first embodiment will be described with reference to the drawings.
 図3は、第1の実施形態に係る水処理方法において用いる装置の一例を示す概略図である。図4は、第1の実施形態に係る水処理方法(プレコート法)の一例を示す工程図である。 FIG. 3 is a schematic view showing an example of an apparatus used in the water treatment method according to the first embodiment. FIG. 4 is a process diagram showing an example of a water treatment method (precoat method) according to the first embodiment.
 図3に示す水処理装置1は、プレコート法に用いられる装置であり、特に被処理水中の水に不溶な物質の濃度が低い場合に有効に用いられる。水処理装置1は、処理水槽2、固液分離装置3、磁気分離槽4、ろ過助剤供給装置5、混合槽6、図示しない被処理水供給源および排水貯留槽を有している。これらの機器及び装置は、複数の配管ラインL1~L8により互いに接続されている。配管ラインL1~L8には各種のポンプP1~P9、バルブV1~V3、図示しない計測器およびセンサが取り付けられている。これらの計測器およびセンサから図示しない制御器の入力部に検出信号が入り、当該制御器の出力部からポンプP1~P9およびバルブV1~V3にそれぞれ制御信号が出され、それらの動作が制御されるようになっている。このように水処理装置1の全体は図示しない制御器によって統括的にコントロールされるようになっている。 The water treatment apparatus 1 shown in FIG. 3 is an apparatus used in the precoat method, and is effectively used particularly when the concentration of a substance insoluble in water in the water to be treated is low. The water treatment apparatus 1 includes a treated water tank 2, a solid-liquid separation apparatus 3, a magnetic separation tank 4, a filter aid supply apparatus 5, a mixing tank 6, an untreated water supply source (not shown), and a waste water storage tank. These devices and apparatuses are connected to each other by a plurality of piping lines L1 to L8. Various pumps P1 to P9, valves V1 to V3, measuring instruments and sensors (not shown) are attached to the piping lines L1 to L8. A detection signal is input from these measuring instruments and sensors to an input section of a controller (not shown), and control signals are output from the output section of the controller to pumps P1 to P9 and valves V1 to V3, respectively, and their operations are controlled. It has become so. As described above, the entire water treatment apparatus 1 is comprehensively controlled by a controller (not shown).
 処理水槽2は、被処理水を撹拌する撹拌スクリュウ21を有する。処理水槽2は、図示しない被処理水供給源からラインL1を介して、水に不溶な物質を含む被処理水、例えば工場排水が導入される。 The treated water tank 2 has a stirring screw 21 for stirring the water to be treated. In the treated water tank 2, treated water containing a substance insoluble in water, for example, factory wastewater, is introduced from a treated water supply source (not shown) via the line L1.
 固液分離装置3は、内部を上部スペース31と下部スペース32とに仕切るろ過膜33を内蔵している。固液分離装置の上部スペース31は、加圧ポンプP1を有する被処理水供給ラインL2を介して処理水槽2に接続されている。また、上部スペース31の側部にはポンプP5を有する水供給ライン(第1の処理水利用ライン)L31および剥離物排出ラインL4がそれぞれ接続されている。 The solid-liquid separator 3 has a built-in filtration membrane 33 that partitions the interior into an upper space 31 and a lower space 32. The upper space 31 of the solid-liquid separator is connected to the treated water tank 2 via a treated water supply line L2 having a pressure pump P1. Further, a water supply line (first treated water utilization line) L31 having a pump P5 and a peeled material discharge line L4 are connected to the side portions of the upper space 31, respectively.
 一方、固液分離装置の下部スペース32は、3つの三方弁V1,V2,V3を有する処理水配水ラインL3に接続されている。第1の三方弁V1のところで被処理水配水ラインL3から上述の剥離水供給ライン(第1の処理水利用ライン)L31が分岐している。第2の三方弁V2のところで被処理水配水ラインL3からポンプP2を有する処理水送水ラインL32が分岐している。第3の三方弁V3のところで被処理水配水ラインL3から2つのラインL33とL34とがそれぞれ分岐している。一方の分岐ライン(第2の処理水利用ライン)L33は、ポンプP4を有し、後述する分離槽4に接続されている。他方の分岐ライン(第3の処理水利用ライン)L34は、ポンプP5を有し、後述する混合槽6に接続されている。 On the other hand, the lower space 32 of the solid-liquid separator is connected to a treated water distribution line L3 having three three-way valves V1, V2, and V3. At the first three-way valve V1, the separation water supply line (first treated water utilization line) L31 is branched from the treated water distribution line L3. A treated water supply line L32 having a pump P2 branches off from the treated water distribution line L3 at the second three-way valve V2. At the third three-way valve V3, two lines L33 and L34 are branched from the treated water distribution line L3. One branch line (second treated water utilization line) L33 has a pump P4 and is connected to a separation tank 4 described later. The other branch line (third treated water utilization line) L34 has a pump P5 and is connected to a mixing tank 6 described later.
 ろ過膜33としては、織った布、不織布、紙、金網(メッシュ)、樹脂網(メッシュ)、多孔質ポリマー膜、多孔質セラミック膜など種々のものを用いることができるが、これらのうち織った布が最も好ましい。織った布(ろ布)として二重織、綾織、平織、朱子織などの布が用いられる。ろ布の材質は、ポリプロピレン、ナイロン、ポリエステルなどの合成繊維、あるいは木綿や麻などの天然繊維のいずれであってもよい。 As the filtration membrane 33, various materials such as woven fabric, nonwoven fabric, paper, wire mesh (mesh), resin mesh (mesh), porous polymer membrane, porous ceramic membrane can be used. A cloth is most preferred. As the woven fabric (filter fabric), fabrics such as double weave, twill weave, plain weave and satin weave are used. The material of the filter cloth may be any of synthetic fibers such as polypropylene, nylon and polyester, or natural fibers such as cotton and hemp.
 ろ過膜33の平均孔径は、上記ろ過助剤を通過させない大きさとすることが望ましい。所定レベルの通水量を確保するために、ろ過膜の平均孔径をさらにろ過助剤の平均粒子径の2~3倍程度まで拡げることが好ましい。ろ過助剤表面を覆っているシリコーン樹脂やフッ素樹脂は疎水性が強いため、ろ過助剤の複数の粒子が互いに付着し、ブリッジを形成しやすく、平均粒子径よりも大きい孔径でも十分に積層させることができるからである。 Desirably, the average pore size of the filtration membrane 33 is set to a size that does not allow the filtration aid to pass through. In order to ensure a predetermined level of water flow rate, it is preferable to further increase the average pore size of the filter membrane to about 2 to 3 times the average particle size of the filter aid. Silicone resin and fluororesin that covers the surface of the filter aid are highly hydrophobic, so multiple particles of the filter aid adhere to each other and form a bridge, and even with a pore size larger than the average particle size, the layers are sufficiently laminated. Because it can.
 ろ過膜33は重力の作用する方向に対して直交するろ過面を有することが好ましい。 The filtration membrane 33 preferably has a filtration surface orthogonal to the direction in which gravity acts.
 上記ろ過助剤は、臨界表面張力γcが低いため、ろ過膜33上に保持されにくい。このため、重力の方向と直交する面(すなわち水平面)でないと、ろ過膜33上でろ過助剤が滑り、均一な厚さに積層されにくい場合があるからである。重力の方向と直交するろ面を有するろ過膜33では、この心配が少ない。 Since the above-mentioned filter aid has a low critical surface tension γ c , it is difficult to hold the filter aid on the filter membrane 33. For this reason, if the surface is not perpendicular to the direction of gravity (that is, a horizontal surface), the filter aid slips on the filtration membrane 33 and may not be easily laminated to a uniform thickness. In the filtration membrane 33 having a filtration surface orthogonal to the direction of gravity, this worry is small.
 また、ろ過膜33のろ過面を重力の作用する方向に対して直交させると、重力が懸濁液や被処理水に対して最大限に作用し、水分子がろ過膜33を透過するろ過作用が促進される。この場合に、懸濁液及び/又は被処理水を大気圧よりも高い圧力に加圧してろ過膜33に通水することが好ましい。懸濁液や被処理水を加圧すると、ろ過膜33を通過する通水速度が大きくなり、ろ過効率がさらに向上する。 Further, when the filtration surface of the filtration membrane 33 is orthogonal to the direction in which gravity acts, the gravity acts on the suspension and the water to be treated to the maximum, and the filtration action allows water molecules to pass through the filtration membrane 33. Is promoted. In this case, it is preferable to pressurize the suspension and / or the water to be treated to a pressure higher than the atmospheric pressure and pass the water through the filtration membrane 33. When the suspension or water to be treated is pressurized, the water flow rate passing through the filtration membrane 33 is increased, and the filtration efficiency is further improved.
 磁気分離槽4は、剥離物排出ラインL4を通って固液分離装置の上部スペース31から受け入れた洗浄排出水を撹拌するための撹拌スクリュウ41を有し、かつ固形物とろ過助剤とに分離するための磁石42を内蔵している。磁石42は、一端が塞がれた円筒形のパイプの中にあり、図示しない制御器により制御される。制御器は、磁石42の例えば上下の移動、および磁石42の磁場のオンオフを制御することができる。 The magnetic separation tank 4 has a stirring screw 41 for stirring the washing discharge water received from the upper space 31 of the solid-liquid separation device through the peeled material discharge line L4, and is separated into a solid and a filter aid. The magnet 42 for carrying out is built in. The magnet 42 is in a cylindrical pipe whose one end is closed, and is controlled by a controller (not shown). The controller can control, for example, vertical movement of the magnet 42 and on / off of the magnetic field of the magnet 42.
 磁気分離槽4の上部には、剥離物排出ラインL4の他に、処理水配水ラインL3から分岐する第2の処理水利用ラインL33が接続されており、固液分離装置のフィルタ33を透過した処理水の一部が磁気分離槽4に供給され、磁気分離槽4において処理水の一部が再利用されるようになっている。一方、磁気分離槽4の下部には濃縮水排出ラインL8およびろ過助剤返送ラインL5がそれぞれ接続されている。濃縮水排出ラインL8は、ポンプP9を有し、磁気分離槽4から図示しない貯留槽に水不溶物濃縮水を排出するための配管である。ろ過助剤返送ラインL5は、ポンプP6を有し、磁気分離槽4から分離・回収されたろ過助剤をろ過助剤供給装置5に戻すための配管である。 In addition to the separated product discharge line L4, a second treated water use line L33 branched from the treated water distribution line L3 is connected to the upper part of the magnetic separation tank 4, and has passed through the filter 33 of the solid-liquid separator. A part of the treated water is supplied to the magnetic separation tank 4, and a part of the treated water is reused in the magnetic separation tank 4. On the other hand, a concentrated water discharge line L8 and a filter aid return line L5 are connected to the lower part of the magnetic separation tank 4, respectively. The concentrated water discharge line L8 has a pump P9 and is a pipe for discharging water-insoluble matter concentrated water from the magnetic separation tank 4 to a storage tank (not shown). The filter aid return line L5 is a pipe having a pump P6 for returning the filter aid separated and recovered from the magnetic separation tank 4 to the filter aid supply device 5.
