JP2013154326A - Water treatment particle and water treatment method - Google Patents

Water treatment particle and water treatment method Download PDF

Info

Publication number
JP2013154326A
JP2013154326A JP2012018968A JP2012018968A JP2013154326A JP 2013154326 A JP2013154326 A JP 2013154326A JP 2012018968 A JP2012018968 A JP 2012018968A JP 2012018968 A JP2012018968 A JP 2012018968A JP 2013154326 A JP2013154326 A JP 2013154326A
Authority
JP
Japan
Prior art keywords
water
water treatment
particles
treatment particles
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012018968A
Other languages
Japanese (ja)
Inventor
Taro Fukaya
太郎 深谷
Atsushi Yamazaki
厚 山崎
Kenji Tsutsumi
剣治 堤
Ichiro Yamanashi
伊知郎 山梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012018968A priority Critical patent/JP2013154326A/en
Publication of JP2013154326A publication Critical patent/JP2013154326A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment particle which can adsorb a removing target substance in the water and is repeatedly usable by desorbing absorbed matters and collecting the water treatment particle, and to provide a water treatment method using the same.SOLUTION: A water treatment particle adsorbs insoluble substances in the water to be treated and sediments with the insoluble substances, and is then separated and collected from the insoluble substances in the sediments to be repeatedly used. The water treatment particle includes: a core 11 with a higher specific weight than 1; and a surface layer 12 including one of an amide group and an ureido group carried on the core.

Description

ここに記載する実施の形態は、工場排水や生活排水などの浄化に用いる水処理用粒子及びそれを用いる水処理方法に関する。   Embodiment described here is related with the particle | grains for water treatment used for purification | cleaning of factory waste water, domestic waste water, etc., and the water treatment method using the same.

近時、工業の発達や人口の増加により水資源の有効利用が求められるようになってきている。水資源の有効利用を図るためには工業排水や生活排水などのような各種の排水を浄化して再利用することが重要である。排水を浄化するためには水中に含まれる水不溶物や不純物を分離除去する必要がある。排水を浄化する方法として例えば膜分離法、遠心分離法、活性炭吸着法、オゾン処理法、凝集剤添加による浮遊物質の沈殿除去法などがある。これらの水処理方法を用いて、排水に含まれるリンや窒素などの環境に及ぼす影響の大きい化学物質を除去し、また水中に分散した油類やクレイなどを除去することができる。   Recently, the effective use of water resources has been required due to industrial development and population growth. In order to effectively use water resources, it is important to purify and reuse various wastewaters such as industrial wastewater and domestic wastewater. In order to purify the waste water, it is necessary to separate and remove water insoluble matters and impurities contained in the water. Examples of methods for purifying wastewater include membrane separation methods, centrifugal separation methods, activated carbon adsorption methods, ozone treatment methods, and suspended matter precipitation removal methods by adding flocculants. By using these water treatment methods, chemical substances having a great influence on the environment such as phosphorus and nitrogen contained in the wastewater can be removed, and oils and clays dispersed in water can be removed.

これらの水処理方法のうち加圧浮上法と凝集沈殿法は、排水中の水不溶物質を除去するために広く一般に使用されている。例えば特許文献1には加圧浮上法の一例が記載されている。   Among these water treatment methods, the pressure flotation method and the coagulation sedimentation method are widely used to remove water-insoluble substances in the waste water. For example, Patent Document 1 describes an example of a pressure levitation method.

特開2006−218381号公報JP 2006-218381 A

特許文献1に記載された加圧浮上法は、排水に凝集ポリマーを添加し、排水中の水不溶物質(固形分)を凝集ポリマーにより粗大化させ、圧縮空気の吹込みにより水不溶物質(固形分)をフロックとして水面に浮上させ、浮上したフロックを水から分離除去する技術である。   In the pressure flotation method described in Patent Document 1, agglomerated polymer is added to the waste water, the water insoluble substance (solid content) in the waste water is coarsened by the agglomerated polymer, and the water insoluble substance (solids) is injected by blowing compressed air. Min) is floated on the surface of the water as a floc, and the floated floc is separated and removed from the water.

また、凝集沈殿法は、同様に凝集ポリマーにより排水中の水不溶物質(固形分)を粗大化させ、水不溶物質(固形分)の沈降速度を速め、水不溶物質(固形分)を沈殿物として水から分離除去する技術である。   In the coagulation sedimentation method, the water-insoluble substance (solid content) in the wastewater is also coarsened by the coagulation polymer, and the sedimentation rate of the water-insoluble substance (solid content) is increased, and the water-insoluble substance (solid content) is precipitated. As a technique for separating and removing from water.

しかし、加圧浮上法および凝集沈殿法のいずれの方法においても、排水に多量の凝集ポリマーを添加する必要があるため、薬剤使用コストがランニングコストを押し上げる結果、トータルコストを増大化させてしまうという問題点がある。また、これらの従来技術においては、凝集ポリマーがスラッジとしてそのまま排出されるために廃棄物の量が増加するという問題点がある。   However, in both the pressure flotation method and the coagulation sedimentation method, it is necessary to add a large amount of coagulation polymer to the waste water, so that the cost of using the drug increases the running cost, resulting in an increase in the total cost. There is a problem. Moreover, in these prior arts, there is a problem that the amount of waste increases because the agglomerated polymer is discharged as sludge as it is.

本発明は上記課題を鑑みてなされたものであり、水中の除去対象物質を吸着し、吸着物を分離し、回収して繰り返し再利用することができる水処理用粒子及びそれを利用する水処理方法を提供するものである。   The present invention has been made in view of the above problems, and water treatment particles capable of adsorbing substances to be removed in water, separating adsorbates, collecting them, and reusing them repeatedly and water treatment using the same. A method is provided.

ここに記載する実施の形態の水処理用粒子は、被処理水中の水不溶性物質を吸着し、前記水不溶性物質とともに沈降し、沈殿物中の前記水不溶性物質から分離され、回収して繰り返し使用される水処理用粒子であって、比重が1より大きいコア部と、前記コア部に担持されたアミド基またはウレイド基のいずれかを含む表層部と、を有することを特徴とする。   The water treatment particles of the embodiments described herein adsorb water-insoluble substances in the water to be treated, settle together with the water-insoluble substances, are separated from the water-insoluble substances in the precipitate, and are collected and used repeatedly. The water treatment particle is characterized by having a core part having a specific gravity greater than 1 and a surface layer part containing either an amide group or a ureido group supported on the core part.

(a)〜(c)はシランカップリング剤と無機物表面との間の反応メカニズムを示す模式図。(A)-(c) is a schematic diagram which shows the reaction mechanism between a silane coupling agent and an inorganic surface. 第1の実施形態に係る水処理装置を示す構成ブロック図。The block diagram which shows the water treatment apparatus which concerns on 1st Embodiment. 図2の装置を用いる第1実施形態の水処理方法を示す工程図。Process drawing which shows the water treatment method of 1st Embodiment using the apparatus of FIG. (a)は磁性粒子が凝集した凝集体を示す断面模式図、(b)は被覆材で被覆された磁性粒子を示す断面模式図。(A) is a cross-sectional schematic diagram which shows the aggregate which the magnetic particle aggregated, (b) is a cross-sectional schematic diagram which shows the magnetic particle coat | covered with the coating | covering material. 第2の実施形態に係る水処理装置を示す構成ブロック図。The block diagram which shows the water treatment apparatus which concerns on 2nd Embodiment. 図5の装置を用いる第2実施形態の水処理方法を示す工程図。Process drawing which shows the water treatment method of 2nd Embodiment using the apparatus of FIG.

以下に上記課題を解決する種々の実施の形態を説明する。   Various embodiments for solving the above problems will be described below.

(1)ここに記載する実施の形態に係る水処理用粒子は、被処理水中の水不溶性物質を吸着し、前記水不溶性物質とともに沈降し、沈殿物中の前記水不溶性物質から分離され、回収して繰り返し使用される水処理用粒子であって、比重が1より大きいコア部と、前記コア部に担持されたアミド基またはウレイド基のいずれかを含む表層部と、を有する。   (1) The water treatment particles according to the embodiment described herein adsorb a water-insoluble substance in water to be treated, settle with the water-insoluble substance, and are separated from the water-insoluble substance in the precipitate and collected. Thus, the water treatment particles are repeatedly used, and have a core part having a specific gravity greater than 1, and a surface layer part containing either an amide group or a ureido group supported on the core part.

上記粒子の表層部がアミド基(RCONH-)またはウレイド基(H2NCONH-)のいずれかを含むため、これらの官能基が排水中に含まれる固形分(各種の水不溶性物質)を高い効率で吸着する。 Since the surface layer of the particle contains either an amide group (RCONH-) or a ureido group (H 2 NCONH-), these functional groups have high efficiency in the solid content (various water-insoluble substances) contained in the waste water. Adsorb at.

また、分離・回収した水処理用粒子を繰り返し再使用することができるため、従来品よりも運転コストを大幅に低減することができる。また、コア部の比重が1を超えているため、水処理用粒子は静置状態の水中において沈降し、沈殿物として容易に分離・回収できる。   Further, since the separated and recovered water treatment particles can be reused repeatedly, the operating cost can be greatly reduced as compared with the conventional product. Moreover, since the specific gravity of the core part exceeds 1, the water treatment particles settle in standing water and can be easily separated and recovered as a precipitate.

(2)上記(1)において、コア部が磁性体からなることが好ましい。   (2) In the above (1), the core part is preferably made of a magnetic material.

コア部に磁性体を用いているので、電磁石のような磁気吸着手段を用いて水処理用粒子と固体分(SS等の水不溶物質)とを迅速かつ確実に磁気分離することができる。   Since a magnetic material is used for the core portion, it is possible to quickly and reliably magnetically separate water treatment particles and solids (water insoluble substances such as SS) using a magnetic adsorption means such as an electromagnet.

水処理用粒子の形状は、球状、多面体、不定形など種々の形状を取り得るが特に限定されない。望ましいコア部の粒径や形状は、製造コストなどに鑑みて適宜選択すればよく、特に球状または角が丸い多面体構造であることが好ましい。コア部を磁性体とすることにより相対的に水処理用粒子の比重が高くなり、沈殿槽での重力沈降分離やサイクロンでの遠心分離が容易になる。これらの力学的分離法を磁気的分離法と組み合せて用いることにより、水中から水処理用粒子を迅速かつ高効率に分離することが可能になる。また、コア部を磁性体としているため、電磁石などの磁気吸着手段を用いて水処理用粒子を分離・回収することができ、プロセスの選択の幅が広がるという利点がある。   The shape of the water treatment particles can take various shapes such as a spherical shape, a polyhedron, and an irregular shape, but is not particularly limited. Desirable particle size and shape of the core portion may be appropriately selected in view of manufacturing cost, and it is particularly preferable that the core portion has a polyhedral structure having a spherical shape or rounded corners. By making the core part a magnetic material, the specific gravity of the water treatment particles is relatively increased, and gravity sedimentation separation in a sedimentation tank and centrifugal separation in a cyclone are facilitated. By using these mechanical separation methods in combination with the magnetic separation method, it becomes possible to quickly and efficiently separate water treatment particles from water. Further, since the core portion is made of a magnetic material, water treatment particles can be separated and collected using a magnetic adsorption means such as an electromagnet, and there is an advantage that the range of process selection is widened.

