CN109382051B - A kind of production system of nanometer biomedical material and its production process - Google Patents
A kind of production system of nanometer biomedical material and its production process Download PDFInfo
- Publication number
- CN109382051B CN109382051B CN201811365459.6A CN201811365459A CN109382051B CN 109382051 B CN109382051 B CN 109382051B CN 201811365459 A CN201811365459 A CN 201811365459A CN 109382051 B CN109382051 B CN 109382051B
- Authority
- CN
- China
- Prior art keywords
- liquid
- magnetic
- magnetic particles
- separator
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 239000003519 biomedical and dental material Substances 0.000 title claims abstract description 12
- 239000007788 liquid Substances 0.000 claims description 64
- 239000006249 magnetic particle Substances 0.000 claims description 55
- 238000006243 chemical reaction Methods 0.000 claims description 54
- 239000012528 membrane Substances 0.000 claims description 43
- 239000002122 magnetic nanoparticle Substances 0.000 claims description 39
- 239000012295 chemical reaction liquid Substances 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 17
- 238000003756 stirring Methods 0.000 claims description 14
- 238000005292 vacuum distillation Methods 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 12
- 238000005406 washing Methods 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 239000002861 polymer material Substances 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 4
- 238000007885 magnetic separation Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 2
- 238000004821 distillation Methods 0.000 claims 4
- 238000010828 elution Methods 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 239000012567 medical material Substances 0.000 abstract description 2
- 239000012620 biological material Substances 0.000 description 6
- 238000007670 refining Methods 0.000 description 5
- 239000007921 spray Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0053—Details of the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/10—Vacuum distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B5/00—Other centrifuges
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
技术领域technical field
本发明涉及医用材料生产技术领域,具体涉及一种纳米生物医用材料的生产系统及其生产工艺。The invention relates to the technical field of medical material production, in particular to a production system and a production process of nanometer biomedical material.
背景技术Background technique
目前,纳米生物医用材料在辅助生物检测诊断上有着非常显著的效果。但基于纳米生物医用材料目前市场上没有相关的工业化的生产系统和其生产工艺,因此,市场上急需一种能够生产出纳米生物医用材料的生产系统及其生产工艺。At present, nano-biomedical materials have a very significant effect in assisting biological detection and diagnosis. However, based on nano-biomedical materials, there is currently no relevant industrialized production system and production process on the market. Therefore, there is an urgent need for a production system and production process that can produce nano-biomedical materials.
鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。In view of the above-mentioned defects, the creator of the present invention finally obtained the present invention after a long period of research and practice.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明旨在提出一种纳米生物医用材料的生产系统及其生产工艺,能够解决市场上没有一种生产出纳米生物医用材料的生产系统及其生产工艺的问题。In view of this, the present invention aims to propose a production system and production process of nano-biomedical materials, which can solve the problem that there is no production system and production process for producing nano-biomedical materials on the market.
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, the technical scheme of the present invention is achieved in this way:
一种纳米生物医用材料的生产系统,包括反应釜、电磁分离器、管式离心机、第一膜分离器、第二膜分离器、减压蒸馏塔;A production system for nano-biomedical materials, comprising a reactor, an electromagnetic separator, a tubular centrifuge, a first membrane separator, a second membrane separator, and a vacuum distillation column;
所述反应釜,用于制备磁性颗粒以及对磁性颗粒进行精细化处理和对精细化处理后的磁性颗粒进行有机包覆;The reaction kettle is used for preparing magnetic particles, fine-processing the magnetic particles, and organically coating the magnetic particles after the fine-processing;
所述电磁分离器用于将反应釜中制备出的磁性颗粒从反应液中分离;The electromagnetic separator is used to separate the magnetic particles prepared in the reaction kettle from the reaction liquid;
所述管式离心机:用于去除精细化处理后不符合粒径要求的磁性颗粒;The tubular centrifuge: used to remove magnetic particles that do not meet the particle size requirements after fine treatment;
所述第一膜分离器:用于去除精细化处理后不符合分子量要求的磁性颗粒;The first membrane separator: used to remove magnetic particles that do not meet the molecular weight requirements after refining;
所述第二膜分离器:用于去除有机包覆后不符合分子量要求的磁性颗粒;The second membrane separator: used to remove magnetic particles that do not meet the molecular weight requirements after organic coating;
所述减压蒸馏塔:用于将符合粒径要求和有机包裹后分子量要求的磁性粒子进行浓缩。The vacuum distillation column: used to concentrate the magnetic particles that meet the particle size requirements and the molecular weight requirements after organic encapsulation.