 ろ過助剤供給装置5は、図示しないろ過助剤供給源から新たにろ過助剤が補給されるとともに、磁気分離槽4で分離されたろ過助剤が上述のろ過助剤返送ラインL5を通って返送されるようになっている。また、ろ過助剤供給装置5は、ポンプP7を有するろ過助剤供給ラインL6を介して混合槽6に適量のろ過助剤を供給するようになっている。 The filter aid supply device 5 is newly replenished with a filter aid supply source (not shown), and the filter aid separated in the magnetic separation tank 4 passes through the filter aid return line L5 described above. It is supposed to be returned. Moreover, the filter aid supply apparatus 5 supplies an appropriate amount of filter aid to the mixing tank 6 through a filter aid supply line L6 having a pump P7.
 混合槽6は、ろ過助剤及び分散媒を撹拌するための撹拌スクリュウ61を有する。混合槽6は、ろ過助剤供給装置5から供給されたろ過助剤に分散媒を添加して撹拌スクリュウ61を用いて撹拌混合し、ろ過助剤を含む懸濁液を作製するように構成されている。分散媒として水を使用するのが好ましい。混合槽6の上部には、処理水配水ラインL3から分岐する第3の処理水利用ラインL34が接続され、固液分離装置のフィルタ33を透過した処理水の一部が混合槽6に供給され、混合槽6において処理水の一部が分散媒として再利用されるようになっている。 The mixing tank 6 has a stirring screw 61 for stirring the filter aid and the dispersion medium. The mixing tank 6 is configured to add a dispersion medium to the filter aid supplied from the filter aid supply device 5 and stir and mix using the stirring screw 61 to produce a suspension containing the filter aid. ing. It is preferable to use water as the dispersion medium. A third treated water utilization line L34 branched from the treated water distribution line L3 is connected to the upper part of the mixing tank 6, and a part of the treated water that has passed through the filter 33 of the solid-liquid separator is supplied to the mixing tank 6. In the mixing tank 6, a part of the treated water is reused as a dispersion medium.
 また、混合槽6の適所にはポンプP8を有する懸濁液供給ラインL7が連通している。懸濁液供給ラインL7は、被処理水供給ラインL2の適所にて接続して合流している。懸濁液供給ラインL7からのスラリー状の懸濁液が被処理水供給ラインL2を流れる被処理水に添加されるようになっている。なお、懸濁液供給ラインL7には図示しない流量制御弁が取り付けられ、懸濁液の流量が制御器により調整されるように構成されている。 In addition, a suspension supply line L7 having a pump P8 communicates with an appropriate place of the mixing tank 6. The suspension supply line L7 is connected and joined at an appropriate position of the treated water supply line L2. The slurry suspension from the suspension supply line L7 is added to the water to be treated flowing through the water supply line L2. The suspension supply line L7 is provided with a flow control valve (not shown) so that the flow rate of the suspension is adjusted by the controller.
 第1の実施形態に係る水処理方法で用いることができる水処理装置1は、懸濁液供給ラインL7は、被処理水供給ラインL2の適所にて接続して合流していなくてもよい。しかしながら、図3に示す如く、懸濁液供給ラインL7が、被処理水供給ラインL2の適所にて接続して合流していると、懸濁液供給ラインL7に被処理水を流すことができる。混合槽6で調製する懸濁液は、固形分が多いため、これをラインL7から固液分離装置のろ過膜に直接送ると、ラインL7内にろ過助剤が一部残存する。図3に示す如く、懸濁液供給ラインL7が、被処理水供給ラインL2の適所にて接続して合流していると、懸濁液供給ラインに被処理水を流すことができるので、被処理水を通水する時にライン内に残存したろ過助剤と共に固液分離装置に送られるため、規定のプレコート厚さを得ることができる。 In the water treatment apparatus 1 that can be used in the water treatment method according to the first embodiment, the suspension supply line L7 does not have to be connected at an appropriate position of the to-be-treated water supply line L2. However, as shown in FIG. 3, when the suspension supply line L7 is connected and joined at an appropriate position of the treated water supply line L2, the treated water can flow through the suspension supply line L7. . Since the suspension prepared in the mixing tank 6 has a large solid content, when this is directly sent from the line L7 to the filtration membrane of the solid-liquid separator, a part of the filter aid remains in the line L7. As shown in FIG. 3, when the suspension supply line L7 is connected and joined at an appropriate position of the treated water supply line L2, the treated water can flow through the suspension supply line. Since the treated water is sent to the solid-liquid separation device together with the filter aid remaining in the line when passing the treated water, a prescribed precoat thickness can be obtained.
 次に、図4を参照しながら第1の実施形態に係る水処理方法を説明する。 Next, the water treatment method according to the first embodiment will be described with reference to FIG.
 図4は、第1の実施形態に係る水処理方法(プレコート法)の一例を示す工程図である。 FIG. 4 is a process diagram showing an example of a water treatment method (precoat method) according to the first embodiment.
 第1の実施形態に係る水処理方法では、例えば図3に示した水処理装置1を用いることができる。 In the water treatment method according to the first embodiment, for example, the water treatment apparatus 1 shown in FIG. 3 can be used.
 プレコート法は、特に被処理水中に含まれる水に不溶な物質の濃度が低い場合に有効である。被処理水中に含まれる水に不溶な物質は、有機物、無機物を特に問わない。重金属の水酸化物などの難脱水性の粒子であったり、粒子以外の難脱水成分、例えば油などが入っていたりしても、ろ過助剤の構造により、容易にろ過することができる。この場合に被処理水である排水の性状に応じてろ過助剤の被覆材を適切に選択するのが好ましい。 The precoat method is particularly effective when the concentration of substances insoluble in water to be treated is low. The substance insoluble in water contained in the water to be treated is not particularly limited to organic substances and inorganic substances. Even if the particles are hardly dewatering particles such as heavy metal hydroxides or contain non-water-removing components other than particles, such as oil, they can be easily filtered by the structure of the filter aid. In this case, it is preferable to appropriately select a coating material for the filter aid according to the properties of the wastewater that is the water to be treated.
 第1の実施形態に係る水処理方法では、先ず、混合槽6内でろ過助剤と分散媒とを混合し、ろ過助剤を含む懸濁液を調製する(工程S1)。ろ過助剤は、先に説明した方法によって作製することができる。分散媒には主に水を用いるが、水以外に適宜その他の分散媒を用いることができる。懸濁液中のろ過助剤濃度は以下の操作によってプレコート層、すなわちろ過助剤の堆積層を形成できれば特に問わないが、例えば10000~200000mg/L程度に調整する。 In the water treatment method according to the first embodiment, first, the filter aid and the dispersion medium are mixed in the mixing tank 6 to prepare a suspension containing the filter aid (step S1). The filter aid can be produced by the method described above. Although water is mainly used as the dispersion medium, other dispersion medium can be appropriately used in addition to water. The concentration of the filter aid in the suspension is not particularly limited as long as a precoat layer, that is, a filter aid deposited layer can be formed by the following operation, but is adjusted to, for example, about 10,000 to 200,000 mg / L.
 次いで、懸濁液を固液分離装置3のろ過膜33に通水し、懸濁液中のろ過助剤をろ別して、ろ過膜33上に残留させ、ろ過助剤が積層してなる粒子堆積層(プレコート層)を形成する(工程S2)。なお、加圧ポンプP1によるろ過膜33への通水は、所定の圧力で行われる。 Next, the suspension is passed through the filtration membrane 33 of the solid-liquid separator 3, and the filter aid in the suspension is filtered off and left on the filtration membrane 33, and the particle deposition is formed by laminating the filter aid. A layer (precoat layer) is formed (step S2). In addition, the water flow to the filtration membrane 33 by the pressurization pump P1 is performed at a predetermined pressure.
 ろ過膜33を固液分離装置3の入口を塞ぐように取り付け、固液分離装置の3内における懸濁液の圧力の低下ができるだけ少なくなるようにして、ろ過膜33による懸濁液のフィルタリングを行なうようにする。具体的には、固液分離装置3の容器壁とろ過膜33とで周囲を規定される上部スペース31を小さくし、この小容積の狭いスペース31に加圧した懸濁液を押し込むことにより、ろ過膜33による固体(ろ過助剤)と液体との分離が促進される。このとき加圧ポンプP1の駆動による圧力と重力との相乗作用により、懸濁液の液体成分はろ過膜33を速やかに透過し、懸濁液の固体成分(ろ過助剤)はろ過膜33に捕捉され、その結果、ろ過膜33上にプレコート層が形成される。なお、プレコート層の厚さは、処理する液の濃度で変わってくるが、概ね0.1~10mm程度である。 The filtration membrane 33 is attached so as to close the inlet of the solid-liquid separation device 3, and the suspension membrane is filtered by the filtration membrane 33 so that the pressure drop of the suspension in the solid-liquid separation device 3 is minimized. Do it. Specifically, by reducing the upper space 31 defined by the container wall of the solid-liquid separator 3 and the filtration membrane 33 and pushing the pressurized suspension into the small space 31 with a small volume, Separation of solid (filter aid) and liquid by the filter membrane 33 is promoted. At this time, the liquid component of the suspension quickly permeates through the filtration membrane 33 and the solid component of the suspension (filter aid) passes through the filtration membrane 33 due to the synergistic action of the pressure and gravity caused by driving the pressurizing pump P1. As a result, a precoat layer is formed on the filtration membrane 33. The thickness of the precoat layer varies depending on the concentration of the liquid to be treated, but is about 0.1 to 10 mm.
 次いで、ポンプP1の駆動により処理水槽2からラインL2を介して固液分離装置3に被処理水を圧送し、フィルタ33及びプレコート層に被処理水を通水する(工程S3)。このときプレコート層中のろ過助剤により被処理水中の水不溶性の固形分が吸着により捕捉される。 Next, the water to be treated is pumped from the treated water tank 2 to the solid-liquid separation device 3 through the line L2 by driving the pump P1, and the treated water is passed through the filter 33 and the precoat layer (step S3). At this time, the water-insoluble solid in the water to be treated is captured by adsorption by the filter aid in the precoat layer.