このように上記実施形態によれば、磁気分離した水処理用粒子を高効率に回収でき、回収した水処理用粒子を繰り返し再利用することができる。   Thus, according to the above embodiment, the magnetically separated water treatment particles can be recovered with high efficiency, and the collected water treatment particles can be repeatedly reused.

(3)上記(1)において、磁性体がフェライト系化合物であることが好ましい。水処理用粒子の磁性単体粒子として種々のフェライト系化合物を好適に用いることができる。フェライト系化合物として鉄、鉄基合金、磁鉄鉱(マグネタイト)、チタン鉄鉱(イルメナイト)、磁硫鉄鉱(ピロータイト)、マグネシアフェライト、マンガンマグネシウムフェライト、マンガン亜鉛フェライト、コバルトフェライト、ニッケルフェライト、ニッケル亜鉛フェライト、バリウムフェライト、銅亜鉛フェライトなどを用いることができる。これらのうち水中での安定性に優れたマグネタイト、マグネシアフェライト、マンガンマグネシウムフェライトなどのフェライト系化合物を用いることが最も好ましい。特にマグネタイト(Fe)は、安価であるだけでなく、水中でも磁性体として安定した性質を示し、毒性のない安全な元素ばかりで構成されているため、水処理に使用するのに適している。 (3) In (1) above, the magnetic material is preferably a ferrite compound. Various ferrite compounds can be suitably used as the magnetic single particles of the water treatment particles. Ferrite compounds such as iron, iron-based alloys, magnetite (magnetite), titanite (ilmenite), pyrrhotite (pilotite), magnesia ferrite, manganese magnesium ferrite, manganese zinc ferrite, cobalt ferrite, nickel ferrite, nickel zinc ferrite, barium Ferrite, copper zinc ferrite, etc. can be used. Of these, it is most preferable to use a ferrite-based compound such as magnetite, magnesia ferrite, or manganese magnesium ferrite having excellent stability in water. In particular, magnetite (Fe 3 O 4 ) is not only inexpensive, but also exhibits stable properties as a magnetic substance in water and is composed of only safe and non-toxic elements, making it suitable for use in water treatment. ing.

ここに記載する実施形態の水処理方法では、水処理用粒子が分離性および耐久性に優れているので、分散→吸着→分離→回収→分散のサイクルで水処理用粒子を繰り返し使用することができる。このため、運転コストやメンテナンスコストを低く抑えることができるというメリットがある。   In the water treatment method of the embodiment described here, since the water treatment particles are excellent in separability and durability, it is possible to repeatedly use the water treatment particles in a cycle of dispersion → adsorption → separation → recovery → dispersion. it can. For this reason, there exists an advantage that an operating cost and a maintenance cost can be restrained low.

(4)上記(1)において、表層部は、アミド基又はウレイド基のいずれかとアルコキシ基を有するシランカップリング剤を反応させ、さらに無機酸及び有機酸のうちの少なくとも一方を反応させることにより、前記コア部の表面に生成される塩を有することが好ましい。   (4) In the above (1), the surface layer part reacts either an amide group or a ureido group with a silane coupling agent having an alkoxy group, and further reacts at least one of an inorganic acid and an organic acid, It is preferable to have a salt generated on the surface of the core part.

先ずコア部の表面にシランカップリング剤を作用させて、アミド基又はウレイド基のいずれかとアルコキシ基からなる所望の官能基をコア部の表面に担持させる。次いで、前記所望の官能基に無機酸及び/又は有機酸を作用させ、官能基と酸との反応によりコア部の表面にアミド基又はウレイド基のいずれかとアルコキシ基を有する塩を生成する。このようにして生成される塩は、水中の固形分を吸着する能力が高いため、吸着による浄化作用を格段に向上させることができる。   First, a silane coupling agent is allowed to act on the surface of the core portion, and a desired functional group composed of either an amide group or a ureido group and an alkoxy group is supported on the surface of the core portion. Next, an inorganic acid and / or an organic acid is allowed to act on the desired functional group, and a salt having either an amide group or a ureido group and an alkoxy group on the surface of the core portion is generated by a reaction between the functional group and the acid. Since the salt produced in this way has a high ability to adsorb solids in water, the purification action by adsorption can be remarkably improved.

シランカップリング剤は、加水分解反応と縮合反応の2つの反応に寄与する反応物質である。   A silane coupling agent is a reactant that contributes to two reactions, a hydrolysis reaction and a condensation reaction.

加水分解反応では、フェライト粒子表面の水酸基M-OH(Mは金属原子)とシランカップリング剤に含まれるアルコキシ基(RO-Si)が脱アルコール反応するか、または、図1の(a)と(b)に示すように、水と反応してシランカップリング剤に含まれるアルコキシ基(RO-Si)が加水分解してシラノール基が生成され、無機粒子(コア部)の表面にある水酸基との水素結合を介して無機粒子の表面に移行する。シランカップリング剤分子の加水分解速度は、無機粒子の表面状態、すなわち無機粒子表面のpHおよび吸着水の量により影響を受ける。   In the hydrolysis reaction, the hydroxyl group M-OH (M is a metal atom) on the ferrite particle surface and the alkoxy group (RO-Si) contained in the silane coupling agent undergo a dealcoholization reaction, or (a) in FIG. As shown in (b), the alkoxy group (RO-Si) contained in the silane coupling agent reacts with water to hydrolyze to produce a silanol group, and the hydroxyl group on the surface of the inorganic particles (core part) It moves to the surface of the inorganic particle through the hydrogen bond. The hydrolysis rate of the silane coupling agent molecule is affected by the surface state of the inorganic particles, that is, the pH of the inorganic particle surface and the amount of adsorbed water.

縮合反応では、図1の(a)と(c)に示すように、シランカップリング剤は脱水縮合反応を経て無機物表面との間に強固な共有結合を生成する。この反応と並行してシラノール基同士が縮合してシロキサンオリゴマーが生成される。熱や触媒の存在下でこれらの反応を加速させることができる。また、加熱・乾燥などにより副生する水、アルコールなどを系外に排出することにより反応を促進させることができる。   In the condensation reaction, as shown in FIGS. 1A and 1C, the silane coupling agent undergoes a dehydration condensation reaction to form a strong covalent bond with the inorganic surface. In parallel with this reaction, silanol groups are condensed to produce a siloxane oligomer. These reactions can be accelerated in the presence of heat or catalyst. Further, the reaction can be promoted by discharging water, alcohol and the like by-produced by heating and drying to the outside of the system.

シランカップリング剤分子の有機官能基は粉体粒子の外側に配向するため、シランカップリング剤溶液の親水性と疎水性とのバランスを考慮して最適な溶媒と配合比を選定する必要がある。   Since the organic functional groups of the silane coupling agent molecules are oriented outside the powder particles, it is necessary to select the optimum solvent and blending ratio in consideration of the balance between the hydrophilicity and hydrophobicity of the silane coupling agent solution. .

(5)上記(4)において、前記シランカップリング剤が3-ウレイドプロピルトリエトキシシランまたは3-グリシドキシプロピルトリエトキシシランのいずれかであることが好ましい。   (5) In the above (4), it is preferable that the silane coupling agent is either 3-ureidopropyltriethoxysilane or 3-glycidoxypropyltriethoxysilane.

シランカップリング剤として3-ウレイドプロピルトリエトキシシランを無機酸または有機酸と反応させると、コア部の表面にウレイド基を含む表層部(陽子受容体)が生成される。   When 3-ureidopropyltriethoxysilane is reacted with an inorganic acid or an organic acid as a silane coupling agent, a surface layer portion (proton acceptor) containing a ureido group on the surface of the core portion is generated.

また、シランカップリング剤として3-グリシドキシプロピルトリエトキシシランを無機酸または有機酸と反応させると、コア部の表面にアミド基を含む表層部(陽子受容体)が形成される。   When 3-glycidoxypropyltriethoxysilane is reacted with an inorganic acid or an organic acid as a silane coupling agent, a surface layer portion (proton acceptor) containing an amide group is formed on the surface of the core portion.

(6)ここに記載する実施の形態に係る水処理方法は、水処理用粒子により被処理水中の水不溶性物質を吸着し、吸着した水不溶性物質とともに前記水処理粒子を沈降分離し、沈殿物から前記水処理用粒子を分離し、分離した水処理用粒子を回収し、回収した水処理用粒子を繰り返し使用する水処理方法において、(a)前記水処理用粒子として、比重が1より大きい磁性体からなる磁性コア部と前記磁性コア部に担持されたアミド基またはウレイド基のいずれかを含む表層部とを有する粒子を準備し、(b)前記水処理用粒子と被処理水を混合し、前記水処理用粒子に固体分を吸着・捕捉させ、(c)前記吸着・捕捉した水処理用粒子を沈降により固液分離して処理水と水処理用粒子とを分離し、(d)前記分離した水処理用粒子を水中で混合して、水処理用粒子と固形分を分離し、(e)前記混合物から前記水処理用粒子を磁気的に分離し、(f)分離した水処理用粒子を前記(b)工程において固体分の吸着・捕捉に再利用する。   (6) In the water treatment method according to the embodiment described herein, a water-insoluble substance in water to be treated is adsorbed by water treatment particles, and the water-treated particles are settled and separated together with the adsorbed water-insoluble substance. In the water treatment method in which the water treatment particles are separated, the separated water treatment particles are collected, and the collected water treatment particles are repeatedly used. (A) As the water treatment particles, the specific gravity is greater than 1. Preparing particles having a magnetic core portion made of a magnetic material and a surface layer portion containing either an amide group or a ureido group carried on the magnetic core portion; and (b) mixing the water treatment particles and the water to be treated. And (c) separating the treated water from the water treatment particles by solid-liquid separation of the adsorbed and captured water treatment particles by sedimentation, and (d) ) The separated water treatment particles in water In combination, the water treatment particles and the solid content are separated, (e) the water treatment particles are magnetically separated from the mixture, and (f) the separated water treatment particles are solidified in the step (b). Reuse for adsorption and capture of water.

上記実施形態の水処理方法は、沈殿器を用いた沈降分離法に対応する方法である。上記特定の官能基(アミド基またはウレイド基のいずれか)を有する水処理用粒子を被処理水中に混合し、水中の水不溶性物質及び析出物を吸着させる。この懸濁液を沈降槽に導入し、水処理用粒子を水不溶性物質及び析出物と共に沈降させて分離する。   The water treatment method of the said embodiment is a method corresponding to the sedimentation separation method using a precipitator. The water treatment particles having the specific functional group (either amide group or ureido group) are mixed in the water to be treated to adsorb water-insoluble substances and precipitates in the water. This suspension is introduced into a settling tank, and the water treatment particles are settled together with water-insoluble substances and precipitates and separated.

次いで、沈降槽下部から水処理用粒子と水不溶性物質及び析出物を引き抜き、水中で混合することにより水処理用粒子とそれ以外を分離する。次いで、これを洗浄槽から磁気分離槽へ送り、磁気分離槽内で各々が粒子状態になるまで撹拌し、水中において水処理用粒子および固形分を均一に分散させる。   Next, the water treatment particles, the water-insoluble substance and the precipitate are extracted from the lower part of the settling tank and mixed in water to separate the water treatment particles from the others. Subsequently, this is sent from the washing tank to the magnetic separation tank, and stirred in the magnetic separation tank until each of them becomes a particle state, whereby the water treatment particles and the solid content are uniformly dispersed in the water.