进一步的,所述反应釜的第一出液口分别与所述电磁分离器的进液口、管式离心机的进液口、第二膜分离器的进液口连接;所述电磁分离器的出液口连接所述反应釜的第二进液口连接;Further, the first liquid outlet of the reaction kettle is respectively connected with the liquid inlet of the electromagnetic separator, the liquid inlet of the tubular centrifuge, and the liquid inlet of the second membrane separator; the electromagnetic separator The liquid outlet is connected to the second liquid inlet of the reactor;
所述管式离心机的出液口连接所述第一膜分离器的进液口,所述第一膜分离器的出液口连接所述反应釜的任一进液口;所述第二膜分离器的出液口与所述减压蒸馏塔的进液口相连接。The liquid outlet of the tubular centrifuge is connected to the liquid inlet of the first membrane separator, and the liquid outlet of the first membrane separator is connected to any liquid inlet of the reactor; the second The liquid outlet of the membrane separator is connected with the liquid inlet of the vacuum distillation column.
进一步的,所述电磁分离器的顶部还设有一喷淋装置,用于对磁性颗粒进行洗涤。Further, the top of the electromagnetic separator is also provided with a spray device for washing the magnetic particles.
进一步的,所述电磁分离器还包括可调节电磁强度装置。Further, the electromagnetic separator also includes an adjustable electromagnetic intensity device.
利用上述任一所述的纳米生物医用材料的生产系统的生产工艺,包括以下步骤:Utilize the production process of the production system of any of the above-mentioned nano biomedical materials, comprising the following steps:
S1、把需要配置的原料按照一定的比例添加到反应釜,通过所述反应釜反应,制备得到含有纳米级磁性颗粒的反应液;S1, the raw materials that need to be configured are added to the reaction kettle according to a certain proportion, and the reaction solution containing nano-scale magnetic particles is prepared by the reaction of the reaction kettle;
S2、所述反应釜将制备得到含有纳米级磁性颗粒的反应液送至电磁分离器,进行液体与纳米级磁性颗粒的磁性分离,将分离后的液体排出后;所述电磁分离器继续通过洗涤液对所有纳米级磁性颗粒进行洗涤;S2, the reaction kettle will prepare the reaction liquid containing nano-scale magnetic particles and send it to the electromagnetic separator, carry out the magnetic separation of the liquid and the nano-scale magnetic particles, and discharge the separated liquid; the electromagnetic separator continues to wash liquid to wash all nano-scale magnetic particles;
S3、所述电磁分离器将洗涤后的洗涤液排放干净后,停止通电并通入反冲液,将纳米级磁性颗粒从所述电磁分离器的器壁上洗脱下来,将洗脱后含有磁性颗粒反应液返回至所述反应釜,精细化处理;S3. After the electromagnetic separator discharges the washed washing liquid, the electricity is stopped and the backflushing liquid is passed into it to elute the nano-scale magnetic particles from the wall of the electromagnetic separator. The magnetic particle reaction liquid is returned to the reaction kettle for fine processing;
S4、将精细化处理后的含有磁性纳米颗粒的反应液送至管式离心机,离心去除不符合粒径规格大小的磁性纳米颗粒;S4. The refined reaction solution containing magnetic nanoparticles is sent to a tubular centrifuge, and the magnetic nanoparticles that do not meet the particle size specifications are removed by centrifugation;
S5、所述管式离心机将剩余符合粒径要求的磁性纳米颗粒反应液送至第一膜分离器,脱除不符合分子量要求的磁性纳米颗粒;S5, the tubular centrifuge sends the remaining magnetic nanoparticle reaction liquid meeting the particle size requirements to the first membrane separator to remove the magnetic nanoparticles that do not meet the molecular weight requirements;