 被処理水のろ過処理が終了すると、バルブV1を切り替え、ポンプP3を起動し、ポンプP3の駆動によりラインL3→L31を通って固液分離装置の上部スペース31に処理水の一部又は全部を戻す。この戻される処理水は、プレコート層をフィルタ33から剥離させる水として用いられる。処理水を上部スペース31の側方からプレコート層に吹き付けてフィルタ33からプレコート層を剥離し、この剥離物にさらに処理水を吹き付けて剥離物をバラバラに分解し、ろ過助剤および固形分を分散媒中に分散させる(工程S4)。 When the water to be treated is filtered, the valve V1 is switched, the pump P3 is started, and the pump P3 is driven to pass a part or all of the treated water to the upper space 31 of the solid-liquid separator through the line L3 → L31. return. The returned treated water is used as water for peeling the precoat layer from the filter 33. Treated water is sprayed onto the precoat layer from the side of the upper space 31 to peel off the precoat layer from the filter 33. Further, treated water is sprayed onto the peeled material to decompose the peeled material apart, and the filter aid and solid content are dispersed Disperse in the medium (step S4).
 このプレコート層の剥離及び分解は、フィルタの設置されている容器内で行ってもよいし、他の容器でおこなってもよい。他の容器でプレコート層の剥離及び分解を行う場合は、噴射ノズルなどの手段を用いてプレコート層をある程度の大きさの塊である分解物に分解した後に、輸送する。 The separation and decomposition of the precoat layer may be performed in a container in which a filter is installed, or may be performed in another container. When the precoat layer is peeled and decomposed in another container, the precoat layer is decomposed into a decomposed product having a certain size by using means such as an injection nozzle and then transported.
 プレコート層を剥離するための水が不足する場合は、ラインL31に他所から水を補給するようにしてもよい。プレコート層の剥離及び分解には水を使用することが好ましいが、界面活性剤や有機溶媒を用いてプレコート層を剥離及び分解することも可能である。 When water for peeling off the precoat layer is insufficient, the line L31 may be replenished with water from another location. Water is preferably used for peeling and decomposing the precoat layer, but it is also possible to exfoliate and decompose the precoat layer using a surfactant or an organic solvent.
 上で説明したように、固液分離装置3から生じる処理水は、ラインL31を介して、固液分離装置31へ送るので、プレコートを剥離するための剥離水として有効利用することができる。ここで、ろ過膜33を透過した処理水を直ちに使用することはほとんどないので、処理水を一時的に貯留しておく処理水貯留タンクを設け、必要に応じて貯留タンクから固液分離装置3の上部スペース31に処理水を送るようにすることができる。 As explained above, since the treated water generated from the solid-liquid separation device 3 is sent to the solid-liquid separation device 31 via the line L31, it can be effectively used as peeling water for peeling the precoat. Here, since the treated water that has passed through the filtration membrane 33 is rarely used immediately, a treated water storage tank for temporarily storing the treated water is provided, and the solid-liquid separation device 3 is provided from the storage tank as necessary. The treated water can be sent to the upper space 31.
 あるいは、プレコート層を剥離するための水は、固液分離装置3から生じる処理水を含まず、他所からの水であってもよい。 Alternatively, the water for peeling off the precoat layer does not include the treated water generated from the solid-liquid separator 3, and may be water from other places.
 プレコート層の剥離物を含む懸濁液を上部スペース31からラインL4を通って磁気分離槽4に送り、磁気分離槽4内において撹拌スクリュウ41によりプレコート層の分解物を撹拌し、該分解物を粒子レベルまでさらに分解し、ろ過助剤および固形分を分散させる。この撹拌を十分に行なうと、懸濁液中においてろ過助剤と固形分がより均一に分散され、ろ過助剤の分離が容易になる。 The suspension containing the peeled material of the precoat layer is sent from the upper space 31 to the magnetic separation tank 4 through the line L4, and the decomposition product of the precoat layer is stirred in the magnetic separation tank 4 by the stirring screw 41. Further break down to particle level and disperse filter aid and solids. When this stirring is sufficiently performed, the filter aid and the solid content are more uniformly dispersed in the suspension, and the filter aid is easily separated.
 次いで、プレコート層の剥離・分解後の懸濁液からろ過助剤を磁気分離法を用いて回収する(工程S5)。磁気分離の方法は、磁気分離槽4の容器中に永久磁石又は電磁石を投入して回収する方法や、磁石で磁化した金網などで回収して、磁場を開放することにより粒子を回収する方法などが挙げられる。 Next, the filter aid is recovered from the suspension after separation and decomposition of the precoat layer using a magnetic separation method (step S5). Magnetic separation methods include a method of collecting permanent magnets or electromagnets in the container of the magnetic separation tank 4 and a method of collecting particles by collecting them with a metal mesh magnetized by a magnet and releasing a magnetic field. Is mentioned.
 具体的には、例えば以下の方法でろ過助剤を回収することができる。まず、一端が塞がれた円筒形のパイプの中に永久磁石42を設置し、懸濁液中にてろ過助剤を磁石42で吸着固定する。その状態で、磁気分離槽4の容器からラインL8を介して図示しない貯留槽に固形分を含む廃液を排出する。次いで、磁石42の上部に取り付けられたエアシリンダー(図示せず)により磁石42を引き上げ磁場をOFFにし、磁石42からろ過助剤を脱落させる。その後、ラインL33を介して容器内に固液分離装置3から処理水の一部を供給し、脱落したろ過助剤に処理水を加えてスラリー状または懸濁液状とし、このスラリー状または懸濁液状のろ過助剤をラインL5を介して分離槽4からろ過助剤供給装置5へ送る。 Specifically, for example, the filter aid can be recovered by the following method. First, the permanent magnet 42 is installed in a cylindrical pipe whose one end is closed, and the filter aid is adsorbed and fixed by the magnet 42 in the suspension. In this state, the waste liquid containing the solid content is discharged from the container of the magnetic separation tank 4 to the storage tank (not shown) via the line L8. Subsequently, the magnet 42 is pulled up by an air cylinder (not shown) attached to the upper part of the magnet 42 to turn off the magnetic field, and the filter aid is dropped from the magnet 42. Thereafter, a part of the treated water is supplied from the solid-liquid separation device 3 into the container via the line L33, and the treated water is added to the dropped filter aid to form a slurry or suspension. The liquid filter aid is sent from the separation tank 4 to the filter aid supply device 5 via the line L5.
 あるいは、磁石42でろ過助剤を吸着固定したあとに、磁石42ごとろ過助剤を他の容器に移動させ、他の容器中で磁石42の引き抜き磁場をOFFにし、磁石42からろ過助剤を脱落させ、他の容器内でろ過助剤を回収してもよい。 Alternatively, after the filter aid is adsorbed and fixed by the magnet 42, the filter aid is moved to another container together with the magnet 42, the magnetic field of the magnet 42 is turned off in the other container, and the filter aid is removed from the magnet 42. It is possible to drop off and collect the filter aid in another container.
 回収したろ過助剤は、ろ過助剤供給装置5からラインL6を介して固液分離装置3の上部スペース31に供給し、プレコート層の形成に回収ろ過助剤を再使用する。このようにしてろ過助剤を、プレコート層の形成→ろ過→分離→回収→プレコート層の形成のサイクルにおいて繰り返し使用することができる。 The recovered filter aid is supplied from the filter aid supply device 5 to the upper space 31 of the solid-liquid separation device 3 via the line L6, and the recovered filter aid is reused to form the precoat layer. In this way, the filter aid can be used repeatedly in the cycle of precoat layer formation → filtration → separation → recovery → precoat layer formation.
 第1の実施形態によると、分離性及び耐久性に優れたろ過助剤を用いるので、水処理の運転コストや水処理装置のメンテナンスコストを低く抑えることができる。 According to the first embodiment, since the filter aid excellent in separability and durability is used, the operation cost of water treatment and the maintenance cost of the water treatment device can be kept low.
 また、第1の実施形態によると、ろ過助剤のコア部分に磁性体を用いるので、電磁石などの磁気吸着手段によりろ過助剤と捕捉した固体分(SS等の水不溶物質)とを迅速かつ確実に分離することができる。そのため、第1の実施形態によれば、分離したろ過助剤を高効率かつ円滑に回収でき、回収したろ過助剤を繰り返し再利用することができる。ろ過助剤の再利用が容易であり、薬品を投入しなくても微細な水中の固形物を除去することができる。 Further, according to the first embodiment, since the magnetic material is used for the core portion of the filter aid, the filter aid and the solid matter (water insoluble substance such as SS) captured by the magnetic adsorption means such as an electromagnet can be quickly and It can be reliably separated. Therefore, according to the first embodiment, the separated filter aid can be recovered efficiently and smoothly, and the recovered filter aid can be reused repeatedly. It is easy to reuse the filter aid, and fine solid matter in water can be removed without adding chemicals.
 [第2の実施形態]
 第2の実施形態によれば、他の水処理方法が提供される。この水処理方法は、(A)磁性体一次粒子又はその凝集体と、磁性体一次粒子又はその凝集体を被覆し、22×10-3N/m以下の臨界表面張力γcを有する被覆材とを含むろ過助剤を準備することと、(B)固体分を含む被処理水とろ過助剤とを混合し、被処理水中にろ過助剤が分散する懸濁液を作製することと、(C)ろ過膜により懸濁液をろ過し、ろ過膜上にろ過助剤および固形分を含む堆積層を形成し、堆積層中においてろ過助剤に固形分を吸着により捕捉させ、これにより被処理水から固体分を分離することと、(D)水を堆積層に注いでろ過膜から堆積層を剥離させ、これにより固形分を捕捉した堆積層の剥離物と堆積層に注いだ水との混合物を提供することと、(E)混合物からろ過助剤を磁気的に分離することと、(F)分離したろ過助剤を(B)工程において懸濁液の作製に再利用することとを含む。
[Second Embodiment]
According to the second embodiment, another water treatment method is provided. This water treatment method comprises: (A) a magnetic primary particle or an aggregate thereof and a magnetic primary particle or an aggregate thereof, and a coating material having a critical surface tension γ c of 22 × 10 −3 N / m or less Preparing a filter aid containing, and (B) mixing the water to be treated containing the solid content and the filter aid, producing a suspension in which the filter aid is dispersed in the water to be treated; (C) The suspension is filtered through a filtration membrane, a deposition layer containing a filter aid and solid content is formed on the filtration membrane, and the solid content is captured by adsorption in the filtration aid in the deposition layer. Separating the solid content from the treated water; and (D) separating the deposited layer from the filtration membrane by pouring water into the deposited layer, thereby separating the deposited layer from which the solid content has been captured and the water poured into the deposited layer. Providing a mixture of: (E) magnetically separating the filter aid from the mixture; and (F) separated filtration. Reusing the auxiliaries in the preparation of the suspension in step (B).
