JP2004097952A - Filter and power generation plant - Google Patents

Filter and power generation plant Download PDF

Info

Publication number
JP2004097952A
JP2004097952A JP2002263845A JP2002263845A JP2004097952A JP 2004097952 A JP2004097952 A JP 2004097952A JP 2002263845 A JP2002263845 A JP 2002263845A JP 2002263845 A JP2002263845 A JP 2002263845A JP 2004097952 A JP2004097952 A JP 2004097952A
Authority
JP
Japan
Prior art keywords
fine particles
water
coated fine
filter
filtration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002263845A
Other languages
Japanese (ja)
Inventor
Makoto Fujie
藤江 誠
Hideki Nakamura
中村 秀樹
Kazuya Yamada
山田 和矢
Hideji Seki
関 秀司
Tadashi Fukushima
福島 正
Kiyoshi Ito
伊藤 喜与志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002263845A priority Critical patent/JP2004097952A/en
Publication of JP2004097952A publication Critical patent/JP2004097952A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power generation plant hardly causing the deposition of solid suspended material to a filter and a steam generator etc. which allows the high removal efficiency of the solid suspended material in the high temperature alkaline water quality. <P>SOLUTION: In the filter producing treated water 2 by allowing water 1 to be treated containing solid suspended material 5, 6 to pass through a filter membrane 3, the filter membrane 3 is constituted so as to carry conductive or insulating coated fine particles 4 which seize and coagulate the suspended material 5, 6. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、発電所の復水や給水等に含まれる固形懸濁物を除去する水処理用の濾過器および前記濾過器を備えた発電プラントに関する。
【0002】
【従来の技術】
火力発電所や加圧式原子力発電所二次系などのアルカリ水質では、給水、ヒータドレンなどの50℃以上の高温水の流路には金属または耐熱樹脂の濾過器を設置して、蒸気発生器への鉄持込量を少なくする技術が提案されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−17968号公報
【0004】
【発明が解決しようとする課題】
しかし、発電所のアルカリ水質においては、50℃以上の高温水中の固形懸濁物を金属または耐熱性樹脂製の濾過器で除去する方法では、固形懸濁物が濾過膜の穴を通過してしまい除去効率が低いという問題がある。そのため、濾過膜の表面に酸化鉄や水酸化鉄をプリコートして微細な流路を形成し、または吸着層を形成させることにより固形懸濁物を除去する方法が提案されているが、100℃以上では除去効率が低下するという問題がある。
【0005】
そこで本発明は、高温のアルカリ水質において固形懸濁物の高い除去効率の得られる濾過器および蒸気発生器等への固形懸濁物付着の少ない発電プラントを提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1の発明は、固形の懸濁物を含有する被処理水を濾過膜に通して処理水を生成する濾過器において、前記濾過膜は前記懸濁物を捕捉して凝集させる導電性または絶縁性の被覆微粒子を担持している構成とする。
【0007】
本発明によれば、濾過膜に担持された被覆微粒子により微細な固形懸濁物が捕捉され安定な形態に変化することにより粒子が成長して凝集され濾過膜で除去しやすくなる。高温の水中では、配管材料の鉄は溶解して水酸化鉄などを経てマグネタイトやヘマタイト、あるいは他の不純物との化合物に変化して下流の配管や機器の内面に析出して堆積する。溶解して安定な形態に変化するのに時間が必要であり、被覆微粒子に捕捉させて濾過までの時間を長くすることにより形態変化が可能になる。絶縁性の被覆微粒子では表面が帯電しているので水分子に囲まれた固形懸濁物の電荷が分極して微粒子に付着しやすい。また、導電性の被覆微粒子では、電荷の移動が容易であるため、被覆微粒子を挟んで正と負のイオンまたは分極した固形懸濁物の分子の捕捉が容易となる。
【0008】
請求項2の発明は、前記被覆微粒子はマグネタイトまたはマグヘマイトを含む酸化鉄からなり、前記濾過膜の表面を覆う被覆層を形成している構成とする。 本発明によれば、マグネタイト、マグヘマイト等の酸化鉄を種結晶として被覆微粒子上への固形懸濁物の結晶成長が促進される。