S6、所述第一膜分离器将剩余的符合分子量要求的磁性纳米颗粒反应液返回至所述反应釜中,高分子材料包覆;S6, the first membrane separator returns the remaining magnetic nanoparticle reaction liquid that meets the molecular weight requirements to the reaction kettle, and is covered with a polymer material;
S7、所述反应釜把包覆后的磁性纳米颗粒反应液送至第二膜分离器,脱除不符合分子量要求的磁性纳米颗粒;S7, the reaction kettle sends the coated magnetic nanoparticle reaction solution to the second membrane separator to remove the magnetic nanoparticles that do not meet the molecular weight requirements;
S8、所述第二膜分离器将剩余的符合分子量要求的磁性纳米颗粒反应液送至减压蒸馏塔,进行浓缩,达到指定浓度后,完成生产。S8. The second membrane separator sends the remaining magnetic nanoparticle reaction liquid that meets the molecular weight requirements to a vacuum distillation tower for concentration, and after reaching a specified concentration, the production is completed.
进一步的,所述步骤S1、S3中的反应釜的搅拌速度为:500-2000 rpm,搅拌时间为:30-360min,温度范围为:室温到80℃。Further, the stirring speed of the reaction kettle in the steps S1 and S3 is: 500-2000 rpm, the stirring time is: 30-360 min, and the temperature range is: room temperature to 80°C.
进一步的,所述步骤S2中的电磁分离器中的磁场强度范围为:2000-10000高斯。Further, the intensity range of the magnetic field in the electromagnetic separator in the step S2 is: 2000-10000 Gauss.
进一步的,所述步骤S4中的管式离心机的转速范围为:4000-6000rpm。Further, the rotational speed range of the tubular centrifuge in the step S4 is 4000-6000 rpm.
进一步的,所述步骤S6中的反应釜的搅拌速度为:200-1000 rpm,搅拌时间30-360min,温度范围为:室温到80℃。Further, the stirring speed of the reaction kettle in the step S6 is: 200-1000 rpm, the stirring time is 30-360 min, and the temperature range is: room temperature to 80°C.
进一步的,所述步骤S8中所述减压蒸馏塔的温度范围为:60-70℃。Further, the temperature range of the vacuum distillation column in the step S8 is: 60-70°C.
与现有技术比较本发明的有益效果在于:1,本发明所述得纳米生物医用材料的生产系统及其生产工艺不仅生产出的纳米生物医用材料安全、可靠,还能够有效的解决现在国内无法生产相应的纳米医用生物材料的需求。2,本发明所述的纳米生物医用材料的生产系统简单,易操控;能够有效的降低企业或用户的成本。3,本发明所述的纳米生物医用材料的生产系统及其生产工艺不仅能够准确的做到精细化的处理,还能够有效的提高了生产出材料的质量合格率。Compared with the prior art, the beneficial effects of the present invention are as follows: 1. The production system for obtaining nano-biomedical materials according to the present invention and the production process thereof not only produce safe and reliable nano-biomedical materials, but also can effectively solve the problems that cannot be achieved in China. The demand for the production of corresponding nano-medical biomaterials. 2. The production system of the nano-biomedical material of the present invention is simple and easy to control; it can effectively reduce the cost of enterprises or users. 3. The nano biomedical material production system and its production process according to the present invention can not only achieve precise and refined processing, but also can effectively improve the quality qualification rate of the produced materials.