 第2の実施形態に係る水処理方法は、いわゆる、ボディーフィード法に対応する方法である。 The water treatment method according to the second embodiment is a method corresponding to the so-called body feed method.
 第2の実施形態に係る水処理方法では、ろ過助剤を分散させる分散媒として被処理水を用いる点と、プレコート層を作ることなく、被処理水およびろ過助剤を含んだ懸濁液をろ過して、ろ過助剤と被処理水中に含まれる固形分とを含む堆積層を形成する点とにおいて、第1の実施形態に係る水処理方法と異なる。 In the water treatment method according to the second embodiment, the water to be treated is used as a dispersion medium for dispersing the filter aid, and the suspension containing the water to be treated and the filter aid is prepared without forming a precoat layer. It differs from the water treatment method according to the first embodiment in that it is filtered to form a deposition layer containing a filter aid and a solid content contained in the water to be treated.
 第2の実施形態に係る水処理方法によると、特に被処理水(懸濁液)中の固形分の量が多い場合においても、水不溶物の供給とろ過助剤の供給とは同時に行われることになるので、ろ過助剤へと過剰に吸着された水不溶物が、ろ過助剤の空隙を埋設してしまうことがない。このため、第2の実施形態に係る方法は、長時間ろ過速度を維持することができる。結果として、第2の実施形態の水処理方法は、被処理水中の水不溶物濃度が高い場合に有効である。 According to the water treatment method according to the second embodiment, the supply of the water-insoluble matter and the supply of the filter aid are performed at the same time, particularly when the amount of solid content in the water to be treated (suspension) is large. Therefore, the water-insoluble matter excessively adsorbed by the filter aid does not embed the gap of the filter aid. For this reason, the method according to the second embodiment can maintain the filtration rate for a long time. As a result, the water treatment method of the second embodiment is effective when the concentration of water insoluble matter in the water to be treated is high.
 次に、図を参照しながら、第2の実施形態に係る水処理方法の一例を説明する。 Next, an example of the water treatment method according to the second embodiment will be described with reference to the drawings.
 図5は、第2の実施形態に係る水処理方法において用いる装置の一例を示す概略図である。図6は、第2の実施形態に係る水処理方法(ボディーフィード法)の一例を示す工程図である。 FIG. 5 is a schematic view showing an example of an apparatus used in the water treatment method according to the second embodiment. FIG. 6 is a process diagram showing an example of a water treatment method (body feed method) according to the second embodiment.
 図5に示す水処理装置1Aは、混合槽6が無い点と、処理水槽2の代わりに混合原水槽2Aを設けている点とにおいて、図3に示す水処理装置1と異なる。 5A differs from the water treatment apparatus 1 shown in FIG. 3 in that there is no mixing tank 6 and in that a mixed raw water tank 2A is provided instead of the treated water tank 2.
 この混合原水槽2Aは、被処理水を一時的に貯留して被処理水の流量を平準化する機能と、ろ過助剤を被処理水に添加して両者を混合させる混合機能とを兼ね備えている。すなわち、本実施形態の装置1Aでは、ろ過助剤は、混合槽を経由することなく、ろ過助剤供給装置5からラインL6を介して混合原水槽2A内に直接供給されるようになっている。 The mixing raw water tank 2A has a function of temporarily storing the water to be treated and leveling the flow rate of the water to be treated, and a mixing function of adding a filter aid to the water to be treated and mixing them. Yes. That is, in the apparatus 1A of the present embodiment, the filter aid is directly supplied from the filter aid supply device 5 into the mixed raw water tank 2A via the line L6 without going through the mixing tank. .
 次に、図6を参照しながら第2の実施形態に係る水処理方法を説明する。 Next, a water treatment method according to the second embodiment will be described with reference to FIG.
 図6は、第2の実施形態に係る水処理方法(ボディーフィード法)の一例を示す工程図である。 FIG. 6 is a process diagram showing an example of a water treatment method (body feed method) according to the second embodiment.
 第2の実施形態においても、最初にろ過助剤と分散媒とを混合し懸濁液を調製するが、この場合に使用する分散媒は、混合原水槽2A内に存在する被処理水とする。すなわち、第2の実施形態では被処理水中にろ過助剤を直接投入して被処理水から懸濁液を調製する(工程K1)。懸濁液中のろ過助剤濃度は以下の操作によってろ過層が形成できれば特に問わないが、例えば10000~200000mg/L程度に調整する。 Also in the second embodiment, the filter aid and the dispersion medium are first mixed to prepare a suspension, and the dispersion medium used in this case is treated water existing in the mixing raw water tank 2A. . That is, in the second embodiment, a filter aid is directly added to the water to be treated to prepare a suspension from the water to be treated (Step K1). The concentration of the filter aid in the suspension is not particularly limited as long as a filtration layer can be formed by the following operation, but is adjusted to, for example, about 10,000 to 200,000 mg / L.
 次いで、懸濁液(被処理水)をろ過膜33に通水し、懸濁液中のろ過助剤をろ別して、ろ過膜33上に残留させ、ろ過助剤が積層してなる堆積層を形成する(工程K2)。なお、ろ過膜33に対する通水は加圧下で行われる。このとき、堆積層の形成と被処理水のろ過処理とは同時並行して行われる。なお、第2の実施形態の方法においても、ろ面は水平であるほうが好ましい。 Next, the suspension (water to be treated) is passed through the filtration membrane 33, the filter aid in the suspension is filtered off and left on the filter membrane 33, and the deposited layer formed by laminating the filter aid is formed. Form (step K2). In addition, the water flow with respect to the filtration membrane 33 is performed under pressure. At this time, the formation of the deposited layer and the filtration treatment of the water to be treated are performed in parallel. In the method of the second embodiment, it is preferable that the filter surface is horizontal.
 また、ろ過層は、上述のように外力の作用によって形成及び保持されるので、上述したフィルタリングは、例えばろ過膜を所定の容器の容器口を塞ぐようにして配置し、このように配置したろ過膜上にろ過助剤が残留し、配列及び積層されるようにする。この場合、上記容器の壁面からの外力及び上方に位置するろ過助剤の重さに起因した下方に向けての外力(重力)によって、堆積層は形成及び保持されることになる。 In addition, since the filtration layer is formed and held by the action of external force as described above, the filtering described above is performed by, for example, arranging the filtration membrane so as to close the container opening of the predetermined container, and the filtration thus arranged. The filter aid remains on the membrane so that it can be aligned and stacked. In this case, the deposited layer is formed and held by the external force from the wall surface of the container and the downward external force (gravity) due to the weight of the filter aid positioned above.
 上述のようにして被処理水中の水不溶物を除去した後は、ろ過層を分散媒中に分散させ、ろ過層をろ過助剤に分解するとともに、ろ過助剤を洗浄する(工程K3)。この洗浄はろ過膜33の設置されている容器内で行ってもよく、他の容器で行ってもよい。他の容器で行う場合は、洗浄などの手段を用いて堆積層をろ過助剤に分解した後、輸送する。洗浄には水を使用するが、界面活性剤や有機溶媒を用いて洗浄することも可能である。 After removing the water-insoluble matter in the water to be treated as described above, the filter layer is dispersed in the dispersion medium, the filter layer is decomposed into a filter aid, and the filter aid is washed (step K3). This washing may be performed in a container in which the filtration membrane 33 is installed, or may be performed in another container. In the case of using another container, the deposited layer is decomposed into a filter aid by means of cleaning or the like and then transported. Although water is used for washing, washing with a surfactant or an organic solvent is also possible.
 次いで、洗浄後のろ過助剤を磁気分離法を用いて回収する(工程K4)。磁気分離法に用いる手段は特に問わないが、容器中に永久磁石又は電磁石を投入して回収する方法や、磁石で磁化した金網などで回収して、磁場を開放することにより粒子を回収する方法などが挙げられる。 Next, the washed filter aid is recovered using a magnetic separation method (step K4). The method used for the magnetic separation method is not particularly limited, but a method of collecting a permanent magnet or an electromagnet in a container and a method of collecting particles by collecting them with a metal mesh magnetized by a magnet and releasing a magnetic field Etc.
 第2の実施形態によれば、ろ過助剤の再利用が容易であり、薬品を投入しなくても微細な水中の固形物を除去することができる。 According to the second embodiment, it is easy to reuse the filter aid, and fine solid matter in water can be removed without adding chemicals.
 なお、第2の実施形態に係る水処理方法では、堆積層を構成するろ過助剤は、被処理水すなわちこの水を利用して調製した懸濁液中に含まれているので、除去すべき水不溶性の固形分を含む被処理水(懸濁液)とともに、常にろ過助剤が供給されることになる。 In the water treatment method according to the second embodiment, the filter aid constituting the deposition layer is contained in the water to be treated, that is, the suspension prepared using this water, and should be removed. A filter aid is always supplied together with the water to be treated (suspension) containing water-insoluble solids.
 したがって、第2の実施形態に係る水処理方法によると、特に被処理水(懸濁液)中の固形分の量が多い場合においても、水不溶物の供給とろ過助剤の供給とは同時に行われることになり、過剰に吸着した水不溶物が、ろ過助剤の空隙を埋設してしまうことを防ぐことができる。このため、第2の実施形態に係る水処理方法によると、長時間ろ過速度を維持することができる。結果として、上で説明したように、第2の実施形態の水処理方法は、被処理水中の水不溶物濃度が高い場合に有効である。 Therefore, according to the water treatment method according to the second embodiment, the supply of the water-insoluble matter and the supply of the filter aid are performed at the same time even when the amount of solid content in the water to be treated (suspension) is large. As a result, excessively adsorbed water-insoluble matter can be prevented from burying voids in the filter aid. For this reason, according to the water treatment method according to the second embodiment, the filtration rate can be maintained for a long time. As a result, as described above, the water treatment method of the second embodiment is effective when the concentration of water insoluble matter in the water to be treated is high.
 以下に種々の実施例と比較例を説明する。 Various examples and comparative examples will be described below.
 (ろ過助剤の準備)
 (ろ過助剤A)
 マンガンマグネシウムフェライト粒子をヘンシェルミキサー内に入れた。次に、このヘンシェルミキサー内に、無水マレイン酸とジアミノジフェニルメタンとの反応物からなるポリアミドイミド2%およびフッ化エチレンとフッ化ポリプロピレンとの共重合体10%を含む樹脂分散液を投入することにより、前記マンガンマグネシウムフェライト粒子表面に、前記樹脂分散液を噴霧塗布した。樹脂分散液が表面に塗布されたフェライト粒子を200℃で1時間硬化させることにより、マンガンマグネシウムフェライト粒子と、該粒子の表面にコーティングされたフッ素樹脂コーティングとを含むろ過助剤が得られた(球状、平均粒子径35μm)。フッ素樹脂コーティングの臨界表面張力γcは、18.5×10-3N/mであった。
(Preparation of filter aid)
(Filter aid A)
Manganese magnesium ferrite particles were placed in a Henschel mixer. Next, a resin dispersion containing 2% polyamide imide comprising a reaction product of maleic anhydride and diaminodiphenylmethane and 10% copolymer of fluorinated ethylene and fluorinated polypropylene is put into the Henschel mixer. The resin dispersion was sprayed onto the surface of the manganese magnesium ferrite particles. By hardening the ferrite particles coated with the resin dispersion on the surface at 200 ° C. for 1 hour, a filter aid containing manganese magnesium ferrite particles and a fluororesin coating coated on the surface of the particles was obtained ( Spherical, average particle size 35 μm). The critical surface tension γ c of the fluororesin coating was 18.5 × 10 −3 N / m.
 (ろ過助剤B)
 ろ過助剤Aと同様の方法により、マンガンマグネシウムフェライト粒子とその表面にコーティングされたフッ素樹脂コーティングとを含むろ過助剤を準備した。(球状、平均粒子径50μm)
 (ろ過助剤C)
 ろ過助剤Aと同様の方法により、マンガンマグネシウムフェライト粒子とその表面にコーティングされたフッ素樹脂コーティングとを含むろ過助剤を準備した。(不定形、平均粒子径2μm)
 (ろ過助剤D)
 コーティング剤として東レダウコーニング社製シリコーン樹脂(SR-2441)を用いた以外ろ過助剤Aと同様の方法により、マンガンマグネシウムフェライト粒子とその表面にコーティングされたシリコーン樹脂とを含むろ過助剤を準備した(不定形、平均粒子径35μm)。シリコーン樹脂コーティングの臨界表面張力γcは、22×10-3N/mであった。
(Filter aid B)
By the same method as that for the filter aid A, a filter aid containing manganese magnesium ferrite particles and a fluororesin coating coated on the surface thereof was prepared. (Spherical, average particle size 50 μm)
(Filter aid C)
By the same method as that for the filter aid A, a filter aid containing manganese magnesium ferrite particles and a fluororesin coating coated on the surface thereof was prepared. (Irregular shape, average particle size 2μm)
(Filter aid D)
A filter aid containing manganese magnesium ferrite particles and a silicone resin coated on the surface thereof was prepared in the same manner as filter aid A except that Toray Dow Corning silicone resin (SR-2441) was used as the coating agent. (Amorphous shape, average particle size 35 μm). The critical surface tension γ c of the silicone resin coating was 22 × 10 −3 N / m.
 (ろ過助剤E)
 比較例のろ過助剤として、平均粒子径35μmのマンガンマグネシウムフェライト粒子を準備した。
(Filter aid E)
Manganese magnesium ferrite particles having an average particle diameter of 35 μm were prepared as filter aids for comparative examples.
 (ろ過助剤F)
 ろ過助剤Aと同様に、マンガンマグネシウムフェライト粒子とその表面にコーティングされたフッ素樹脂コーティングとを含むろ過助剤を準備した(球状、平均粒子径14μm)。
(Filter aid F)
Similarly to the filter aid A, a filter aid containing manganese magnesium ferrite particles and a fluororesin coating coated on the surface thereof was prepared (spherical, average particle size 14 μm).
 (ろ過助剤G)
 モル比を、マンガン40%,マグネシウム10%,鉄50%に調整した金属酸化物混合物を準備した。これを水中に分散し、ポリビニルアルコールをバインダーとして、200℃のスプレードライで平均粒子径40μmの造粒体を作製した。この造粒体を1200℃で焼結して、ポーラス状のマンガンマグネシウムフェライトを得た。ろ過助剤Aと同様にして、このポーラス状のマンガンマグネシウムフェライトを、その表面にフッ素樹脂分散液を噴霧塗布し、硬化に供した。その結果、ポーラス状のマンガンマグネシウムフェライトとその表面にコーティングされたフッ素樹脂コーティングとを含むろ過助剤が得られた(球状、平均粒子径40μm)。
(Filter aid G)
A metal oxide mixture in which the molar ratio was adjusted to 40% manganese, 10% magnesium, and 50% iron was prepared. This was dispersed in water, and a granulated body having an average particle diameter of 40 μm was produced by spray drying at 200 ° C. using polyvinyl alcohol as a binder. The granulated body was sintered at 1200 ° C. to obtain a porous manganese magnesium ferrite. In the same manner as the filter aid A, this porous manganese magnesium ferrite was spray-coated with a fluororesin dispersion on the surface thereof and subjected to curing. As a result, a filter aid containing porous manganese magnesium ferrite and a fluororesin coating coated on the surface thereof was obtained (spherical, average particle size 40 μm).
 (ろ過助剤H)
 ろ過助剤Aと同様に、マンガンマグネシウムフェライト粒子とその表面にコーティングされたフッ素樹脂コーティングとを含むろ過助剤を準備した(球状、平均粒子径85μm)。
(Filter aid H)
Similarly to the filter aid A, a filter aid containing manganese magnesium ferrite particles and a fluororesin coating coated on the surface thereof was prepared (spherical, average particle diameter 85 μm).
 (水処理装置)
 (実施例1)
 図3に概略を示す装置を作製した。固形物を含有する被処理水を処理水槽2に供給し、一時的に槽に受ける。ここで混合機により混ぜることにより、処理水の時間変動を平均化する。また、ろ過助剤供給装置5から混合槽6へろ過助剤が送られ、一部再利用する処理水と混合してろ過助剤スラリーが作られる。このろ過助剤スラリーを先に固液分離装置3に送り、ろ過膜33上にろ過助剤の膜を形成する。この実施例では、ろ過膜として織り布からなるろ布を用いた。その後、被処理液を圧力下で固液分離装置3に供給し、あらかじめ形成しておいたろ過助剤の膜で固液分離(ろ過)を行う。ろ過液(処理液)は固形物の除去されたものであり、必要な処理をして排水してもよいが、固液分離装置3の洗浄水や磁気分離槽4の磁石の洗浄水、混合槽6のろ過助剤スラリー作製時の液体としても使用可能である。被処理水のろ過が終了すると、固液分離装置3内のろ過膜33に、ろ過助剤と水中の固形分の堆積物(ケーキ)が存在する。これをろ過膜33から剥離するため、ろ過膜33の側方から剥離水を吹き付けて堆積物(ケーキ)を剥離・分解し、固液分離装置3から磁気分離槽4へ排出する。磁気分離槽4は撹拌機構41と電磁石(磁気分離機構)42を備えており、混合撹拌しながらろ過助剤と固形物を分離し、ろ過助剤のみを磁石42で回収して分離する。ろ過助剤を回収した液は、高濃度の固形物を含有する濃縮水として回収され、供給された洗浄水で洗われろ過助剤供給装置5へ返送される。このようにして返送されたろ過助剤は、再び混合槽6に供給され、プレコート層を形成するための懸濁液の作製に再利用される。
(Water treatment equipment)
(Example 1)
A device as schematically shown in FIG. 3 was produced. The water to be treated containing solid matter is supplied to the treated water tank 2 and temporarily received in the tank. Here, the time fluctuation of the treated water is averaged by mixing with a mixer. Moreover, a filter aid is sent from the filter aid supply device 5 to the mixing tank 6 and mixed with treated water that is partially reused to produce a filter aid slurry. This filter aid slurry is first sent to the solid-liquid separator 3 to form a filter aid membrane on the filter membrane 33. In this example, a filter cloth made of woven cloth was used as the filter membrane. Thereafter, the liquid to be treated is supplied to the solid-liquid separation device 3 under pressure, and solid-liquid separation (filtration) is performed with a filter aid membrane formed in advance. The filtrate (treatment liquid) is the one from which the solid matter has been removed and may be drained after necessary treatment, but the washing water for the solid-liquid separation device 3 and the washing water for the magnet of the magnetic separation tank 4 are mixed. It can also be used as a liquid when preparing the filter aid slurry in the tank 6. When filtration of the water to be treated is completed, a filter aid and a solid deposit (cake) in water are present in the filter membrane 33 in the solid-liquid separator 3. In order to peel this from the filtration membrane 33, peeling water is sprayed from the side of the filtration membrane 33 to peel and decompose the deposit (cake), which is discharged from the solid-liquid separator 3 to the magnetic separation tank 4. The magnetic separation tank 4 includes a stirring mechanism 41 and an electromagnet (magnetic separation mechanism) 42, and separates the filter aid and the solid matter while mixing and stirring, and collects and separates only the filter aid with the magnet 42. The liquid collected from the filter aid is collected as concentrated water containing a high-concentration solid material, washed with the supplied wash water, and returned to the filter aid supply device 5. The filter aid returned in this way is supplied again to the mixing tank 6 and is reused for producing a suspension for forming the precoat layer.
 被処理水として、ベントナイト200mg/Lを含有する模擬排水を準備した。これを処理水槽2に供給して混合した。またろ過助剤Aが充填されたろ過助剤供給装置5から混合槽6にろ過助剤を供給して水を混合し、ろ過助剤スラリーを作製した。これを固液分離装置3に供給し、ろ過膜33上に平均1mmの厚さのプレコート層を作製した。この後、処理水槽2から固液分離装置3に被処理水を供給し、ろ過処理を行ったところ、ろ過水(処理水)中のベントナイトの90%が除去されていることが確認できた。ろ過処理後、固液分離装置3のろ過膜33の側方から剥離水を吹き付け、プレコート層をろ過膜33から剥離し、その剥離物を磁気分離槽4に排出した。磁気分離槽4内の撹拌機41を作動させ、ろ過助剤とベントナイトを分離したあと、磁石42を動作させてろ過助剤のみを分離し、液体を排出してベントナイト濃縮液を得た。濃縮液を分析したところ、ろ過したベントナイトのほぼ99%以上が脱離して回収されていた。その後、磁石の磁場を解除し、洗浄水を供給してろ過助剤スラリーにしたあと、ろ過助剤供給装置4に返送した。回収したろ過助剤を混合槽6に供給し、上記と同様の操作を行ったが、回収ろ過助剤は問題なく再利用できた。 A simulated drainage containing 200 mg / L bentonite was prepared as the water to be treated. This was supplied to the treated water tank 2 and mixed. Moreover, the filter aid was supplied to the mixing tank 6 from the filter aid supply apparatus 5 filled with the filter aid A, and water was mixed, and the filter aid slurry was produced. This was supplied to the solid-liquid separator 3, and a precoat layer having an average thickness of 1 mm was produced on the filtration membrane 33. Then, when to-be-processed water was supplied from the treated water tank 2 to the solid-liquid separator 3, and it filtered, it has confirmed that 90% of the bentonite in filtered water (treated water) was removed. After the filtration treatment, peeling water was sprayed from the side of the filtration membrane 33 of the solid-liquid separator 3, the precoat layer was peeled off from the filtration membrane 33, and the peeled material was discharged into the magnetic separation tank 4. After the stirrer 41 in the magnetic separation tank 4 was operated to separate the filter aid and bentonite, only the filter aid was separated by operating the magnet 42 and the liquid was discharged to obtain a bentonite concentrate. When the concentrate was analyzed, almost 99% or more of the filtered bentonite was desorbed and recovered. Thereafter, the magnetic field of the magnet was released, cleaning water was supplied to make a filter aid slurry, and then returned to the filter aid supply device 4. The recovered filter aid was supplied to the mixing tank 6 and the same operation as described above was performed, but the recovered filter aid could be reused without any problem.
 (実施例2)
 ろ過助剤Aの代わりにろ過助剤Bを用いたこと以外は、実施例1と同様に試験をおこなった。ベントナイトの除去率は88%であった。実施例1と比較して固液分離装置の通水速度が1.5倍となったが問題なく運転でき、ベントナイトの回収率は99%以上であった。
(Example 2)
A test was conducted in the same manner as in Example 1 except that filter aid B was used instead of filter aid A. The bentonite removal rate was 88%. Although the water flow rate of the solid-liquid separator was 1.5 times that of Example 1, it could be operated without any problem, and the bentonite recovery rate was 99% or more.
 (実施例3)
 ろ過助剤Aの代わりにろ過助剤Cを用いたこと以外は、実施例1と同様に試験をおこなった。ベントナイトの除去率は99%以上であった。実施例1と比較して固液分離装置の通水速度がほぼ1/4となったが問題なく運転でき、ベントナイトの回収率は99%以上であった。
(Example 3)
A test was conducted in the same manner as in Example 1 except that filter aid C was used instead of filter aid A. The removal rate of bentonite was 99% or more. Compared with Example 1, the water flow rate of the solid-liquid separator became almost 1/4, but it could be operated without any problem, and the bentonite recovery rate was 99% or more.
 (実施例4)
 ろ過助剤Aの代わりにろ過助剤Dを用いたこと以外は、実施例1と同様に試験をおこなった。ベントナイトの除去率は90%であった。実施例1と比較して固液分離装置の通水速度はほぼ同じであり、ベントナイトの回収率は91%であった。
(Example 4)
A test was conducted in the same manner as in Example 1 except that filter aid D was used instead of filter aid A. The bentonite removal rate was 90%. Compared with Example 1, the water flow rate of the solid-liquid separator was almost the same, and the recovery rate of bentonite was 91%.
 (実施例5)
 ろ過助剤Aの代わりにろ過助剤Fを用いたこと以外は、実施例1と同様に試験をおこなった。ベントナイトの除去率は約100%であった。実施例1と比較して固液分離装置の通水速度はほぼ同じであり、ベントナイトの回収率は96%であった。
(Example 5)
A test was conducted in the same manner as in Example 1 except that filter aid F was used instead of filter aid A. The removal rate of bentonite was about 100%. Compared with Example 1, the water flow rate of the solid-liquid separator was almost the same, and the bentonite recovery rate was 96%.
 (実施例6)
 ろ過助剤Aの代わりにろ過助剤Gを用いたこと以外は、実施例1と同様に試験をおこなった。ベントナイトの除去率は98%であった。実施例1と比較して固液分離装置の通水速度は1.5倍となり、ベントナイトの回収率は90%であった。
(Example 6)
A test was conducted in the same manner as in Example 1 except that filter aid G was used instead of filter aid A. The bentonite removal rate was 98%. Compared with Example 1, the water flow rate of the solid-liquid separator was 1.5 times, and the recovery rate of bentonite was 90%.
 (比較例1)
 ろ過助剤Aの代わりにろ過助剤Dを用いたこと以外は、実施例1と同様に試験をおこなった。ベントナイトの除去率は90%であった。実施例1と比較して固液分離装置の通水速度は約80%であったが、ベントナイトの回収率は25%であった。
(Comparative Example 1)
A test was conducted in the same manner as in Example 1 except that filter aid D was used instead of filter aid A. The bentonite removal rate was 90%. Compared to Example 1, the water flow rate of the solid-liquid separator was about 80%, but the recovery rate of bentonite was 25%.
 (実施例7)
 図5に概略を示す装置を作製した。固形物としてベントナイトを含有する被処理水を混合原水槽2Aに供給し、一時的に混合原水槽2Aに受ける。また、ろ過助剤供給装置5からもろ過助剤が混合原水槽2Aに供給され、ベントナイトとろ過助剤の混合スラリーが作られる。このろ過助剤スラリーを先に固液分離装置3に送ると、ろ過膜33上にろ過助剤とベントナイトからなる堆積層が形成される。この堆積層においてベントナイトはろ過助剤に捕捉されている。
(Example 7)
An apparatus schematically shown in FIG. 5 was produced. Water to be treated containing bentonite as a solid is supplied to the mixed raw water tank 2A and temporarily received by the mixed raw water tank 2A. Further, the filter aid is supplied also from the filter aid supply device 5 to the mixed raw water tank 2A, and a mixed slurry of bentonite and filter aid is made. When this filter aid slurry is first sent to the solid-liquid separator 3, a deposited layer composed of the filter aid and bentonite is formed on the filter membrane 33. In this deposited layer, bentonite is trapped by the filter aid.
 ろ過液(処理水)はベントナイトの除去された液であるため適切な処理をして排水するようにしてもよいが、固液分離装置3の剥離水や磁気分離槽4の洗浄水としても使用可能である。被処理水のろ過が終了すると、固液分離装置3内のろ過膜33に、ろ過助剤と析出したベントナイトの堆積層(ケーキ)が存在する。これをろ過膜33から剥離するため、ろ過膜33の側方から剥離水を吹き付けて堆積層(ケーキ)を剥離し、その剥離物を磁気分離槽4へ排出する。磁気分離槽4は撹拌機構41と磁石42(磁気分離機構)を備えており、混合撹拌しながらろ過助剤とベントナイトとを分離し、ろ過助剤のみを磁石42で吸着回収する。ろ過助剤を回収した液は、高濃度のベントナイトを含有する濃縮水として回収され、供給された洗浄水で洗われろ過助剤供給装置5へ返送される。回収したろ過助剤を混合槽6に供給し、上記と同様の操作を行ったが、回収ろ過助剤は問題なく再利用できた。 Since the filtrate (treated water) is a bentonite-removed liquid, it may be appropriately treated and drained, but it is also used as the separation water for the solid-liquid separator 3 and the washing water for the magnetic separation tank 4. Is possible. When filtration of the water to be treated is completed, a filter aid and a deposited bentonite layer (cake) are present in the filter membrane 33 in the solid-liquid separator 3. In order to peel this from the filtration membrane 33, peeling water is sprayed from the side of the filtration membrane 33 to peel the deposited layer (cake), and the peeled material is discharged to the magnetic separation tank 4. The magnetic separation tank 4 includes a stirring mechanism 41 and a magnet 42 (magnetic separation mechanism), separates the filter aid and bentonite while mixing and stirring, and adsorbs and collects only the filter aid with the magnet 42. The liquid collected from the filter aid is collected as concentrated water containing high-concentration bentonite, washed with the supplied wash water, and returned to the filter aid supply device 5. The recovered filter aid was supplied to the mixing tank 6 and the same operation as described above was performed, but the recovered filter aid could be reused without any problem.
 被処理水としてベントナイト200mg/Lを含有する模擬排水を準備した。これを混合原水槽2Aに供給して混合した。また、ろ過助剤Aが充填されたろ過助剤供給装置5から混合原水槽2Aにろ過助剤を2000mg/Lとなるよう供給し、ろ過助剤とベントナイトのスラリーを作製した。これを固液分離装置3に供給し、ろ過膜33上でろ過を行ったところ、ろ過水(処理水)中のベントナイトの97%が回収されていることを確認できた。ろ過処理後、固液分離装置3のろ過膜33の側方から剥離水を吹き付け、ろ過膜33上に形成されている堆積層を剥離し、その剥離物を磁気分離槽4へ排出した。磁気分離槽4内の撹拌機41を作動させ、ろ過助剤とベントナイトを分離したあと、磁石42を作動させ、ろ過助剤のみを吸着分離回収し、その残留物としてベントナイト濃縮液を得た。濃縮液を分析したところ、ほぼ全量のベントナイトが脱離していることを確認した。その後、磁石の磁場を解除し、洗浄水を供給してろ過助剤スラリーにしたあと、ろ過助剤供給装置5に返送した。回収したろ過助剤を混合槽6に供給し、上記と同様の操作を行ったが、回収ろ過助剤は問題なく再利用できた。 A simulated waste water containing 200 mg / L bentonite was prepared as the treated water. This was supplied to the mixing raw water tank 2A and mixed. Moreover, the filter aid was supplied to the mixed raw water tank 2A from the filter aid supply device 5 filled with the filter aid A so as to be 2000 mg / L, thereby preparing a slurry of the filter aid and bentonite. When this was supplied to the solid-liquid separator 3 and filtered on the filtration membrane 33, it was confirmed that 97% of bentonite in the filtrate (treated water) was recovered. After the filtration treatment, peeling water was sprayed from the side of the filtration membrane 33 of the solid-liquid separation device 3, the deposited layer formed on the filtration membrane 33 was peeled off, and the peeled material was discharged to the magnetic separation tank 4. After the stirrer 41 in the magnetic separation tank 4 was operated to separate the filter aid and bentonite, the magnet 42 was operated, and only the filter aid was adsorbed, separated and recovered, and a bentonite concentrate was obtained as the residue. When the concentrate was analyzed, it was confirmed that almost the entire amount of bentonite had been detached. Thereafter, the magnetic field of the magnet was released, washing water was supplied to make a filter aid slurry, and then returned to the filter aid supply device 5. The recovered filter aid was supplied to the mixing tank 6 and the same operation as described above was performed, but the recovered filter aid could be reused without any problem.