【0009】
請求項3の発明は、前記被覆微粒子は黒鉛、活性炭等の炭素を主成分とする化合物またはPTFEまたはPFAまたはPFE等のフッ素樹脂である構成とする。
本発明によれば、黒鉛、活性炭は水中の酸素の吸着が可能であり、吸着した固形懸濁物に酸素を供給してマグネタイトへの変化を促進する効果がある。
【0010】
また、絶縁性で耐熱性のあるフッ素樹脂を被覆微粒子として使用することにより、高温水中で分解することなく安定であるので、長期間安定した性能を維持することが可能である。さらに、フッ素樹脂の被覆微粒子は疎水性であるため被覆微粒子同士が水中では膜表面に凝集して油のような層を形成して内部に微細な流路を持つ層が形成され、微細な固形懸濁物が除去がされる。
【0011】
請求項4の発明は、前記フッ素樹脂の被覆微粒子からなる被覆層を濾過膜の表面に形成させたのち、前記被覆微粒子の融点以下で保持または通水して前記被覆微粒子を接着させて前記被覆層を改質した構成とする。
【0012】
本発明によれば、フッ素樹脂の融点以下の温度で保持または通水することにより被覆微粒子が接着して安定した被覆層が形成できるので、温度・圧力・流速変化などの濾過操作に対しても安定した被覆層を維持できる。
【0013】
また、濾過膜がフッ素樹脂製中空糸膜で構成されている場合には、フッ素樹脂の被覆微粒子が中空糸膜表面にも接着して、中空糸膜の表面に微細な流路の層を有する中空糸膜フィルタを形成することができる。微細流路を持つ層を中空糸膜の表面に有することにより微細な固形分の除去効率向上が期待できる。また、この層は膜本体に接着しているので、中空糸膜フィルタを濾過器に取り付け後のプリコート操作が不要であり、逆洗操作に対しても層が剥離しにくいので再起動の時間が短縮できる。
【0014】
請求項5の発明は、前記濾過膜はフッ素樹脂製の中空糸膜である構成とする。本発明によれば、耐熱性のフッ素樹脂製中空糸膜を使用することにより、単位体積当たりの濾過面積を大きくすることができるので、処理量を大きくすることが可能である。
【0015】
請求項6の発明は、蒸気発生器への給水系、または高圧ヒータドレン系、または低圧ヒータドレン系、または高圧抽気ライン、または低圧抽気ラインの少なくとも1箇所に請求項1から請求項5のいずれか1項に記載の濾過器を備えた構成とする。
【0016】
本発明によれば、復水、給水、高圧ヒータおよび低圧ヒータで発生する固形懸濁物の除去効率が高く、ポンプ振動を抑制し、蒸気発生器内面への固形物付着による腐食を抑制し、高い熱効率を維持することができる。
【0017】
【発明の実施の形態】
本発明の第1の実施の形態に係る濾過器を図1および図2を参照して説明する。
図1は本実施の形態に係る濾過器の構成と作用を説明する図である。すなわち、本実施の形態の濾過器は、被処理水1と処理水2を分ける濾過膜3と、この濾過膜3上に担持された被覆微粒子4とから構成されている。被処理水1中には微細な懸濁物A5およびB6が懸濁しており、これら微細な懸濁物A5,B6から固形懸濁物大型粒子7を形成する大型粒子形成反応8と、被処理水1から濾過膜3を通して処理水2になる水の流れ9が生じている。
【0018】
アルカリ性雰囲気で配管などから発生した鉄の懸濁物A5は微小であるが、十分な時間または触媒が存在すると安定なマグネタイトに変化する。そのため発電所の機器や蒸気発生器に鉄の酸化物であるマグネタイトが堆積する。
【0019】
絶縁性の被覆微粒子4は水中で負に帯電し、水酸化物やイオンの水和物である鉄の懸濁物A5は正に帯電または分極する。懸濁物A5の正電荷を帯びた部分が被覆微粒子4に捕捉される。捕捉された懸濁物A5の表面に電荷が移動して次々に吸着が進んで凝集物の粒径が大きくなる。反応はマグネタイトの生成へ進むので脱水反応や水和水の放出が起こり、酸化鉄の結晶が成長して固形懸濁物大型粒子7が生成する。
【0020】
導電性の被覆微粒子4では電荷移動が容易であるため、正電荷と負電荷が被覆微粒子4を介して電荷を打ち消すように、懸濁物A5が捕捉吸着され次々に凝集して脱水反応および水和水の放出により酸化鉄の結晶が成長して固形懸濁物大型粒子7が生成する。
【0021】
このように被覆微粒子4により、単なる濾過では捕捉の難しい懸濁物A5を濾過で捕捉が可能な固形懸濁物大型粒子7に変化させることができる。また、被処理水1中の懸濁物B6が懸濁物A5と安定な化合物を形成する場合には、懸濁物A5と懸濁物B6で固形懸濁物大型粒子7を生成する。なお、懸濁物B6は鉄以外の金属の酸化物や水酸化物、あるいは酸素であり、鉄とともに金属酸化物を生成する。
【0022】
図2(a)は、被覆微粒子4を用いない場合の加圧式原子力発電所二次系水質を模擬して、アルカリ性、約200℃における濾過器の被処理水1と処理水2中の固形懸濁物濃度の経時変化を示す図である。濾過処理の初期のみ処理水2中の固形懸濁物濃度が低いが、その後、被処理水1と処理水2中の固形懸濁物濃度の差はほとんどない。
【0023】
図2(b)は、フッ素樹脂の一種である絶縁性のポリテトラフルオロエチレン(PTFE)の被覆微粒子4を使用した場合の同様な試験の結果である。被処理水1に比べて処理水2中の固形懸濁物濃度は低く、初期の処理水水質を長時間維持しており、被覆微粒子4の効果が顕著に現れている。
【0024】
本実施の形態における絶縁性の被覆微粒子4としては、フッ素樹脂ではPTFEの他に、例えばテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、ポリビニリデンフルオライド(PVdF)、テトラフルオロエチレン/エチレン共重合体(ETFE)、テトラフルオロエチレン/パーフルオロアルコキシエチレン共重合体(PFE)等の使用が可能である。
【0025】
導電性の被覆微粒子では黒鉛、グラファイト等の炭素系材料の使用が可能である。また、被覆微粒子4とともにマグネタイト、マグヘマイト、水酸化鉄等の鉄化合物を、混合あるいは積層させて濾過膜3上に被覆することにより、鉄化合物が核となって固形懸濁物大型粒子7の形成が効果的に行われる。
【0026】
本実施の形態によれば、微細で濾過膜3に捕捉されない懸濁物A5,B6を効率良く大きな固形懸濁物粒子7に変化させることができるので、効率のよい濾過器が得られる。