附图说明Description of drawings
为了更清楚地说明本发明各实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。In order to illustrate the technical solutions in the various embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments.
图1是本发明实施例的生产系统示意图;Fig. 1 is the production system schematic diagram of the embodiment of the present invention;
图中数字表示:The numbers in the figure represent:
1.反应釜 2.电磁分离器 3.管式离心机 4.第一膜分离器 5.第二膜分离器 6.减压蒸馏塔1.
具体实施方式Detailed ways
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。The above and other technical features and advantages of the present invention will be described in more detail below with reference to the accompanying drawings.
实施例1Example 1
如图1所示,一种纳米生物医用材料的生产系统,包括反应釜1、电磁分离器2、管式离心机3、第一膜分离器4、第二膜分离器5、减压蒸馏塔6。As shown in Figure 1, a production system of nano-biomedical materials includes a reactor 1, an
反应釜1,用于制备磁性颗粒(磁性粒子)以及对磁性颗粒进行精细化处理和对精细化处理后的磁性颗粒进行有机包覆;Reactor 1, used for preparing magnetic particles (magnetic particles), refining the magnetic particles and organically coating the refined magnetic particles;
电磁分离器2:用于将反应釜1中制备出的磁性颗粒从反应液中分离;Electromagnetic separator 2: used to separate the magnetic particles prepared in the reactor 1 from the reaction solution;
管式离心机3:用于去除精细化处理后不符合粒径要求的磁性颗粒;主要用于去除大于12nm的磁性纳米颗粒物。Tubular centrifuge 3: It is used to remove magnetic particles that do not meet the particle size requirements after refining treatment; it is mainly used to remove magnetic nanoparticles larger than 12 nm.
第一膜分离器4:用于去除精细化处理后不符合分子量要求的磁性颗粒;主要进行脱除分子量小于3500的磁性纳米颗粒。The first membrane separator 4: used to remove magnetic particles that do not meet the molecular weight requirements after refining treatment; mainly to remove magnetic nanoparticles with a molecular weight of less than 3500.
第二膜分离器5:用于去除有机包覆后不符合分子量要求的磁性颗粒;主要进行脱除分子量大于10000的磁性纳米颗粒。Second membrane separator 5: used to remove magnetic particles that do not meet the molecular weight requirements after organic coating; mainly remove magnetic nanoparticles with molecular weight greater than 10,000.
减压蒸馏塔6:用于将符合粒径要求和有机包裹后分子量要求的磁性粒子进行浓缩。Vacuum distillation column 6: used to concentrate the magnetic particles that meet the particle size requirements and the molecular weight requirements after organic encapsulation.
反应釜1的出液口分别与电磁分离器2的进液口、管式离心机3的进液口、第二膜分离器5的进液口连接,但三者的进液口并不同时进液;当电磁分离器2的进液口或管式离心机3的进液口或第二膜分离器5的进液口打开时,其余两个进液口处于关闭状态。The liquid outlet of the reactor 1 is respectively connected with the liquid inlet of the
电磁分离器2的出液口连接反应釜1的第二进液口连接;电磁分离器2 的进液口和出液口的位置可根据实际需要进行自设置;可上进下出,也可下进上出。The liquid outlet of the
管式离心机3的出液口连接第一膜分离器4的进液口,第一膜分离器4的出液口连接反应釜1的任一进液口。The liquid outlet of the
第二膜分离器5的出液口与减压蒸馏塔6的进液口相连接。The liquid outlet of the
上述的反应釜1、电磁分离器2、管式离心机3、第一膜分离器4、第二膜分离器5、减压蒸馏塔6均设有排液口,排液口的位置根据实际需要进行自行调整均可。The above-mentioned reaction kettle 1,
本发明所述得纳米生物医用材料的生产系统生产出的纳米生物材料不仅安全、可靠,还能够有效的解决现在国内无法生产相应的纳米医用生物材料的需求。The nano-biomaterials produced by the production system for obtaining nano-biomedical materials of the present invention are not only safe and reliable, but also can effectively meet the current domestic demand that cannot produce corresponding nano-medical biomaterials.