次いで、水中に分散する水処理用粒子を磁石などの磁気吸着手段に吸着させ、磁気吸着手段に水処理用粒子が吸着されている間に、固形分を含む処理水を磁気分離槽から排出する。次いで、水処理用粒子の磁気吸着を解除して、水処理用粒子を磁気吸着手段から脱落させ、さらに処理水や水道水などを磁気吸着手段に吹き付け、磁気吸着手段に付着した水処理用粒子を洗浄し、回収する。回収した水処理用粒子は、磁気分離槽から水処理用粒子供給装置へ送り、再利用される。   Next, the water treatment particles dispersed in water are adsorbed by a magnetic adsorption means such as a magnet, and the treated water containing solids is discharged from the magnetic separation tank while the water treatment particles are adsorbed by the magnetic adsorption means. . Subsequently, the magnetic adsorption of the water treatment particles is released, the water treatment particles are dropped from the magnetic adsorption means, and further treated water or tap water is sprayed on the magnetic adsorption means to adhere to the magnetic adsorption means. Wash and collect. The collected water treatment particles are sent from the magnetic separation tank to the water treatment particle supply device and reused.

(7)ここに記載する実施の形態に係る水処理方法は、水処理用粒子により被処理水中の水不溶性物質を吸着し、吸着した水不溶性物質とともに前記水処理粒子を遠心分離し、遠心分離物から前記水処理用粒子を分離し、分離した水処理用粒子を回収し、回収した水処理用粒子を繰り返し使用する水処理方法において、(A)前記水処理用粒子として、比重が1より大きい磁性体からなる磁性コア部と前記磁性コア部に担持されたアミド基またはウレイド基のいずれかを含む表層部とを有する粒子を準備し、(B)前記水処理用粒子と被処理水を混合し、前記水処理用粒子に固体分を吸着・捕捉させ、(C)前記吸着・捕捉した水処理用粒子を遠心力により固液分離して処理水と水処理用粒子とを分離し、(D)前記分離した水処理用粒子を水中で混合して、水処理用粒子と固形分を分離し、(E)前記混合物から前記水処理用粒子を磁気的に分離し、(F)分離した水処理用粒子を前記(B)工程において固体分の吸着・捕捉に再利用する。   (7) In the water treatment method according to the embodiment described herein, the water-insoluble substance in the water to be treated is adsorbed by the water-treatment particles, and the water-treated particles are centrifuged together with the adsorbed water-insoluble substance. In the water treatment method of separating the water treatment particles from the product, collecting the separated water treatment particles, and repeatedly using the collected water treatment particles, (A) the specific gravity of the water treatment particles is 1 Preparing particles having a magnetic core portion made of a large magnetic material and a surface layer portion containing either an amide group or a ureido group carried on the magnetic core portion; and (B) the water treatment particles and the water to be treated. Mixing, causing the water treatment particles to adsorb and capture solids, and (C) separating the water and water treatment particles by solid-liquid separation of the adsorbed and captured water treatment particles by centrifugal force, (D) The separated water treatment particles (E) magnetically separating the water treatment particles from the mixture, and (F) separating the water treatment particles from the step (B). Reused for adsorption and capture of solids.

上記実施形態の水処理方法は、遠心分離器を用いた遠心分離法に対応する方法である。遠心分離器としては、サイクロンを用いることができる。上記特定の官能基(アミド基またはウレイド基のいずれか)を有する水処理用粒子を被処理水中に分散させ、水処理用粒子に水不溶性の固形分を吸着させ、この水処理用粒子/固形分の吸着状態にある被処理水を遠心分離器すなわちサイクロンに通水し、遠心分離装置下部に水処理用粒子粒子/固形分の混合物を分離する。   The water treatment method of the said embodiment is a method corresponding to the centrifugation method using a centrifuge. A cyclone can be used as the centrifuge. Water treatment particles having the specific functional group (either amide group or ureido group) are dispersed in the water to be treated, and water-insoluble solids are adsorbed to the water treatment particles. The water to be treated in an adsorbed state for a minute is passed through a centrifuge, that is, a cyclone, and a mixture of water treatment particles / solids is separated at the bottom of the centrifuge.

次いで、遠心分離層下部から水処理用粒子と水不溶性物質及び析出物を引き抜き、水中で混合することにより水処理用粒子とそれ以外を分離する。次いで、これを洗浄槽から磁気分離槽へ送り、磁気分離槽内で各々が粒子状態になるまで撹拌し、水中において水処理用粒子および固形分を均一に分散させる。   Next, the water treatment particles and the water-insoluble substances and precipitates are extracted from the lower part of the centrifugal separation layer and mixed in water to separate the water treatment particles from the others. Subsequently, this is sent from the washing tank to the magnetic separation tank, and stirred in the magnetic separation tank until each of them becomes a particle state, whereby the water treatment particles and the solid content are uniformly dispersed in the water.

次いで、水中に分散する水処理用粒子を磁石などの磁気吸着手段に吸着させ、磁気吸着手段に水処理用粒子が吸着されている間に、固形分を含む処理水を磁気分離槽から排出する。次いで、水処理用粒子の磁気吸着を解除して、水処理用粒子を磁気吸着手段から脱落させ、さらに処理水や水道水などを磁気吸着手段に吹き付け、磁気吸着手段に付着した水処理用粒子を洗浄し、回収する。回収した水処理用粒子は、磁気分離槽から水処理用粒子供給装置へ送り、再利用される。   Next, the water treatment particles dispersed in water are adsorbed by a magnetic adsorption means such as a magnet, and the treated water containing solids is discharged from the magnetic separation tank while the water treatment particles are adsorbed by the magnetic adsorption means. . Subsequently, the magnetic adsorption of the water treatment particles is released, the water treatment particles are dropped from the magnetic adsorption means, and further treated water or tap water is sprayed on the magnetic adsorption means to adhere to the magnetic adsorption means. Wash and collect. The collected water treatment particles are sent from the magnetic separation tank to the water treatment particle supply device and reused.

以下、添付の図面を参照して種々の実施の形態をそれぞれ説明する。   Hereinafter, various embodiments will be described with reference to the accompanying drawings.

本実施形態の水処理用粒子を用いる水処理方法には沈降分離法と遠心分離法の2種類の方法があるが、各方法に用いられる装置は構成が異なるところがあるので、以下それぞれについて述べる。   There are two types of water treatment methods using the water treatment particles of the present embodiment, namely, a sedimentation separation method and a centrifugal separation method, but the apparatus used for each method is different in configuration, so each will be described below.

(第1の実施形態の装置)
先ず図2を参照して第1の実施形態に用いられる水処理装置を説明する。
(Apparatus of the first embodiment)
First, the water treatment apparatus used in the first embodiment will be described with reference to FIG.

本実施形態の水処理装置1は、固液分離装置に沈殿器を用いる沈降分離法に用いられる装置である。水処理装置1は、混合槽2、沈殿槽3、分離槽4、水処理用粒子供給装置5、図示しない原水供給源および排水貯留槽を有しており、これらの機器及び装置が複数の配管ラインL1〜L6により互いに接続されている。配管ラインL1〜L6には各種のポンプP1〜P2、バルブV1〜V2、図示しない計測器およびセンサが取り付けられている。これらの計測器およびセンサから図示しない制御器の入力部に検出信号が入り、当該制御器の出力部からポンプP1〜P2およびバルブV1〜V2にそれぞれ制御信号が出され、それらの動作が制御されるようになっている。このように水処理装置1の全体は図示しない制御器によって統括的にコントロールされるようになっている。   The water treatment apparatus 1 of this embodiment is an apparatus used for a sedimentation separation method using a precipitator as a solid-liquid separation apparatus. The water treatment apparatus 1 includes a mixing tank 2, a precipitation tank 3, a separation tank 4, a water treatment particle supply apparatus 5, a raw water supply source and a drainage storage tank (not shown), and these devices and apparatuses are provided with a plurality of pipes. The lines L1 to L6 are connected to each other. Various pumps P1 and P2, valves V1 and V2, and measuring instruments and sensors (not shown) are attached to the piping lines L1 to L6. Detection signals are input from these measuring instruments and sensors to an input section of a controller (not shown), and control signals are output from the output section of the controller to the pumps P1 and P2 and valves V1 and V2, respectively. It has become so. As described above, the entire water treatment apparatus 1 is comprehensively controlled by a controller (not shown).

混合槽2は、被処理水を撹拌する撹拌スクリュウ21を有し、図示しない原水供給源からラインL1を介して被処理水となる排水が導入され、被処理水を一時的に貯留しておく間に、ラインL8から供給される水処理用粒子と混合され、被処理水中に含まれる微細な水不溶性の固体粒子を水処理用粒子に吸着させるものである。   The mixing tank 2 has a stirring screw 21 that stirs the water to be treated, and wastewater that becomes the water to be treated is introduced from a raw water supply source (not shown) via the line L1 to temporarily store the water to be treated. In the meantime, it is mixed with the water treatment particles supplied from the line L8, and fine water-insoluble solid particles contained in the water to be treated are adsorbed on the water treatment particles.

沈殿槽3は、内部を仕切り板31により面積の異なる二つの上部スペースに分割されている。沈殿槽の上部スペースのうち、面積の小さい区域は、加圧ポンプP1を有する被処理水供給ラインL2を介して混合槽2に接続されている。また、上部スペースの面積の大きい区域には処理水排出ラインL3が接続されている。   The sedimentation tank 3 is divided into two upper spaces having different areas by a partition plate 31. Of the upper space of the settling tank, a small area is connected to the mixing tank 2 via a water supply line L2 having a pressure pump P1. Moreover, the treated water discharge line L3 is connected to the area where the area of the upper space is large.

一方、沈殿槽3の下部スペースは、バルブV1を有する沈殿物引き抜きラインに接続されている。この沈殿物引き抜きラインは後述する分離層4に接続され、重力により沈殿物を輸送する。   On the other hand, the lower space of the sedimentation tank 3 is connected to a sediment drawing line having a valve V1. This sediment drawing line is connected to a separation layer 4 described later, and transports the sediment by gravity.

分離槽4は、沈殿槽引き抜きラインL4を通って沈殿槽3の下部スペースから受け入れた水処理用粒子と固形物の混合物を撹拌するための撹拌スクリュウ41を有し、かつ固形分と水処理用粒子とに分離するための磁石42を内蔵している。磁石42は、円筒型の筒内に収納されており、図示しない制御器により制御され、エアシリンダー(図示せず)により上下に駆動する。   The separation tank 4 has a stirring screw 41 for stirring the mixture of water treatment particles and solids received from the lower space of the precipitation tank 3 through the precipitation tank drawing line L4, and for solids and water treatment. The magnet 42 for separating into particles is incorporated. The magnet 42 is housed in a cylindrical cylinder, is controlled by a controller (not shown), and is driven up and down by an air cylinder (not shown).