【0027】
つぎに本発明の第2の実施の形態を説明する。図3に示すように、本実施の形態に係る濾過器11は、被覆微粒子で中空糸膜の表面を覆った中空糸膜フィルタモジュール10を備えている。濾過器11の処理水2側には、処理水出口ライン12とバルブ20a、および逆洗ライン13とバルブ20bが接続されており、濾過器11の被処理水1側には、被処理水入口ライン14とバルブ20c、および逆洗水排出ライン15とバルブ20dが接続され、逆洗水排出ライン15の排出物16を受ける容器17が設けられている。
【0028】
濾過時にはバルブ20cとバルブ20aを開き、バルブ20bとバルブ20dを閉じて、被処理水入口ライン14から被処理水1を濾過器11に供給し、被覆微粒子を被覆した中空糸膜フィルタモジュール10を通して濾過し、処理水2が処理水出口ライン12から排出される。
【0029】
逆洗時にはバルブ20cとバルブ20aを閉じ、バルブ20bとバルブ20dを開いて、逆洗ライン13から水または気体を濾過器11の処理水2側に供給して、中空糸膜に堆積した固形懸濁物大型粒子と被覆微粒子を含む液を逆洗水排出ライン15から排出して容器17に排出物16を回収する。逆洗時には被処理水1側に気体を供給して中空糸膜に振動を与えて固形懸濁物大型粒子と被覆微粒子を膜表面から剥ぎ取る方法も効果的である。
【0030】
中空糸膜フィルタモジュール10は、プリーツなどの平膜タイプのモジュールに比べて単位体積当たりの膜面積を大きくできるので大量の被処理水を処理することが可能であり、さらに逆洗操作により濾過器の再生が可能で長期間使用することができる。中空糸膜フィルタモジュール10は、耐熱性を有し高温水中で分解や不純物の溶出が少ないことが必要であり、例えばフッ素樹脂製モジュールが使用可能である。
【0031】
逆洗して回収した排出物16には被覆微粒子が含まれており、固形懸濁物大型粒子は酸化鉄が主成分であることから、比重差を利用し、あるいは酸化鉄を溶解することにより、排出物16から被覆微粒子を回収して再使用することが可能である。
【0032】
本実施の形態の濾過器によれば大流量の被処理水を処理することができ、逆洗により再生が可能であり、被覆微粒子の再使用もできることから、濾過性能が高く廃棄物発生の少ない濾過処理が可能である。
【0033】
つぎに本発明の第3の実施の形態を説明する。本実施の形態は図4に示すように、本発明に係る濾過器を給水系に設置した発電プラントである。
発電プラントの主な高温水の流れは、復水器21から復水濾過脱塩設備22および低圧給水加熱器23、高圧給水加熱器24を通して蒸気発生器25へと流れる給水系と、蒸気発生器25から高圧タービン26、低圧タービン27への主蒸気系の流れ、高圧タービン26から高圧抽気系30、高圧給水加熱器24を経る高圧ヒータドレン系28および低圧タービン27から低圧抽気系31、低圧給水加熱器23を経る低圧ヒータドレン系29の給水系に戻るヒータドレン系の流れに分けられる。
【0034】
本発明に係る濾過器35a,35b,35cの給水系における設置場所は、例えば復水濾過脱塩設備22と低圧給水加熱器23の間(35c)、低圧給水加熱器23と高圧給水加熱器24の間(35b)および高圧給水加熱器24と蒸気発生器25の間(35a)の一部または全部である。また、図示の他にも、高圧給水加熱器24から給水に戻る高圧ヒータドレン系28および/または低圧給水加熱器23から給水に戻る低圧ヒータドレン系29に濾過器を設置することが可能である。さらに、高圧タービンから高圧給水加熱器への高圧抽気系30のラインおよび/または低圧タービン26から低圧給水加熱器23への低圧抽気系31のラインに濾過器を設置することも可能である。
【0035】
本実施の形態の発電プラントにおいては、給水、高圧給水加熱器および低圧給水加熱器、高圧抽気系および低圧抽気系で発生または流通する固形懸濁物を除去することができるので、固形懸濁物の付着に起因する復水、給水系等に使用されているポンプの振動を抑制することができ、蒸気発生器内面への固形懸濁物付着による腐食を抑制し高い伝熱効率を維持することができる。
【0036】
【発明の効果】
本発明によれば、高温のアルカリ水質において固形懸濁物の高い除去効率の得られる濾過器および蒸気発生器等への固形懸濁物付着の少ない発電プラントを提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の濾過器の構成を示す模式図。
【図2】(a)は被覆微粒子を使用しない場合における水質の経時変化を示し、(b)は被覆微粒子を使用した場合における水質の経時変化を示して、本発明の第1の実施の形態の濾過器の効果を説明するグラフ。
【図3】本発明の第2の実施の形態の濾過器を示す断面図。
【図4】本発明の第3の実施の形態の発電プラントを示す系統図。
【符号の説明】
1…被処理水、2…処理水、3…濾過膜、4…被覆微粒子、5…懸濁物A、6…懸濁物B、7…固形懸濁物大型粒子、8…大型粒子形成反応、9…水の流れ、10…中空糸膜フィルタモジュール、11…濾過器、12…処理水出口ライン、13…逆洗ライン、14…被処理水入口ライン、15…逆洗水排出ライン、16…排出物、17…容器、20a〜20d…バルブ、21…復水器、22…復水濾過脱塩設備、23…低圧給水加熱器、24…高圧給水加熱器、25…蒸気発生器、26…高圧タービン、27…低圧タービン、28…高圧ヒータドレン系、29…低圧ヒータドレン系、30…高圧抽気系、31…低圧抽気系、35a,35b,35c…濾過器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water treatment filter for removing solid suspended solids contained in condensed water or water supply of a power plant, and a power plant including the filter.
[0002]
[Prior art]