实施例2Example 2
电磁分离器2的顶部还设有一喷淋装置,用于对磁性颗粒进行洗涤;所述喷淋装置能够准确的将所有磁性颗粒全面的进行洗涤,还能够节省洗涤时所用的洗涤液,有效的降低企业或用户的成本。The top of the
实施例3Example 3
电磁分离器2还包括一可调节电磁强度装置。用户按照实际需要对电磁强度进行自行调节。可调节的电磁强度有效的满足了用户对于自行设置电磁强度的需要,使整个系统使用起来方便,快捷。The
实施例4Example 4
利用上述实施例中的一种纳米生物医用材料的生产系统的工艺,包括以下步骤:Utilize the technology of a kind of nano biomedical material production system in the above-mentioned embodiment, comprises the following steps:
S1、把需要配置的原料按照一定的比例添加到反应釜1,通过反应釜1反应,制备得到含有纳米级磁性颗粒的反应液;S1, adding the raw materials to be configured to the reaction kettle 1 according to a certain proportion, and reacting in the reaction kettle 1 to prepare a reaction solution containing nano-scale magnetic particles;
具体的,添加原料后,在常压的状态下,反应釜1进行搅拌。Specifically, after adding the raw materials, the reaction vessel 1 is stirred under normal pressure.
较佳的,反应釜1的搅拌速度为:500-2000 rpm(转/分钟),搅拌时间为:30-360min,温度范围为:室温到80℃。Preferably, the stirring speed of the reaction kettle 1 is: 500-2000 rpm (revolution/min), the stirring time is: 30-360 min, and the temperature range is: room temperature to 80°C.
S2、反应釜1将制备得到含有纳米级磁性颗粒的反应液送至电磁分离器2的进料口,进行液体与纳米级磁性颗粒的磁性分离,将分离后的液体自排液口排出后;电磁分离器2继续对所有纳米级磁性颗粒通过洗涤液进行洗涤;S2, the reaction kettle 1 sends the prepared reaction solution containing the nano-scale magnetic particles to the feed port of the
具体的,反应釜1制备得到含有纳米级磁性颗粒的反应液进入电磁分离器2后,对电磁分离器2进行通电,含有纳米级磁性颗粒的反应液经电磁分离器2分离,使纳米磁性颗粒吸附在电磁分离器2的内壁上,剩余反应液从电磁分离器2的排液口排出。较佳的,电磁分离器2设置磁场强度为:2000高斯到10000高斯。Specifically, after the reaction liquid containing nano-scale magnetic particles prepared in the reaction kettle 1 enters the
反应液全部通过电磁分离器2,磁性颗粒被全部吸附后,开通电磁分离器顶部的喷淋装置,对磁性颗粒进行洗涤,直至排出液PH值达到7为止。All the reaction liquid passes through the
S3、将电磁分离器2内的洗涤液排放干净后,电磁分离器2停止通电并通入反冲液,将纳米级磁性颗粒从电磁分离器2的器壁上洗脱下来,将洗脱后含有磁性颗粒反应液返回至反应釜1的第二进料口,进行精细化处理。S3. After the washing liquid in the
较佳的,反冲液为:混有氮气的反冲液。Preferably, the backflush is: a backflush mixed with nitrogen.
具体的,在反应釜1中再加入催化剂进行搅拌,对含有磁性纳米颗粒的反应液进行精细化处理;在反应釜1中添加的催化剂,与含有磁性纳米颗粒的反应液进行氧化还原反应。较佳的,常压条件下,反应釜1搅拌速度为:500-2000 rpm,搅拌时间为:30-360min,温度范围为:室温到80℃。Specifically, a catalyst is added to the reaction kettle 1 for stirring, and the reaction solution containing the magnetic nanoparticles is refined; the catalyst added in the reaction kettle 1 undergoes a redox reaction with the reaction solution containing the magnetic nanoparticles. Preferably, under normal pressure conditions, the stirring speed of the reaction kettle 1 is: 500-2000 rpm, the stirring time is: 30-360 min, and the temperature range is: room temperature to 80 °C.