分離槽4の上部には、沈殿槽引き抜きラインL4の他に、図示しないタンクから剥離剤が接続されている。一方、磁気分離槽4の下部には濃縮水排出ラインL6および水処理用粒子返送ラインL7がそれぞれ接続されている。濃縮水排出ラインL6は、分離槽4から図示しない貯留槽に水不溶物濃縮水を排出するための配管である。水処理用粒子返送ラインL7は、ポンプP2を有し、分離槽4から分離・回収された水処理用粒子を水処理用粒子供給装置5に戻すための配管である。   In addition to the settling tank drawing line L4, a release agent is connected to the upper part of the separation tank 4 from a tank (not shown). On the other hand, a concentrated water discharge line L6 and a water treatment particle return line L7 are connected to the lower part of the magnetic separation tank 4, respectively. The concentrated water discharge line L6 is a pipe for discharging water-insoluble matter concentrated water from the separation tank 4 to a storage tank (not shown). The water treatment particle return line L7 is a pipe having a pump P2 for returning the water treatment particles separated and collected from the separation tank 4 to the water treatment particle supply device 5.

水処理用粒子供給装置5は、図示しない水処理用粒子供給源から新たに水処理用粒子が補給されるとともに、分離槽4で分離された水処理用粒子が上述の水処理用粒子返送ラインL7を通って返送されるようになっている。また、水処理用粒子供給装置5は、バルブV2を有する水処理用粒子供給ラインL8を介して混合槽2に適量の水処理用粒子を供給するようになっている。   The water treatment particle supply device 5 is replenished with water treatment particles from a water treatment particle supply source (not shown), and the water treatment particles separated in the separation tank 4 are returned to the above-mentioned water treatment particle return line. Returned through L7. In addition, the water treatment particle supply device 5 supplies an appropriate amount of water treatment particles to the mixing tank 2 via a water treatment particle supply line L8 having a valve V2.

(第1実施形態の方法)
次に、図2を参照して上記の装置を用いる第1実施形態の水処理方法を説明する。
(Method of the first embodiment)
Next, the water treatment method according to the first embodiment using the above apparatus will be described with reference to FIG.

図2の沈降分離法は、特に水不溶物の固形分を含む排水の流量が多い場合に有効である。本実施形態における水不溶性の固形分とは、有機物、無機物を特に問わないが、マイナスに帯電する粒子を好適に除去することができる。重金属の水酸化物などの難脱水性の粒子であったり、粒子以外の難脱水成分、例えば油などが入っていたりしても、水処理用粒子の構造により、容易に吸着、分離することができる。この場合に被処理水である排水の性状に応じて水処理用粒子の被覆材を適切に選択するのが好ましい。   The sedimentation separation method shown in FIG. 2 is particularly effective when the flow rate of waste water containing a solid content of water-insoluble matter is large. The water-insoluble solid content in the present embodiment is not particularly limited to organic substances and inorganic substances, but negatively charged particles can be suitably removed. Even if it is difficult to dehydrate particles such as heavy metal hydroxides or contains other difficult to dehydrate components such as oil, it can be easily adsorbed and separated by the structure of the water treatment particles. it can. In this case, it is preferable to appropriately select the coating material for the water treatment particles according to the properties of the wastewater as the water to be treated.

沈降分離法においては、先ず、混合槽2内で被処理水と水処理用機能粉とを混合し、水処理用粒子に水中の水不溶物の固形分を吸着する(工程S1)。水処理用粒子は、コア部に磁性単体粒子またはその凝集体を有し、表面に記コア部に担持されたアミド基またはウレイド基のいずれかを含む表層部を有する。被処理水中の水処理用粒子の濃度は、被処理水中の固形物濃度により調整されるが、例えば固形物濃度の1〜10倍になるようにする。次いで、この懸濁液を沈殿槽3に供給し、水中の固形分を吸着した水処理用粒子を沈降分離する。(工程S2)
また、沈殿槽上部の空間を二つの領域に分けるよう、沈殿槽3内に仕切り板31をとりつける。このとき面積の小さい側には、加圧ポンプP1を有する被処理水供給ラインL2が接続され、面積の大きい側には処理水排出ラインL3が接続されている。このような構造にすると、まず被処理水供給ラインL2から供給される水処理用粒子と固形物が沈殿槽3の下部に移動する。この時、面積の大きい側から上向流で処理水排出ラインL3のほうに水が向うが、面積が大きくなるため流速が遅くなり固形分の沈降が促進され、沈殿槽3の下部に固形分を集めることができる。
In the sedimentation separation method, first, the water to be treated and the functional powder for water treatment are mixed in the mixing tank 2 to adsorb the solid content of water-insoluble matter in the water treatment particles (step S1). The water treatment particles have magnetic single particles or aggregates thereof in the core part, and have a surface layer part containing either an amide group or a ureido group supported on the core part on the surface. The concentration of the water treatment particles in the for-treatment water is adjusted by the solid concentration in the for-treatment water. Next, this suspension is supplied to the sedimentation tank 3, and the water treatment particles adsorbing the solid content in the water are settled and separated. (Process S2)
Moreover, the partition plate 31 is attached in the precipitation tank 3 so that the space above the precipitation tank is divided into two regions. At this time, the treated water supply line L2 having the pressurizing pump P1 is connected to the smaller area side, and the treated water discharge line L3 is connected to the larger area side. With such a structure, first, the water treatment particles and solids supplied from the to-be-treated water supply line L <b> 2 move to the lower part of the settling tank 3. At this time, the water flows upward from the larger area toward the treated water discharge line L3. However, since the area becomes larger, the flow rate becomes slower and sedimentation of solids is promoted. Can be collected.

また、沈殿槽下部にはバルブV1を有する沈殿物引き抜きラインL4が接続されており、水処理用粒子と固形物を沈殿槽下部からラインL4を通って分離槽4に送り、分離槽4内において撹拌スクリュウ41により水処理用粒子と固形物を撹拌し、水処理用粒子および固形分を分散させる(工程S3)。この撹拌を十分に行なうと、懸濁液中において水処理用粒子と固形分がより均一に分散され、水処理用粒子の分離が容易になる。なお、この時に必要に応じてラインL5から剥離剤を添加することもできる。剥離剤としては、水処理用粒子の表面電位を変化させる酸性の溶液やアルカリ性の溶液、水処理用粒子表面の表面張力を低下させる界面活性剤などが挙げられる。   Further, a sediment drawing line L4 having a valve V1 is connected to the lower part of the sedimentation tank, and water treatment particles and solids are sent from the lower part of the sedimentation tank to the separation tank 4 through the line L4. The water treatment particles and the solid are stirred with the stirring screw 41 to disperse the water treatment particles and the solid content (step S3). If the stirring is sufficiently performed, the water treatment particles and the solid content are more uniformly dispersed in the suspension, and the water treatment particles can be easily separated. At this time, a release agent may be added from the line L5 as necessary. Examples of the release agent include acidic solutions and alkaline solutions that change the surface potential of the water treatment particles, and surfactants that reduce the surface tension of the surface of the water treatment particles.

次いで、この分離後の懸濁液から水処理用粒子を磁気分離法を用いて回収する(工程S4)。磁気分離の方法は、分離槽4の容器中に永久磁石又は電磁石を投入して回収する方法や、磁石で磁化した金網などで回収して、磁場を開放することにより粒子を回収する方法などが挙げられる。具体的には、円筒上の筒に入っている磁石42を、図示しないエアシリンダーで分離槽の中に入れ、懸濁液中にて水処理用粒子を磁石42で吸着固定したあとに、分離槽4の容器からラインL6を介して図示しない貯留槽に固形分を含む廃液を排出し、次いで磁石42をエアシリンダーを用いて分離槽4の外に出し、磁石42が入っていた円筒状容器から水処理用磁性体を脱落させ、図示しない水道水供給ラインを介して容器内に水道水を供給し、脱落した水処理用粒子に水道水を加えてスラリー状または懸濁液状とし、このスラリー状または懸濁液状の水処理用粒子をポンプP2を有するラインL7を介して分離槽4から水処理用粒子供給装置5へ送る。   Next, water-treatment particles are recovered from the separated suspension using a magnetic separation method (step S4). As a method of magnetic separation, there are a method of collecting a permanent magnet or an electromagnet in a container of the separation tank 4 and a method of collecting particles by collecting them with a metal net magnetized by a magnet and releasing a magnetic field. Can be mentioned. Specifically, the magnet 42 contained in a cylinder is put into a separation tank by an air cylinder (not shown), and after water treatment particles are adsorbed and fixed in the suspension by the magnet 42, the magnet 42 is separated. The waste liquid containing the solid content is discharged from the container of the tank 4 to the storage tank (not shown) via the line L6, and then the magnet 42 is taken out of the separation tank 4 using an air cylinder, and the cylindrical container in which the magnet 42 is contained. The magnetic material for water treatment is dropped from the water, tap water is supplied into the container via a tap water supply line (not shown), tap water is added to the dropped water treatment particles to form a slurry or suspension, and this slurry Or suspension-like water treatment particles are sent from the separation tank 4 to the water treatment particle supply device 5 via a line L7 having a pump P2.

その後に、回収した水処理用粒子を水処理用粒子供給装置5からラインL8を介して混合槽3に供給し、固形分の吸着に回収水処理用粒子を再使用する。このようにして水処理用粒子を、固形分の吸着→沈降分離→水処理用粒子と固形分の分離→磁気分離→回収→固形分の吸着のサイクルにおいて繰り返し使用することができる。   Thereafter, the recovered water treatment particles are supplied from the water treatment particle supply device 5 to the mixing tank 3 via the line L8, and the recovered water treatment particles are reused for adsorption of the solid content. In this way, the water treatment particles can be repeatedly used in a cycle of solids adsorption → sedimentation separation → water treatment particles and solids separation → magnetic separation → recovery → solids adsorption.

(水処理用粒子)
次に、水処理用粒子を詳しく説明する。
(Water treatment particles)
Next, the water treatment particles will be described in detail.

水処理用粒子は、磁性体を含む単体粒子であってもよく、また、図4の(a)に示すように磁性体粒子11の表面をポリマーのような被覆剤12で被覆されていてもよい。また、水処理用粒子は、ポリマー被覆された磁性体粒子11が図4の(b)に示すように凝集した凝集体13であってもよい。   The water treatment particles may be single particles containing a magnetic material, or the surface of the magnetic material particles 11 may be coated with a coating agent 12 such as a polymer as shown in FIG. Good. The water treatment particles may be aggregates 13 in which polymer-coated magnetic particles 11 are aggregated as shown in FIG.