For alkaline water qualities such as thermal power plants and pressurized nuclear power plants secondary systems, metal or heat-resistant resin filters are installed in the flow path of high-temperature water of 50 ° C or higher, such as water supply and heater drain, to the steam generator. A technique has been proposed to reduce the amount of iron brought into the vehicle (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-17968 A
[Problems to be solved by the invention]
However, in the alkaline water quality of a power plant, in a method of removing a solid suspension in high-temperature water of 50 ° C. or higher with a filter made of a metal or a heat-resistant resin, the solid suspension passes through a hole in a filtration membrane. There is a problem that the removal efficiency is low. Therefore, a method of removing solid suspension by forming a fine channel by pre-coating iron oxide or iron hydroxide on the surface of the filtration membrane or forming an adsorption layer has been proposed. Above, there is a problem that the removal efficiency is reduced.
[0005]
Accordingly, an object of the present invention is to provide a power plant in which solid suspended matter is less attached to a filter, a steam generator, and the like, which can obtain a high efficiency of removing solid suspended matter in high-temperature alkaline water.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is a filter for generating treated water by passing treated water containing a solid suspension through a filtration membrane, wherein the filtration membrane captures and agglomerates the suspension and has conductivity or It is configured to carry insulative coated fine particles.
[0007]
According to the present invention, the fine solid suspension is captured by the coated fine particles supported on the filtration membrane and changes to a stable form, whereby the particles grow and aggregate, and are easily removed by the filtration membrane. In high-temperature water, iron in the piping material dissolves, changes into magnetite, hematite, or a compound with other impurities via iron hydroxide or the like, and precipitates and deposits on the inner surface of downstream piping or equipment. It takes time to dissolve and change to a stable form, and the form can be changed by capturing the coated fine particles to increase the time until filtration. Since the surface of the insulative coated fine particles is charged, the charge of the solid suspension surrounded by water molecules is polarized and easily attached to the fine particles. In addition, since the transfer of electric charge is easy in the conductive coated fine particles, it is easy to capture positive and negative ions or molecules of the polarized solid suspension across the coated fine particles.