S4、将精细化处理后的含有磁性纳米颗粒的反应液送至管式离心机3,离心去除不符合规格大小的磁性纳米颗粒,并自管式离心机排液口排出。S4. The refined reaction solution containing magnetic nanoparticles is sent to the
具体的,去除磁性纳米颗粒的大小,可根据用户的实际需要进行自行调整;较佳的,将大于12nm的磁性纳米颗粒去除;离心机的转速在4000-6000rpm,去除大于12nm的磁性纳米颗粒物。Specifically, the size of the removed magnetic nanoparticles can be adjusted according to the actual needs of the user; preferably, the magnetic nanoparticles larger than 12 nm are removed; the rotating speed of the centrifuge is 4000-6000 rpm, and the magnetic nanoparticles larger than 12 nm are removed.
S5、管式离心机3将剩余符合粒径要求的磁性纳米颗粒反应液送至第一膜分离器4,进行脱除不符合规格的小分子磁性纳米颗粒;并自第一膜分离器4的排液口进行排出。S5, the
具体的,对于脱除分子量的大小,可根据用户的设置进行适应的改变。较佳的,将含有小于12nm的磁性纳米颗粒物反应液通入第一膜分离器4,进行脱除分子量小于3500的磁性纳米颗粒。Specifically, the size of the removed molecular weight can be adapted according to the user's settings. Preferably, the reaction solution containing magnetic nanoparticles with a size of less than 12 nm is passed into the first membrane separator 4 to remove magnetic nanoparticles with a molecular weight of less than 3500.
S6、第一膜分离器4将剩余的符合分子量要求的磁性纳米颗粒反应液返回至反应釜1中,进行高分子材料包覆。S6. The first membrane separator 4 returns the remaining magnetic nanoparticle reaction liquid that meets the molecular weight requirements to the reaction kettle 1 for coating with polymer materials.
具体的,剩余含有分子量大于3500的磁性纳米颗粒反应液(粒径为1nm-12nm)返回反应釜1,在反应釜1中加入高分子材料对磁性纳米颗粒进行高分子材料包覆。Specifically, the remaining reaction solution containing magnetic nanoparticles with a molecular weight greater than 3500 (particle size is 1 nm-12 nm) is returned to the reactor 1, and a polymer material is added to the reactor 1 to coat the magnetic nanoparticles with the polymer material.
较佳的,常压条件下,反应釜1的搅拌速度为200-1000 rpm,搅拌时间30min到360min,温度范围为室温到80℃;反应釜1中加入的高分子材料为亲水性高分子辅料、稳定剂。Preferably, under normal pressure conditions, the stirring speed of the reactor 1 is 200-1000 rpm, the stirring time is 30min to 360min, and the temperature range is from room temperature to 80°C; the polymer material added in the reactor 1 is a hydrophilic polymer. Excipients, stabilizers.
对磁性纳米颗粒进行包裹高分子材料目的在于增加亲水性、稳定性,降低其在人体内应用时的非特异性吸附,以及降低纳米生物材料毒性。The purpose of encapsulating the magnetic nanoparticles is to increase the hydrophilicity and stability, reduce their non-specific adsorption in the human body, and reduce the toxicity of nano-biological materials.
故,包裹有机高分子材料后的磁性纳米颗粒,使用时能够减少对人体的排斥和伤害。Therefore, the magnetic nanoparticles encapsulated by the organic polymer material can reduce the repulsion and damage to the human body during use.