水処理用粒子10は、磁性体粒子からなるコア部11を含み、その平均粒子径D1が0.1〜100μmの範囲にあるものを用いる。水処理用粒子10は、平均粒子径D1が0.1〜100μmの範囲が好ましく、10〜50μmの範囲がさらに好ましい。水処理用粒子10の平均粒子径D1が100μmよりも大きいと、水中の分散性に劣り水中の固形分を吸着する能力が落ちてしまう場合があるからである。一方、水処理用粒子10の平均粒子径D1が0.1μm未満になると、沈降速度が低下し、沈降分離装置で分離できなくなるおそれがあるからである。コア部11は、単体粒子(一次粒子)であってもよいし、複数の一次粒子を凝集させた凝集体(二次粒子)であってもよい。なお、コア部11は、必要であればCuメッキ、Niメッキなどのコーティング処理が施されていてもよい。   The water treatment particles 10 include those having a core portion 11 made of magnetic particles and having an average particle diameter D1 in the range of 0.1 to 100 μm. The water treatment particles 10 preferably have an average particle diameter D1 in the range of 0.1 to 100 μm, and more preferably in the range of 10 to 50 μm. This is because if the average particle diameter D1 of the water treatment particles 10 is larger than 100 μm, the dispersibility in water is poor and the ability to adsorb solids in water may be reduced. On the other hand, if the average particle diameter D1 of the water treatment particles 10 is less than 0.1 μm, the sedimentation speed decreases, and there is a possibility that the sedimentation apparatus cannot be separated. The core part 11 may be a single particle (primary particle) or an aggregate (secondary particle) obtained by aggregating a plurality of primary particles. The core portion 11 may be subjected to a coating process such as Cu plating or Ni plating if necessary.

ここで、平均粒子径は、レーザー回折法により測定した結果に基づいて算出される。具体的には、レーザー回折法を利用した機器として株式会社島津製作所製のSALD−DS21型測定装置(商品名)を用いることができる。平均粒子径0.1〜100μmの大きさは、水中で磁性粒子が程よく水と混ざりあい、静置すると比較的迅速に沈降する。すなわち、磁性粉の平均粒子径が100μmを超えると、粒子の沈降速度が速くなりすぎるため、磁性粉を水中に分散させる時に撹拌機に大きな動力が必要となる。とくに平均粒子径を50μm以下にすると、水中への粒子の分散性が非常に良くなり、撹拌機の負荷が大きく軽減される。一方、磁性粉の平均粒子径が0.1μmより小さいと、静置した時の粒子の沈降速度が遅すぎて実用的でない。さらに実用的には平均粒子径を10μm以上にすると、水中において粒子が迅速に沈降するため、短時間の処理が可能になる。ただし、電磁石などの磁気吸着手段を用いて磁性粉を磁気的に吸着する場合は粒子径の制限は緩やかである。   Here, the average particle diameter is calculated based on the result measured by the laser diffraction method. Specifically, a SALD-DS21 type measuring device (trade name) manufactured by Shimadzu Corporation can be used as an apparatus using a laser diffraction method. When the average particle size is 0.1 to 100 μm, the magnetic particles mix well with water in water, and settle down relatively quickly when left standing. That is, if the average particle size of the magnetic powder exceeds 100 μm, the sedimentation rate of the particles becomes too fast, and thus a large power is required for the stirrer when dispersing the magnetic powder in water. In particular, when the average particle size is 50 μm or less, the dispersibility of the particles in water becomes very good, and the load on the stirrer is greatly reduced. On the other hand, if the average particle size of the magnetic powder is smaller than 0.1 μm, the sedimentation rate of the particles when allowed to stand is too slow to be practical. Furthermore, practically, when the average particle diameter is 10 μm or more, the particles quickly settle in water, so that a short time treatment is possible. However, when the magnetic powder is magnetically adsorbed using a magnetic adsorption means such as an electromagnet, the particle size restriction is moderate.

凝集体からなる水処理用粒子の製造方法としては、造粒機などで先に凝集体を形成した後に特定の官能基を含む不定形材料を塗布する方法と、この不定形材料をバインダーとして一次粒子を造粒する方法とがある。前者は、一次粒子と有機系バインダーまたは無機系バインダーとをスプレードライヤーまたはヘンシェルミキサーなどにより混練し、造粒体を作ったあと特定の官能基を含む不定形材料を塗布して100℃〜200℃で反応させる方法や、磁性体原料をスプレードライなどでポーラス状にして焼結させ、ポーラス状のコア部を作製した後に、特定の官能基を含む不定形材料を塗布する方法が挙げられる。後者は、バインダーに特定の官能基を含む不定形材料を用いてヘンシェルミキサーやスプレードライヤーなどで直接造粒する。   As a method for producing water treatment particles comprising an aggregate, a method of applying an amorphous material containing a specific functional group after first forming the aggregate with a granulator or the like, and using this amorphous material as a primary binder There is a method of granulating particles. In the former, primary particles and organic binder or inorganic binder are kneaded with a spray dryer or Henschel mixer, etc., and after forming a granulated material, an amorphous material containing a specific functional group is applied to 100 ° C to 200 ° C. And a method of applying an amorphous material containing a specific functional group after producing a porous core part by sintering the magnetic material in a porous form by spray drying or the like. The latter is directly granulated with a Henschel mixer, a spray dryer or the like using an amorphous material containing a specific functional group in the binder.

これら特定の官能基を含む不定形材料を水処理用粒子に組み込むことにより、相対的に水処理用粒子の比重が高くなるため、重力による沈降や、サイクロンを用いた遠心力による分離を、磁気による分離と併用することが可能となるため、水処理用粒子を水から迅速に分離することができる。   Incorporation of these irregular materials containing specific functional groups into water treatment particles increases the specific gravity of the water treatment particles, so that sedimentation by gravity and separation by centrifugal force using a cyclone can be performed magnetically. Therefore, the water treatment particles can be quickly separated from the water.

(官能基と修飾方法)
本実施形態ではアミド基またはウレイド基のいずれかを無機物粒子(コア部)の表面に担持する。
(Functional group and modification method)
In this embodiment, either an amide group or a ureido group is supported on the surface of the inorganic particles (core part).

無機物粒子の表面にアミド基を担持させる方法として、樹脂を被覆する方法、あるいはシランカップリング剤を用いて粒子に直接修飾する方法がある。樹脂を被覆する方法として、アミド基を有する樹脂を被覆する方法、あるいは側鎖に反応性官能基を持たせた樹脂を被覆し、アミド基を有する化合物を反応させる方法がある。   As a method for supporting amide groups on the surface of inorganic particles, there are a method of coating a resin or a method of directly modifying particles using a silane coupling agent. As a method of coating the resin, there are a method of coating a resin having an amide group, or a method of coating a resin having a reactive functional group on the side chain and reacting a compound having an amide group.

一方、シランカップリング剤により無機物粒子の表面を直接修飾する方法では、アルコキシシリル基とアミド基またはウレイド基を有する化合物を粒子と反応させ、粒子の表面に所望の官能基を担持させる。ここで「修飾」とは、無機材料の表面に官能基を付けることをいう。「官能基を付ける」とは、官能基と無機材料とが少なくとも化学的に結合している状態をいい、吸着のような物理的な結合が化学的な結合と組み合わされた状態も含まれる。なお、無機材料と官能基とが化学的に結合することなしに、単に両者が物理的に結合(吸着)しているだけの状態は、原則として修飾に該当しない。ただし、特定の官能基を有する高分子材料により無機材料全体を被覆した場合に限り、物理的にのみ結合している場合も含まれるものとする。   On the other hand, in the method of directly modifying the surface of the inorganic particles with a silane coupling agent, a compound having an alkoxysilyl group and an amide group or ureido group is reacted with the particle to carry a desired functional group on the surface of the particle. Here, “modification” means attaching a functional group to the surface of the inorganic material. “Attaching a functional group” refers to a state in which the functional group and the inorganic material are at least chemically bonded, and also includes a state in which a physical bond such as adsorption is combined with a chemical bond. Note that the state in which the inorganic material and the functional group are merely physically bonded (adsorbed) without chemically bonding to the inorganic material does not correspond to the modification in principle. However, only when the entire inorganic material is coated with a polymer material having a specific functional group, the case where the material is physically bonded is also included.

修飾方法は、粒子を高速撹拌しながらシランカップリング剤溶液を噴霧する乾式法や、粒子とシランカップリング剤を含む溶媒中で反応させる湿式法が挙げられる。乾式法および湿式法のいずれの方法であっても、処理後に後硬化させることにより反応を完全に進行させる。また、エポキシシランを反応させた後に、アミド基またはウレイド基を有する化合物を反応させて官能基を担持させることも可能である。   Examples of the modification method include a dry method in which the silane coupling agent solution is sprayed while stirring the particles at a high speed, and a wet method in which the particles are reacted in a solvent containing the silane coupling agent. In both the dry method and the wet method, the reaction is allowed to proceed completely by post-curing after the treatment. It is also possible to carry a functional group by reacting a compound having an amide group or a ureido group after reacting with epoxysilane.

これらのように、粒子表面に官能基を担持させたあと、必要に応じて無機酸/有機酸との塩にして使用する。例えばアミド基又はウレイド基のいずれかとアルコキシ基を有するシランカップリング剤を磁性体粒子(コア部)の表面に反応させ、次に無機酸及び有機酸のうちの少なくとも一方を反応させることにより、コア部の表面領域に塩を生成する。   As described above, after a functional group is supported on the particle surface, it is used in the form of a salt with an inorganic acid / organic acid, if necessary. For example, by reacting either an amide group or a ureido group with a silane coupling agent having an alkoxy group on the surface of the magnetic particles (core part), and then reacting at least one of an inorganic acid and an organic acid, It produces salt in the surface area of the part.

この処理をおこなうことにより、官能基にプロトンを保持させてプラスの電荷を与えることができる。このプラスの電荷が水中にコロイド状に存在する浮遊物質(SS)の周りの電荷を中和し、磁性体と浮遊物質(SS)を凝集させる作用が得られる。無機酸/有機酸と塩を作る方法として、例えば水中に粒子を分散させて無機酸/有機酸を少しずつ加え、特定のpHになった時にろ過または磁気分離などの方法で水中から除去することにより得られる。   By performing this treatment, a proton can be held in the functional group and a positive charge can be given. This positive charge neutralizes the charge around the suspended matter (SS) that exists in a colloidal form in water, and the action of aggregating the magnetic substance and the suspended matter (SS) is obtained. As a method of making a salt with inorganic acid / organic acid, for example, dispersing particles in water and adding inorganic acid / organic acid little by little, and removing from water by filtration or magnetic separation when a specific pH is reached. Is obtained.

(表層部)
次に、官能基を含むポリマー被覆厚さの調整方法およびポリマー被覆磁性体粒子が凝集した凝集体の凝集径の調整方法について説明する。
(Surface part)
Next, a method for adjusting the thickness of the polymer coating containing functional groups and a method for adjusting the aggregate diameter of the aggregate in which the polymer-coated magnetic particles are aggregated will be described.

ポリマー(表層部)12の被覆厚さを製造時に決定するには、ポリマーと磁性体粒子(コア部)11の混合割合と、樹脂の密度、磁性体粒子の比表面積から計算する。すなわち、添加する樹脂の重量と密度から添加する樹脂の体積を求め、磁性体粒子の重量と比表面積から求めた磁性体粒子の表面積で除してやると、ポリマーの平均被覆厚さtとなる。また、粒子径の制御は噴霧液の種類や噴霧方法によって異なるが、凝集体を小さくするには噴霧乾燥する液滴の液滴径を小さくすればよい。例えば噴霧ノズルの噴霧圧力を高くするか、または噴霧速度を遅くするか、あるいは噴霧ディスクの回転を速くすると、製造される凝集体の粒子径は小さくなる。   In order to determine the coating thickness of the polymer (surface layer portion) 12 at the time of production, the coating ratio is calculated from the mixing ratio of the polymer and magnetic particles (core portion) 11, the density of the resin, and the specific surface area of the magnetic particles. That is, when the volume of the resin to be added is obtained from the weight and density of the resin to be added and divided by the surface area of the magnetic particles obtained from the weight and specific surface area of the magnetic particles, the average coating thickness t of the polymer is obtained. Further, although the control of the particle diameter varies depending on the type of spray liquid and the spraying method, the droplet diameter of the droplets to be spray-dried may be reduced in order to reduce the aggregate. For example, when the spraying pressure of the spray nozzle is increased, the spraying speed is decreased, or the rotation of the spraying disk is increased, the particle size of the produced aggregate is decreased.

次に、既にできている凝集体中のポリマー被覆厚さの測定方法について説明する。   Next, a method for measuring the thickness of the polymer coating in the already formed aggregate will be described.

ポリマーの被覆厚さの計算は光学顕微鏡やSEMなどによる観察で測定しても良いが、好ましくは無酸素状態で高温に上げ、樹脂複合体を熱分解させて重量減少量、すなわちポリマー被覆重量を求め、粒子の比表面積からポリマー層の平均厚さを計算すると正確に求めることができる。   The calculation of the coating thickness of the polymer may be measured by observation with an optical microscope or SEM. However, the polymer coating thickness is preferably raised to a high temperature in an oxygen-free state and the resin composite is thermally decomposed to reduce the weight loss, that is, the polymer coating weight It can be accurately obtained by calculating and calculating the average thickness of the polymer layer from the specific surface area of the particles.

(第2の実施形態の装置)
次に図5を参照して第2の実施形態の水処理方法に用いられる水処理装置1Aを説明する。なお、本実施形態が上記の実施形態と重複する部分の説明は省略する。
(Device of Second Embodiment)
Next, a water treatment apparatus 1A used in the water treatment method of the second embodiment will be described with reference to FIG. In addition, description of the part which this embodiment overlaps with said embodiment is abbreviate | omitted.

本実施形態の水処理装置1Aは、遠心分離法に用いられ、とくに流量が少ない場合や装置の設置面積が狭い場合に特に有効である。本実施形態の装置1Aが上記第1の実施形態の装置1と異なる点は、装置1Aでは、沈殿槽3の代わりにサイクロン6を設けている。このサイクロンは上部が広く下部が狭い円錐状の筒の中を、流体が旋回しながら流下することにより、遠心力により固形分が壁面沿いに分離し、サイクロン下部のポット61へ排出されるものである。このポット61にはバルブV1を有するラインL4で分離槽4の上部に接続されており、流体は重力により移送されるようになっている。また、固形分がなくなった水は、サイクロン上部に接続されているラインL7を通って処理水として排出されるようになっている。   The water treatment apparatus 1A of the present embodiment is used for a centrifugal separation method and is particularly effective when the flow rate is small or the installation area of the apparatus is small. The difference between the apparatus 1A of the present embodiment and the apparatus 1 of the first embodiment is that a cyclone 6 is provided instead of the settling tank 3 in the apparatus 1A. In this cyclone, the fluid flows down in a conical cylinder with a wide upper part and a narrow lower part, so that the solid content is separated along the wall surface by centrifugal force and discharged to the pot 61 at the lower part of the cyclone. is there. The pot 61 is connected to the upper portion of the separation tank 4 by a line L4 having a valve V1, and the fluid is transferred by gravity. Moreover, the water from which the solid content has disappeared is discharged as treated water through a line L7 connected to the upper part of the cyclone.

(第2の実施形態の方法)
次に、図6と図5を参照して上記の装置を用いる第2の水処理方法としての遠心分離法を説明する。なお、混合槽2、分離槽4、水処理用粒子供給装置6に関しては上記第1の実施形態と同じなので説明を省略する。
(Method of Second Embodiment)
Next, a centrifugal separation method as a second water treatment method using the above apparatus will be described with reference to FIGS. Since the mixing tank 2, the separation tank 4, and the water treatment particle supply device 6 are the same as those in the first embodiment, description thereof is omitted.

本実施形態の分離工程K2は沈殿槽ではなくサイクロン6でおこなわれる。ラインL2よりサイクロン6に導入された水は、サイクロン内の円周に沿って高速旋回し、この時の遠心力により固形分及び水処理用粒子が水から分離され、分離された固形分/粒子がサイクロン下部のポット61に溜まるようになっている。サイクロン下部のポット61に貯められた水処理用粒子と固形分は、バルブV1を開けてラインL4を通って分離槽4に送られる。バルブV1の開閉は、定期的におこなってもよいし、ポット61内のスラリー量に応じて随時おこなってもよい。   Separation process K2 of this embodiment is performed by cyclone 6 instead of a sedimentation tank. The water introduced into the cyclone 6 from the line L2 swirls at high speed along the circumference of the cyclone, and the solids and water treatment particles are separated from the water by the centrifugal force at this time, and the separated solids / particles are separated. Is accumulated in the pot 61 at the bottom of the cyclone. The water treatment particles and solids stored in the pot 61 at the lower part of the cyclone are sent to the separation tank 4 through the line L4 by opening the valve V1. The opening and closing of the valve V1 may be performed periodically or may be performed at any time according to the amount of slurry in the pot 61.

上記の実施形態によれば、水処理用粒子の再利用が容易であり、薬品を投入しなくても微細な水中の固形物を除去することができる。   According to the above embodiment, the water treatment particles can be easily reused, and fine solid matter in water can be removed without adding chemicals.

以下に各種の実施例および比較例をそれぞれ説明する。   Various examples and comparative examples will be described below.

(水処理用粒子の製造)
以下のようにして表1に示す各種サンプル粒子を作製した。これらの粒子は水処理用粒子として用いられるものであり、種々の条件下で実験を行って評価した。
(Manufacture of water treatment particles)
Various sample particles shown in Table 1 were prepared as follows. These particles are used as water treatment particles, and were evaluated by conducting experiments under various conditions.

表2において、処理水の透明度をホルマジン標準液を用いる濁度計により測定し、透明度が最も高い値(濁度10FTU未満)を二重丸とし、次に高い値(濁度10FTU以上30FTU未満)を丸とし、それより低い値(濁度30FTU以上100FTU未満)を三角とし、最も低い値(濁度100FTU以上)をバツ(不合格)とした。濁度計としてアズワン・ポータブル濁度計 HI 93703C を用いた。被処理水として界面活性剤と微細な浮遊物質(SS)と砂を含む工場排水を用いた。   In Table 2, the transparency of treated water is measured with a turbidimeter using a formazine standard solution. The highest transparency (turbidity less than 10 FTU) is double circle, and the next highest value (turbidity of 10 FTU or more but less than 30 FTU) The lower value (turbidity of 30 FTU or more and less than 100 FTU) was set as a triangle, and the lowest value (turbidity of 100 FTU or more) was set as X (failed). As One Portable Turbidimeter HI 93703C was used as a turbidimeter. Industrial wastewater containing surfactant, fine suspended solids (SS) and sand was used as the treated water.

(粒子A-1)
コア部として市販の球状アルミナ粒子(株式会社マイクロンの製品番号AX-116)を準備した。平均粒子径20μmの球状アルミナ粒子を高速で撹拌しながら、エタノールで希釈したシランカップリング剤(3-ウレイドプロピルトリエトキシシラン)を滴下した。球状アルミナ粒子に対し、1質量%のシランカップリング剤となるよう調整したあと、撹拌機から取り出し、120℃×2時間の条件で加熱乾燥させ、ウレイド基が担持された水処理用粒子(水処理用粒子)を得た。
(Particle A-1)
Commercially available spherical alumina particles (product number AX-116 manufactured by Micron Corporation) were prepared as the core part. While stirring spherical alumina particles having an average particle diameter of 20 μm at high speed, a silane coupling agent (3-ureidopropyltriethoxysilane) diluted with ethanol was added dropwise. After adjusting the spherical alumina particles to be 1% by mass of a silane coupling agent, the particles are taken out from the stirrer and dried by heating under the conditions of 120 ° C. × 2 hours to carry water treatment particles (water) carrying ureido groups. Treatment particles).

(粒子A-2)
粒子A-1を純水中に20質量%となるように分散させ、分散溶液に塩酸を滴下した。pH 5になるところで塩酸の滴下を停止し、分散溶液をろ過膜でろ過して水処理用粒子を得た。
(Particle A-2)
Particle A-1 was dispersed in pure water so as to be 20% by mass, and hydrochloric acid was added dropwise to the dispersion solution. When pH 5 was reached, dropping of hydrochloric acid was stopped, and the dispersion was filtered through a filtration membrane to obtain water treatment particles.

(粒子B-1)
マンガンマグネシウムフェライト粒子を次のようにして製造し、水処理用粒子のコア部に用いた。
(Particle B-1)
Manganese magnesium ferrite particles were produced as follows and used for the core of water treatment particles.

酸化マンガン(MnO)粉と酸化マグネシウム(MgO)粉と酸化鉄(Fe2O3)粉をモル比で40:10:50の割合で混合し、混合物にバインダーとしてポリビニルアルコールを添加して造粒した。造粒物を1000℃の温度で仮焼成した。なお、仮焼成は省略することができる任意の工程である。仮焼成した造粒物を再度粉砕し、粉砕物にバインダーとしてポリビニルアルコールを添加して再造粒し、再造粒物を1200℃の温度で本焼成した。本焼成した造粒物を粉砕し、粉砕物を分級し、所望のマンガンマグネシウムフェライト粒子((MnO・Fe2O3),(MgO・Fe2O3))を得た。得られたマンガンマグネシウムフェライトは、(MnO・Fe2O3)と(MgO・Fe2O3)とが混合したものであり、その組成はMnO・Fe2O3が80%、MgO・Fe2O3が20%であった。 Manganese oxide (MnO) powder, magnesium oxide (MgO) powder and iron oxide (Fe 2 O 3 ) powder are mixed in a molar ratio of 40:10:50, and the mixture is granulated by adding polyvinyl alcohol as a binder. did. The granulated product was temporarily fired at a temperature of 1000 ° C. In addition, temporary baking is an arbitrary process that can be omitted. The preliminarily fired granulated product was pulverized again, polyvinyl alcohol was added as a binder to the pulverized product, and re-granulated, and the re-granulated product was finally fired at a temperature of 1200 ° C. The calcined granulated product was pulverized and the pulverized product was classified to obtain desired manganese magnesium ferrite particles ((MnO · Fe 2 O 3 ), (MgO · Fe 2 O 3 )). The obtained manganese magnesium ferrite is a mixture of (MnO · Fe 2 O 3 ) and (MgO · Fe 2 O 3 ), and its composition is 80% of MnO · Fe 2 O 3 and MgO · Fe 2. O 3 was 20%.

平均粒子径20μmのマンガンマグネシウムフェライト粒子を高速で撹拌しながら、エタノールで希釈したシランカップリング剤(3-ウレイドプロピルトリエトキシシラン)を滴下した。フェライトに対してシランカップリング剤の割合が1質量%となるように調整した。反応混合物を撹拌機から取り出し、120℃×2時間の条件で加熱乾燥させ、ウレイド基が担持された水処理用粒子を得た。   While stirring manganese magnesium ferrite particles having an average particle diameter of 20 μm at high speed, a silane coupling agent (3-ureidopropyltriethoxysilane) diluted with ethanol was added dropwise. It adjusted so that the ratio of a silane coupling agent might be 1 mass% with respect to a ferrite. The reaction mixture was taken out of the stirrer and dried by heating at 120 ° C. for 2 hours to obtain water treatment particles carrying ureido groups.

(粒子B-2)
粒子B-1を純水中に20質量%となるように分散させ、分散溶液に塩酸を滴下した。pH 5になるところで塩酸の滴下を停止し、分散溶液をろ過膜でろ過して水処理用粒子を得た。
(Particle B-2)
Particle B-1 was dispersed in pure water so as to be 20% by mass, and hydrochloric acid was added dropwise to the dispersion solution. When pH 5 was reached, dropping of hydrochloric acid was stopped, and the dispersion was filtered through a filtration membrane to obtain water treatment particles.

(粒子C-1)
平均粒子径20μmのマンガンマグネシウムフェライト粒子を高速で撹拌しながら、エタノールで希釈したシランカップリング剤(3-グリシドキシプロピルトリエトキシシラン)を滴下した。フェライトに対してシランカップリング剤が1質量%となるように調整したあと、撹拌機から取り出し、120℃×2時間の加熱条件で乾燥させ、水処理用粒子を得た。また、アジピン酸と過剰なエチレンジアミンを60℃のアセトン中で反応させ、洗浄乾燥してアミド化合物を合成した。磁性体粒子をアセトン中に分散させ、合成したアミド化合物と40℃×6時間の条件で反応させた。その後に反応物をろ過してアセトンと水で洗浄した後に乾燥させ、アミド基が担持された水処理用粒子を得た。
(Particle C-1)
While stirring manganese magnesium ferrite particles having an average particle diameter of 20 μm at high speed, a silane coupling agent (3-glycidoxypropyltriethoxysilane) diluted with ethanol was added dropwise. After adjusting so that a silane coupling agent might be 1 mass% with respect to a ferrite, it took out from the stirrer and dried on 120 degreeC * 2 hours heating conditions, and obtained the particle | grains for water treatment. Further, adipic acid and excess ethylenediamine were reacted in acetone at 60 ° C., washed and dried to synthesize an amide compound. The magnetic particles were dispersed in acetone and reacted with the synthesized amide compound at 40 ° C. for 6 hours. Thereafter, the reaction product was filtered, washed with acetone and water and then dried to obtain water treatment particles carrying amide groups.

(実施例1)
界面活性剤と微細な浮遊物質(SS)と砂を含む工場排水に対して10000ppmの粒子A-1を加えて3分間混合した後に静置したところ、粒子A-1が水中の浮遊物質(SS)を吸着して沈殿し、やや透明度の高い処理水が得られた。
Example 1
Surfactant, fine suspended solids (SS) and industrial wastewater containing sand were mixed with 10000ppm particle A-1 and mixed for 3 minutes. ) Was adsorbed and precipitated, and treated water with slightly high transparency was obtained.

(実施例2)
使用する水処理用粒子を粒子A-1から粒子A-2に変えたこと以外は実施例1と同様に試験した。実施例2では実施例1と同様に透明度の高い処理水が得られ、実施例1の処理水と比較すると透明度は高かった。
(Example 2)
The test was conducted in the same manner as in Example 1 except that the water treatment particles used were changed from the particles A-1 to the particles A-2. In Example 2, treated water having high transparency was obtained as in Example 1, and the transparency was higher than that of treated water in Example 1.

(実施例3)
使用する水処理用粒子を粒子A-1から粒子B-1に変えたこと以外は実施例1と同様に試験した。実施例3では実施例1と同様に透明度の高い処理水が得られた。
(Example 3)
The test was conducted in the same manner as in Example 1 except that the water treatment particles used were changed from the particles A-1 to the particles B-1. In Example 3, treated water with high transparency was obtained as in Example 1.

(実施例4)
使用する水処理用粒子を粒子A-1から粒子B-2に変えたこと以外は実施例1と同様の条件で試験した。実施例4においても実施例1と同様に透明度の高い処理水が得られた。
Example 4
The test was performed under the same conditions as in Example 1 except that the water treatment particles used were changed from the particles A-1 to the particles B-2. In Example 4, treated water having high transparency was obtained as in Example 1.

(実施例5)
使用する水処理用粒子を粒子A-1から粒子C-1に変えたこと以外は実施例1と同様の条件で試験した。実施例5においても実施例1と同様に透明度の高い処理水が得られた。
(Example 5)
The test was performed under the same conditions as in Example 1 except that the water treatment particles used were changed from the particles A-1 to the particles C-1. Also in Example 5, similarly to Example 1, treated water having high transparency was obtained.

(比較例1)
実施例1とは粒子の種類を未修飾のアルミナ粒子に変えたこと以外は同様に試験した。比較例1では、添加した粒子が浮遊物質(SS)と一緒に沈降せず、濁った水となった。
(Comparative Example 1)
Example 1 was tested in the same manner except that the type of particles was changed to unmodified alumina particles. In Comparative Example 1, the added particles did not settle together with the suspended solids (SS) and became turbid water.

(比較例2)
実施例1とは粒子の種類を未修飾のフェライト粒子に変えたこと以外は同様に試験した。比較例2では、添加した粒子が浮遊物質(SS)と一緒に沈降せず、濁った水となった。
(Comparative Example 2)
Example 1 was tested in the same manner except that the type of particles was changed to unmodified ferrite particles. In Comparative Example 2, the added particles did not settle together with the suspended solids (SS) and became turbid water.

(実施例6)
ベントナイトを2000ppm含有する模擬排水を作製した。20000ppmの粒子A-1を加えて撹拌し、3分間混合した後に静置したところ、水中の浮遊物質(SS)を吸着して沈殿し、やや透明度の高い処理水が得られた。
(Example 6)
A simulated drainage containing 2000 ppm of bentonite was prepared. When 20000 ppm of particle A-1 was added and stirred, mixed for 3 minutes and allowed to stand, adsorbed and precipitated suspended matter (SS) in water, and treated water with slightly high transparency was obtained.

(実施例7)
使用する水処理用粒子を粒子A-1から粒子A-2に変えたこと以外は実施例6と同様に試験した。実施例7では実施例1と同様に透明度の高い処理水が得られたが、実施例1と比べて透明度は低かった。
(Example 7)
The test was conducted in the same manner as in Example 6 except that the water treatment particles used were changed from the particles A-1 to the particles A-2. In Example 7, treated water having high transparency was obtained as in Example 1, but the transparency was lower than that in Example 1.

(実施例8)
使用する水処理用粒子を粒子A-1から粒子B-1に変えたこと以外は実施例6と同様に試験した。実施例8では実施例1と同様に透明度の高い処理水が得られた。
(Example 8)
The test was conducted in the same manner as in Example 6 except that the water treatment particles used were changed from the particles A-1 to the particles B-1. In Example 8, treated water having high transparency was obtained as in Example 1.

(実施例9)
使用する水処理用粒子を粒子A-1から粒子B-2に変えたこと以外は実施例6と同様に試験した。実施例9では実施例1と同様に透明度の高い処理水が得られた。
Example 9
The test was conducted in the same manner as in Example 6 except that the water treatment particles used were changed from the particles A-1 to the particles B-2. In Example 9, treated water having high transparency was obtained as in Example 1.

(実施例10)
使用する水処理用粒子を粒子A-1から粒子C-1に変えたこと以外は実施例6と同様に試験した。実施例10では実施例1と同様に透明度の高い処理水が得られた。
(Example 10)
The test was conducted in the same manner as in Example 6 except that the water treatment particles used were changed from the particles A-1 to the particles C-1. In Example 10, treated water having high transparency was obtained as in Example 1.

(実施例11)
平均粒子径14μmのマンガンマグネシウムフェライト粒子C-2を使用したこと以外は実施例1と同様の条件で試験した。実施例11では実施例1と同様に透明度の高い処理水が得られた。
(Example 11)
The test was performed under the same conditions as in Example 1 except that manganese magnesium ferrite particles C-2 having an average particle diameter of 14 μm were used. In Example 11, treated water having high transparency was obtained as in Example 1.

(実施例12)
平均粒子径37μmのマンガンマグネシウムフェライト粒子C-3を使用したこと以外は実施例1と同様の条件で試験した。実施例12では実施例1と同様に透明度の高い処理水が得られた。
(Example 12)
The test was performed under the same conditions as in Example 1 except that manganese magnesium ferrite particles C-3 having an average particle diameter of 37 μm were used. In Example 12, treated water having high transparency was obtained as in Example 1.

(実施例13)
平均粒子径55μmのマンガンマグネシウムフェライト粒子C-4を使用したこと以外は実施例1と同様の条件で試験した。実施例13では実施例1と同様に透明度の高い処理水が得られたが、実施例1と比較して透明度は低かった。
(Example 13)
The test was performed under the same conditions as in Example 1 except that manganese magnesium ferrite particles C-4 having an average particle diameter of 55 μm were used. In Example 13, treated water having high transparency was obtained in the same manner as in Example 1, but the transparency was low as compared with Example 1.

(実施例14)
平均粒子径89μmのマンガンマグネシウムフェライト粒子C-5を使用したこと以外は実施例1と同様の条件で試験した。実施例14では実施例1と同様に透明度の高い処理水が得られた実施例1と比較して透明度は低かった。
(Example 14)
The test was performed under the same conditions as in Example 1 except that manganese magnesium ferrite particles C-5 having an average particle diameter of 89 μm were used. In Example 14, the transparency was low as compared with Example 1 in which treated water having high transparency was obtained as in Example 1.

これらの試験結果を表2に示した。   The test results are shown in Table 2.

表2の結果より、実施例1〜14のいずれの粒子も良好な浮遊物質(SS)吸着と沈降性能をそれぞれ示した。これに対して比較例1,2の未修飾の粒子は沈降しなかったことから、アミド基が浮遊物質(SS)の電荷を中和して凝集し、沈降したものと考えられる。

Figure 2013154326
From the results of Table 2, all the particles of Examples 1 to 14 showed good suspended solid (SS) adsorption and sedimentation performance, respectively. On the other hand, since the unmodified particles of Comparative Examples 1 and 2 did not settle, it is considered that the amide group aggregated by neutralizing the charge of the suspended matter (SS) and settled.
Figure 2013154326

Figure 2013154326
Figure 2013154326

1,1A…水処理装置、2…混合槽、
3…沈殿槽、31…仕切り板、
4…分離槽、5…水処理用粒子供給装置、
10…水処理用粒子(一次粒子)、11…コア部(担体)、12…表層部、
13…二次凝集体(一次粒子の凝集体)、
P1〜P2…ポンプ、V1〜V2…バルブ、
L1…原水供給ライン、L2…被処理水供給ライン、L3…処理水排出ライン、L4…固形物排出ライン、L5…剥離剤供給ライン、L6…排水ライン、L7…水処理用粒子返送ライン、L8…水処理用粒子供給ライン。
1, 1A ... water treatment device, 2 ... mixing tank,
3 ... settling tank, 31 ... partition plate,
4 ... separation tank, 5 ... particle supply device for water treatment,
10 ... Water treatment particles (primary particles), 11 ... Core part (carrier), 12 ... Surface layer part,
13 ... secondary aggregate (aggregate of primary particles),
P1-P2 ... pump, V1-V2 ... valve,
L1 ... Raw water supply line, L2 ... Treatment water supply line, L3 ... Treatment water discharge line, L4 ... Solid matter discharge line, L5 ... Release agent supply line, L6 ... Drainage line, L7 ... Water treatment particle return line, L8 ... Particle supply line for water treatment.