 (実施例8)
 ろ過助剤Aの代わりにろ過助剤Hを、ベントナイトの代わりに平均粒子径50μmのセルロース粒子及びこれと同量のギアオイル用いたこと以外は、実施例1と同様に試験をおこなった。セルロールの除去率は100%であった。また、セルロースの回収率は90%であった。
(Example 8)
A test was conducted in the same manner as in Example 1 except that filter aid H was used instead of filter aid A, cellulose particles having an average particle diameter of 50 μm and gear oil of the same amount were used instead of bentonite. The removal rate of cellulose was 100%. The cellulose recovery rate was 90%.
 (比較例2)
 ろ過助剤Hの代わりにろ過助剤Eを用いたこと以外は、実施例8と同様に試験をおこなった。セルロールの除去率は100%であったが、磁性体からセルロースを分離することができず、セルロースを回収できなかった。
(Comparative Example 2)
A test was conducted in the same manner as in Example 8 except that filter aid E was used instead of filter aid H. Although the removal rate of cellulose was 100%, cellulose could not be separated from the magnetic material and cellulose could not be recovered.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (14)

  1.  (a)磁性体一次粒子又はその凝集体と、前記磁性体一次粒子またはその凝集体の一部又は全部を覆い、22×10-3N/m以下の臨界表面張力γcを有する被覆材とを含むろ過助剤を準備することと、
     (b)前記ろ過助剤に分散媒を混合し、前記分散媒中に前記ろ過助剤が分散する懸濁液を作製することと、
     (c)ろ過膜により前記懸濁液をろ過し、前記ろ過膜の上に前記ろ過助剤を含むプレコート層を形成し、次いで固体分を含む被処理水を前記プレコート層および前記ろ過膜に通過させ、前記プレコート層のろ過助剤に前記固体分を吸着によって捕捉させ、これにより被処理水から前記固体分を分離することと、
     (d)水を前記固形分を捕捉した前記プレコート層に注いで前記ろ過膜から前記プレコート層を剥離させ、これにより、前記プレコート層の剥離物と前記プレコート層に捕捉された固形分と前記プレコート層に注いだ前記水との混合物を提供することと、
     (e)前記混合物から前記ろ過助剤を磁気的に分離することと、
     (f)分離したろ過助剤を前記(b)工程において懸濁液の作製に再利用することと
    を含むことを特徴とする水処理方法。
    (A) Magnetic primary particles or aggregates thereof, and a covering material that covers a part or all of the magnetic primary particles or aggregates and has a critical surface tension γ c of 22 × 10 −3 N / m or less, Preparing a filter aid comprising:
    (B) mixing a dispersion medium with the filter aid to produce a suspension in which the filter aid is dispersed in the dispersion medium;
    (C) The suspension is filtered through a filtration membrane, a precoat layer containing the filter aid is formed on the filtration membrane, and then water to be treated containing solids is passed through the precoat layer and the filtration membrane. And allowing the filter aid of the precoat layer to capture the solids by adsorption, thereby separating the solids from the water to be treated;
    (D) Water is poured into the precoat layer that has captured the solid content, and the precoat layer is peeled off from the filtration membrane, whereby the peeled product of the precoat layer, the solid content captured by the precoat layer, and the precoat Providing a mixture with the water poured into the bed;
    (E) magnetically separating the filter aid from the mixture;
    (F) reusing the separated filter aid for the preparation of the suspension in the step (b).
  2.  (A)磁性体一次粒子又はその凝集体と、前記磁性体一次粒子又はその凝集体を被覆し、22×10-3N/m以下の臨界表面張力γcを有する被覆材とを含むろ過助剤を準備することと、
     (B)固体分を含む被処理水と前記ろ過助剤とを混合し、前記被処理水中に前記ろ過助剤が分散する懸濁液を作製することと、
     (C)ろ過膜により前記懸濁液をろ過し、前記ろ過膜上に前記ろ過助剤および前記固形分を含む堆積層を形成し、前記堆積層中において前記ろ過助剤に前記固形分を吸着により捕捉させ、これにより被処理水から前記固体分を分離することと、
     (D)水を前記堆積層に注いで前記ろ過膜から前記堆積層を剥離させ、これにより前記固形分を捕捉した前記堆積層の剥離物と前記堆積層に注いだ前記水との混合物を提供することと、
     (E)前記混合物から前記ろ過助剤を磁気的に分離することと、
     (F)分離したろ過助剤を前記(B)工程において懸濁液の作製に再利用することと
    を含むことを特徴とする水処理方法。
    (A) Filtration aid comprising magnetic primary particles or aggregates thereof and a coating material covering the magnetic primary particles or aggregates and having a critical surface tension γ c of 22 × 10 −3 N / m or less. Preparing the agent,
    (B) mixing the water to be treated containing a solid content and the filter aid to produce a suspension in which the filter aid is dispersed in the water to be treated;
    (C) The suspension is filtered through a filtration membrane, a deposition layer containing the filtration aid and the solid content is formed on the filtration membrane, and the solid content is adsorbed to the filtration aid in the deposition layer. And thereby separating the solids from the water to be treated;
    (D) Pour water into the deposited layer to peel the deposited layer from the filtration membrane, thereby providing a mixture of the deposited layer from which the solid content is captured and the water poured into the deposited layer To do
    (E) magnetically separating the filter aid from the mixture;
    (F) The water treatment method characterized by including reusing the isolate | separated filter aid for preparation of suspension in the said (B) process.
  3.  前記ろ過膜が重力の作用する方向に対して直交するろ過面を有することを特徴とする請求項1記載の方法。 The method according to claim 1, wherein the filtration membrane has a filtration surface orthogonal to a direction in which gravity acts.
  4.  前記ろ過助剤の平均粒子径が1~50μmの範囲にあることを特徴とする請求項1記載の方法。 The method according to claim 1, wherein the average particle size of the filter aid is in the range of 1 to 50 µm.
  5.  前記被覆材がシリコーン樹脂またはフッ素樹脂のいずれかを含むことを特徴とする請求項1記載の方法。 The method according to claim 1, wherein the coating material contains either a silicone resin or a fluororesin.
  6.  前記磁性単体粒子がフェライト系化合物からなることを特徴とする請求項1記載の方法。 2. The method according to claim 1, wherein the magnetic single particles are made of a ferrite compound.
  7.  (a)磁性体一次粒子又はその凝集体と、前記磁性体一次粒子又はその凝集体を被覆し、22×10-3N/m以下の臨界表面張力γcを有する被覆材とを含むろ過助剤を供給するように構成されたろ過助剤供給装置と、
     (b)固形分を含む被処理水を一時的に貯留する処理水槽と、
     (c)前記ろ過助剤供給装置から供給されるろ過助剤に分散媒を混合し、前記分散媒中に前記ろ過助剤が分散する懸濁液を作製するように構成された混合槽と、
     (d)内部を上部スペースと下部スペースとに仕切るろ過膜を有し、前記上部スペースが前記ろ過助剤供給装置および前記混合槽にそれぞれ連通する固液分離装置と、
     (e)前記混合槽から前記固液分離装置の上部スペースに懸濁液を導入させ、前記ろ過膜で前記懸濁液をろ過させ、前記ろ過膜上に前記ろ過助剤からなるプレコート層を形成するように構成された懸濁液供給ラインと、
     (f)前記処理水槽から前記固液分離装置の上部スペースに被処理水を導入させ、前記被処理水を前記プレコート層および前記ろ過膜に通過させ、それにより固形分が前記プレコート層のろ過助剤に捕捉され、前記下部スペースにろ液を提供するように構成された被処理水供給ラインと、
     (g)前記ろ過膜から固形分を捕捉したプレコート層を剥離するための水を前記固液分離装置の上部スペースに供給し、それにより前記剥離水が前記プレコート層を前記ろ過膜から剥離するように構成された水供給ラインと、
     (h)前記固液分離装置の上部スペースから、前記プレコート層の剥離物と、前記固液分離装置の上部スペースに供給された前記水とを受け入れ、該剥離物に含まれる固形分と前記ろ過助剤とを磁気的に分離するように構成された磁気分離槽と、
     (i)分離されたろ過助剤を前記磁気分離槽から前記ろ過助剤供給装置へ戻すように構成されたろ過助剤返送ラインと、
    を有することを特徴とする水処理装置。
    (A) Filtration aid comprising magnetic primary particles or aggregates thereof and a coating material covering the magnetic primary particles or aggregates and having a critical surface tension γ c of 22 × 10 −3 N / m or less. A filter aid supply device configured to supply the agent;
    (B) a treated water tank for temporarily storing treated water containing solids;
    (C) a mixing tank configured to mix a dispersion medium with the filter aid supplied from the filter aid supply apparatus, and to prepare a suspension in which the filter aid is dispersed in the dispersion medium;
    (D) a solid-liquid separation device having a filtration membrane that partitions the interior into an upper space and a lower space, wherein the upper space communicates with the filter aid supply device and the mixing tank,
    (E) The suspension is introduced from the mixing tank into the upper space of the solid-liquid separator, the suspension is filtered through the filtration membrane, and a precoat layer made of the filter aid is formed on the filtration membrane. A suspension supply line configured to:
    (F) Water to be treated is introduced from the treated water tank into the upper space of the solid-liquid separator, and the water to be treated is allowed to pass through the precoat layer and the filtration membrane so that the solid content can help filter the precoat layer. A treated water supply line that is captured by the agent and configured to provide filtrate to the lower space;
    (G) Supplying water for peeling the precoat layer that has captured the solid content from the filtration membrane to the upper space of the solid-liquid separator, so that the peel water peels the precoat layer from the filtration membrane. A water supply line configured to,
    (H) From the upper space of the solid-liquid separator, the exfoliated material of the precoat layer and the water supplied to the upper space of the solid-liquid separator are received, and the solid content contained in the exfoliated material and the filtration A magnetic separation vessel configured to magnetically separate the auxiliary agent;
    (I) a filter aid return line configured to return the separated filter aid from the magnetic separation tank to the filter aid supply device;
    A water treatment apparatus comprising:
  8.  前記懸濁液供給ラインが前記被処理水供給ラインに接続されていることを特徴とする請求項7記載の装置。 The apparatus according to claim 7, wherein the suspension supply line is connected to the treated water supply line.
  9.  前記固液分離装置の下部スペースから前記上部スペースまでの間に設けられ、前記ろ過膜を透過した処理水を前記固液分離装置の上部スペースに供給される前記水として前記上部スペースに導入するように構成された第1の処理水利用ラインをさらに有することを特徴とする請求項7記載の装置。 The treated water, which is provided between the lower space and the upper space of the solid-liquid separator, and permeates the filtration membrane, is introduced into the upper space as the water supplied to the upper space of the solid-liquid separator. The apparatus according to claim 7, further comprising a first treated water utilization line configured as described above.
  10.  前記固液分離装置の下部スペースから前記磁気分離槽までの間に設けられ、前記ろ過膜を透過した処理水を洗浄水として前記磁気分離槽に導入するように構成された第2の処理水利用ラインをさらに有することを特徴とする請求項7記載の装置。 Use of second treated water provided between the lower space of the solid-liquid separator and the magnetic separation tank, and configured to introduce treated water that has passed through the filtration membrane into the magnetic separation tank as washing water The apparatus of claim 7, further comprising a line.
  11.  前記固液分離装置の下部スペースから前記混合槽までの間に設けられ、前記ろ過膜を透過した処理水を前記分散媒として前記混合槽に導入するように構成された第3の処理水利用ラインをさらに有することを特徴とする請求項7記載の装置。 A third treated water utilization line provided between the lower space of the solid-liquid separator and the mixing tank and configured to introduce the treated water that has passed through the filtration membrane into the mixing tank as the dispersion medium. The apparatus of claim 7 further comprising:
  12.  (A)磁性体一次粒子又はその凝集体と、前記磁性体一次粒子又はその凝集体を覆い、22×10-3N/m以下の臨界表面張力γcを有する被覆材とを含むろ過助剤を供給するろ過助剤供給装置と、
     (B)固形分を含む被処理水を一時的に貯留するとともに、前記被処理水に前記ろ過助剤供給装置からのろ過助剤を混合し、前記被処理水中に前記ろ過助剤が分散する懸濁液を作製する混合原水槽と、
     (C)内部を上部スペースと下部スペースとに仕切るろ過膜を有し、前記上部スペースが前記混合原水槽に連通する固液分離装置と、
     (D)前記混合原水槽から前記固液分離装置の上部スペースに前記懸濁液を導入させ、前記ろ過膜で前記懸濁液をろ過させ、前記ろ過膜上に前記ろ過助剤および固形分を含む堆積層を形成するように構成された懸濁液供給ラインと、
     (E)前記ろ過膜から前記堆積層を剥離するための水を前記固液分離装置の上部スペースに供給し、それにより前記水が前記堆積層を前記ろ過膜から剥離するように構成された剥離水供給ラインと、
     (F)前記固液分離装置の上部スペースから、前記堆積層の剥離物と前記固液分離装置の上部スペースに供給した前記水とを受け入れ、該剥離物に含まれる固形分と前記ろ過助剤とを磁気的に分離するように構成された磁気分離槽と、
     (G)分離されたろ過助剤を前記磁気分離槽から前記ろ過助剤供給装置へ戻すように構成されたろ過助剤返送ラインと、
     分離されたろ過助剤を前記磁気分離槽から前記ろ過助剤供給装置へ戻すように構成されたろ過助剤返送ラインと、
    を有することを特徴とする水処理装置。
    (A) A filter aid comprising magnetic primary particles or aggregates thereof and a coating material covering the magnetic primary particles or aggregates and having a critical surface tension γ c of 22 × 10 −3 N / m or less. A filter aid supply device for supplying
    (B) While temporarily storing the to-be-processed water containing solid content, the filter aid from the said filter aid supply apparatus is mixed with the said to-be-processed water, and the said filter aid disperses in the said to-be-processed water. A mixed raw water tank for producing a suspension;
    (C) a solid-liquid separator having a filtration membrane that divides the interior into an upper space and a lower space, wherein the upper space communicates with the mixed raw water tank
    (D) The suspension is introduced from the mixed raw water tank into the upper space of the solid-liquid separator, the suspension is filtered through the filtration membrane, and the filter aid and solid content are added onto the filtration membrane. A suspension supply line configured to form a deposited layer comprising:
    (E) Peeling configured to supply water for peeling the deposited layer from the filtration membrane to the upper space of the solid-liquid separator, whereby the water peels the deposited layer from the filtration membrane. A water supply line;
    (F) From the upper space of the solid-liquid separator, the exfoliated material of the deposited layer and the water supplied to the upper space of the solid-liquid separator are received, and the solid content contained in the exfoliated material and the filter aid A magnetic separation tank configured to magnetically separate
    (G) a filter aid return line configured to return the separated filter aid from the magnetic separation tank to the filter aid supply device;
    A filter aid return line configured to return the separated filter aid from the magnetic separation tank to the filter aid supply device;
    A water treatment apparatus comprising:
  13.  前記固液分離装置の下部スペースから前記上部スペースまでの間に設けられ、前記ろ過膜を透過した処理水を前記固液分離装置の上部スペースに供給する前記水として前記磁気分離槽に導入するように構成された第1の処理水利用ラインをさらに有することを特徴とする請求項12記載の装置。 It is provided between the lower space of the solid-liquid separator and the upper space, and the treated water that has permeated the filtration membrane is introduced into the magnetic separation tank as the water supplied to the upper space of the solid-liquid separator. The apparatus according to claim 12, further comprising a first treated water utilization line configured as described above.
  14.  前記固液分離装置の下部スペースから前記磁気分離槽までの間に設けられ、前記ろ過膜を透過した処理水を前記磁気分離槽に導入するように構成された第2の処理水利用ラインをさらに有することを特徴とする請求項12記載の装置。 A second treated water use line provided between the lower space of the solid-liquid separator and the magnetic separation tank, and configured to introduce treated water that has passed through the filtration membrane into the magnetic separation tank; 13. The apparatus of claim 12, comprising:
PCT/JP2012/073216 2012-01-23 2012-09-11 Water treatment method and water treatment system WO2013111372A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012011414A JP5389196B2 (en) 2012-01-23 2012-01-23 Water treatment method and water treatment apparatus
JP2012-011414 2012-01-23

Publications (1)

Publication Number Publication Date
WO2013111372A1 true WO2013111372A1 (en) 2013-08-01

Family

ID=48873121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073216 WO2013111372A1 (en) 2012-01-23 2012-09-11 Water treatment method and water treatment system

Country Status (2)

Country Link
JP (1) JP5389196B2 (en)
WO (1) WO2013111372A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064408A (en) * 2014-07-30 2016-04-28 三菱マテリアル株式会社 Oil-water separation filtration device, oil-water separation body recovery method
US10294125B2 (en) 2014-07-30 2019-05-21 Mitsubishi Materials Corporation Filter medium, method for producing filter medium, water treatment module, and water treatment device
US10364360B2 (en) 2014-07-30 2019-07-30 Mitsubishi Materials Corporation Surface coating material, coating film, and hydrophilic oil repellent member
US11266934B2 (en) 2017-06-27 2022-03-08 Daikin Industries. Ltd. Method and system for treating aqueous fluid resulting from fluoropolymer production step

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109382051B (en) * 2018-11-13 2020-12-18 中国化学赛鼎宁波工程有限公司 Production system and production process of nano biomedical material
CN116020191B (en) * 2022-12-26 2023-10-10 青岛农业大学 Crystal filter equipment is used in preparation of cefalotin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327611A (en) * 1996-06-11 1997-12-22 Toshiba Corp Method and apparatus for filtering sparingly filterable waste liquid
JP2004097952A (en) * 2002-09-10 2004-04-02 Toshiba Corp Filter and power generation plant
JP2010137147A (en) * 2008-12-10 2010-06-24 Toshiba Corp Wastewater treatment equipment
JP2011136295A (en) * 2009-12-28 2011-07-14 Toshiba Corp Filtration apparatus and wastewater treatment system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327611A (en) * 1996-06-11 1997-12-22 Toshiba Corp Method and apparatus for filtering sparingly filterable waste liquid
JP2004097952A (en) * 2002-09-10 2004-04-02 Toshiba Corp Filter and power generation plant
JP2010137147A (en) * 2008-12-10 2010-06-24 Toshiba Corp Wastewater treatment equipment
JP2011136295A (en) * 2009-12-28 2011-07-14 Toshiba Corp Filtration apparatus and wastewater treatment system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064408A (en) * 2014-07-30 2016-04-28 三菱マテリアル株式会社 Oil-water separation filtration device, oil-water separation body recovery method
US10294125B2 (en) 2014-07-30 2019-05-21 Mitsubishi Materials Corporation Filter medium, method for producing filter medium, water treatment module, and water treatment device
US10364360B2 (en) 2014-07-30 2019-07-30 Mitsubishi Materials Corporation Surface coating material, coating film, and hydrophilic oil repellent member
US10399868B2 (en) 2014-07-30 2019-09-03 Mitsubishi Materials Corporation Oil-water separation apparatus and drainage system
US11266934B2 (en) 2017-06-27 2022-03-08 Daikin Industries. Ltd. Method and system for treating aqueous fluid resulting from fluoropolymer production step
EP3646929B1 (en) * 2017-06-27 2023-11-22 Daikin Industries, Ltd. Method for treating aqueous fluid resulting from fluoropolymer production step

Also Published As

Publication number Publication date
JP2013146717A (en) 2013-08-01
JP5389196B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
WO2013111372A1 (en) Water treatment method and water treatment system
JP5319730B2 (en) Fluorine recovery device and fluorine recovery method
JP5826683B2 (en) Magnetic powder for water treatment
JP5823221B2 (en) Filter aid, filter aid for water treatment, precoat material for water treatment, and water treatment method
Huang et al. Novel carbon paper@ magnesium silicate composite porous films: Design, fabrication, and adsorption behavior for heavy metal ions in aqueous solution
JP5583162B2 (en) Filter aid for water treatment and water treatment method
US8142650B2 (en) Water treatment system
WO2016002110A1 (en) Water treatment system and water treatment method
US20100230332A1 (en) Adsorption apparatus for wastewater
JP2014018751A (en) Apparatus and method for cleaning magnetic powder
JP2011056343A (en) Valuable resource recovery system and method for operation thereof
Wang et al. Fabrication of magnetically responsive anti-fouling and easy-cleaning nanofiber membrane and its application for efficient oil-water emulsion separation
JP5492243B2 (en) Water treatment method and water treatment apparatus
JP2014057920A (en) Water treatment method
JP2013173117A (en) Magnetic particle for water treatment, and water treatment method
JP2013075288A (en) Apparatus and method for metal recovery
JP5818670B2 (en) Oil-containing wastewater treatment equipment
Xu et al. Evaluation of dynamic membrane formation and filtration models at constant pressure in a combined coagulation/dynamic membrane process in treating polluted river water
JP5502924B2 (en) Water treatment method
JP5649749B2 (en) Water treatment method
JP2013154326A (en) Water treatment particle and water treatment method
JP6305215B2 (en) Fluorine-containing wastewater treatment method and fluorine-containing wastewater treatment apparatus
JP2014140825A (en) Waste water treatment method
CN101654290A (en) Chemical film wastewater treatment method and device thereof
JP2014113530A (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866891

Country of ref document: EP

Kind code of ref document: A1