[0008]
The invention according to claim 2 is configured such that the coated fine particles are made of iron oxide containing magnetite or maghemite, and form a coating layer covering the surface of the filtration membrane. ADVANTAGE OF THE INVENTION According to this invention, crystal growth of a solid suspension on coated fine particles is promoted using iron oxides such as magnetite and maghemite as seed crystals.
[0009]
The invention according to claim 3 is configured such that the coated fine particles are a compound having carbon as a main component such as graphite or activated carbon, or a fluororesin such as PTFE, PFA or PFE.
According to the present invention, graphite and activated carbon can adsorb oxygen in water, and have the effect of supplying oxygen to the adsorbed solid suspension to promote the conversion to magnetite.
[0010]
In addition, by using an insulating and heat-resistant fluororesin as the coated fine particles, it is stable without being decomposed in high-temperature water, so that stable performance can be maintained for a long time. Furthermore, since the coated fine particles of the fluororesin are hydrophobic, the coated fine particles are aggregated on the membrane surface in water to form an oil-like layer in the water, and a layer having a fine flow path is formed therein, thereby forming a fine solid. The suspension is removed.
[0011]
The invention according to claim 4 is that, after forming a coating layer made of the coated fine particles of the fluororesin on the surface of the filtration membrane, the coated fine particles are adhered by holding or passing water below the melting point of the coated fine particles. The layer is modified.
[0012]
According to the present invention, the coated fine particles can be adhered by holding or passing water at a temperature equal to or lower than the melting point of the fluororesin so that a stable coating layer can be formed. A stable coating layer can be maintained.
[0013]
Further, when the filtration membrane is formed of a fluororesin hollow fiber membrane, the coated fine particles of the fluororesin also adhere to the surface of the hollow fiber membrane to have a fine channel layer on the surface of the hollow fiber membrane. A hollow fiber membrane filter can be formed. By providing a layer having a fine channel on the surface of the hollow fiber membrane, an improvement in the efficiency of removing fine solids can be expected. In addition, since this layer is adhered to the membrane main body, the pre-coating operation after attaching the hollow fiber membrane filter to the filter is unnecessary, and the layer does not easily peel off even in the case of backwashing, so the restarting time is reduced. Can be shortened.
[0014]
The invention according to claim 5 is configured such that the filtration membrane is a hollow fiber membrane made of fluororesin. According to the present invention, since the filtration area per unit volume can be increased by using the heat-resistant fluororesin hollow fiber membrane, the throughput can be increased.
[0015]
According to a sixth aspect of the present invention, at least one of a water supply system to the steam generator, a high-pressure heater drain system, a low-pressure heater drain system, a high-pressure bleed line, and a low-pressure bleed line is provided. The structure provided with the filter described in the paragraph.
[0016]
According to the present invention, condensate, water supply, high removal efficiency of solid suspended solids generated in the high-pressure heater and low-pressure heater, suppress pump vibration, suppress corrosion due to solid adherence to the steam generator inner surface, High thermal efficiency can be maintained.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
A filter according to a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram illustrating the configuration and operation of the filter according to the present embodiment. That is, the filter of the present embodiment is composed of the filtration membrane 3 that separates the water to be treated 1 and the treated water 2, and the coated fine particles 4 supported on the filtration membrane 3. Fine suspensions A5 and B6 are suspended in the water 1 to be treated, and a large particle forming reaction 8 for forming solid suspension large particles 7 from these fine suspensions A5 and B6, A stream 9 of water from the water 1 to the treated water 2 through the filtration membrane 3 is produced.
[0018]
The suspension A5 of iron generated from pipes or the like in an alkaline atmosphere is minute, but changes to stable magnetite when a sufficient time or a catalyst is present. As a result, magnetite, which is an oxide of iron, is deposited on power plant equipment and steam generators.
[0019]
The insulating coated fine particles 4 are negatively charged in water, and the iron suspension A5, which is a hydrate of hydroxide or ion, is positively charged or polarized. The positively charged portion of the suspension A5 is captured by the coated fine particles 4. The charge moves to the surface of the captured suspension A5, and the adsorption proceeds one after another, so that the particle size of the aggregate increases. Since the reaction proceeds to the generation of magnetite, a dehydration reaction and the release of water of hydration occur, and the crystals of iron oxide grow to generate large particles 7 of the solid suspension.
[0020]
Since the electric charge transfer is easy in the conductive coated fine particles 4, the suspension A5 is trapped and adsorbed and aggregates one after another so that the positive and negative charges cancel out the electric charges via the coated fine particles 4 to cause the dehydration reaction and the water. Due to the release of the water, the crystals of iron oxide grow to produce large particles 7 of the solid suspension.
[0021]
In this way, the coated fine particles 4 can change the suspension A5 that is difficult to capture by simple filtration into the large solid suspension particles 7 that can be captured by filtration. When the suspension B6 in the water 1 to be treated forms a stable compound with the suspension A5, the suspension A5 and the suspension B6 form large particles 7 of a solid suspension. The suspension B6 is an oxide or hydroxide of a metal other than iron or oxygen, and forms a metal oxide together with iron.
[0022]
FIG. 2 (a) simulates the secondary water quality of a pressurized nuclear power plant in the case where the coated fine particles 4 are not used. It is a figure which shows a time-dependent change of a turbid substance concentration. Although the concentration of the solid suspension in the treated water 2 is low only in the initial stage of the filtration treatment, there is almost no difference between the concentration of the solid suspension in the treated water 1 and the concentration of the solid suspension in the treated water 2 thereafter.
[0023]
FIG. 2B shows the result of a similar test in the case of using insulating polytetrafluoroethylene (PTFE) -coated fine particles 4 which are a kind of fluororesin. The concentration of the solid suspension in the treated water 2 is lower than that of the treated water 1, and the quality of the treated water at the initial stage is maintained for a long time.
[0024]
As the insulating coated fine particles 4 in the present embodiment, for example, tetrafluoroethylene / perfluoroalkylvinyl ether copolymer (PFA), polytetrafluoroethylene / hexafluoropropylene copolymer ( FEP), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVdF), tetrafluoroethylene / ethylene copolymer (ETFE), tetrafluoroethylene / perfluoroalkoxyethylene copolymer (PFE), etc. It is possible.
[0025]
Carbon-based materials such as graphite and graphite can be used for the conductive coated fine particles. Further, by mixing or laminating an iron compound such as magnetite, maghemite, iron hydroxide or the like with the coated fine particles 4 and coating the mixture on the filtration membrane 3, the iron compound becomes a nucleus to form large particles 7 of the solid suspension. Is performed effectively.
[0026]
According to the present embodiment, the suspensions A5 and B6, which are fine and are not captured by the filtration membrane 3, can be efficiently converted into large solid suspension particles 7, so that an efficient filter can be obtained.
[0027]
Next, a second embodiment of the present invention will be described. As shown in FIG. 3, the filter 11 according to the present embodiment includes a hollow fiber membrane filter module 10 in which the surface of the hollow fiber membrane is covered with coated fine particles. A treated water outlet line 12 and a valve 20a are connected to the treated water 2 side of the filter 11, and a backwash line 13 and a valve 20b are connected to the treated water 1 side of the filter 11. The line 14 is connected to the valve 20c, and the backwash water discharge line 15 is connected to the valve 20d. A container 17 is provided for receiving the discharge 16 from the backwash water discharge line 15.
[0028]
At the time of filtration, the valve 20c and the valve 20a are opened, the valve 20b and the valve 20d are closed, and the water 1 to be treated is supplied to the filter 11 from the treated water inlet line 14, and is passed through the hollow fiber membrane filter module 10 coated with the coated fine particles. After filtration, the treated water 2 is discharged from the treated water outlet line 12.
[0029]
At the time of backwashing, the valve 20c and the valve 20a are closed, the valve 20b and the valve 20d are opened, and water or gas is supplied from the backwashing line 13 to the treated water 2 side of the filter 11, and the solid suspension deposited on the hollow fiber membrane is removed. The liquid containing the turbid large particles and the coated fine particles is discharged from the backwash water discharge line 15 and the discharge 16 is collected in the container 17. At the time of back washing, a method is also effective in which a gas is supplied to the water 1 to be treated and the hollow fiber membrane is vibrated to remove large particles of solid suspension and coated fine particles from the membrane surface.
[0030]
The hollow fiber membrane filter module 10 can treat a large amount of water to be treated because the membrane area per unit volume can be increased as compared with a flat membrane type module such as pleats. And can be used for a long time. The hollow fiber membrane filter module 10 needs to have heat resistance and to be free from decomposition and elution of impurities in high-temperature water. For example, a module made of fluororesin can be used.
[0031]
The effluent 16 collected by backwashing contains coated fine particles, and the large particles of the solid suspension are mainly composed of iron oxide. Therefore, by utilizing the difference in specific gravity or by dissolving the iron oxide. It is possible to collect and reuse the coated fine particles from the effluent 16.
[0032]
According to the filter of the present embodiment, a large amount of water to be treated can be treated, regenerated by back washing, and coated fine particles can be reused, so that the filtration performance is high and the generation of waste is small. Filtration treatment is possible.
[0033]
Next, a third embodiment of the present invention will be described. As shown in FIG. 4, the present embodiment is a power plant in which the filter according to the present invention is installed in a water supply system.
The main flow of the high-temperature water in the power plant is a water supply system that flows from the condenser 21 to the steam generator 25 through the condensate filtration and desalination equipment 22, the low-pressure feed water heater 23, and the high-pressure feed water heater 24, and a steam generator. 25 to the high-pressure turbine 26 and the low-pressure turbine 27, the high-pressure turbine 26 to the high-pressure extraction system 30, the high-pressure heater drain system 28 passing through the high-pressure feedwater heater 24, and the low-pressure turbine 27 to the low-pressure extraction system 31, low-pressure feedwater heating. The flow is divided into the flow of the heater drain system returning to the water supply system of the low-pressure heater drain system 29 passing through the heater 23.
[0034]
The installation location of the filters 35a, 35b, 35c according to the present invention in the water supply system is, for example, between the condensate filtration and desalination equipment 22 and the low pressure water heater 23 (35c), the low pressure water heater 23 and the high pressure water heater 24. (35b) and part (35a) between the high-pressure feedwater heater 24 and the steam generator 25 (35a). Further, in addition to the illustration, a filter can be provided in the high-pressure heater drain system 28 returning from the high-pressure feed water heater 24 to the feed water and / or the low-pressure heater drain system 29 returning from the low-pressure feed water heater 23 to the feed water. Furthermore, it is possible to install a filter in the line of the high pressure extraction system 30 from the high pressure turbine to the high pressure feed water heater and / or the line of the low pressure extraction system 31 from the low pressure turbine 26 to the low pressure feed water heater 23.
[0035]
In the power plant of the present embodiment, feed water, high-pressure feed water heater and low-pressure feed water heater, solid suspension generated or circulated in the high-pressure bleed system and low-pressure bleed system can be removed, so the solid suspension It can suppress the vibration of the pump used in the condensate and water supply system caused by the adhesion of water, suppress the corrosion due to the adhesion of solid suspended solids on the inner surface of the steam generator, and maintain high heat transfer efficiency. it can.
[0036]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, it is possible to provide a power plant in which solid suspended solids are less attached to a filter, a steam generator, and the like, which can obtain a high removal efficiency of solid suspended solids in high-temperature alkaline water.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a filter according to a first embodiment of the present invention.
FIG. 2 (a) shows a change over time in water quality when coated fine particles are not used, and FIG. 2 (b) shows a change over time in water quality when coated fine particles are used, according to the first embodiment of the present invention. 4 is a graph illustrating the effect of the filter of FIG.
FIG. 3 is a sectional view showing a filter according to a second embodiment of the present invention.
FIG. 4 is a system diagram showing a power plant according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Water to be processed, 2 ... Treatment water, 3 ... Filtration membrane, 4 ... Coated fine particles, 5 ... Suspension A, 6 ... Suspension B, 7 ... Solid suspension large particle, 8 ... Large particle formation reaction , 9 ... water flow, 10 ... hollow fiber membrane filter module, 11 ... filter, 12 ... treated water outlet line, 13 ... backwash line, 14 ... treated water inlet line, 15 ... backwash water discharge line, 16 ... Exhaust, 17 ... Container, 20a-20d ... Valve, 21 ... Condenser, 22 ... Condensate filtration and desalination equipment, 23 ... Low pressure feed water heater, 24 ... High pressure feed water heater, 25 ... Steam generator, 26 ... high pressure turbine, 27 ... low pressure turbine, 28 ... high pressure heater drain system, 29 ... low pressure heater drain system, 30 ... high pressure extraction system, 31 ... low pressure extraction system, 35a, 35b, 35c ... filter.

Claims (6)

固形の懸濁物を含有する被処理水を濾過膜に通して処理水を生成する濾過器において、前記濾過膜は前記懸濁物を捕捉して凝集させる導電性または絶縁性の被覆微粒子を担持していることを特徴とする濾過器。In a filter that generates treated water by passing treated water containing a solid suspension through a filtration membrane, the filtration membrane carries conductive or insulating coated fine particles that capture and aggregate the suspension. A filter characterized by the following. 前記被覆微粒子はマグネタイトまたはマグヘマイトを含む酸化鉄からなり、前記濾過膜の表面を覆う被覆層を形成していることを特徴とする請求項1記載の濾過器。The filter according to claim 1, wherein the coated fine particles are made of iron oxide containing magnetite or maghemite, and form a coating layer covering the surface of the filtration membrane. 前記被覆微粒子は黒鉛または活性炭を含む炭素を主成分とする化合物またはPTFEまたはPFAまたはPFEを含むフッ素樹脂であることを特徴とする請求項1記載の濾過器。2. The filter according to claim 1, wherein the coated fine particles are a compound containing graphite or carbon containing activated carbon as a main component, or a fluororesin containing PTFE, PFA or PFE. 前記フッ素樹脂の被覆微粒子からなる被覆層を濾過膜の表面に形成させたのち、前記被覆微粒子の融点以下で保持または通水して前記被覆微粒子を接着させて前記被覆層を改質したことを特徴とする請求項3記載の濾過器。After forming a coating layer composed of the coated fine particles of the fluororesin on the surface of the filtration membrane, the coating layer was modified by holding or passing water below the melting point of the coated fine particles and bonding the coated fine particles. The filter according to claim 3, characterized in that: 前記濾過膜はフッ素樹脂製の中空糸膜であることを特徴とする請求項1記載の濾過器。The filter according to claim 1, wherein the filtration membrane is a hollow fiber membrane made of fluororesin. 蒸気発生器への給水系、または高圧ヒータドレン系、または低圧ヒータドレン系、または高圧抽気ライン、または低圧抽気ラインの少なくとも1箇所に請求項1から請求項5のいずれか1項に記載の濾過器を備えたことを特徴とする発電プラント。A water supply system to a steam generator, or a high-pressure heater drain system, or a low-pressure heater drain system, or a high-pressure bleed line or a low-pressure bleed line. A power plant comprising:
JP2002263845A 2002-09-10 2002-09-10 Filter and power generation plant Withdrawn JP2004097952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263845A JP2004097952A (en) 2002-09-10 2002-09-10 Filter and power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263845A JP2004097952A (en) 2002-09-10 2002-09-10 Filter and power generation plant

Publications (1)

Publication Number Publication Date
JP2004097952A true JP2004097952A (en) 2004-04-02

Family

ID=32263444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263845A Withdrawn JP2004097952A (en) 2002-09-10 2002-09-10 Filter and power generation plant

Country Status (1)

Country Link
JP (1) JP2004097952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255190A (en) * 2011-06-08 2012-12-27 Toshiba Corp Copper recovery apparatus
WO2013111372A1 (en) * 2012-01-23 2013-08-01 株式会社 東芝 Water treatment method and water treatment system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255190A (en) * 2011-06-08 2012-12-27 Toshiba Corp Copper recovery apparatus
US8986541B2 (en) 2011-06-08 2015-03-24 Kabushiki Kaisha Toshiba Copper recovery apparatus
US9701553B2 (en) 2011-06-08 2017-07-11 Kabushiki Kaisha Toshiba Copper recovery apparatus
WO2013111372A1 (en) * 2012-01-23 2013-08-01 株式会社 東芝 Water treatment method and water treatment system
JP2013146717A (en) * 2012-01-23 2013-08-01 Toshiba Corp Water treatment method and water treatment apparatus

Similar Documents

Publication Publication Date Title
RU2371237C1 (en) System of co2 regeneration and method of hard particles removal for application in this system
US8142650B2 (en) Water treatment system
JP2013108117A (en) Method and apparatus for recovering copper from copper etching waste liquid
CN106964197B (en) A kind of Supported On Granular Activated Carbon Nanoscale Iron composite filter element material and preparation method thereof
RU2013111776A (en) SYSTEM AND METHOD OF CEMENT DUST PROCESSING
TW200300129A (en) Treatment process for fluorine-containing water (II)
JP2010188233A (en) Removing system of water-soluble organic compound
WO2013145372A1 (en) Water treatment filter aid and water treatment method
JP2004097952A (en) Filter and power generation plant
JP2004190235A (en) Water purifier using moisture in atmosphere
CN110787512A (en) Pickling process for metal filter element
CN102351336A (en) Electroplating wastewater treatment process
JP2016078014A (en) Treatment method and treatment device for ammonia-containing waste water
JP2006305466A (en) Metal powder capturing apparatus, capturing method of metal powder, production apparatus of metal powder and production method of metal powder
JP2012228676A (en) Filtration apparatus and power plant
CN106457135A (en) System and method for cleaning a gas stream from a urea plant solidification unit
JPH10192605A (en) Filter for filter bed and power generation plant provided with the same
JP2014189431A (en) Recovery system and recovery method of fibrous carbon material
CN211232906U (en) Steam supply and exhaust gas purification system of steam reforming device
CN105712561A (en) Method and system for separating separation vaporization desalination membrane for treating mineral-containing water body
CN213000030U (en) Heating and separating device for powdery adsorption material
CN208327603U (en) strong acid filter
JP2708043B2 (en) Plant operation method
JP2000218109A (en) Treatment of waste water
JPS61188865A (en) High temperature filtering device for cooling water of fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110