Claims (7)

被処理水中の水不溶性物質を吸着し、前記水不溶性物質とともに沈降し、沈殿物中の前記水不溶性物質から分離され、回収して繰り返し使用される水処理用粒子であって、
比重が1より大きいコア部と、前記コア部に担持されたアミド基またはウレイド基のいずれかを含む表層部と、を有することを特徴とする水処理用粒子。
Water treatment particles that adsorb water-insoluble substances in water to be treated, settle together with the water-insoluble substances, are separated from the water-insoluble substances in the precipitate, and are collected and used repeatedly.
A water treatment particle comprising: a core portion having a specific gravity greater than 1; and a surface layer portion containing either an amide group or a ureido group supported on the core portion.
前記コア部が磁性体からなることを特徴とする請求項1記載の水処理用粒子。   The particle for water treatment according to claim 1, wherein the core portion is made of a magnetic material. 前記磁性体がフェライト系化合物であることを特徴とする請求項2記載の水処理用粒子。   The water treatment particle according to claim 2, wherein the magnetic substance is a ferrite compound. 前記表層部は、アミド基又はウレイド基のいずれかとアルコキシ基を有するシランカップリング剤を反応させ、さらに無機酸及び有機酸のうちの少なくとも一方を反応させることにより、前記コア部の表面領域に生成される塩を有することを特徴とする請求項2記載の水処理用粒子。   The surface layer portion is generated in the surface region of the core portion by reacting either an amide group or a ureido group with a silane coupling agent having an alkoxy group, and further reacting at least one of an inorganic acid and an organic acid. The water treatment particles according to claim 2, wherein the water treatment particles have a salt. 前記シランカップリング剤が3-ウレイドプロピルトリエトキシシランまたは3-グリシドキシプロピルトリエトキシシランのいずれかであることを特徴とする請求項4記載の水処理用粒子。   The water treatment particle according to claim 4, wherein the silane coupling agent is either 3-ureidopropyltriethoxysilane or 3-glycidoxypropyltriethoxysilane. 水処理用粒子により被処理水中の水不溶性物質を吸着し、吸着した水不溶性物質とともに前記水処理粒子を沈降分離し、沈殿物から前記水処理用粒子を分離し、分離した水処理用粒子を回収し、回収した水処理用粒子を繰り返し使用する水処理方法において、
(a)前記水処理用粒子として、比重が1より大きい磁性体からなる磁性コア部と前記磁性コア部に担持されたアミド基またはウレイド基のいずれかを含む表層部とを有する粒子を準備し、
(b)前記水処理用粒子と被処理水を混合し、前記水処理用粒子に固体分を吸着・捕捉させ、
(c)前記吸着・捕捉した水処理用粒子を沈降により固液分離して処理水と水処理用粒子とを分離し、
(d)前記分離した水処理用粒子を水中で混合して、水処理用粒子と固形分を分離し、
(e)前記混合物から前記水処理用粒子を磁気的に分離し、
(f)分離した水処理用粒子を前記(b)工程において固体分の吸着・捕捉に再利用する、
ことを特徴とする水処理方法。
Water-insoluble substances in the water to be treated are adsorbed by the water-treatment particles, and the water-treatment particles are settled and separated together with the adsorbed water-insoluble substances, and the water-treatment particles are separated from the precipitate. In the water treatment method of collecting and repeatedly using the collected water treatment particles,
(A) A particle having a magnetic core portion made of a magnetic material having a specific gravity greater than 1 and a surface layer portion containing either an amide group or a ureido group supported on the magnetic core portion is prepared as the water treatment particle. ,
(B) mixing the water treatment particles and the water to be treated, causing the water treatment particles to adsorb and capture a solid component,
(C) Separating treated water and water treatment particles by solid-liquid separation of the adsorbed and captured water treatment particles by sedimentation;
(D) mixing the separated water treatment particles in water to separate the water treatment particles and solids;
(E) magnetically separating the water treatment particles from the mixture;
(F) The separated water treatment particles are reused for adsorption and capture of the solid content in the step (b).
A water treatment method characterized by the above.
水処理用粒子により被処理水中の水不溶性物質を吸着し、吸着した水不溶性物質とともに前記水処理粒子を遠心分離し、遠心分離物から前記水処理用粒子を分離し、分離した水処理用粒子を回収し、回収した水処理用粒子を繰り返し使用する水処理方法において、
(A)前記水処理用粒子として、比重が1より大きい磁性体からなる磁性コア部と前記磁性コア部に担持されたアミド基またはウレイド基のいずれかを含む表層部とを有する粒子を準備し、
(B)前記水処理用粒子と被処理水を混合し、前記水処理用粒子に固体分を吸着・捕捉させ、
(C)前記吸着・捕捉した水処理用粒子を遠心力により固液分離して処理水と水処理用粒子とを分離し、
(D)前記分離した水処理用粒子を水中で混合して、水処理用粒子と固形分を分離し、
(E)前記混合物から前記水処理用粒子を磁気的に分離し、
(F)分離した水処理用粒子を前記(B)工程において固体分の吸着・捕捉に再利用する、
ことを特徴とする水処理方法。
Water-insoluble substances in the water to be treated are adsorbed by the water-treatment particles, the water-treatment particles are centrifuged together with the adsorbed water-insoluble substances, the water-treatment particles are separated from the centrifuged product, and the water-treatment particles are separated. In the water treatment method in which the collected water treatment particles are repeatedly used,
(A) A particle having a magnetic core portion made of a magnetic material having a specific gravity greater than 1 and a surface layer portion containing either an amide group or a ureido group carried on the magnetic core portion is prepared as the water treatment particle. ,
(B) Mixing the water treatment particles and the water to be treated, causing the water treatment particles to adsorb and capture a solid component,
(C) The water treatment particles adsorbed and captured are separated into solid and liquid by centrifugal force to separate the treated water and the water treatment particles;
(D) mixing the separated water treatment particles in water to separate the water treatment particles and the solids;
(E) magnetically separating the water treatment particles from the mixture;
(F) The separated water treatment particles are reused for adsorption and capture of the solid content in the step (B).
A water treatment method characterized by the above.
JP2012018968A 2012-01-31 2012-01-31 Water treatment particle and water treatment method Pending JP2013154326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012018968A JP2013154326A (en) 2012-01-31 2012-01-31 Water treatment particle and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012018968A JP2013154326A (en) 2012-01-31 2012-01-31 Water treatment particle and water treatment method

Publications (1)

Publication Number Publication Date
JP2013154326A true JP2013154326A (en) 2013-08-15

Family

ID=49050060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012018968A Pending JP2013154326A (en) 2012-01-31 2012-01-31 Water treatment particle and water treatment method

Country Status (1)

Country Link
JP (1) JP2013154326A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304239A (en) * 2022-08-01 2022-11-08 华南理工大学 Preparation method of physical conditioner for sludge dewatering and physical conditioner
CN115837270A (en) * 2022-11-03 2023-03-24 皇甫鑫 Defluorination adsorbent, preparation method thereof and defluorination method of acidic wastewater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120951A (en) * 2006-11-14 2008-05-29 Sumitomo Rubber Ind Ltd Production method of surface-treated carbon black
WO2008105521A1 (en) * 2007-02-28 2008-09-04 Nippon Poly-Glu Co., Ltd. Magnetic flocculating agent, method for production thereof, and method for purification of water using magnetic flocculating agent
JP2009035710A (en) * 2007-07-11 2009-02-19 Hitachi Chem Co Ltd Thermosetting resin composition, and resin varnish for printed circuit board, prepreg and metal-clad laminate using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120951A (en) * 2006-11-14 2008-05-29 Sumitomo Rubber Ind Ltd Production method of surface-treated carbon black
WO2008105521A1 (en) * 2007-02-28 2008-09-04 Nippon Poly-Glu Co., Ltd. Magnetic flocculating agent, method for production thereof, and method for purification of water using magnetic flocculating agent
JP2009035710A (en) * 2007-07-11 2009-02-19 Hitachi Chem Co Ltd Thermosetting resin composition, and resin varnish for printed circuit board, prepreg and metal-clad laminate using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304239A (en) * 2022-08-01 2022-11-08 华南理工大学 Preparation method of physical conditioner for sludge dewatering and physical conditioner
CN115837270A (en) * 2022-11-03 2023-03-24 皇甫鑫 Defluorination adsorbent, preparation method thereof and defluorination method of acidic wastewater
CN115837270B (en) * 2022-11-03 2024-05-10 皇甫鑫 Defluorination adsorbent, preparation method thereof and method for defluorination of acidic wastewater

Similar Documents

Publication Publication Date Title
Shu et al. Adsorption of methylene blue on modified electrolytic manganese residue: kinetics, isotherm, thermodynamics and mechanism analysis
JP5826683B2 (en) Magnetic powder for water treatment
Khalifa et al. Application of mesoporous silica nanoparticles modified with dibenzoylmethane as a novel composite for efficient removal of Cd (II), Hg (II), and Cu (II) ions from aqueous media
JP5823221B2 (en) Filter aid, filter aid for water treatment, precoat material for water treatment, and water treatment method
Huang et al. Novel carbon paper@ magnesium silicate composite porous films: design, fabrication, and adsorption behavior for heavy metal ions in aqueous solution
JP5317771B2 (en) Adsorbent, organic matter recovery method and oil recovery method
JP5319730B2 (en) Fluorine recovery device and fluorine recovery method
JP2003260461A (en) Manufacturing method of highly reactive reagent for water purification
US8603341B2 (en) Oil adsorbent, and method for recovering oil
JP2013173117A (en) Magnetic particle for water treatment, and water treatment method
JP5583162B2 (en) Filter aid for water treatment and water treatment method
Zhao et al. Removal of p-Nitrophenol from simulated sewage using steel slag: Capability and mechanism
JP2010207760A (en) Oil adsorbent and oil recovery method
JP2015000385A (en) Water treatment method using filter aid, and device for the method
US8809228B2 (en) Oil adsorbent and method of manufacturing oil adsorbent
Bilgiç et al. APTMS-BCAD modified magnetic iron oxide for magnetic solid-phase extraction of Cu (II) from aqueous solutions
JP2013154326A (en) Water treatment particle and water treatment method
JP2013184099A (en) Magnetic particle for water treatment and water treatment method
Hariyanti et al. Magnetized algae-silica hybrid from Porphyridium sp. biomass with Fe3O4 particle and its application as adsorbent for the removal of methylene blue from aqueous solution
US8507004B2 (en) Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water
JP2013215657A (en) Water treatment method and water treatment device
JP2010167391A (en) Particle aggregate and method for producing particle aggregate
JP2013158737A (en) Water-treating particle and water treatment method
JP5175671B2 (en) Functional particles and water treatment method using the same
JP2013158736A (en) Particle for water treatment, and water treatment method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150428