S7、反应釜1把包覆后的磁性纳米颗粒反应液送至第二膜分离器5,进行脱除不符合分子量要求的磁性纳米颗粒,并自第二膜分离器5的排液口排出。S7, the reaction kettle 1 sends the coated magnetic nanoparticle reaction solution to the
具体的,进行脱除分子量大于10000的磁性纳米颗粒;去除的是大于10000分子量的杂质;而且由于高分子包裹后,纳米生物材料分子量变大,目的也在于去除未包裹且分子量大于10000高分子的生物材料。Specifically, magnetic nanoparticles with a molecular weight greater than 10,000 are removed; impurities with a molecular weight greater than 10,000 are removed; and since the molecular weight of the nano-biological material becomes larger after the polymer is wrapped, the purpose is also to remove the unwrapped and molecular weight greater than 10,000. biomaterials.
S8、第二膜分离器5将剩余的符合分子量要求的磁性纳米颗粒反应液送至减压蒸馏塔6,进行浓缩,达到指定浓度后,完成生产,最终得到纳米生物医用材料。S8. The
较佳的,减压蒸馏塔6的温度范围为:60-70℃。Preferably, the temperature range of the
本发明所述的纳米生物医用材料的生产工艺不仅能够准确的做到精细化的处理,使其生产出的纳米生物医用材料无毒,提高使用者的安全性;本发明还能够有效的提高了生产出材料的质量合格率。The production process of the nano biomedical material of the present invention can not only achieve precise and refined treatment, so that the produced nano biomedical material is non-toxic and improves the safety of users; the present invention can also effectively improve the The quality pass rate of the produced materials.
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。The above descriptions are only preferred embodiments of the present invention, which are merely illustrative rather than limiting for the present invention. Those skilled in the art understand that many changes, modifications and even equivalents can be made within the spirit and scope defined by the claims of the present invention, but all fall within the protection scope of the present invention.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811347786 | 2018-11-13 | ||
CN2018113477869 | 2018-11-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109382051A CN109382051A (en) | 2019-02-26 |
CN109382051B true CN109382051B (en) | 2020-12-18 |
Family
ID=65429593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811365459.6A Active CN109382051B (en) | 2018-11-13 | 2018-11-16 | A kind of production system of nanometer biomedical material and its production process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109382051B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1355319A (en) * | 2001-12-07 | 2002-06-26 | 清华大学 | Process for separating nucleic acid from biological particles by solid-phase carrier |
CN101445277A (en) * | 2008-11-14 | 2009-06-03 | 东北大学 | Nano-crystalline Fe*O* particles with high absorption capacity and preparation method thereof |
CN101612541A (en) * | 2009-07-17 | 2009-12-30 | 江南大学 | Preparation and application of polyacrylic acid-coated ferroferric oxide magnetic nanoparticles |
JP2013146717A (en) * | 2012-01-23 | 2013-08-01 | Toshiba Corp | Water treatment method and water treatment apparatus |
US9121083B2 (en) * | 2011-03-15 | 2015-09-01 | Kabushiki Kaisha Toshiba | Copper recovery apparatus and copper recovery method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4805201B2 (en) * | 2007-03-22 | 2011-11-02 | 月島環境エンジニアリング株式会社 | Method and apparatus for separation of target substance using membrane separation |
IL184941A0 (en) * | 2007-07-31 | 2008-12-29 | Slavin Vladimir | Method and device for producing biomass of photosynthesizing microorganisms mainly halobacteria halobacterium as well as biomass of the said microorganisms pigments bacteriorhodopsin in particular |
CN101875508B (en) * | 2010-05-31 | 2013-07-31 | 沈阳药科大学 | A kind of preparation method and application of Fe3O4 nanometer magnetic powder lymphatic tracer |
CN103495376A (en) * | 2013-10-08 | 2014-01-08 | 江南大学 | Preparation and phosphoeptide enrichment methods of titanium dioxide/ferroferric oxide nanoparticles |
CN107973479A (en) * | 2017-12-15 | 2018-05-01 | 河海大学 | A kind of Magneto separate-distillation device and its application for being used to purify sewage and useful constituent recycling |
CN207987068U (en) * | 2017-12-29 | 2018-10-19 | 烟台安诺其精细化工有限公司 | The purification devices of 4-ADPA crude product |
-
2018
- 2018-11-16 CN CN201811365459.6A patent/CN109382051B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1355319A (en) * | 2001-12-07 | 2002-06-26 | 清华大学 | Process for separating nucleic acid from biological particles by solid-phase carrier |
CN101445277A (en) * | 2008-11-14 | 2009-06-03 | 东北大学 | Nano-crystalline Fe*O* particles with high absorption capacity and preparation method thereof |
CN101612541A (en) * | 2009-07-17 | 2009-12-30 | 江南大学 | Preparation and application of polyacrylic acid-coated ferroferric oxide magnetic nanoparticles |
US9121083B2 (en) * | 2011-03-15 | 2015-09-01 | Kabushiki Kaisha Toshiba | Copper recovery apparatus and copper recovery method |
JP2013146717A (en) * | 2012-01-23 | 2013-08-01 | Toshiba Corp | Water treatment method and water treatment apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN109382051A (en) | 2019-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103785857B (en) | A kind of Nano Silver for antiseptic dressing and preparation method | |
CN106362148B (en) | A method for coating and modifying Prussian blue nano-mesogenic cell membranes | |
CN109135220B (en) | Polylactic acid/ZIF-8 @ C600 composite material and preparation method and application thereof | |
CN102093484B (en) | Method for preparing nano crystal cellulose by dissociating ZnCl2 | |
CN104785214A (en) | Chitosan-coated magnetic mesoporous silica core-shell structured nanoparticle and preparation method and application thereof | |
CN108636367A (en) | A kind of the chitosan magnetic composite material and preparation method of absorption PPCPs | |
CN109364889A (en) | A kind of preparation method of thermosensitive hydrogel and use thereof | |
CN113181846B (en) | Preparation method of pure lignin microcapsule based on Pickering emulsion solvent volatilization | |
Su et al. | Polymer grafted mesoporous SBA-15 material synthesized via metal-free ATRP as pH-sensitive drug carrier for quercetin | |
CN107213875A (en) | A kind of modified ramie porous microsphere sorbent of Adsorption of Heavy Metals ion and preparation method and application | |
CN102974326A (en) | Preparation of silica-cyclodextrin nano-adsorbent and its application in the adsorption of heavy metal ions Cu2+ in sewage | |
CN109382051B (en) | A kind of production system of nanometer biomedical material and its production process | |
WO2021027006A1 (en) | Novel degradable hemostatic material and preparation method therefor | |
CN102093748A (en) | Method for preparing radish red pigment homopolymer and radish proanthocyanidin from red-core radishes | |
CN106745878A (en) | The recovery method of sericin in filature industrial wastewater | |
CN106861646B (en) | Preparation method of adsorbent material for selectively adsorbing silver ions | |
CN103464222B (en) | The preparation method of the special anion exchange resin of a kind of adsorbing liquaemin | |
CN107552810A (en) | A kind of preparation method of Nano Silver isometric particle | |
CN107296802B (en) | A kind of hydrophobic porous silicon curcumin microgel with antioxidant activity and preparation method thereof | |
CN107260560B (en) | Preparation method of titanium dioxide special for cosmetics | |
CN103571221A (en) | Extracting and purifying method of red-brown pigment of chestnut shells | |
CN105963274A (en) | Preparation method of methylene blue containing silicon dioxide/tannin-iron particles promoting methylene blue monomer release | |
CN103240120B (en) | Temperature switch type catalyst based on magnetic artificial cells | |
CN109865496A (en) | Magnetic silica filler, magnetic affine filler and preparation method and purposes | |
CN109650602B (en) | Method for removing antimony ions in water body by using magnetic adsorption material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |