WO2013145372A1 - Water treatment filter aid and water treatment method - Google Patents

Water treatment filter aid and water treatment method Download PDF

Info

Publication number
WO2013145372A1
WO2013145372A1 PCT/JP2012/073191 JP2012073191W WO2013145372A1 WO 2013145372 A1 WO2013145372 A1 WO 2013145372A1 JP 2012073191 W JP2012073191 W JP 2012073191W WO 2013145372 A1 WO2013145372 A1 WO 2013145372A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
filter aid
magnetic
treated
particles
Prior art date
Application number
PCT/JP2012/073191
Other languages
French (fr)
Japanese (ja)
Inventor
深谷 太郎
厚 山崎
剣治 堤
伊知郎 山梨
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to IN7415DEN2014 priority Critical patent/IN2014DN07415A/en
Publication of WO2013145372A1 publication Critical patent/WO2013145372A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/286Magnetic plugs and dipsticks disposed at the inner circumference of a recipient, e.g. magnetic drain bolt
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid

Definitions

  • Embodiment described here is related with the filter aid for water treatment used repeatedly and removing the foreign material, such as the solid substance contained in water, and the water treatment method using the same.
  • the membrane separation method is one of the most commonly used methods for removing insoluble substances in water. From the viewpoint of increasing the water flow rate of the contained water, filter aids are used in membrane separation methods.
  • Patent Document 1 describes a method of removing a hardly filterable substance such as algae by adding a paramagnetic substance powder to a waste liquid.
  • the zeta potential of the paramagnetic substance and the algae are close to each other, it is very difficult to separate after removal from water, and the paramagnetic substance is difficult to reuse. Even when a water-containing solid such as a hydroxide is removed using a magnetic filter aid, it may be difficult to separate the magnetic filter aid and the water-containing solid.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a water treatment filter aid that can remove fine foreign matters existing in water and is easy to reuse, and a water treatment method using the same.
  • FIG. 1A is a schematic cross-sectional view showing magnetic inorganic particles coated with fluoride.
  • FIG. 1B is a schematic cross-sectional view showing a particle aggregate in which magnetic primary particles are aggregated.
  • FIG. 2A is a schematic diagram for explaining the circularity of the particle aggregate.
  • FIG. 2B is a schematic diagram for explaining the circularity of the particle aggregate.
  • FIG. 2C is a schematic diagram for explaining the circularity of the particle aggregate.
  • FIG. 3A is a schematic diagram for explaining the circularity of the particle aggregate.
  • FIG. 3B is a schematic diagram for explaining the circularity of the particle aggregate.
  • FIG. 3C is a schematic diagram for explaining the circularity of the particle aggregate.
  • FIG. 4 is a schematic diagram showing a state in which foreign matter is sandwiched between particles.
  • FIG. 5A, 5B, and 5C are schematic views showing a reaction mechanism between a silane coupling agent and an inorganic surface.
  • FIG. 6 is a schematic diagram illustrating a reaction mechanism between a silane coupling agent and an inorganic surface.
  • FIG. 7 is a schematic view showing a formation reaction of polyimide amide.
  • FIG. 8 is a characteristic diagram showing an example of distribution of interparticle pore diameter (interparticle spacing) S in sample A.
  • FIG. 9 is a photomicrograph showing an enlarged view of the particles of Sample A.
  • FIG. 10 is a characteristic diagram showing an example of the distribution of interparticle pore size (interparticle spacing) S and the distribution of intraparticle pore size in Sample C, respectively.
  • FIG. 11 is a photomicrograph showing an enlarged view of the particles of Sample C.
  • FIG. 12 is a configuration block diagram showing an outline of a water treatment apparatus using the particles of the first embodiment.
  • FIG. 13 is a process diagram showing a water treatment method (body feed method) of the first embodiment using the apparatus of FIG.
  • FIG. 14 is a configuration block diagram showing an outline of another water treatment apparatus using the particles of the second embodiment.
  • FIG. 15 is a process diagram showing a water treatment method (precoat method) of a second embodiment using the apparatus of FIG.
  • the filter aid for water treatment adsorbs foreign substances contained in the water to be treated, and is separated from the water to be treated by membrane filtration together with the adsorbed foreign substances, and separated by membrane filtration. It is a filter aid for water treatment that is magnetically separated from foreign substances in it and is repeatedly used.
  • the filter aid is composed of an aggregate of a plurality of magnetic primary particles, and the magnetic primary particles are averaged.
  • a magnetic inorganic particle having a particle size of 5 ⁇ m or more and 40 ⁇ m or less, a coating layer that covers a part or all of the surface of the magnetic inorganic particle and contains a fluorine organic compound supported on the magnetic inorganic particle, and
  • the circularity value of the two-dimensional projection image projected on the plane in the microscope field is in the range of 0.40 or more and less than 1.00 (excluding 1.00).
  • the average particle diameter d 1 of the magnetic primary particles is in the range of 5 ⁇ m to 40 ⁇ m (FIG. 1A).
  • the average particle diameter d 1 of the magnetic primary particles is less than 5 [mu] m, the particles become too small distance between particles too densely aggregated as a filter aid, effective through water it is difficult to obtain.
  • the average particle diameter d 1 of the magnetic primary particles exceeds 40 ⁇ m, the particles are coarsely aggregated and the distance between the particles becomes too large, and it becomes easy for foreign substances (fine particles, valuables or harmful substances) in water to pass through. , May not work as a filter aid.
  • the average particle diameter d 1 of the magnetic primary particles is in the range of 10 to 25 ⁇ m.
  • the average particle diameter d 1 of the magnetic primary particles is 25 ⁇ m or less, the removal efficiency of foreign matters from water is further increased.
  • the average particle diameter d 1 of the magnetic primary particles is 10 ⁇ m or more, the water flow rate is further increased and the treatment efficiency is improved.
  • Magnetic primary particles having an average particle diameter d 1 in the range of 10 to 25 ⁇ m are the most preferable range with a good balance between the foreign matter removal efficiency and the water flow rate.
  • the magnetic inorganic particles and the coating layer are adjusted so that the circularity value of the two-dimensional projection image projected in the microscope field falls within the range of 0.40 or more and less than 1.00 (excluding 1.00).
  • the “circularity” is given by the following equation (1) using the perimeter and area of the two-dimensional projection image when the object is projected onto a plane, and the contour shape of the two-dimensional projection image is a circle. It is defined as a coefficient that quantifies the degree of whether it is close or far.
  • CR 4 ⁇ A / L 2 (1)
  • L is the perimeter of the two-dimensional projection image
  • A is the area of the two-dimensional projection image.
  • the shape when the value of circularity is equal to 1 is a perfect circle.
  • the shape of the magnetic primary particles may be spherical, polyhedral or amorphous.
  • the filter aid having a circularity value in the range of 0.40 or more and less than 1.00 improves the amount of water passing through the surface and increases the water flow rate, and increases the aspect ratio of the magnetic primary particles, thereby increasing the spacing S between the magnetic primary particles. Therefore, the desired water flow rate can be secured while capturing water-insoluble solids in water.
  • the circularity value is further in the range of 0.40 to 0.90, and further in the range of 0.43 to 0.84, a desired level of water-insoluble solid removal efficiency can be obtained, and the water flow rate is further increased to improve the treatment efficiency. (Table 1, Table 2).
  • the magnetic inorganic particles are preferably made of a ferrite compound.
  • ferrite compound particles can be suitably used as the magnetic inorganic particles.
  • Ferrite compounds such as iron, iron-based alloys, magnetite (magnetite), titanite (ilmenite), pyrrhotite (pilotite), magnesia ferrite, manganese magnesium ferrite, manganese zinc ferrite, cobalt ferrite, nickel ferrite, nickel zinc ferrite, barium Ferrite, copper zinc ferrite, etc. can be used.
  • a ferrite-based compound such as magnetite, magnesia ferrite, or manganese magnesium ferrite having excellent stability in water.
  • magnetite Fe 3 O 4
  • magnetite is not only inexpensive, but also exhibits stable properties as a magnetic substance in water and is composed of only safe and non-toxic elements, so it is used for water treatment. Suitable for
  • the average particle diameter d 1 of the magnetic primary particles is preferably in the range of 5 to 40 ⁇ m.
  • the average particle diameter d 1 of the magnetic primary particles is more preferably in the range of 10 to 25 ⁇ m, and most preferably 20 ⁇ 5 ⁇ m.
  • the average particle diameter d 1 of the magnetic primary particles is less than 5 ⁇ m, the particles as the filter aid are too densely aggregated, the distance S between the particles becomes too small, and it becomes difficult to obtain an effective water flow rate.
  • the average particle diameter d 1 of the magnetic primary particles exceeds 40 ⁇ m, the particles are coarsely aggregated and the distance S between the particles becomes too large, and it becomes easy for fine particles (valuable or harmful substances) in water to pass through.
  • an average particle diameter d 1 of the magnetic primary particles is in the range of 10 to 25 ⁇ m, the balance between the collection efficiency (removal efficiency) of foreign matter in water and the amount of water flow is improved.
  • an average particle diameter is a volume average (Mean Volume Diameter).
  • the average particle diameter is measured by a laser diffraction method.
  • the average particle diameter can be measured with a SALD-DS21 type measuring device (trade name) manufactured by Shimadzu Corporation.
  • the mode P a in the distribution of the mutual spacing S of the magnetic primary particles, the mode P a, the mode is better distribution width D S of the smaller interval than the interval at P c1 P a, with P c1 It is preferable that the distribution width D L is larger than the interval of (Figs. 8, 10, and 4).
  • the distribution width D S of the spacing smaller than the spacing in the mode values P a and P c1 . Is made wider than the distribution width D L of the interval larger than the interval between the mode values P a and P c1 .
  • Such an asymmetric distribution is called a non-normal distribution or an extreme value distribution.
  • the filter aid of the present embodiment improves the ability to capture the solid material 59 having a diameter smaller than the mutual interval S between the mode values P a and P c1 .
  • the interparticle pore size S in the aggregate can be measured by a pore distribution measurement method using a mercury press-in method.
  • the pore size S between particles in the aggregate can be measured using Autopore IV 9500 series (trade name) manufactured by Shimadzu Corporation.
  • the magnetic inorganic particles have an apparent specific gravity greater than 1, have a large number of open pores opened on the surface, and the diameter of the open pores is larger than the mutual spacing S of the magnetic primary particles. It is preferable that it is small (FIG. 4).
  • porous magnetic particles as filter aids, or use particles with irregularities on the surface, or spherical particles and irregular particles with linear parts. It is effective to use in combination.
  • These measures can be implemented by adjusting the circularity value of the magnetic particles to a range of 0.40 to 1.00.
  • the diameters d3 and d4 of the open pores 56 can be analyzed by measuring the pore distribution by the mercury intrusion method described above. When measured by the mercury intrusion method, data having two pore distributions having different pore diameters can be obtained. For example, as shown in FIG. 10, the small pore distribution C2 corresponds to the diameter distribution of the open pores 56, and the large pore distribution C1 corresponds to the distribution of the interparticle pore diameter S.
  • the fluorine organic compound is preferably obtained by reacting a compound having a fluorocarbon and an alkoxy group with the surface of the magnetic inorganic particles (FIGS. 5, 6, and 7).
  • the surface energy of the magnetic primary particles is reduced, and foreign substances adsorbed in water (such as solids) are easily desorbed, Separation of the adsorbed foreign matter and the filter aid is promoted. This facilitates the recovery of the filter aid from the water.
  • a compound having a fluorocarbon and an alkoxy group is reacted with the surface of the magnetic inorganic particle to carry the fluorocarbon on the surface of the particle.
  • “combination” refers to the addition of a functional group to the surface of magnetic inorganic particles.
  • “Attaching a functional group” means that the functional group and the magnetic inorganic particles are chemically bonded at least chemically. A combination of a chemical bond and a physical bond such as adsorption is also called a combination. It should be noted that the magnetic inorganic particles and the functional group are not chemically bonded, and the two are simply physically bonded, which is not a combination. However, as an exception, there is a case where a combination is made only when the entire surface of the magnetic inorganic particles is covered with a polymer having a specific functional group.
  • the modification method includes a dry method and a wet method.
  • the dry method is a method of spraying a silane coupling agent solution while stirring magnetic inorganic particles at high speed.
  • the wet method is a method of reacting particles in a solvent containing a silane coupling agent. In any of the dry method and the wet method, the solvent is volatilized after the treatment to cure the silane coupling agent. It is also possible to cause the fluorocarbon to be supported on the magnetic inorganic particles by reacting the fluorocarbon with a compound having an alkoxy group.
  • One method is to coat a resin having a fluorocarbon and an alkoxy group.
  • Another method is a method in which a resin having a reactive functional group on the side chain is coated and a compound having a fluorocarbon and an alkoxy group is reacted.
  • a resin having a fluorocarbon and an alkoxy group is coated on magnetic inorganic particles, a compound in the resin is reacted with the magnetic inorganic particles, and the compound is supported on the surface of the particles.
  • Fluorocarbons include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), perfluoroethylene propene copolymer (PFEP), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene- Ethylene copolymer (ETFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE), polyvinylidene fluoride (PVDF), and the like can be used. These are compounds containing an F—C bond, and make the surface properties of the particles hydrophobic when supported on the surface of the magnetic inorganic particles.
  • a silane coupling agent is a reactant that contributes to two reactions, a hydrolysis reaction and a condensation reaction.
  • the hydroxyl group M-OH (M is a metal atom) on the ferrite particle surface and the alkoxy group (RO-Si) contained in the silane coupling agent undergo a dealcoholization reaction, or (a) in FIG. b) and the reaction with water as shown in FIG. 6, the alkoxy group (RO-Si) contained in the silane coupling agent is hydrolyzed, thereby producing a silanol group, and the hydroxyl group on the surface of the magnetic inorganic particles It moves to the surface of the magnetic inorganic particle through the hydrogen bond.
  • the hydrolysis rate of the silane coupling agent molecule depends on the surface state of the magnetic inorganic particles. That is, the hydrolysis rate of silane coupling agent molecules is affected by the pH of the surface of the magnetic inorganic particles and the amount of adsorbed water.
  • the silane coupling agent undergoes a dehydration condensation reaction to generate a strong covalent bond with the surface of the magnetic inorganic particles.
  • silanol groups are condensed to produce a siloxane oligomer.
  • the optimal mixing ratio of solvent and solute is selected in consideration of the balance between hydrophilicity and hydrophobicity of the silane coupling agent solution. There is a need to.
  • the compound having an alkoxy group is one of raw materials used for the reaction when a fluorine organic compound is supported on magnetic inorganic particles.
  • an outline of the reaction when generating an organic compound containing an amide (N—C ⁇ O) and an imide (O ⁇ C—N—C ⁇ O) shown in FIG. 7 as the compound having an alkoxy group will be described.
  • polyamic acid polyamic acid
  • polyimide precursor polyamic acid
  • the polyamic acid is heated or a dehydration / cyclization (imidization) reaction is promoted using a catalyst to obtain a polyimide as a compound having an alkoxy group.
  • the polyimide thus obtained is mixed with a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) as a fluorocarbon to obtain a mixture of fluorine organic compounds.
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • the foreign matter is a water-insoluble solid contained in the water to be treated, and the water-insoluble solid can be removed from the water to be treated using a filter aid.
  • water-insoluble zero-soluble solids examples include non-magnetic inorganic particles such as sand, metal particles such as copper and lead, and polymer organic compound fibers such as cellulose.
  • the foreign substances contained in the water to be treated are adsorbed to the filter aid, and the filter aid is separated from the treated water together with the adsorbed foreign matters by membrane filtration.
  • the filter aid is magnetically separated from the foreign matter in the separated substance after membrane filtration and the separated filter aid is repeatedly used
  • the water treatment method of the above embodiment is a method corresponding to the body feed method. Disperse the specific filter aid in the water to be treated, adsorb the water-insoluble solid matter to the filter aid, and pass the water to be treated in the adsorption state of the filter aid / solid matter through the filter membrane, A deposited layer comprising a filter aid / solid mixture is formed on the filter membrane. Next, the peeling water is sprayed from the side toward the deposition layer on the filtration membrane, the deposition layer is peeled off from the filtration membrane, the peeling water is further sprayed on the separation, and the separated matter is decomposed into pieces. To do.
  • the decomposed exfoliated material is sent from the solid-liquid separation device to the separation tank together with exfoliated water, and the exfoliated material is stirred in the separation tank until it becomes a particle state, and the filter aid and the metal compound particles are uniformly dispersed in water.
  • the filter aid dispersed in water is magnetically adsorbed on the magnet, and while the filter aid is adsorbed on the magnet, the treated water containing solid matter is discharged from the magnetic separation tank to the collection storage tank.
  • the magnetic adsorption of the filter aid by the magnet is released, the filter aid is dropped from the magnet protective tube, and treated water or tap water is sprayed onto the magnet protective tube, and the filter aid adhering to the magnet protective tube is washed with water.
  • the filter aid washed with water is sent from the magnetic separation tank to the filter aid supply device, and is reused for producing a suspension in the filter aid supply device.
  • the circularity value of the magnetic primary particles constituting the filter aid is in the range of 0.40 or more and less than 1.00 (excluding 1.00). Therefore, in the distribution shown in FIG. 8 and FIG. Shikichi P a, towards the distribution width D S of smaller spacing than the spacing becomes wider than the distribution width D L mode value P a, larger spacing than the spacing at the P c1 in P c1. Thereby, the amount of water flow can be increased while capturing fine particles, and the processing efficiency is improved. Moreover, since the filter aid is excellent in separability and durability, the filter aid can be used repeatedly. The separated filter aid can be discharged and transferred efficiently and smoothly and can be reused repeatedly. Thereby, there is an advantage that the operating cost and the maintenance cost can be kept low.
  • water to be treated containing water-insoluble solid matter is passed through the precoat layer and the filtration membrane, and the water-insoluble solid matter is adsorbed and captured by the filter aid of the precoat layer, thereby treating Separating the water-insoluble solid from the water; and (d) pouring stripping water onto the precoat layer to peel the precoat layer from the filtration membrane, thereby capturing the water-insoluble solid.
  • a mixture of the exfoliated product and the exfoliated water is provided, (e) the filter aid is magnetically separated from the mixture, and (f) the separated filter aid is reused in the step (b).
  • the water treatment method of the above embodiment is a method corresponding to the precoat method.
  • the specific filter aid is dispersed in a dispersion medium to prepare a suspension.
  • This suspension is supplied to a filtration membrane of a solid-liquid separator, and a filter aid is deposited to form a desired precoat layer on the filtration membrane.
  • the water to be treated is passed through the precoat layer, and the water-insoluble solid is adsorbed and captured by the filter aid.
  • the peeling water is sprayed from the side toward the precoat layer on the filtration membrane, the precoat layer is peeled off from the filtration membrane, the peeling water is further sprayed on the peeled material, and the peeled material is decomposed into pieces. To do.
  • the decomposed exfoliated material is sent together with the exfoliated water from the solid-liquid separator to the magnetic separation tank, and the exfoliated substance is stirred in the magnetic separation tank until it becomes a particle state, and the filter aid and the solid content are uniformly dispersed in the water.
  • the filter aid dispersed in water is adsorbed on the magnet, and the treated water containing water-insoluble solids is discharged from the magnetic separation tank while the filter aid is adsorbed on the magnet.
  • the magnetic adsorption of the filter aid by the magnet is released, the filter aid is dropped from the magnet protection tube, and further, treated water or tap water is sprayed on the magnet protection tube, and the filter aid adhered to the magnet protection tube is removed. Wash with water.
  • the filter aid washed with water is sent from the magnetic separation tank to the filter aid supply apparatus, and is reused for producing a suspension in the filter aid supply apparatus and the mixing tank.
  • a filter aid covered with a coating layer containing a fluorine organic compound is used.
  • a filter aid is used for purification treatment of water containing water-insoluble solids
  • not only the filter aid is easily separated from the water, but also the filter aid used in water is separated from the water-insoluble solids.
  • magnetic force can be used.
  • the apparent specific gravity of the filter aid exceeds 1.0. For this reason, there is an advantage that the filter aid can be gravity settled in water, the precipitated filter aid can be easily separated from the water, and the selection range of the process is widened.
  • the filter aid is preferably a substance exhibiting ferromagnetism in a room temperature region, and a ferromagnetic substance such as a ferrite compound can be generally used.
  • Ferrite compounds such as iron, iron-based alloys, magnetite (magnetite), titanite (ilmenite), pyrrhotite (pilotite), magnesia ferrite, manganese magnesium ferrite, manganese zinc ferrite, cobalt ferrite, nickel ferrite, nickel zinc ferrite, barium Ferrite, copper zinc ferrite, etc. can be used.
  • a ferrite-based compound such as magnetite, magnesia ferrite, or manganese magnesium ferrite having excellent stability in water.
  • magnetite Fe 3 O 4
  • the filter aid can take various shapes and forms such as spherical, polyhedral and irregular shapes.
  • the average particle diameter d 1 of the magnetic primary particles is in the range of 5 to 40 ⁇ m (FIG. 1A).
  • the average particle diameter d 1 of the magnetic primary particles is less than 5 ⁇ m, the particles as the filter aid are too densely aggregated, the distance S between the particles becomes too small, and it becomes difficult to obtain an effective water flow rate.
  • the average particle diameter d 1 of the magnetic primary particles exceeds 40 ⁇ m, the particles are coarsely aggregated and the distance S between the particles becomes too large, and it is easy for foreign substances (fine particles, valuables or harmful substances) in water to pass through. And may not function sufficiently as a filter aid.
  • the average particle diameter d 1 of the magnetic primary particles is in the range of 10 to 25 ⁇ m.
  • the average particle diameter d 1 of the magnetic primary particles is 25 ⁇ m or less, the foreign matter removal efficiency is further increased.
  • the average particle diameter d 1 of the magnetic primary particles is 10 ⁇ m or more, the water flow rate is further increased and the treatment efficiency is improved.
  • Magnetic primary particles having an average particle diameter d 1 of 10 to 25 ⁇ m have a good balance between the removal efficiency of foreign matter and the amount of water flow.
  • the magnetic inorganic particles and the coating layer are adjusted so that the circularity value of the two-dimensional projection image projected onto the plane within the microscope field of view falls within the range of 0.40 to less than 1.00 (excluding 1.00).
  • the shape of the magnetic primary particles may be spherical, polyhedral or amorphous. Filter aids with a circularity value in the range of 0.40 or more and less than 1.00 improve the amount of water flow through the surface and increase the aspect ratio of the magnetic primary particles, thereby increasing the mutual spacing between the magnetic primary particles. Since the aspect ratio of S is also increased, it is possible to obtain a water flow rate while capturing fine particles in water.
  • the “circularity” is given by the following equation (1) using the perimeter and area of the two-dimensional projection image in which the object is projected on a plane, and the contour shape of the two-dimensional projection image is a perfect circle. It is defined as a coefficient that quantifies the degree of nearness or distance.
  • CR 4 ⁇ A / L 2 (1)
  • the symbol CR represents the circularity
  • the symbol L represents the perimeter of the two-dimensional projection image
  • the symbol A represents the area of the two-dimensional projection image.
  • the shape when the value of circularity is equal to 1 is a perfect circle.
  • FIGS. 2A to 2C Several examples in the case of evaluating the shape of an aggregate of magnetic primary particles using circularity will be described with reference to FIGS. 2A to 2C and FIGS. 3A to 3C.
  • the circularity value decreases as the overall contour shape (two-dimensional projection image) of the aggregate of magnetic primary particles gradually moves away from the perfect circle.
  • the contour shape of the entire aggregate can be quantitatively evaluated based on the circularity value measured in the microscope visual field. That is, the outline shape of the aggregate in FIG. 2A is closest to a perfect circle, and the value of the circularity CR1 is close to 1.
  • the value of the circularity CR2 is smaller than the value of the circularity CR1 of the aggregate in FIG. 2A.
  • the value of the circularity decreases as the surface shape (two-dimensional projection image) of the aggregate changes from a smooth one to a large one having unevenness.
  • the contour shape of the entire aggregate can be quantitatively evaluated based on the circularity value measured in the microscope visual field. That is, since the surface shape of the aggregate of FIG. 3A is smooth, the value of the circularity CR4 becomes a high value. Next, since the surface shape of the aggregate of FIG. 3B is uneven, the value of the circularity CR5 is smaller than the value of the circularity CR4 of the aggregate of FIG. 3A. Next, since the surface shape of the aggregate in FIG. 3C is further uneven, the value of the circularity CR6 is further smaller than the value of the circularity CR5 of the aggregate in FIG. 3B. The relationship between these circularity values is CR6 ⁇ CR5 ⁇ CR4 ⁇ 1.
  • the filter aid of the embodiments described herein in the distribution of the mutual distance (inter-particle pore size S) of the magnetic primary particles, than the distance of the mode the better the distribution width D S of smaller spacing than the spacing of the mode
  • the distribution width D L is larger than the large interval. In distribution A shown in FIG. 8, for example, it is wider than the distribution width D L larger interval than the interval of the better of the distribution width D S of smaller spacing than the spacing in the mode P a in the mode P a . Further, for example, the distribution C1 shown in FIG. 10, wider than the distribution width D L larger interval than the interval in the mode P c1 and towards the distribution width D S of smaller spacing than the spacing in the mode P c1 ing. As described above, the distribution (variation) width D S is increased when the particle mutual interval S is smaller, and the distribution (variation) width D L is decreased when the particle mutual interval S is larger.
  • the filter aid improves the ability to capture the solid material 59 having a diameter smaller than the interparticle pore diameter S of the mode values P a and P c1 .
  • the interparticle pore diameter S in the aggregate can be measured using, for example, Autopore IV 9500 series (trade name) manufactured by Shimadzu Corporation.
  • water permeability is improved by making the filter aid porous. That is, as shown in FIG. 4, with a porous filter aid, water bypasses the open pores 56 in the primary particles 50 even when the solid particles 59 are sandwiched between the particles 50. Therefore, the water flow does not stop completely, and the necessary minimum water flow amount can be secured.
  • the diameters d 3 and d 4 of the open pores 56 are made smaller than the mutual spacing S of the primary particles to further improve the water permeability (d 3 and d 4 ⁇ S).
  • porous primary particles 50 As a filter aid.
  • the diameters d 3 and d 4 of the open pores 56 can be measured by a pore size distribution measuring method using a mercury intrusion method.
  • the pore size distribution is measured using the mercury intrusion method, data having two pore size distributions having different pore sizes can be obtained.
  • the smaller intra-particle pore size distribution C2 corresponds to the distribution of the diameters d 3 and d 4 of the open pores 56
  • the larger inter-particle pore size distribution C 1 corresponds to the distribution of the inter-particle pore size S.
  • the peak P c2 (mode) of the distribution C2 of the diameters d 3 and d 4 of the open pores 56 is lower than the peak P c1 (mode) of the distribution C1 of the interparticle pore diameter S.
  • Fluorine organic compound As a method for supporting a fluorine organic compound on magnetic inorganic particles (or an aggregate of magnetic inorganic particles), a first method obtained by reacting a fluorocarbon and a compound having an alkoxysilyl group on the surface of the magnetic inorganic particles; And a second method of coating the magnetic particles with the polymer containing s.
  • a so-called fluorine-containing silane coupling agent is reacted with the surface of the magnetic inorganic particles.
  • the alkoxysilyl group of the silane coupling agent reacts with and binds to the hydroxyl group on the surface of the magnetic inorganic particle, and the fluorocarbon can be supported on the particle surface.
  • Examples of such a compound include KY-100 series manufactured by Shin-Etsu Chemical Co., Ltd.
  • Examples of the surface treatment method using these include a dry method and a wet method. In the dry method, for example, magnetic inorganic particles are dispersed in a mixer such as a Henschel mixer, and applied to the surface by dripping or spraying a silane coupling agent diluted in a solvent while mixing.
  • the coupling agent is dissolved in a solvent in advance, and then the magnetic inorganic particles to be treated are added and stirred in water to react the surface hydroxyl groups with the alkoxysilyl groups. Thereafter, the magnetic inorganic particles are taken out from the solution, the solvent is removed with hot air or vacuum, and then the reaction is allowed to proceed in a temperature range of room temperature to 100 ° C.
  • the second method is obtained by applying a fluorocarbon-containing resin solution to the surface of the magnetic inorganic particles.
  • a fluorocarbon-containing resin solution for example, a copolymer or mixture in which a structure having a fluorocarbon and a structure to be heat-cured coexist is used.
  • the fluorocarbon include PTFE, PFA, PEEP, PCTFE, ETFE, ECTFE, PVDF, and the like.
  • the resin having a heat-curing structure include polyamide resin, polyimide resin, polyamideimide resin, acrylic resin, and epoxy resin. Examples of the surface treatment method using these include a dry method.
  • the magnetic inorganic particles are dispersed in a mixer such as a Henschel mixer, and the resin solution containing the fluorocarbon is sprayed while mixing. Then, the filter aid which carry
  • the filter aid of the embodiment described herein has a hydrophobic surface, it can adsorb a hydrophobic substance in water and separate and remove it with a magnet even if it is dispersed in water.
  • the most effective performance of such filter aids is the reusable filtration that can repeat adsorption ⁇ filtration (solid-liquid separation) ⁇ desorption ⁇ adsorption in a process that uses membrane filtration. It is to be used as an auxiliary agent.
  • membrane filtration methods There are two types of membrane filtration methods, a pre-coating method and a body feed method, as the method of use, but the apparatus used for each method is different in configuration, so each will be described below.
  • the water treatment apparatus 1 of the present embodiment is used for a body feed method, and is effectively used particularly when the concentration of water-insoluble solids is high in water.
  • the water treatment apparatus 1 has a mixed raw water tank 2, a solid-liquid separation apparatus 3, a magnetic separation tank 4, a filter aid supply apparatus 5, and a raw water supply source and a drainage storage tank (not shown). Are connected to each other by a plurality of piping lines L1 to L8. Various pumps P1 to P7, valves V1 to V2, and measuring instruments and sensors (not shown) are attached to the piping lines L1 to L8. Detection signals are input from these measuring instruments and sensors to the input of a controller (not shown), and control signals are output from the output of the controller to the pumps P1 to P7 and valves V1 to V2, respectively, to control their operations. It has become so. As described above, the entire water treatment apparatus 1 is comprehensively controlled by a controller (not shown).
  • the mixed raw water tank 2 has a stirring screw 21 for stirring the water to be treated, and factory wastewater to be treated water is introduced through a line L1 from a raw water supply source (not shown).
  • the mixed raw water tank 2 has a function of temporarily storing raw water and leveling the flow rate of the raw water, and a mixing function of adding magnetic powder to the raw water and mixing them. That is, in the apparatus 1 of the present embodiment, the filter aid is directly supplied from the filter aid supply device 5 into the mixed raw water tank 2 via the line L6.
  • the solid-liquid separator 3 has a built-in filter 33 that partitions the interior into an upper space 31 and a lower space 32.
  • the upper space 31 of the solid-liquid separation device is connected to the mixed raw water tank 2 via a to-be-treated water supply line L2 having a pressure pump P1. Further, a separation water supply line (first treated water utilization line) L31 having a pump P5 and a separation material discharge line L4 are respectively connected to the side portions of the upper space 31.
  • the lower space 32 of the solid-liquid separator is connected to a treated water distribution line L3 having two three-way valves V1, V2.
  • the separation water supply line (first treated water utilization line) L31 is branched from the treated water distribution line L3.
  • two lines L33 and L34 are branched from the treated water distribution line L3.
  • One branch line (second treated water utilization line) L33 has a pump P4 and is connected to a separation tank 4 described later.
  • the other branch line (third treated water utilization line) L34 is connected to a treated water supply line L32 having a pump P5.
  • the magnetic separation tank 4 has an agitation screw 41 for agitating the washing discharge water received from the upper space 31 of the solid-liquid separation device through the peeled material discharge line L4, and magnetically solids and the filter aid.
  • a magnet 42 is provided for separation.
  • the magnet 42 is composed of a rod-like permanent magnet supported by a cylinder mechanism (not shown) so as to be movable up and down, and is housed in a cylindrical protective tube whose lower end is closed. When the magnet 42 is raised by the cylinder mechanism, the magnet 42 comes out of the protective tube, and the magnetic field applied to the water to be treated in the magnetic separation tank 4 disappears.
  • the magnet 42 when the magnet 42 is lowered by the cylinder mechanism, the magnet 42 is inserted into the protective tube, a magnetic field is applied to the water to be treated in the tank, and the magnetic filter aid is adsorbed on the outer periphery of the protective tube. It has become.
  • a rod-shaped permanent magnet is used as the magnetizing means, but a rod-shaped electromagnet may be used as the magnetizing means.
  • a magnetized metal mesh can be used as the magnetizing means.
  • a second treated water use line L33 branched from the treated water distribution line L3 is connected to the upper part of the magnetic separation tank 4, and has passed through the filter 33 of the solid-liquid separator. A part of the treated water is supplied to the magnetic separation tank 4, and a part of the treated water is reused in the magnetic separation tank 4.
  • a concentrated water discharge line L8 and a filter aid return line L5 are connected to the lower part of the magnetic separation tank 4, respectively.
  • the concentrated water discharge line L8 has a pump P9 and is a pipe for discharging water-insoluble matter concentrated water from the magnetic separation tank 4 to a storage tank (not shown).
  • the filter aid return line L5 has a pump P6 and is a pipe for returning the filter aid separated from the magnetic separation tank 4 to the filter aid supply device 5.
  • the filter aid supply device 5 is replenished with a fresh filter aid from a filter aid supply source (not shown), and the filter aid separated in the magnetic separation tank 4 is supplied to the filter aid return line L5. Will be sent back through. Moreover, the filter aid supply apparatus 5 supplies an appropriate amount of filter aid to the mixed raw water tank 2 through a filter aid supply line L6 having a pump P7.
  • the water treatment method of the first embodiment is effective when the concentration of the filter aid in the water to be treated is high.
  • the water-insoluble solid matter to be removed includes not only inorganic compounds but also organic compounds.
  • an appropriate amount of a filter aid and a dispersion medium are mixed to prepare a suspension.
  • the dispersion medium used in this case is treated water existing in the mixed raw water tank 2. That is, in this embodiment, the filter aid is directly added to the raw water that is the treated water to adjust the suspension from the raw water (step K1).
  • the concentration of the filter aid in the suspension is not particularly limited as long as a deposited layer can be formed on the filter 33 by the following operation, but is adjusted to, for example, about 10,000 to 200,000 mg / L.
  • the suspension (treated water) is passed through the filter 33, the filter aid in the suspension is filtered, and a deposited layer in which the filter aid is deposited is formed on the filter 33 (step K2).
  • the water to be treated is supplied to the filter 33 under pressure. At this time, the formation of the deposited layer and the filtration treatment of the water to be treated are performed in parallel.
  • the filter 33 is preferably horizontal.
  • the above-described filtering is performed, for example, by placing the filter 33 so as to close the container opening of a predetermined container.
  • the filter aid remains on the filter 33 arranged in this way so that it is deposited, arranged and laminated.
  • the deposited layer is formed and held by the external force from the wall surface of the container and the downward external force (gravity) due to the weight of the filter aid positioned above.
  • peeling water is sprayed from a nozzle (not shown) toward the deposition layer on the filter 33, the deposition layer is peeled off from the filter 33 by the spray force of water, and water is further sprayed onto the peeling material to separate the peeling material.
  • Decompose step K3.
  • the filter aid in the exfoliated material adsorbs solid materials such as metal particles.
  • the peeled material is decomposed in the upper space 31 of the solid-liquid separator 3.
  • the peeled material may be decomposed in a container other than the solid-liquid separator 3. In the case where the peeled material is decomposed in another container, the peeled material is decomposed into discrete particles by jetting water from a nozzle.
  • the exfoliated material When the exfoliated material is decomposed to a particle state, it becomes a suspension state, which facilitates transportation to the magnetic separation tank 4 and facilitates magnetic separation of the magnetic filter aid.
  • water is used for peeling of the deposited layer, it is possible to clean using a surfactant or an organic solvent.
  • the deposited layer separation is supplied from the upper space 31 to the magnetic separation tank 4 through the discharge line L4 (step K4).
  • the deposit layer peeled material is stirred by the stirring screw 41, the peeled material is further decomposed to the particle level, and the filter aid and the solid matter are dispersed.
  • this stirring is sufficiently performed, the filter aid and the solid matter are uniformly dispersed in the suspension, and the filter aid and the solid matter are easily separated.
  • the magnet 42 is lowered by the cylinder mechanism, the magnet 42 is inserted into the protective tube of the magnetic separation tank 4, and a magnetic field is applied to the suspension being stirred. Since the magnetic filter aid is adsorbed on the protective tube by the magnetic force of the magnet 42, the filter aid is magnetically separated from the suspension. With the filter aid adsorbed and fixed to the magnet protective tube, the pump P7 is started and the solid concentrate is discharged from the magnetic separation tank 4 (step K5). The discharged solid concentrate is substantially free of filter aid and contains a large amount of water-insoluble solid.
  • the magnet 42 is raised by the cylinder mechanism, and the magnet 42 is pulled out from the protective tube. Thereby, the magnetic field applied to the magnetic filter aid disappears, and the filter aid falls off from the magnet protective tube.
  • the valve V2 is opened, the pump P4 is started, and treated water is introduced into the magnetic separation tank 4 from the solid-liquid separation device 3.
  • the introduced water and the filter aid are mixed in the magnetic separation tank 4, and this mixture is stirred by the screw 41. Thereby, a suspension of the filter aid is produced.
  • the suspension does not contain water-insoluble solids but substantially contains only a filter aid.
  • the pump P5 is started and the suspension of the filter aid is sent from the magnetic separation tank 4 to the filter aid supply device 5 so that the separated filter aid is filtered. It is returned to the auxiliary agent supply device 5 (step K6).
  • Step K6 After the filter aid is temporarily stored in the filter aid supply device 5, it is sent from the filter aid supply device 5 to the mixed raw water tank 2 by driving the pump P ⁇ b> 6 and is reused in the mixed raw water tank 2. (Step K6 ⁇ Step K1).
  • the filter aid constituting the deposition layer is contained in the suspension adjusted using the water to be treated.
  • the filter aid is always supplied together with the turbid liquid.
  • the filter aid is repeatedly used in the cycle of solids adsorption ⁇ solid-liquid separation by filtration membrane ⁇ desorption of solid matter from filter aid ⁇ magnetic separation ⁇ recovery ⁇ solids adsorption. be able to.
  • the water treatment apparatus 1A of the present embodiment is an apparatus used for the precoat method, and is particularly effective when the concentration of water insoluble matter in the water to be treated is low.
  • a water treatment apparatus 1A includes a coagulation precipitation tank 2A, a solid-liquid separation apparatus 3, a separation tank 4, a filter aid tank 5, a mixing tank 6, a coagulant addition apparatus 7, an alkali addition apparatus 8, and a raw water supply source and concentrated water (not shown).
  • a storage tank is provided, and these devices and apparatuses are connected to each other by a plurality of piping lines L1 to L10.
  • Various pumps P1 to P9, valves V1 to V3, measuring instruments and sensors are attached to the piping lines L1 to L10.
  • a detection signal is input from these measuring instruments and sensors to an input section of a controller (not shown), and control signals are output from the output section of the controller to pumps P1 to P9 and valves V1 to V3, respectively, and their operations are controlled. It has become so. In this way, the entire water treatment apparatus 1A is comprehensively controlled by a controller (not shown).
  • the coagulation / precipitation tank 2A has a stirring screw 21 for stirring the water to be treated, and factory wastewater to be treated water is introduced through a line L1 from a raw water supply source (not shown) to temporarily store the water to be treated. Is.
  • a coagulant adding device 7 and an alkali agent adding device 8 are installed above the coagulation precipitation tank 2A. An appropriate amount of the flocculant is added from the flocculant addition device 7 through the line L9 to the water to be treated in the coagulation / precipitation tank 2A, thereby aggregating fine solid particles contained in the water to be treated.
  • an appropriate amount of an alkali agent is added to the water to be treated in the coagulation precipitation tank 2A from the alkali addition device 8 through the line L10, and metal ions or non-metal ions contained in the water to be treated are precipitated as compound salt particles. It is like that.
  • the solid-liquid separator 3 has a built-in filter 33 that partitions the interior into an upper space 31 and a lower space 32.
  • the upper space 31 of the solid-liquid separator is connected to the coagulation / precipitation tank 2 via a to-be-treated water supply line L2 having a pressure pump P1. Further, a peeling water supply line L31 having a pump P5 and a peeled material discharge line L4 are connected to the side portions of the upper space 31, respectively.
  • the discharge space 32 of the solid-liquid separator is connected to a treated water distribution line L3 having three three-way valves V1, V2, and V3.
  • the above-described separation water supply line L31 branches from the treated water distribution line L3.
  • a treated water line L32 having a pump P2 branches from the treated water distribution line L3 at the second three-way valve V2.
  • two lines L33 and L34 are branched from the treated water distribution line L3.
  • One branch line L33 has a pump P4 and is connected to the magnetic separation tank 4.
  • the other branch line L34 has a pump P5 and is connected to a mixing tank 6 described later.
  • the magnetic separation tank 4 has a stirring screw 41 for stirring the washed discharged water received from the upper space 31 of the solid-liquid separator through the peeled material discharge line L4, and the precipitated copper compound particles (copper hydroxide particles).
  • a permanent magnet 42 for separating particles) and a filter aid is incorporated.
  • a branch line L33 that branches from the treated water distribution line L3 is connected to the upper part of the magnetic separation tank 4 in addition to the separated matter discharge line L4, and a part of the treated water that has passed through the filter 33 of the solid-liquid separator. Is supplied to the magnetic separation tank 4, and a part of the treated water is reused in the magnetic separation tank 4.
  • a concentrated water discharge line L8 and a filter aid return line L5 are connected to the lower part of the magnetic separation tank 4, respectively.
  • the concentrated water discharge line L8 has a pump P9 and is a pipe for discharging water-insoluble concentrated water from the magnetic separation tank 4 to a storage tank (not shown).
  • the filter aid return line L5 has a pump P6 and is a pipe for returning the filter aid separated from the magnetic separation tank 4 to the filter aid tank 5.
  • the filter aid tank 5 is newly replenished with a filter aid supply source (not shown), and the filter aid separated in the magnetic separation tank 4 is returned through the above-described filter aid return line L5. It has come to be. Moreover, the filter aid tank 5 supplies an appropriate amount of filter aid to the mixing tank 6 through a filter aid supply line L6 having a pump P7.
  • the mixing tank 6 has a stirring screw 61 for stirring water, and a dispersion medium is added to the filter aid supplied from the filter aid tank 5 and the mixture is stirred and mixed. Liquid). It is preferable to use water as the dispersion medium.
  • a branch line L34 branched from the treated water distribution line L3 is connected to the upper part of the mixing tank 6, and a part of the treated water that has passed through the filter 33 of the solid-liquid separator is supplied to the mixing tank 6. A part of the treated water is reused as a dispersion medium.
  • a suspension supply line L7 having a pump P8 communicates with an appropriate place of the mixing tank 6.
  • the suspension supply line L7 is connected and merged at an appropriate position of the treated water supply line L2.
  • the mixture (suspension) containing the filter aid from the suspension supply line L7 is added to the water to be treated flowing through the water supply line L2.
  • the suspension supply line L7 is provided with a flow rate control valve (not shown) so that the flow rate of the suspension is adjusted by the controller.
  • the precoat method is particularly effective when the concentration of water-insoluble solids contained in the water to be treated is low.
  • the water-insoluble solid matter to be removed includes not only inorganic compounds but also organic compounds. Even if the water-insoluble solid is a hardly dehydrating particle such as a metal hydroxide, or a non-particle dehydrating component other than the particle, such as oil or fat, the filter aid of the specific structure of the present embodiment It can be easily separated and removed.
  • the filter aid and the dispersion medium are mixed in the mixing tank 6 to prepare a suspension containing the filter aid (step S1).
  • water is mainly used as the dispersion medium
  • other dispersion media such as an aqueous alcohol solution can be used in addition to water.
  • the concentration of the filter aid in the suspension may be adjusted to about 10,000 to 200,000 mg / L, for example, as long as a precoat layer, that is, a deposited layer of filter aid, can be formed by the following operation.
  • the suspension is passed through the filter 33 of the solid-liquid separator 3, the filter aid in the suspension is filtered, and a precoat layer of the filter aid is formed on the filter 33 (step S2).
  • the water flow of the suspension to the filter 33 by the pressurization pump P1 is performed at a predetermined pressure.
  • a filter cloth a filter cloth, a filtration membrane, a metal mesh, a porous ceramic, or a porous polymer can be used.
  • a filter cloth is preferable.
  • a cloth knitted with a double woven fabric, a twill woven fabric, a plain woven fabric, a satin woven fabric, or the like is used for the filter 33.
  • the filter surface of the filter 33 is preferably in a direction (that is, horizontal) orthogonal to the direction in which gravity acts.
  • the filter aid of this embodiment is difficult to be held on the filter surface. For this reason, if the filter surface of the filter 33 is not horizontal, the filter aid slips on the filter surface, and a deposited layer having a uniform thickness may be difficult to form.
  • the filter 33 is attached so as to close the inlet of the solid-liquid separation device 3, and the suspension 33 is filtered by the filter 33 so that the pressure drop of the suspension in the solid-liquid separation device 3 is minimized.
  • the filter aid Separation of the filter aid and the liquid by the filter 33 is promoted.
  • the liquid component of the suspension quickly permeates through the filter 33 and the solid component of the suspension (filter aid) is captured by the filter 33 due to the synergistic action of the pressure and gravity generated by driving the pressurizing pump P1.
  • a precoat layer is formed on the filter 33.
  • the thickness of the precoat layer varies depending on the concentration of the liquid to be treated, but is about 0.1 to 10 mm.
  • the water to be treated is introduced into the coagulation / deposition tank 2A from a raw water supply source (not shown) (step S3). Copper ions are contained in the factory effluent to be treated.
  • a predetermined amount of sodium hydroxide (NaOH) is added to the water to be treated in the coagulation precipitation tank 2A from the alkali addition device 8 (step S4).
  • the water to be treated in the coagulation precipitation tank 2A is stirred with a screw to dissolve sodium hydroxide, the water to be treated is made alkaline, and copper hydroxide fine particles are precipitated from the water to be treated (step S5).
  • the water to be treated is pumped from the coagulation / precipitation tank 2A to the solid-liquid separation device 3 through the line L2 by driving the pump P1, and the water to be treated is filtered by the precoat layer on the filter 33, and hydroxylated from the water to be treated.
  • Copper particles are adsorbed and captured (step S6).
  • the water to be treated is passed through the precoat layer on the filter 33 mainly under pressure.
  • the copper hydroxide particles are separated and removed from the water to be treated by adsorbing on the surface of the filter aid in the precoat layer.
  • by setting the filter aid to a specific configuration as described later, copper hydroxide particles can be captured efficiently and a sufficient water flow rate can be obtained.
  • the valve V1 When filtration of the water to be treated by the precoat layer is completed, the valve V1 is switched, the pump P3 is started, and a part of the treated water enters the upper space 31 of the solid-liquid separator through the line L3 ⁇ L31 by driving the pump P3. Or return everything.
  • the returned treated water is used as peeling water for peeling the precoat layer from the filter 33.
  • Treated water peeleling water
  • the precoat layer is peeled off from the filter 33, and further treated water is sprayed on the peeled material to decompose the peeled material into pieces, and a filter aid and water Copper oxide particles are dispersed in water (step S7).
  • the separation / decomposition of the precoat layer may be performed in the solid-liquid separator 3 or in another container.
  • the precoat layer exfoliated material is disintegrated by water injection from a nozzle until it becomes particles.
  • the peeled material is in a suspension state in this way, it becomes easy to transfer it from another container to the magnetic separation tank 4.
  • the industrial water or tap water may be replenished to the line L31 from another place.
  • water is preferably used for peeling / decomposing the precoat layer, it is also possible to peel / decompose the precoat layer using a surfactant or an organic solvent.
  • the precoat layer peeled material is supplied from the upper space 31 to the magnetic separation tank 4 through the discharge line L4 (step S8).
  • the peeled precoat layer is stirred by the stirring screw 41, the peeled material is further decomposed to the particle level, and the filter aid and the copper compound particles are dispersed.
  • this stirring is sufficiently performed, the filter aid and the copper compound particles are uniformly dispersed in the suspension, and the filter aid and the copper compound particles are easily separated.
  • the magnet 42 is lowered by the cylinder mechanism, the magnet 42 is inserted into the protective tube of the magnetic separation tank 4, and a magnetic field is applied to the suspension being stirred.
  • the magnetic filter aid is adsorbed on the magnet protective tube, and the filter aid is magnetically separated from the suspension.
  • the pump P9 is activated and the copper concentrate is discharged from the magnetic separation tank 4 (step S9).
  • emitted contains substantially no filter aid, and contains the copper compound particle
  • the magnet 42 After discharging the copper concentrate, the magnet 42 is raised by the cylinder mechanism, the magnet 42 is withdrawn from the protective tube of the magnetic separation tank 4, the magnetic field applied to the magnetic filter aid is lost, and the filter aid is removed from the protective tube. Drop off the agent.
  • the valve V3 is opened, the pump P4 is started, and the treated water is introduced from the solid-liquid separator 3 into the magnetic separation tank 4.
  • the introduced water and the filter aid are mixed in the magnetic separation tank 4, and this mixture is stirred by the screw 41. Thereby, a suspension of the filter aid is produced.
  • the suspension does not contain water-insoluble solids but substantially contains only a filter aid.
  • the pump P6 is started and the suspension of the filter aid is sent from the magnetic separation tank 4 to the filter aid tank 5 so that the separated filter aid is filtered. It is returned to the agent tank 5 (step S10).
  • Step S10 After the filter aid is temporarily stored in the filter aid tank 5, it is sent from the filter aid tank 5 to the mixing tank 6 by driving the pump P7 and reused in the mixing tank 6 (step S10 ⁇ Step S1).
  • the separated and recovered filter aid is supplied from the filter aid supply device 5 to the upper space 31 of the solid-liquid separation device 3 via the line L6, and the recovered filter aid is reused to form the precoat layer.
  • the filter aid can be used repeatedly in a cycle process consisting of precoat layer formation ⁇ filtration / adsorption ⁇ desorption ⁇ magnetic separation ⁇ precoat layer formation.
  • the filter aid according to the embodiment described herein efficiently adsorbs water-insoluble solids in water, easily desorbs the adsorbed solids, and is easily magnetically separated from the desorbed solids. Suitable for reuse.
  • PFA tetrafluoroethylene perfluoroalkyl vinyl ether copolymer
  • the ferrite particles were heated in a constant temperature bath at 100 ° C. for 2 hours and then passed through a 100 mesh sieve to obtain a filter aid A.
  • the circularity value was 0.90.
  • interval S shown in FIG. 8 was obtained.
  • the distribution width D S of was wider (D L ⁇ D S ).
  • Filter aid B A filter aid B was obtained in the same manner as the filter aid A except that manganese magnesium ferrite particles having an average particle size of 5 ⁇ m were used. When the circularity of the magnetic primary particles constituting the filter aid B was measured, the circularity value was 0.91. The most frequent interval value was 2.3 ⁇ m. In the filter aid B, as in the case of the filter aid A, the distribution width D S of the interval smaller than the most frequent interval value is wider than the distribution width D L of the interval larger than the most frequent interval value. (D L ⁇ D S ).
  • Porous manganese magnesium ferrite particles with an average particle size of 35 ⁇ m are put into a fluidized bed, and a resin of a copolymer of PFA resin and polyamideimide (made of maleic anhydride and diaminodiphenylmethane) is added until the resin content reaches 5%. did.
  • the magnetic primary particles were taken out and cured by heating at 200 ° C. for 2 hours to obtain a filter aid C.
  • the circularity value was 1.08.
  • the interparticle pore diameter S and the open pore diameters d 3 and d 4 were measured by mercury porosimetry, distributions C1 and C2 shown in FIG. 10 were obtained.
  • the distribution width D S of the gap was wider (D L ⁇ D S ).
  • Filter aid D A filter aid D was obtained in the same manner as the filter aid C except that porous manganese magnesium ferrite particles having an average particle size of 25 ⁇ m were used.
  • the circularity value was 1.09.
  • the mutual spacing value of the most frequent particles was 8 ⁇ m.
  • the most frequent pore diameter value of 1.5 ⁇ m was obtained for the diameters d 3 and d 4 of the open pores.
  • Magnetic particles E that do not carry a fluorocarbon on the same manganese magnesium ferrite particles as the filter aid A were prepared. This magnetic particle E was used in a comparative example as described later.
  • Example 1 A factory effluent containing 200 mg / L ceramic with an average particle size of 2 ⁇ m and a sticky adhesive was prepared.
  • a solid-liquid separator in which a filter cloth having an air permeability of 20 cc / min was set on a horizontal filtration surface was prepared. After uniformly laminating 1 kg of filter aid A per square meter on the filter surface of this solid-liquid separator, the factory wastewater was passed through a filter (filter cloth) under pressure. 99.5% or more was removed, and the ceramic concentration was 1 mg / L or less. The average flux representing the water flow rate through the filter was 5 m / h.
  • the filter aid after use was recovered and put into a stainless steel container together with washing water (tap water). While mixing this container with a stirrer, a neodymium magnet was brought close to the outside of the container to separate the magnet. As a result, only ceramic was dispersed in the washing water, and the filter aid A could be washed. When the industrial wastewater was treated using the filter aid A after the washing again, 99.5% or more of the ceramic particles in the water were removed, and the ceramic concentration was 1 mg / L or less.
  • the flux representing the water flow rate to the filter was an average of 4.7 m / h.
  • Example 2 A test was conducted in the same manner except that filter aid B was used instead of filter aid A. As in Example 1, 99.5% or more of the ceramic particles in the water were removed, and the ceramic concentration was 1 mg / L or less. Met. The flux representing the water flow rate through the filter was an average of 4.2 m / h. Further, the filter aid B can be washed without any problem. When the filter aid B is used even when regenerated 10 times, the removal efficiency with a ceramic concentration of 1 mg / L or less can be obtained. Water flow rate of m / h or more was maintained.
  • Example 3 A similar test was conducted except that filter aid C was used instead of filter aid A. As in Example 1, 98.5% of the ceramic particles in the water were removed, and the ceramic concentration was 3 mg / L. . The flux representing the water flow rate to the filter was an average of 8.0 m / h. In addition, the filter aid can be washed without any problem, and even when the filter is regenerated 10 times, the use of the filter aid C provides a removal efficiency with a ceramic concentration of 1 mg / L or less, and a flux of 7.0 m / L. The water flow rate over h was maintained.
  • Example 4 A test was conducted in the same manner except that filter aid D was used instead of filter aid A. As in Example 1, 99.0% of the ceramic particles in water were removed, and the ceramic concentration was 2 mg / L. . The average flux representing the water flow rate through the filter was 7.1 m / h. In addition, the filter aid can be washed without any problem, and even when regenerated 10 times, the filter aid D can be used to obtain a removal efficiency with a ceramic concentration of 1 mg / L or less and a flux of 6.2 m / L. The water flow rate over h was maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Filtration Of Liquid (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

This filter aid comprises an aggregate resulting from a plurality of magnetic primary particles aggregating. The magnetic primary particles have: magnetic inorganic particles having an average particle size of 5-40 μm inclusive; and a coating layer that covers some or all of the surface of the magnetic inorganic particles and contains an organic fluorine compound supported by the magnetic inorganic particles. The value of the circularity of a 2D projected image projected onto a plane in a microscope field of view is in the range of at least 0.40 and less than 1.00 (not including 1.00).

Description

水処理用ろ過助剤及び水処理方法Filter aid for water treatment and water treatment method
 ここに記載する実施の形態は、水中に含まれる固形物等の異物を除去するのに繰り返し用いられる水処理用ろ過助剤及びそれを用いる水処理方法に関する。 Embodiment described here is related with the filter aid for water treatment used repeatedly and removing the foreign material, such as the solid substance contained in water, and the water treatment method using the same.
 昨今、工業の発達や人口の増加により水資源の有効利用が求められている。そのためには、工業排水などの廃水の再利用が非常に重要である。これらを達成するためには水の浄化、すなわち水中から他の物質を分離することが必要である。液体からほかの物質を分離する方法としては、各種の方法が知られており、たとえば膜分離、遠心分離、活性炭吸着、オゾン処理、凝集による浮遊物質の除去などが挙げられる。このような方法によって、水に含まれるリンや窒素などの環境に影響の大きい化学物質を除去したり、水中に分散した油類、クレイなどを除去したりすることができる。 Recently, the effective use of water resources is required due to industrial development and population growth. For this purpose, it is very important to reuse industrial wastewater and other wastewater. In order to achieve these, it is necessary to purify the water, ie to separate other substances from the water. Various methods are known as methods for separating other substances from the liquid, such as membrane separation, centrifugation, activated carbon adsorption, ozone treatment, removal of suspended substances by aggregation, and the like. By such a method, chemical substances having a great influence on the environment such as phosphorus and nitrogen contained in water can be removed, and oils and clays dispersed in water can be removed.
 これら各種の水処理方法のうち、膜分離法は水中の不溶物質を除去するのに最も一般的に使用されている方法のひとつであるが、膜の保護の観点や、難脱水性の物質を含む水の通水速度を上げる観点から、ろ過助剤が膜分離法に利用されている。 Among these various water treatment methods, the membrane separation method is one of the most commonly used methods for removing insoluble substances in water. From the viewpoint of increasing the water flow rate of the contained water, filter aids are used in membrane separation methods.
 一方、水中から有害物や有価物を除去する方法として、水中に溶解する物質に何らかの反応を起こさせ析出して、固液分離する方法が知られている。例えば、特許文献1には廃液に常磁性物質の粉末を添加して藻類などの難ろ過性物質を除去する方法が記載されている。 On the other hand, as a method for removing harmful substances and valuables from water, a method of causing some reaction to precipitate in a substance dissolved in water and precipitating and solid-liquid separation is known. For example, Patent Document 1 describes a method of removing a hardly filterable substance such as algae by adding a paramagnetic substance powder to a waste liquid.
特開平09-327611号公報JP 09-327611 A
 しかしながら、従来の方法では、常磁性物質と藻類のゼータ電位が近く、水中から除去した後に非常に分離しにくく、常磁性物質を再利用しにくい。また、磁性のろ過助剤を用いて水酸化物などの含水性固体を除去した場合においても、磁性ろ過助剤と含水性固体とを分離することが困難な場合がある。 However, in the conventional method, the zeta potential of the paramagnetic substance and the algae are close to each other, it is very difficult to separate after removal from water, and the paramagnetic substance is difficult to reuse. Even when a water-containing solid such as a hydroxide is removed using a magnetic filter aid, it may be difficult to separate the magnetic filter aid and the water-containing solid.
 本発明は上記課題を解決するためになされたものであり、水中に存在する微細な異物を除去でき、再利用しやすい水処理用ろ過助剤及びそれを用いる水処理方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a water treatment filter aid that can remove fine foreign matters existing in water and is easy to reuse, and a water treatment method using the same. And
図1Aはフッ化物で被覆された磁性無機物粒子を示す断面模式図。FIG. 1A is a schematic cross-sectional view showing magnetic inorganic particles coated with fluoride. 図1Bは磁性一次粒子が凝集した粒子凝集体を示す断面模式図。FIG. 1B is a schematic cross-sectional view showing a particle aggregate in which magnetic primary particles are aggregated. 図2Aは粒子凝集体の円形度を説明するための模式図。FIG. 2A is a schematic diagram for explaining the circularity of the particle aggregate. 図2Bは粒子凝集体の円形度を説明するための模式図。FIG. 2B is a schematic diagram for explaining the circularity of the particle aggregate. 図2Cは粒子凝集体の円形度を説明するための模式図。FIG. 2C is a schematic diagram for explaining the circularity of the particle aggregate. 図3Aは粒子凝集体の円形度を説明するための模式図。FIG. 3A is a schematic diagram for explaining the circularity of the particle aggregate. 図3Bは粒子凝集体の円形度を説明するための模式図。FIG. 3B is a schematic diagram for explaining the circularity of the particle aggregate. 図3Cは粒子凝集体の円形度を説明するための模式図。FIG. 3C is a schematic diagram for explaining the circularity of the particle aggregate. 図4は粒子と粒子の間に異物が挟まった状態を示す模式図。FIG. 4 is a schematic diagram showing a state in which foreign matter is sandwiched between particles. 図5の(a)(b)(c)はシランカップリング剤と無機物表面との間の反応メカニズムを示す模式図。FIGS. 5A, 5B, and 5C are schematic views showing a reaction mechanism between a silane coupling agent and an inorganic surface. 図6はシランカップリング剤と無機物表面との間の反応メカニズムを示す模式図。FIG. 6 is a schematic diagram illustrating a reaction mechanism between a silane coupling agent and an inorganic surface. 図7はポリイミドアミドの生成反応を示す模式図。FIG. 7 is a schematic view showing a formation reaction of polyimide amide. 図8はサンプルAにおける粒子間孔径(粒子の相互間隔)Sの分布の一例を示す特性線図。FIG. 8 is a characteristic diagram showing an example of distribution of interparticle pore diameter (interparticle spacing) S in sample A. 図9はサンプルAの粒子を拡大して示す顕微鏡写真図。FIG. 9 is a photomicrograph showing an enlarged view of the particles of Sample A. 図10はサンプルCにおける粒子間孔径(粒子の相互間隔)Sの分布および粒子内孔径の分布の一例をそれぞれ示す特性線図。FIG. 10 is a characteristic diagram showing an example of the distribution of interparticle pore size (interparticle spacing) S and the distribution of intraparticle pore size in Sample C, respectively. 図11はサンプルCの粒子を拡大して示す顕微鏡写真図。FIG. 11 is a photomicrograph showing an enlarged view of the particles of Sample C. 図12は第1の実施形態の粒子を使用する水処理装置の概要を示す構成ブロック図。FIG. 12 is a configuration block diagram showing an outline of a water treatment apparatus using the particles of the first embodiment. 図13は図12の装置を用いる第1実施形態の水処理方法(ボディフィード法)を示す工程図。FIG. 13 is a process diagram showing a water treatment method (body feed method) of the first embodiment using the apparatus of FIG. 図14は第2の実施形態の粒子を使用する他の水処理装置の概要を示す構成ブロック図。FIG. 14 is a configuration block diagram showing an outline of another water treatment apparatus using the particles of the second embodiment. 図15は図14の装置を用いる第2実施形態の水処理方法(プレコート法)を示す工程図。FIG. 15 is a process diagram showing a water treatment method (precoat method) of a second embodiment using the apparatus of FIG.
 以下、種々の好ましい実施の形態を説明する。 Hereinafter, various preferred embodiments will be described.
 (1)ここに記載する実施の形態の水処理用ろ過助剤は、被処理水中に含まれる異物を吸着し、吸着した異物とともに被処理水から膜ろ過により分離され、膜ろ過された分離物中の異物から磁気的に分離され、繰り返し使用される水処理用ろ過助剤であって、前記ろ過助剤は、複数の磁性一次粒子が凝集した凝集体からなり、前記磁性一次粒子は、平均粒子径が5μm以上40μm以下の磁性無機物粒子と、前記磁性無機物粒子の表面の一部または全部を覆い、前記磁性無機物粒子に担持されるフッ素有機化合物を含む被覆層と、を有し、かつ、顕微鏡視野内において平面に投影される二次元投影像の円形度の値が0.40以上1.00未満(1.00を除く)の範囲にある。 (1) The filter aid for water treatment according to the embodiment described herein adsorbs foreign substances contained in the water to be treated, and is separated from the water to be treated by membrane filtration together with the adsorbed foreign substances, and separated by membrane filtration. It is a filter aid for water treatment that is magnetically separated from foreign substances in it and is repeatedly used. The filter aid is composed of an aggregate of a plurality of magnetic primary particles, and the magnetic primary particles are averaged. And a magnetic inorganic particle having a particle size of 5 μm or more and 40 μm or less, a coating layer that covers a part or all of the surface of the magnetic inorganic particle and contains a fluorine organic compound supported on the magnetic inorganic particle, and The circularity value of the two-dimensional projection image projected on the plane in the microscope field is in the range of 0.40 or more and less than 1.00 (excluding 1.00).
 ここに記載する実施の形態では、磁性一次粒子の平均粒子径d1を5μm以上40μm以下の範囲とする(図1A)。磁性一次粒子の平均粒子径d1が5μm未満になると、ろ過助剤として粒子が緻密に凝集しすぎて粒子間の距離が小さくなりすぎ、実効的な通水量が得られにくくなる。一方、磁性一次粒子の平均粒子径d1が40μmを超えると、粒子が粗く凝集して粒子間の距離が大きくなりすぎ、水中の異物(微細粒子、有価物または有害物)を通過させやすくなり、ろ過助剤として働かなくなる可能性がある。さらに、磁性一次粒子の平均粒子径d1を10~25μmの範囲とすることがより好ましい。磁性一次粒子の平均粒子径d1を25μm以下にすると、水中からの異物の除去効率がさらに高まる。一方、磁性一次粒子の平均粒子径d1を10μm以上にすると、通水量がさらに増加して処理効率が向上する。平均粒子径d1が10~25μmの範囲にある磁性一次粒子は、異物の除去効率と通水量とのバランスが良く最も好ましい範囲である。 In the embodiment described here, the average particle diameter d 1 of the magnetic primary particles is in the range of 5 μm to 40 μm (FIG. 1A). When the average particle diameter d 1 of the magnetic primary particles is less than 5 [mu] m, the particles become too small distance between particles too densely aggregated as a filter aid, effective through water it is difficult to obtain. On the other hand, when the average particle diameter d 1 of the magnetic primary particles exceeds 40 μm, the particles are coarsely aggregated and the distance between the particles becomes too large, and it becomes easy for foreign substances (fine particles, valuables or harmful substances) in water to pass through. , May not work as a filter aid. Further, it is more preferable that the average particle diameter d 1 of the magnetic primary particles is in the range of 10 to 25 μm. When the average particle diameter d 1 of the magnetic primary particles is 25 μm or less, the removal efficiency of foreign matters from water is further increased. On the other hand, when the average particle diameter d 1 of the magnetic primary particles is 10 μm or more, the water flow rate is further increased and the treatment efficiency is improved. Magnetic primary particles having an average particle diameter d 1 in the range of 10 to 25 μm are the most preferable range with a good balance between the foreign matter removal efficiency and the water flow rate.
 ここに記載する実施形態では、顕微鏡視野内において投影される二次元投影像の円形度の値が0.40以上1.00未満(1.00を除く)の範囲に入るように磁性無機物粒子と被覆層を調整する。 In the embodiment described herein, the magnetic inorganic particles and the coating layer are adjusted so that the circularity value of the two-dimensional projection image projected in the microscope field falls within the range of 0.40 or more and less than 1.00 (excluding 1.00).
 ここで「円形度」とは、対象物が平面に投影されたときの二次元投影像の周囲長と面積を用いて下式(1)により与えられ、その二次元投影像の輪郭形状が円に近いか遠いかの度合いを数値化した係数のことをいうものと定義する。 Here, the “circularity” is given by the following equation (1) using the perimeter and area of the two-dimensional projection image when the object is projected onto a plane, and the contour shape of the two-dimensional projection image is a circle. It is defined as a coefficient that quantifies the degree of whether it is close or far.
         CR=4πA/L2   …(1)
 但し、CRは円形度、Lは二次元投影像の周囲長、Aは二次元投影像の面積をそれぞれ示す。
CR = 4πA / L 2 (1)
Here, CR is circularity, L is the perimeter of the two-dimensional projection image, and A is the area of the two-dimensional projection image.
 円形度の値が1に近くなるほどその形状は円に近似した形状になり、円形度の値が1から遠くなるほど円から離れた歪な形状になる。ちなみに、円形度の値が1と等しくなるときの形状は真円である。 The closer the circularity value is to 1, the closer the shape is to a circle, and the farther the circularity value is from 1, the more distorted the shape is from the circle. Incidentally, the shape when the value of circularity is equal to 1 is a perfect circle.
 円形度の値が0.40以上1.00未満の範囲であれば、磁性一次粒子の形状は、球状、多面体、不定形のいずれであってもよい。円形度の値が0.40以上1.00未満の範囲にあるろ過助剤は、表面に凹凸ができて通水量が向上するとともに、磁性一次粒子のアスペクト比が大きくなることにより、磁性一次粒子間の間隔Sのアスペクト比も大きくなるため、水中の水不溶性固形物を捕捉しつつ、所望の通水量を確保することができる。円形度の値をさらに0.40以上0.90以下の範囲、またさらに0.43以上0.84以下の範囲にすると、所望レベルの水不溶性固形物の除去効率が得られるとともに、通水量がさらに増加して処理効率が向上する(表1、表2)。 As long as the value of circularity is in the range of 0.40 or more and less than 1.00, the shape of the magnetic primary particles may be spherical, polyhedral or amorphous. The filter aid having a circularity value in the range of 0.40 or more and less than 1.00 improves the amount of water passing through the surface and increases the water flow rate, and increases the aspect ratio of the magnetic primary particles, thereby increasing the spacing S between the magnetic primary particles. Therefore, the desired water flow rate can be secured while capturing water-insoluble solids in water. When the circularity value is further in the range of 0.40 to 0.90, and further in the range of 0.43 to 0.84, a desired level of water-insoluble solid removal efficiency can be obtained, and the water flow rate is further increased to improve the treatment efficiency. (Table 1, Table 2).
 (2)上記(1)において、磁性無機物粒子がフェライト系化合物からなることが好ましい。 (2) In the above (1), the magnetic inorganic particles are preferably made of a ferrite compound.
 磁性無機物粒子として種々のフェライト系化合物粒子を好適に用いることができる。フェライト系化合物として鉄、鉄基合金、磁鉄鉱(マグネタイト)、チタン鉄鉱(イルメナイト)、磁硫鉄鉱(ピロータイト)、マグネシアフェライト、マンガンマグネシウムフェライト、マンガン亜鉛フェライト、コバルトフェライト、ニッケルフェライト、ニッケル亜鉛フェライト、バリウムフェライト、銅亜鉛フェライトなどを用いることができる。これらのうち水中での安定性に優れたマグネタイト、マグネシアフェライト、マンガンマグネシウムフェライトなどのフェライト系化合物を用いることが最も好ましい。特にマグネタイト(Fe)は、価格が安価であるだけでなく、水中でも磁性体として安定した性質を示し、毒性のない安全な元素ばかりで構成されているため、水処理に使用するのに適している。 Various ferrite compound particles can be suitably used as the magnetic inorganic particles. Ferrite compounds such as iron, iron-based alloys, magnetite (magnetite), titanite (ilmenite), pyrrhotite (pilotite), magnesia ferrite, manganese magnesium ferrite, manganese zinc ferrite, cobalt ferrite, nickel ferrite, nickel zinc ferrite, barium Ferrite, copper zinc ferrite, etc. can be used. Of these, it is most preferable to use a ferrite-based compound such as magnetite, magnesia ferrite, or manganese magnesium ferrite having excellent stability in water. In particular, magnetite (Fe 3 O 4 ) is not only inexpensive, but also exhibits stable properties as a magnetic substance in water and is composed of only safe and non-toxic elements, so it is used for water treatment. Suitable for
 上述のように磁性一次粒子の平均粒子径d1は5~40μmの範囲とすることが好ましい。磁性一次粒子の平均粒子径d1はさらに好ましくは10~25μmの範囲であり、最も好ましくは20±5μmである。磁性一次粒子の平均粒子径d1が5μm未満になると、ろ過助剤として粒子が緻密に凝集しすぎて粒子間の距離Sが小さくなりすぎ、実効的な通水量が得られにくくなる。一方、磁性一次粒子の平均粒子径d1が40μmを超えると、粒子が粗く凝集して粒子間の距離Sが大きくなり過ぎ、水中の微細粒子(有価物または有害物)を通過させやすくなり、ろ過助剤として有効に機能しなくなるおそれがある。さらに磁性一次粒子の平均粒子径d1を10~25μmの範囲にすると、水中の異物の回収効率(除去効率)と通水量とのバランスが良好になる。ここで、平均粒子径とは体積平均(Mean Volume Diameter)のことである。平均粒子径は、レーザー回折法により測定されたものである。例えば株式会社島津製作所製のSALD-DS21型測定装置(商品名)により平均粒子径を測定することができる。 As described above, the average particle diameter d 1 of the magnetic primary particles is preferably in the range of 5 to 40 μm. The average particle diameter d 1 of the magnetic primary particles is more preferably in the range of 10 to 25 μm, and most preferably 20 ± 5 μm. When the average particle diameter d 1 of the magnetic primary particles is less than 5 μm, the particles as the filter aid are too densely aggregated, the distance S between the particles becomes too small, and it becomes difficult to obtain an effective water flow rate. On the other hand, when the average particle diameter d 1 of the magnetic primary particles exceeds 40 μm, the particles are coarsely aggregated and the distance S between the particles becomes too large, and it becomes easy for fine particles (valuable or harmful substances) in water to pass through. There is a possibility that it may not function effectively as a filter aid. Further, when the average particle diameter d 1 of the magnetic primary particles is in the range of 10 to 25 μm, the balance between the collection efficiency (removal efficiency) of foreign matter in water and the amount of water flow is improved. Here, an average particle diameter is a volume average (Mean Volume Diameter). The average particle diameter is measured by a laser diffraction method. For example, the average particle diameter can be measured with a SALD-DS21 type measuring device (trade name) manufactured by Shimadzu Corporation.
 (3)上記(1)において、磁性一次粒子の相互間隔Sの分布において、最頻値Pa, Pc1での間隔より小さい間隔の分布幅DSのほうが最頻値Pa, Pc1での間隔より大きい間隔の分布幅DLよりも広いことが好ましい(図8、図10、図4)。 (3) In the above (1), in the distribution of the mutual spacing S of the magnetic primary particles, the mode P a, the mode is better distribution width D S of the smaller interval than the interval at P c1 P a, with P c1 It is preferable that the distribution width D L is larger than the interval of (Figs. 8, 10, and 4).
 ここに記載する実施の形態では、凝集体内での粒子の相互間隔(粒子間孔径)Sの分布において、最頻値(mode) Pa, Pc1での間隔より小さい間隔の分布幅DSのほうを最頻値Pa, Pc1での間隔より大きい間隔の分布幅DLよりも広くしている。このような左右非対称の分布を非正規分布(non-normal distribution)または極地分布(extreme value distribution)という。このような非正規分布では、粒子間の小さな間隔から大きな間隔まで幅広い分布となるため、最初に粒子間の小さな相互間隔(隙間)に水中の水不溶性固形物59が挟まり、当初はその間隙が閉塞されたとしても、固形物59が粒子50と粒子50の間に挟まると、固形物59と粒子50の双方に力が加わり、固形物59および粒子50がそれぞれ変位し、かつ変形する。これにより開気孔56の開口径が変化し、変化した開気孔56により固形物59が捕捉され易くなる。この作用により、本実施形態のろ過助剤は、最頻値Pa, Pc1の相互間隔Sよりも小さな径の固形物59を捕捉する能力が向上する。凝集体内の粒子間孔径Sは、水銀圧入法(mercury press-in method)を利用する細孔分布測定方法により測定することができる。例えば、島津製作所製のオートポアIV 9500シリーズ(商品名)を用いて凝集体内の粒子間孔径Sを測定することができる。 In the embodiment described here, in the distribution of the mutual spacing (interparticle pore diameter) S of the particles in the aggregate, the distribution width D S of the spacing smaller than the spacing in the mode values P a and P c1 . Is made wider than the distribution width D L of the interval larger than the interval between the mode values P a and P c1 . Such an asymmetric distribution is called a non-normal distribution or an extreme value distribution. In such a non-normal distribution, since the distribution is wide from a small interval to a large interval between particles, water-insoluble solids 59 in water are first sandwiched between small mutual intervals (gap) between particles, and the gap is initially Even if the solid material 59 is sandwiched between the particles 50, even if the solid material 59 is blocked, a force is applied to both the solid material 59 and the particles 50, and the solid material 59 and the particles 50 are displaced and deformed, respectively. Thereby, the opening diameter of the open pores 56 changes, and the solid matter 59 is easily captured by the changed open pores 56. By this action, the filter aid of the present embodiment improves the ability to capture the solid material 59 having a diameter smaller than the mutual interval S between the mode values P a and P c1 . The interparticle pore size S in the aggregate can be measured by a pore distribution measurement method using a mercury press-in method. For example, the pore size S between particles in the aggregate can be measured using Autopore IV 9500 series (trade name) manufactured by Shimadzu Corporation.
 (4)上記(1)において、磁性無機物粒子は、見掛けの比重が1より大きく、かつ表面に開口する多数の開気孔を有し、かつ開気孔の径が磁性一次粒子の相互間隔Sよりも小さいことが好ましい(図4)。 (4) In the above (1), the magnetic inorganic particles have an apparent specific gravity greater than 1, have a large number of open pores opened on the surface, and the diameter of the open pores is larger than the mutual spacing S of the magnetic primary particles. It is preferable that it is small (FIG. 4).
 ここに記載する実施の形態では、磁性一次粒子の相互間隔Sよりも小さな気孔径d3,d4の開気孔56を有する(図4のd3,d4<Sの関係)。通水速度を大きくするためには、ろ過助剤に多孔質の磁性体粒子を用いること、あるいは表面に凹凸のある粒子を用いること、あるいは球状粒子と直線的な部分をもつ不定形粒子とを組み合わせて用いることなどが有効である。これらの方策は、磁性体粒子の円形度値を0.40~1.00の範囲に調整することで実施することができる。水中の微細な固形物59を粒子間孔径Sの孔で捕捉した時に、その近傍に小さな開気孔56が存在すると、水がバイパスする別の流路が形成されるため、トータルとしての通水速度が大きくなる。開気孔56の径d3,d4は、上述した水銀圧入法による細孔分布測定により分析することができる。水銀圧入法により測定すると、孔径の異なる二つの細孔分布を持つデータが得られる。例えば図10に示すように、小さい細孔分布C2が開気孔56の径の分布にあたり、大きい細孔分布C1が粒子間孔径Sの分布にあたる。 In the embodiment described here, it has open pores 56 having pore diameters d3 and d4 smaller than the mutual spacing S of the magnetic primary particles (relationship d3, d4 <S in FIG. 4). In order to increase the water flow rate, use porous magnetic particles as filter aids, or use particles with irregularities on the surface, or spherical particles and irregular particles with linear parts. It is effective to use in combination. These measures can be implemented by adjusting the circularity value of the magnetic particles to a range of 0.40 to 1.00. When fine solids 59 in water are captured by pores having an interparticle pore size S, if small open pores 56 are present in the vicinity thereof, another flow path for bypassing water is formed. Becomes larger. The diameters d3 and d4 of the open pores 56 can be analyzed by measuring the pore distribution by the mercury intrusion method described above. When measured by the mercury intrusion method, data having two pore distributions having different pore diameters can be obtained. For example, as shown in FIG. 10, the small pore distribution C2 corresponds to the diameter distribution of the open pores 56, and the large pore distribution C1 corresponds to the distribution of the interparticle pore diameter S.
 (5)上記(1)において、フッ素有機化合物が、フルオロカーボンとアルコキシ基を有する化合物を磁性無機物粒子の表面に反応させて得られることが好ましい(図5、図6、図7)。 (5) In (1) above, the fluorine organic compound is preferably obtained by reacting a compound having a fluorocarbon and an alkoxy group with the surface of the magnetic inorganic particles (FIGS. 5, 6, and 7).
 ここに記載する実施の形態では、磁性無機物粒子の表面にフルオロカーボンを担持させることにより、磁性一次粒子の表面エネルギーを小さくして、水中で吸着した異物(固形物など)を脱離させやすくし、吸着異物とろ過助剤との分離が促進される。これにより水中からのろ過助剤の回収が容易になる。 In the embodiment described here, by supporting fluorocarbon on the surface of the magnetic inorganic particles, the surface energy of the magnetic primary particles is reduced, and foreign substances adsorbed in water (such as solids) are easily desorbed, Separation of the adsorbed foreign matter and the filter aid is promoted. This facilitates the recovery of the filter aid from the water.
 担体となる磁性無機物粒子にフッ素有機化合物(フルオロカーボン)を担持させる方法として、シランカップリング剤を用いて磁性無機物粒子に直接修飾する方法と、磁性無機物粒子に樹脂(or polymer)を被覆する方法とがある。 As a method of supporting the fluorine organic compound (fluorocarbon) on the magnetic inorganic particles serving as the carrier, a method of directly modifying the magnetic inorganic particles using a silane coupling agent, and a method of coating the magnetic inorganic particles with a resin (or polymer) There is.
 シランカップリング剤により磁性無機物粒子の表面を直接修飾する方法では、フルオロカーボンとアルコキシ基を有する化合物を磁性無機物粒子の表面と反応させ、粒子の表面にフルオロカーボンを担持させる。ここで「修飾(combination)」とは、磁性無機物粒子(magnetic inorganic substance particles)の表面に官能基(functional group)を付ける(adhere)ことをいう。「官能基を付ける」とは、官能基と磁性無機物粒子とが少なくとも化学的に結合している(chemically combine)ことをいう。化学的な結合(chemical combination)と吸着(adsorption)のような物理的な結合(physical bonding)との組み合わせも修飾(combination)という。なお、磁性無機物粒子と官能基とが化学的に結合することなしに、両者が単に物理的に結合(bonding)しているだけでは、修飾(combination)とはいわない。ただし、特定の官能基を有する重合体(polymer)により磁性無機物粒子の表面の全体を被覆したときに限り、例外として修飾(combination)という場合がある。 In the method of directly modifying the surface of the magnetic inorganic particle with a silane coupling agent, a compound having a fluorocarbon and an alkoxy group is reacted with the surface of the magnetic inorganic particle to carry the fluorocarbon on the surface of the particle. Here, “combination” refers to the addition of a functional group to the surface of magnetic inorganic particles. “Attaching a functional group” means that the functional group and the magnetic inorganic particles are chemically bonded at least chemically. A combination of a chemical bond and a physical bond such as adsorption is also called a combination. It should be noted that the magnetic inorganic particles and the functional group are not chemically bonded, and the two are simply physically bonded, which is not a combination. However, as an exception, there is a case where a combination is made only when the entire surface of the magnetic inorganic particles is covered with a polymer having a specific functional group.
 修飾方法には乾式法と湿式法がある。乾式法は、磁性無機物粒子を高速撹拌しながらシランカップリング剤溶液を噴霧する方法である。湿式法は、粒子とシランカップリング剤を含む溶媒中で反応させる方法である。乾式法および湿式法のいずれの方法においても、処理後に溶媒を揮発させ、シランカップリング剤を硬化させる。また、フルオロカーボンとアルコキシ基を有する化合物を反応させて磁性無機物粒子にフルオロカーボンを担持させることも可能である。 The modification method includes a dry method and a wet method. The dry method is a method of spraying a silane coupling agent solution while stirring magnetic inorganic particles at high speed. The wet method is a method of reacting particles in a solvent containing a silane coupling agent. In any of the dry method and the wet method, the solvent is volatilized after the treatment to cure the silane coupling agent. It is also possible to cause the fluorocarbon to be supported on the magnetic inorganic particles by reacting the fluorocarbon with a compound having an alkoxy group.
 一方、樹脂被覆方法には2つの方法がある。1つの方法は、フルオロカーボンとアルコキシ基を有する樹脂を被覆する方法である。もう1つの方法は、側鎖に反応性官能基を持たせた樹脂を被覆し、フルオロカーボンとアルコキシ基を有する化合物を反応させる方法である。前者の方法では、先ずフルオロカーボンとアルコキシ基を有する樹脂を磁性無機物粒子に被覆し、樹脂中の化合物を磁性無機物粒子と反応させ、該化合物を粒子の表面に担持させる。 On the other hand, there are two methods for resin coating. One method is to coat a resin having a fluorocarbon and an alkoxy group. Another method is a method in which a resin having a reactive functional group on the side chain is coated and a compound having a fluorocarbon and an alkoxy group is reacted. In the former method, first, a resin having a fluorocarbon and an alkoxy group is coated on magnetic inorganic particles, a compound in the resin is reacted with the magnetic inorganic particles, and the compound is supported on the surface of the particles.
 フルオロカーボンとして、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、パーフルオロエチレンプロペン共重合体(PFEP)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン-エチレン共重合体(ETFE)、クロロトリフルオロエチレン-エチレン共重合体(ECTFE)、ポリビニリデンフルオライド(PVDF)などを用いることができる。これらはいずれもF-C結合を含む化合物であり、磁性無機物粒子の表面に担持されると粒子の表面性状を疎水性にするものである。 Fluorocarbons include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), perfluoroethylene propene copolymer (PFEP), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene- Ethylene copolymer (ETFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE), polyvinylidene fluoride (PVDF), and the like can be used. These are compounds containing an F—C bond, and make the surface properties of the particles hydrophobic when supported on the surface of the magnetic inorganic particles.
 シランカップリング剤は、加水分解反応と縮合反応の2つの反応に寄与する反応物質である。加水分解反応では、フェライト粒子表面の水酸基M-OH(Mは金属原子)とシランカップリング剤に含まれるアルコキシ基(RO-Si)が脱アルコール反応するか、または、図5の(a)(b)と図6に示すように水と反応してシランカップリング剤に含まれるアルコキシ基(RO-Si)が加水分解し、これによりシラノール基が生成され、磁性無機物粒子の表面にある水酸基との水素結合を介して磁性無機物粒子の表面に移行する。シランカップリング剤分子の加水分解速度は、磁性無機物粒子の表面状態に依存する。すなわち、シランカップリング剤分子の加水分解速度は、磁性無機物粒子の表面のpHおよび吸着水の量から影響を受ける。 A silane coupling agent is a reactant that contributes to two reactions, a hydrolysis reaction and a condensation reaction. In the hydrolysis reaction, the hydroxyl group M-OH (M is a metal atom) on the ferrite particle surface and the alkoxy group (RO-Si) contained in the silane coupling agent undergo a dealcoholization reaction, or (a) in FIG. b) and the reaction with water as shown in FIG. 6, the alkoxy group (RO-Si) contained in the silane coupling agent is hydrolyzed, thereby producing a silanol group, and the hydroxyl group on the surface of the magnetic inorganic particles It moves to the surface of the magnetic inorganic particle through the hydrogen bond. The hydrolysis rate of the silane coupling agent molecule depends on the surface state of the magnetic inorganic particles. That is, the hydrolysis rate of silane coupling agent molecules is affected by the pH of the surface of the magnetic inorganic particles and the amount of adsorbed water.
 一方、縮合反応では、図5の(b)(c)と図6に示すように、シランカップリング剤は脱水縮合反応を経て磁性無機物粒子の表面との間に強固な共有結合を生成する。この反応と並行してシラノール基同士が縮合してシロキサンオリゴマーが生成される。熱や触媒の存在下でこれらの反応を加速させることができる。また、被覆化合物を加熱・乾燥させることで副生する水やアルコールを系外に排出することによりこれらの反応を促進させることができる。シランカップリング剤分子の有機官能基は磁性無機物粒子の外側に配向するため、シランカップリング剤溶液の親水性と疎水性とのバランスを考慮して、溶媒と溶質との最適な配合比を選定する必要がある。 On the other hand, in the condensation reaction, as shown in FIGS. 5B and 5C and FIG. 6, the silane coupling agent undergoes a dehydration condensation reaction to generate a strong covalent bond with the surface of the magnetic inorganic particles. In parallel with this reaction, silanol groups are condensed to produce a siloxane oligomer. These reactions can be accelerated in the presence of heat or catalyst. Moreover, these reactions can be accelerated | stimulated by discharging | emitting water and alcohol byproduced by heating and drying a coating compound out of a system. Since the organic functional groups of the silane coupling agent molecules are oriented outside the magnetic inorganic particles, the optimal mixing ratio of solvent and solute is selected in consideration of the balance between hydrophilicity and hydrophobicity of the silane coupling agent solution. There is a need to.
 図7を参照してアルコキシ基を有する化合物を生成するときの反応の一例を説明する。アルコキシ基を有する化合物は、磁性無機物粒子にフッ素有機化合物を担持させるときの反応に用いられる原料の1つである。ここではアルコキシ基を有する化合物として、図7に示すアミド(N-C=O)とイミド(O=C-N-C=O)を含む有機化合物を生成するときの反応についてその概要を説明する。 An example of a reaction when producing a compound having an alkoxy group will be described with reference to FIG. The compound having an alkoxy group is one of raw materials used for the reaction when a fluorine organic compound is supported on magnetic inorganic particles. Here, an outline of the reaction when generating an organic compound containing an amide (N—C═O) and an imide (O═C—N—C═O) shown in FIG. 7 as the compound having an alkoxy group will be described.
 先ずピロメリット酸無水物(テトラカルボン酸2無水物)とジアミノジフェニルメタンとを等モルで重合させ、ポリイミドの前駆体であるポリアミド酸(ポリアミック酸)を生成する。次に、ポリアミド酸を加熱するか又は触媒を用いて脱水・環化(イミド化)反応を促進させ、アルコキシ基を有する化合物としてポリイミドを得る。このようにして得たポリイミドをフルオロカーボンとしてのテトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)と混合してフッ素有機化合物の混合物とする。このフッ素有機化合物の混合物を磁性無機物粒子に湿式法で反応させると、フッ素有機化合物としてのPFAが磁性無機物粒子の表面に担持(修飾)される。 First, pyromellitic anhydride (tetracarboxylic acid dianhydride) and diaminodiphenylmethane are polymerized in equimolar amounts to produce polyamic acid (polyamic acid) which is a polyimide precursor. Next, the polyamic acid is heated or a dehydration / cyclization (imidization) reaction is promoted using a catalyst to obtain a polyimide as a compound having an alkoxy group. The polyimide thus obtained is mixed with a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) as a fluorocarbon to obtain a mixture of fluorine organic compounds. When this mixture of fluorine organic compounds is reacted with magnetic inorganic particles by a wet method, PFA as a fluorine organic compound is supported (modified) on the surfaces of the magnetic inorganic particles.
 (6)上記(1)において、異物が被処理水中に含まれる水不溶性の固形物であり、ろ過助剤を用いて被処理水中から水不溶性の固形物を除去することができる。 (6) In (1) above, the foreign matter is a water-insoluble solid contained in the water to be treated, and the water-insoluble solid can be removed from the water to be treated using a filter aid.
 対象となる水不溶0性の固形物として、砂のような非磁性の無機物粒子、銅や鉛のような金属粒子、あるいはセルロースのような高分子有機化合物繊維などが挙げられる。 Examples of water-insoluble zero-soluble solids that are targeted include non-magnetic inorganic particles such as sand, metal particles such as copper and lead, and polymer organic compound fibers such as cellulose.
 (7)ここに記載する実施の形態に係る水処理方法は、被処理水中に含まれる異物をろ過助剤に吸着させ、吸着した異物とともにろ過助剤を被処理水から膜ろ過により分離し、膜ろ過した分離物中の異物からろ過助剤を磁気的に分離し、分離したろ過助剤を繰り返し使用する水処理方法において、(A)平均粒子径が5μm以上40μm以下の磁性無機物粒子と、前記磁性無機物粒子の表面の一部または全部を覆い、前記磁性無機物粒子に担持されるフッ素有機化合物を含む被覆層と、を有し、かつ、顕微鏡視野内において平面に投影される二次元投影像の円形度の値が0.40以上1.00未満(1.00を除く)の範囲にある磁性一次粒子を作製し、前記ろ過助剤として複数の前記磁性一次粒子が凝集した凝集体を準備し、(B)水不溶性の固形物を含む被処理水と前記ろ過助剤とを混合し、前記被処理水中に前記ろ過助剤が分散する懸濁液を作製し、(C)ろ過膜により前記懸濁液をろ過し、前記ろ過膜上に前記ろ過助剤および前記水不溶性の固形物を含む堆積層を形成し、前記堆積層中において前記ろ過助剤に前記水不溶性の固形物を吸着・捕捉させ、これにより被処理水から前記水不溶性の固形物を分離し、(D)剥離水を前記堆積層に注いで前記ろ過膜から前記堆積層を剥離させ、これにより前記水不溶性の固形物を捕捉した前記堆積層の剥離物と前記剥離水との混合物を提供し、(E)前記混合物から前記ろ過助剤を磁気的に分離し、(F)分離したろ過助剤を前記(B)工程において再利用する。 (7) In the water treatment method according to the embodiment described herein, the foreign substances contained in the water to be treated are adsorbed to the filter aid, and the filter aid is separated from the treated water together with the adsorbed foreign matters by membrane filtration. In the water treatment method in which the filter aid is magnetically separated from the foreign matter in the separated substance after membrane filtration and the separated filter aid is repeatedly used, (A) magnetic inorganic particles having an average particle size of 5 μm or more and 40 μm or less; A two-dimensional projection image that covers a part or all of the surface of the magnetic inorganic particles and has a coating layer containing a fluorine organic compound supported by the magnetic inorganic particles, and is projected onto a plane in a microscope field of view Magnetic primary particles having a circularity value of 0.40 or more and less than 1.00 (excluding 1.00) are prepared, and an aggregate in which a plurality of the magnetic primary particles are aggregated is prepared as the filter aid, and (B) water Treatments containing insoluble solids Mixing physical water and the filter aid, producing a suspension in which the filter aid is dispersed in the water to be treated, (C) filtering the suspension with a filter membrane, A deposition layer containing the filter aid and the water-insoluble solid is formed, and the water-insoluble solid is adsorbed and trapped by the filter aid in the deposition layer, whereby the water-insoluble from the treated water. (D) Peeling water is poured into the deposited layer to separate the deposited layer from the filtration membrane, thereby removing the deposited layer separated from the deposited layer that has captured the water-insoluble solid. Providing a mixture with water; (E) magnetically separating the filter aid from the mixture; and (F) reusing the separated filter aid in the step (B).
 上記実施形態の水処理方法は、ボディーフィード法に対応する方法である。上記特定のろ過助剤を被処理水中に分散させ、ろ過助剤に水不溶性の固形物を吸着させ、このろ過助剤/固形物の吸着状態にある被処理水をろ過膜に通水し、ろ過膜上にろ過助剤/固形物の混合物からなる堆積層を形成する。次いで、ろ過膜上の堆積層に向けて剥離水を側方から吹き付けて、堆積層をろ過膜から剥離させ、剥離物に対してさらに剥離水を吹き付けて、剥離物をばらばらに分解した状態とする。次いで、分解した剥離物を剥離水とともに固液分離装置から分離槽へ送り、分離槽内で剥離物を粒子状態になるまで撹拌し、水中においてろ過助剤と金属化合物粒子を均一に分散させる。次いで、水中に分散するろ過助剤を磁石に磁気吸着させ、磁石にろ過助剤が吸着されている間に、固形物を含む処理水を磁気分離槽から回収貯留槽に排出する。次いで、磁石によるろ過助剤の磁気吸着を解除して、ろ過助剤を磁石保護管から脱落させ、さらに処理水または水道水を磁石保護管に吹き付け、磁石保護管に付着したろ過助剤を水洗する。水洗したろ過助剤は、磁気分離槽からろ過助剤供給装置へ送り、ろ過助剤供給装置において懸濁液の作製のために再利用される。 The water treatment method of the above embodiment is a method corresponding to the body feed method. Disperse the specific filter aid in the water to be treated, adsorb the water-insoluble solid matter to the filter aid, and pass the water to be treated in the adsorption state of the filter aid / solid matter through the filter membrane, A deposited layer comprising a filter aid / solid mixture is formed on the filter membrane. Next, the peeling water is sprayed from the side toward the deposition layer on the filtration membrane, the deposition layer is peeled off from the filtration membrane, the peeling water is further sprayed on the separation, and the separated matter is decomposed into pieces. To do. Subsequently, the decomposed exfoliated material is sent from the solid-liquid separation device to the separation tank together with exfoliated water, and the exfoliated material is stirred in the separation tank until it becomes a particle state, and the filter aid and the metal compound particles are uniformly dispersed in water. Next, the filter aid dispersed in water is magnetically adsorbed on the magnet, and while the filter aid is adsorbed on the magnet, the treated water containing solid matter is discharged from the magnetic separation tank to the collection storage tank. Next, the magnetic adsorption of the filter aid by the magnet is released, the filter aid is dropped from the magnet protective tube, and treated water or tap water is sprayed onto the magnet protective tube, and the filter aid adhering to the magnet protective tube is washed with water. To do. The filter aid washed with water is sent from the magnetic separation tank to the filter aid supply device, and is reused for producing a suspension in the filter aid supply device.
 上記実施形態の水処理方法では、ろ過助剤を構成する磁性一次粒子の円形度の値を0.40以上1.00未満(1.00を除く)の範囲としているので、図8と図10に示す分布において、最頻値 Pa, Pc1での間隔より小さい間隔の分布幅DSのほうが最頻値Pa, Pc1での間隔より大きい間隔の分布幅DLよりも幅広くなる。これにより微細な粒子を捕捉しつつ通水量を増加させることができ、処理効率が向上する。また、ろ過助剤が分離性と耐久性に優れているので、ろ過助剤を繰り返し使用することができる。分離したろ過助剤を高効率かつ円滑に排出・移送でき、繰り返し再利用することができる。これにより運転コストやメンテナンスコストを低く抑えることができるという利点がある。 In the water treatment method of the above embodiment, the circularity value of the magnetic primary particles constituting the filter aid is in the range of 0.40 or more and less than 1.00 (excluding 1.00). Therefore, in the distribution shown in FIG. 8 and FIG. Shikichi P a, towards the distribution width D S of smaller spacing than the spacing becomes wider than the distribution width D L mode value P a, larger spacing than the spacing at the P c1 in P c1. Thereby, the amount of water flow can be increased while capturing fine particles, and the processing efficiency is improved. Moreover, since the filter aid is excellent in separability and durability, the filter aid can be used repeatedly. The separated filter aid can be discharged and transferred efficiently and smoothly and can be reused repeatedly. Thereby, there is an advantage that the operating cost and the maintenance cost can be kept low.
 (8)ここに記載する実施の形態に係る水処理方法は、被処理水中に含まれる異物をろ過助剤に吸着させ、吸着した異物とともにろ過助剤を被処理水から膜ろ過により分離し、膜ろ過した分離物中の異物からろ過助剤を磁気的に分離し、分離したろ過助剤を繰り返し使用する水処理方法において、(a)平均粒子径が5μm以上40μm以下の磁性無機物粒子と、前記磁性無機物粒子の表面の一部または全部を覆い、前記磁性無機物粒子に担持されるフッ素有機化合物を含む被覆層と、を有し、かつ、顕微鏡視野内において平面に投影される二次元投影像の円形度の値が0.40以上1.00未満(1.00を除く)の範囲にある磁性一次粒子を作製し、前記ろ過助剤として複数の前記磁性一次粒子が凝集した凝集体を準備し、(b)前記ろ過助剤に分散媒を混合し、前記分散媒中に前記ろ過助剤が分散する懸濁液を作製し、(c)ろ過膜により前記懸濁液をろ過し、前記ろ過膜の上に前記ろ過助剤を含むプレコート層を形成し、次いで水不溶性の固体物を含む被処理水を前記プレコート層および前記ろ過膜に通過させ、前記プレコート層のろ過助剤に前記水不溶性の固体物を吸着・捕捉させ、これにより被処理水から前記水不溶性の固体物を分離し、(d)剥離水を前記プレコート層に注いで前記ろ過膜から前記プレコート層を剥離させ、これにより前記水不溶性の固体物を捕捉した前記プレコート層の剥離物と前記剥離水との混合物を提供し、(e)前記混合物から前記ろ過助剤を磁気的に分離し、(f)分離したろ過助剤を前記(b)工程において再利用する。 (8) In the water treatment method according to the embodiment described herein, foreign substances contained in the water to be treated are adsorbed on the filter aid, and the filter aid is separated from the water to be treated together with the adsorbed foreign substances by membrane filtration. In the water treatment method in which the filter aid is magnetically separated from the foreign matter in the separated substance after membrane filtration and the separated filter aid is repeatedly used, (a) magnetic inorganic particles having an average particle diameter of 5 μm or more and 40 μm or less; A two-dimensional projection image that covers a part or all of the surface of the magnetic inorganic particles and has a coating layer containing a fluorine organic compound supported by the magnetic inorganic particles, and is projected onto a plane in a microscope field of view A magnetic primary particle having a circularity value of 0.40 or more and less than 1.00 (excluding 1.00), and preparing an aggregate in which a plurality of the magnetic primary particles are aggregated as the filter aid; (b) Mixing dispersion medium with filter aid And preparing a suspension in which the filter aid is dispersed in the dispersion medium, (c) filtering the suspension through a filter membrane, and forming a precoat layer containing the filter aid on the filter membrane. Then, water to be treated containing water-insoluble solid matter is passed through the precoat layer and the filtration membrane, and the water-insoluble solid matter is adsorbed and captured by the filter aid of the precoat layer, thereby treating Separating the water-insoluble solid from the water; and (d) pouring stripping water onto the precoat layer to peel the precoat layer from the filtration membrane, thereby capturing the water-insoluble solid. A mixture of the exfoliated product and the exfoliated water is provided, (e) the filter aid is magnetically separated from the mixture, and (f) the separated filter aid is reused in the step (b).
 上記実施形態の水処理方法は、プレコート法に対応する方法である。上記特定のろ過助剤を分散媒中に分散させ、懸濁液を作製する。この懸濁液を固液分離装置のろ過膜に供給し、ろ過助剤を堆積させ、ろ過膜上に所望のプレコート層を形成する。次いで、被処理水をプレコート層に通水し、水不溶性の固形物をろ過助剤に吸着・捕捉させる。次いで、ろ過膜上のプレコート層に向けて剥離水を側方から吹き付けて、プレコート層をろ過膜から剥離させ、剥離物に対してさらに剥離水を吹き付けて、剥離物をばらばらに分解した状態とする。次いで、分解した剥離物を剥離水とともに固液分離装置から磁気分離槽へ送り、磁気分離槽内で剥離物を粒子状態になるまで撹拌し、水中においてろ過助剤および固形分を均一に分散させる。次いで、水中に分散するろ過助剤を磁石に吸着させ、磁石にろ過助剤が吸着されている間に、水不溶性の固形物を含む処理水を磁気分離槽から排出する。次いで、磁石によるろ過助剤の磁気吸着を解除して、ろ過助剤を磁石保護管から脱落させ、さらに処理水や水道水などを磁石保護管に吹き付け、磁石保護管に付着したろ過助剤を水洗する。水洗したろ過助剤は、磁気分離槽からろ過助剤供給装置へ送り、ろ過助剤供給装置および混合槽において懸濁液の作製のために再利用される。 The water treatment method of the above embodiment is a method corresponding to the precoat method. The specific filter aid is dispersed in a dispersion medium to prepare a suspension. This suspension is supplied to a filtration membrane of a solid-liquid separator, and a filter aid is deposited to form a desired precoat layer on the filtration membrane. Next, the water to be treated is passed through the precoat layer, and the water-insoluble solid is adsorbed and captured by the filter aid. Next, the peeling water is sprayed from the side toward the precoat layer on the filtration membrane, the precoat layer is peeled off from the filtration membrane, the peeling water is further sprayed on the peeled material, and the peeled material is decomposed into pieces. To do. Next, the decomposed exfoliated material is sent together with the exfoliated water from the solid-liquid separator to the magnetic separation tank, and the exfoliated substance is stirred in the magnetic separation tank until it becomes a particle state, and the filter aid and the solid content are uniformly dispersed in the water. . Next, the filter aid dispersed in water is adsorbed on the magnet, and the treated water containing water-insoluble solids is discharged from the magnetic separation tank while the filter aid is adsorbed on the magnet. Next, the magnetic adsorption of the filter aid by the magnet is released, the filter aid is dropped from the magnet protection tube, and further, treated water or tap water is sprayed on the magnet protection tube, and the filter aid adhered to the magnet protection tube is removed. Wash with water. The filter aid washed with water is sent from the magnetic separation tank to the filter aid supply apparatus, and is reused for producing a suspension in the filter aid supply apparatus and the mixing tank.
 (ろ過助剤)
 次に、ここに記載する実施の形態に用いられるろ過助剤を詳しく説明する。
(Filter aid)
Next, the filter aid used in the embodiment described herein will be described in detail.
 ここに記載する実施の形態では、フッ素有機化合物を含む被覆層で覆われたろ過助剤を用いる。このようなろ過助剤を水不溶性固形物含有水の浄化処理に用いると、水中からろ過助剤の分離が容易になるだけでなく、水中で使用したろ過助剤を水不溶性固形物から分離する際にも磁力を利用することができる。このため、本実施形態のろ過助剤を様々なプロセスに適用することが可能になる。また、ろ過助剤を見掛けの比重が1.0を超えるようにしている。このため、ろ過助剤を水中において重力沈降させ、沈殿したろ過助剤を水中から容易に分離することができ、プロセスの選択幅が広がるという利点がある。 In the embodiment described here, a filter aid covered with a coating layer containing a fluorine organic compound is used. When such a filter aid is used for purification treatment of water containing water-insoluble solids, not only the filter aid is easily separated from the water, but also the filter aid used in water is separated from the water-insoluble solids. Sometimes magnetic force can be used. For this reason, it becomes possible to apply the filter aid of this embodiment to various processes. Further, the apparent specific gravity of the filter aid exceeds 1.0. For this reason, there is an advantage that the filter aid can be gravity settled in water, the precipitated filter aid can be easily separated from the water, and the selection range of the process is widened.
 ろ過助剤としては、室温領域において強磁性を示す物質であることが望ましく、フェライト系化合物のような強磁性物質を全般的に用いることができる。フェライト系化合物として鉄、鉄基合金、磁鉄鉱(マグネタイト)、チタン鉄鉱(イルメナイト)、磁硫鉄鉱(ピロータイト)、マグネシアフェライト、マンガンマグネシウムフェライト、マンガン亜鉛フェライト、コバルトフェライト、ニッケルフェライト、ニッケル亜鉛フェライト、バリウムフェライト、銅亜鉛フェライトなどを用いることができる。これらのうち水中での安定性に優れたマグネタイト、マグネシアフェライト、マンガンマグネシウムフェライトなどのフェライト系化合物を用いることが最も好ましい。特にマグネタイト(Fe)は、安価であるだけでなく、水中でも磁性体として安定した性質を示し、毒性のない安全な元素ばかりで構成されているため、水処理に使用するのに適している。また、ろ過助剤は、球状、多面体、不定形など種々の形状・形態を取り得る。 The filter aid is preferably a substance exhibiting ferromagnetism in a room temperature region, and a ferromagnetic substance such as a ferrite compound can be generally used. Ferrite compounds such as iron, iron-based alloys, magnetite (magnetite), titanite (ilmenite), pyrrhotite (pilotite), magnesia ferrite, manganese magnesium ferrite, manganese zinc ferrite, cobalt ferrite, nickel ferrite, nickel zinc ferrite, barium Ferrite, copper zinc ferrite, etc. can be used. Of these, it is most preferable to use a ferrite-based compound such as magnetite, magnesia ferrite, or manganese magnesium ferrite having excellent stability in water. In particular, magnetite (Fe 3 O 4 ) is not only inexpensive, but also exhibits stable properties as a magnetic substance in water and is composed of only safe and non-toxic elements, making it suitable for use in water treatment. ing. Further, the filter aid can take various shapes and forms such as spherical, polyhedral and irregular shapes.
 ここに記載する実施の形態では、磁性一次粒子の平均粒子径d1を5~40μmの範囲とする(図1A)。磁性一次粒子の平均粒子径d1が5μm未満になると、ろ過助剤として粒子が緻密に凝集しすぎて粒子間の距離Sが小さくなりすぎ、実効的な通水量が得られにくくなる。一方、磁性一次粒子の平均粒子径d1が40μmを超えると、粒子が粗く凝集して粒子間の距離Sが大きくなりすぎ、水中の異物(微細粒子、有価物または有害物)を通過させやすくなり、ろ過助剤として十分に機能しなくなる可能性がある。さらに、磁性一次粒子の平均粒子径d1を10~25μmの範囲とすることがより好ましい。磁性一次粒子の平均粒子径d1を25μm以下にすると、異物の除去効率がさらに高まる。一方、磁性一次粒子の平均粒子径d1を10μm以上にすると、通水量がさらに増加して処理効率が向上する。平均粒子径d1が10~25μmの磁性一次粒子は、異物の除去効率と通水量とのバランスが良い。 In the embodiment described here, the average particle diameter d 1 of the magnetic primary particles is in the range of 5 to 40 μm (FIG. 1A). When the average particle diameter d 1 of the magnetic primary particles is less than 5 μm, the particles as the filter aid are too densely aggregated, the distance S between the particles becomes too small, and it becomes difficult to obtain an effective water flow rate. On the other hand, when the average particle diameter d 1 of the magnetic primary particles exceeds 40 μm, the particles are coarsely aggregated and the distance S between the particles becomes too large, and it is easy for foreign substances (fine particles, valuables or harmful substances) in water to pass through. And may not function sufficiently as a filter aid. Further, it is more preferable that the average particle diameter d 1 of the magnetic primary particles is in the range of 10 to 25 μm. When the average particle diameter d 1 of the magnetic primary particles is 25 μm or less, the foreign matter removal efficiency is further increased. On the other hand, when the average particle diameter d 1 of the magnetic primary particles is 10 μm or more, the water flow rate is further increased and the treatment efficiency is improved. Magnetic primary particles having an average particle diameter d 1 of 10 to 25 μm have a good balance between the removal efficiency of foreign matter and the amount of water flow.
 ここに記載する実施形態では、顕微鏡視野内において平面に投影される二次元投影像の円形度の値が0.40以上1.00未満(1.00を除く)の範囲に入るように磁性無機物粒子と被覆層を調整する。円形度の値がこの範囲にあれば、磁性一次粒子の形状は、球状、多面体、不定形のいずれでもよい。円形度の値が0.40以上1.00未満の範囲にあるろ過助剤は、表面に凹凸ができて通水量が向上するとともに、磁性一次粒子のアスペクト比が大きくなることにより、磁性一次粒子間の相互間隔Sのアスペクト比も大きくなるため、水中の微細粒子を捕捉しつつ、通水量を得ることができる。さらに、円形度の値を0.40以上0.90以下、また、さらに0.43以上0.84以下にすると、表1と表2に示すように所望レベルの水不溶性固形物の除去効率が得られるとともに、通水量がさらに増加して処理効率が向上する。 In the embodiment described here, the magnetic inorganic particles and the coating layer are adjusted so that the circularity value of the two-dimensional projection image projected onto the plane within the microscope field of view falls within the range of 0.40 to less than 1.00 (excluding 1.00). To do. If the circularity value is within this range, the shape of the magnetic primary particles may be spherical, polyhedral or amorphous. Filter aids with a circularity value in the range of 0.40 or more and less than 1.00 improve the amount of water flow through the surface and increase the aspect ratio of the magnetic primary particles, thereby increasing the mutual spacing between the magnetic primary particles. Since the aspect ratio of S is also increased, it is possible to obtain a water flow rate while capturing fine particles in water. Further, when the circularity value is 0.40 or more and 0.90 or less, and further 0.43 or more and 0.84 or less, as shown in Tables 1 and 2, a desired level of water-insoluble solid removal efficiency can be obtained, and the water flow rate is further increased. Increase the processing efficiency.
 ここで「円形度」とは、対象物が平面に投影された二次元投影像の周囲長と面積を用いて下式(1)により与えられ、その二次元投影像の輪郭形状が真円に近いか遠いかの度合いを数値化した係数のことをいうものと定義する。 Here, the “circularity” is given by the following equation (1) using the perimeter and area of the two-dimensional projection image in which the object is projected on a plane, and the contour shape of the two-dimensional projection image is a perfect circle. It is defined as a coefficient that quantifies the degree of nearness or distance.
         CR=4πA/L2   …(1)
 但し、記号CRは円形度、記号Lは二次元投影像の周囲長、記号Aは二次元投影像の面積をそれぞれ示す。
CR = 4πA / L 2 (1)
Here, the symbol CR represents the circularity, the symbol L represents the perimeter of the two-dimensional projection image, and the symbol A represents the area of the two-dimensional projection image.
 円形度の値が1に近くなるほどその形状は円に近似した形状になり、円形度の値が1から遠くなるほど円から離れた歪な形状になる。ちなみに、円形度の値が1と等しくなるときの形状は真円である。 The closer the circularity value is to 1, the closer the shape is to a circle, and the farther the circularity value is from 1, the more distorted the shape is from the circle. Incidentally, the shape when the value of circularity is equal to 1 is a perfect circle.
 図2A~図2Cおよび図3A~図3Cを参照して円形度を用いて磁性一次粒子の凝集体の形状を評価する場合のいくつかの例について説明する。 Several examples in the case of evaluating the shape of an aggregate of magnetic primary particles using circularity will be described with reference to FIGS. 2A to 2C and FIGS. 3A to 3C.
 例えば図2A、図2B、図2Cに示すように磁性一次粒子の凝集体の全体の輪郭形状(二次元投影像)が真円から徐々に離れていくに従って円形度の値が小さくなっていく。顕微鏡視野内で測定した円形度値により、凝集体全体の輪郭形状を定量的に評価することができる。すなわち、図2Aの凝集体の輪郭形状は真円に最も近く、円形度CR1の値が1に近い値になる。次いで、図2Bの凝集体の輪郭形状は、真円から少し離れて変形しているため、円形度CR2の値が図2Aの凝集体の円形度CR1の値よりも小さくなる。次いで、図2Cの凝集体の輪郭形状は、真円からさらに離れて変形しているため、円形度CR3の値が図2Bの凝集体の円形度CR2の値よりも更に小さくなる。これらの円形度値の関係はCR3<CR2<CR1<1となる。 For example, as shown in FIG. 2A, FIG. 2B, and FIG. 2C, the circularity value decreases as the overall contour shape (two-dimensional projection image) of the aggregate of magnetic primary particles gradually moves away from the perfect circle. The contour shape of the entire aggregate can be quantitatively evaluated based on the circularity value measured in the microscope visual field. That is, the outline shape of the aggregate in FIG. 2A is closest to a perfect circle, and the value of the circularity CR1 is close to 1. Next, since the outline shape of the aggregate in FIG. 2B is deformed slightly away from the perfect circle, the value of the circularity CR2 is smaller than the value of the circularity CR1 of the aggregate in FIG. 2A. Next, since the outline shape of the aggregate in FIG. 2C is deformed further away from the perfect circle, the value of the circularity CR3 is further smaller than the value of the circularity CR2 of the aggregate in FIG. 2B. The relationship between these circularity values is CR3 <CR2 <CR1 <1.
 また、例えば図3A、図3B、図3Cに示すように凝集体の表面形状(二次元投影像)が滑らかなものから凹凸の大きいものになるに従って円形度の値が小さくなっていく。顕微鏡視野内で測定した円形度値により、凝集体全体の輪郭形状を定量的に評価することができる。すなわち、図3Aの凝集体の表面形状は滑らかなため、円形度CR4の値が高い値になる。次いで、図3Bの凝集体の表面形状は凸凹しているため、円形度CR5の値が図3Aの凝集体の円形度CR4の値よりも小さくなる。次いで、図3Cの凝集体の表面形状はさらに凸凹しているため、円形度CR6の値が図3Bの凝集体の円形度CR5の値よりも更に小さくなる。これらの円形度値の関係はCR6<CR5<CR4<1となる。 Also, for example, as shown in FIGS. 3A, 3B, and 3C, the value of the circularity decreases as the surface shape (two-dimensional projection image) of the aggregate changes from a smooth one to a large one having unevenness. The contour shape of the entire aggregate can be quantitatively evaluated based on the circularity value measured in the microscope visual field. That is, since the surface shape of the aggregate of FIG. 3A is smooth, the value of the circularity CR4 becomes a high value. Next, since the surface shape of the aggregate of FIG. 3B is uneven, the value of the circularity CR5 is smaller than the value of the circularity CR4 of the aggregate of FIG. 3A. Next, since the surface shape of the aggregate in FIG. 3C is further uneven, the value of the circularity CR6 is further smaller than the value of the circularity CR5 of the aggregate in FIG. 3B. The relationship between these circularity values is CR6 <CR5 <CR4 <1.
 ここに記載する実施形態のろ過助剤では、磁性一次粒子の相互間隔(粒子間孔径S)の分布において、最頻値の間隔より小さい間隔の分布幅DSのほうを最頻値の間隔より大きい間隔の分布幅DLよりも大きくしている。例えば図8に示す分布Aでは、最頻値Pでの間隔より小さい間隔の分布幅DSのほうを最頻値Pでの間隔より大きい間隔の分布幅DLよりも広くしている。また、例えば図10に示す分布C1では、最頻値Pc1での間隔より小さい間隔の分布幅DSのほうを最頻値Pc1での間隔より大きい間隔の分布幅DLよりも広くしている。このように粒子の相互間隔Sが小さいほうで分布(ばらつき)の幅DSを大きくし、粒子の相互間隔Sが大きいほうで分布(ばらつき)の幅DLを小さくしている。 The filter aid of the embodiments described herein, in the distribution of the mutual distance (inter-particle pore size S) of the magnetic primary particles, than the distance of the mode the better the distribution width D S of smaller spacing than the spacing of the mode The distribution width D L is larger than the large interval. In distribution A shown in FIG. 8, for example, it is wider than the distribution width D L larger interval than the interval of the better of the distribution width D S of smaller spacing than the spacing in the mode P a in the mode P a . Further, for example, the distribution C1 shown in FIG. 10, wider than the distribution width D L larger interval than the interval in the mode P c1 and towards the distribution width D S of smaller spacing than the spacing in the mode P c1 ing. As described above, the distribution (variation) width D S is increased when the particle mutual interval S is smaller, and the distribution (variation) width D L is decreased when the particle mutual interval S is larger.
 このような非正規分布または極値分布では、粒子間の小さな間隔から大きな間隔まで幅広い分布を持つため、最初に粒子間の小さな間隔に水中の微細な固形物59が挟まる。このとき、固形物59により磁性一次粒子50の相互間隔Sが閉塞されたとしても、固形物59が一次粒子50間に挟まることにより、周囲の一次粒子50が変形して、開気孔56が拡がり、拡大した開気孔56に固形物59が嵌まり込む。この作用により、ろ過助剤は、最頻値P,Pc1の粒子間孔径Sよりも小さな径の固形物59を捕捉する能力が向上する。凝集体内の粒子間孔径Sは、例えば島津製作所製のオートポアIV 9500シリーズ(商品名)を用いて測定することができる。 In such a non-normal distribution or extreme value distribution, since there is a wide distribution from a small interval between particles to a large interval, first, fine solid matter 59 in water is sandwiched between small intervals between particles. At this time, even if the mutual space S between the magnetic primary particles 50 is closed by the solid material 59, the solid material 59 is sandwiched between the primary particles 50, whereby the surrounding primary particles 50 are deformed and the open pores 56 are expanded. Then, the solid material 59 fits into the expanded open pores 56. By this action, the filter aid improves the ability to capture the solid material 59 having a diameter smaller than the interparticle pore diameter S of the mode values P a and P c1 . The interparticle pore diameter S in the aggregate can be measured using, for example, Autopore IV 9500 series (trade name) manufactured by Shimadzu Corporation.
 ここに記載する実施形態では、ろ過助剤を多孔質とすることにより通水性が良好になる。すなわち、図4に示すように多孔質のろ過助剤では、固形物粒子59が粒子50と粒子50との間隙に挟まった状態であっても、一次粒子50内の開気孔56を水がバイパスして流れるため、通水が完全に止まることがなく、必要最小限の通水量を確保することができる。 In the embodiment described here, water permeability is improved by making the filter aid porous. That is, as shown in FIG. 4, with a porous filter aid, water bypasses the open pores 56 in the primary particles 50 even when the solid particles 59 are sandwiched between the particles 50. Therefore, the water flow does not stop completely, and the necessary minimum water flow amount can be secured.
 また、ここに記載する実施形態のろ過助剤では、開気孔56の径d3,d4を一次粒子の相互間隔Sよりも小さくし、通水性をさらに向上させている(d3,d4<S)。通水速度を大きくするためには、ろ過助剤に多孔質の一次粒子50を用いることが有効である。また、水中の微細な固形物を粒子間孔径Sの孔で捕捉した時に、その近傍に小さな開気孔56が存在すると、水がバイパスする別の流路が形成されるため、トータルとしての通水速度が大きくなる。開気孔56の径d3,d4は、水銀圧入法を利用する孔径分布測定方法により測定することができる。水銀圧入法を利用して孔径分布を測定すると、孔径の異なる二つの孔径分布を持つデータが得られる。例えば図10に示すように、小さいほうの粒子内孔径分布C2が開気孔56の径d3,d4の分布に該当し、大きいほうの粒子間孔径分布C1が粒子間孔径Sの分布に該当する。ちなみに、開気孔56の径d3,d4の分布C2のピークPc2(最頻値)は、粒子間孔径Sの分布C1のピークPc1(最頻値)より低い。 Further, in the filter aid of the embodiment described here, the diameters d 3 and d 4 of the open pores 56 are made smaller than the mutual spacing S of the primary particles to further improve the water permeability (d 3 and d 4 <S). In order to increase the water flow rate, it is effective to use porous primary particles 50 as a filter aid. In addition, when a small solid substance in water is captured by a hole having an interparticle pore size S, if a small open pore 56 exists in the vicinity thereof, another flow path for bypassing water is formed. Increases speed. The diameters d 3 and d 4 of the open pores 56 can be measured by a pore size distribution measuring method using a mercury intrusion method. When the pore size distribution is measured using the mercury intrusion method, data having two pore size distributions having different pore sizes can be obtained. For example, as shown in FIG. 10, the smaller intra-particle pore size distribution C2 corresponds to the distribution of the diameters d 3 and d 4 of the open pores 56, and the larger inter-particle pore size distribution C 1 corresponds to the distribution of the inter-particle pore size S. To do. Incidentally, the peak P c2 (mode) of the distribution C2 of the diameters d 3 and d 4 of the open pores 56 is lower than the peak P c1 (mode) of the distribution C1 of the interparticle pore diameter S.
 (フッ素有機化合物)
 磁性無機物粒子(または磁性無機物粒子の凝集体)にフッ素有機化合物を担持させる方法として、フルオロカーボンとアルコシシシリル基を有する化合物を磁性無機物粒子の表面に反応させて得られる第一の方法と、フルオロカーボンを含有するポリマーを磁性体粒子に被覆する第二の方法とに分けられる。
(Fluorine organic compound)
As a method for supporting a fluorine organic compound on magnetic inorganic particles (or an aggregate of magnetic inorganic particles), a first method obtained by reacting a fluorocarbon and a compound having an alkoxysilyl group on the surface of the magnetic inorganic particles; And a second method of coating the magnetic particles with the polymer containing s.
 第一の方法では、いわゆるフッ素を含むシランカップリング剤を磁性無機物粒子の表面に反応させる。シランカップリング剤のアルコキシシリル基が磁性無機物粒子の表面の水酸基と反応して結合し、粒子表面にフルオロカーボンを担持させることができる。このような化合物として、例えば信越化学工業製のKY-100シリーズなどが挙げられる。これらを用いた表面処理方法としては、例えば乾式法や湿式法が挙げられる。乾式法では、例えばヘンシェルミキサーなどの混合機中に磁性無機物粒子を分散させ、混合しながら溶媒に薄めたシランカップリング剤を滴下または噴霧することにより表面に塗布し、室温以上100℃以下の温度範囲で反応を進めることにより作製することができる。また湿式法では、溶媒にあらかじめ前記カップリング剤を溶解させた後、処理すべき磁性無機物粒子を投入して水中で撹拌し、表面の水酸基とアルコキシシリル基を反応させる。この後、溶液中から磁性無機物粒子を取り出して、温風または真空で溶剤を除去した後、室温以上100℃以下の温度範囲で反応を進めることにより作製することができる。 In the first method, a so-called fluorine-containing silane coupling agent is reacted with the surface of the magnetic inorganic particles. The alkoxysilyl group of the silane coupling agent reacts with and binds to the hydroxyl group on the surface of the magnetic inorganic particle, and the fluorocarbon can be supported on the particle surface. Examples of such a compound include KY-100 series manufactured by Shin-Etsu Chemical Co., Ltd. Examples of the surface treatment method using these include a dry method and a wet method. In the dry method, for example, magnetic inorganic particles are dispersed in a mixer such as a Henschel mixer, and applied to the surface by dripping or spraying a silane coupling agent diluted in a solvent while mixing. It can produce by advancing reaction in the range. In the wet method, the coupling agent is dissolved in a solvent in advance, and then the magnetic inorganic particles to be treated are added and stirred in water to react the surface hydroxyl groups with the alkoxysilyl groups. Thereafter, the magnetic inorganic particles are taken out from the solution, the solvent is removed with hot air or vacuum, and then the reaction is allowed to proceed in a temperature range of room temperature to 100 ° C.
 第二の方法では、フルオロカーボンを含有する樹脂の溶液を磁性無機物粒子の表面に塗布することで得られる。例えば、フルオロカーボンを有する構造と、加熱硬化する構造が共存する共重合物または混合物を使用する。フルオロカーボンとしては、PTFE、PFA、PEEP、PCTFE、ETFE、ECTFE、PVDF,などがあげられる。また、加熱硬化する構造を有する樹脂としては、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂、エポキシ樹脂等が挙げられる。これらを用いた表面処理方法としては乾式法が挙げられる。乾式法では、シランカップリング剤による処理と同様に、例えばヘンシェルミキサーなどの混合機中に磁性無機物粒子を分散させ、混合しながらフルオロカーボンを含有する樹脂の溶液を噴霧する。その後、この樹脂の硬化温度で加熱硬化することにより、表面にフルオロカーボンを担持したろ過助剤を製造することができる。 The second method is obtained by applying a fluorocarbon-containing resin solution to the surface of the magnetic inorganic particles. For example, a copolymer or mixture in which a structure having a fluorocarbon and a structure to be heat-cured coexist is used. Examples of the fluorocarbon include PTFE, PFA, PEEP, PCTFE, ETFE, ECTFE, PVDF, and the like. Examples of the resin having a heat-curing structure include polyamide resin, polyimide resin, polyamideimide resin, acrylic resin, and epoxy resin. Examples of the surface treatment method using these include a dry method. In the dry method, similarly to the treatment with the silane coupling agent, the magnetic inorganic particles are dispersed in a mixer such as a Henschel mixer, and the resin solution containing the fluorocarbon is sprayed while mixing. Then, the filter aid which carry | supported fluorocarbon on the surface can be manufactured by heat-hardening with the hardening temperature of this resin.
 以下、添付の図面を参照して種々の実施形態に用いられる装置と方法をそれぞれ説明する。 Hereinafter, apparatuses and methods used in various embodiments will be described with reference to the accompanying drawings.
 (ろ過助剤の使用方法)
 ここに記載する実施形態のろ過助剤は、表面が疎水性であることから水中に分散させただけでも、水中の疎水性物質を吸着し、磁石により分離除去することができる。しかし、このようなろ過助剤が最も優れた性能を発揮するのは、膜ろ過法を利用するプロセスにおいて吸着→ろ過(固液分離)→脱離→吸着を繰り返すことができる再利用可能なろ過助剤として使用することである。その使用方法としては、プレコート法とボディーフィード法との2種類の膜ろ過法があるが、各方法に用いられる装置は構成が異なるところがあるので、以下それぞれについて述べる。
(How to use filter aid)
Since the filter aid of the embodiment described herein has a hydrophobic surface, it can adsorb a hydrophobic substance in water and separate and remove it with a magnet even if it is dispersed in water. However, the most effective performance of such filter aids is the reusable filtration that can repeat adsorption → filtration (solid-liquid separation) → desorption → adsorption in a process that uses membrane filtration. It is to be used as an auxiliary agent. There are two types of membrane filtration methods, a pre-coating method and a body feed method, as the method of use, but the apparatus used for each method is different in configuration, so each will be described below.
 (第1の実施形態の装置)
 先ず図12を参照して第1の実施形態に用いられる水処理装置を説明する。本実施形態の水処理装置1は、ボディーフィード法に用いられ、とくに水中に水不溶性の固形物の濃度が高い場合に有効に利用されるものである。
(Apparatus of the first embodiment)
First, the water treatment apparatus used in the first embodiment will be described with reference to FIG. The water treatment apparatus 1 of the present embodiment is used for a body feed method, and is effectively used particularly when the concentration of water-insoluble solids is high in water.
 水処理装置1は、混合原水槽2、固液分離装置3、磁気分離槽4、ろ過助剤供給装置5、及び図示しない原水供給源および排水貯留槽を有しており、これらの機器及び装置が複数の配管ラインL1~L8により互いに接続されている。配管ラインL1~L8には各種のポンプP1~P7、バルブV1~V2、図示しない計測器およびセンサが取り付けられている。これらの計測器およびセンサから図示しない制御器の入力部に検出信号が入り、当該制御器の出力部からポンプP1~P7およびバルブV1~V2にそれぞれ制御信号が出され、それらの動作が制御されるようになっている。このように水処理装置1の全体は図示しない制御器によって統括的にコントロールされるようになっている。 The water treatment apparatus 1 has a mixed raw water tank 2, a solid-liquid separation apparatus 3, a magnetic separation tank 4, a filter aid supply apparatus 5, and a raw water supply source and a drainage storage tank (not shown). Are connected to each other by a plurality of piping lines L1 to L8. Various pumps P1 to P7, valves V1 to V2, and measuring instruments and sensors (not shown) are attached to the piping lines L1 to L8. Detection signals are input from these measuring instruments and sensors to the input of a controller (not shown), and control signals are output from the output of the controller to the pumps P1 to P7 and valves V1 to V2, respectively, to control their operations. It has become so. As described above, the entire water treatment apparatus 1 is comprehensively controlled by a controller (not shown).
 混合原水槽2は、被処理水を撹拌する撹拌スクリュウ21を有し、図示しない原水供給源からラインL1を介して被処理水となる工場排水が導入されるようになっている。混合原水槽2は、原水を一時的に貯留して原水の流量を平準化する機能と、磁性粉を原水に添加して両者を混合させる混合機能とを兼ね備えている。すなわち、本実施形態の装置1では、ろ過助剤は、ろ過助剤供給装置5からラインL6を介して混合原水槽2内に直接供給されるようになっている。 The mixed raw water tank 2 has a stirring screw 21 for stirring the water to be treated, and factory wastewater to be treated water is introduced through a line L1 from a raw water supply source (not shown). The mixed raw water tank 2 has a function of temporarily storing raw water and leveling the flow rate of the raw water, and a mixing function of adding magnetic powder to the raw water and mixing them. That is, in the apparatus 1 of the present embodiment, the filter aid is directly supplied from the filter aid supply device 5 into the mixed raw water tank 2 via the line L6.
 固液分離装置3は、内部を上部スペース31と下部スペース32とに仕切るフィルタ33を内蔵している。固液分離装置の上部スペース31は、加圧ポンプP1を有する被処理水供給ラインL2を介して混合原水槽2に接続されている。また、上部スペース31の側部にはポンプP5を有する剥離水供給ライン(第1の処理水利用ライン)L31および剥離物排出ラインL4がそれぞれ接続されている。 The solid-liquid separator 3 has a built-in filter 33 that partitions the interior into an upper space 31 and a lower space 32. The upper space 31 of the solid-liquid separation device is connected to the mixed raw water tank 2 via a to-be-treated water supply line L2 having a pressure pump P1. Further, a separation water supply line (first treated water utilization line) L31 having a pump P5 and a separation material discharge line L4 are respectively connected to the side portions of the upper space 31.
 一方、固液分離装置の下部スペース32は、2つの三方弁V1,V2を有する処理水配水ラインL3に接続されている。第1の三方弁V1のところで被処理水配水ラインL3から上述の剥離水供給ライン(第1の処理水利用ライン)L31が分岐している。第2の三方弁V2のところで被処理水配水ラインL3から2つのラインL33とL34がそれぞれ分岐している。一方の分岐ライン(第2の処理水利用ライン)L33は、ポンプP4を有し、後述する分離槽4に接続されている。他方の分岐ライン(第3の処理水利用ライン)L34は、ポンプP5を有する処理水送水ラインL32に接続されている。 On the other hand, the lower space 32 of the solid-liquid separator is connected to a treated water distribution line L3 having two three-way valves V1, V2. At the first three-way valve V1, the separation water supply line (first treated water utilization line) L31 is branched from the treated water distribution line L3. At the second three-way valve V2, two lines L33 and L34 are branched from the treated water distribution line L3. One branch line (second treated water utilization line) L33 has a pump P4 and is connected to a separation tank 4 described later. The other branch line (third treated water utilization line) L34 is connected to a treated water supply line L32 having a pump P5.
 磁気分離槽4は、剥離物排出ラインL4を通って固液分離装置の上部スペース31から受け入れた洗浄排出水を撹拌するための撹拌スクリュウ41を有し、かつ固形物とろ過助剤とを磁気的に分離するための磁石42を内蔵している。磁石42は、図示しないシリンダ機構により昇降可能に支持された棒状の永久磁石からなり、下端が閉じた円筒状の保護管のなかに収納されている。シリンダ機構により磁石42を上昇させると、保護管から磁石42が出ていき、磁気分離槽4内の被処理水に印加される磁場がなくなる。一方、シリンダ機構により磁石42を下降させると、保護管のなかに磁石42が挿入され、槽内の被処理水に磁場が印加され、磁性のろ過助剤が保護管の外周に吸着するようになっている。なお、ここに記載する実施の形態では、磁化手段に棒状の永久磁石を用いるようにしたが、磁化手段に棒状の電磁石を用いてもよい。また、磁化手段として磁化した金属メッシュを用いることもできる。 The magnetic separation tank 4 has an agitation screw 41 for agitating the washing discharge water received from the upper space 31 of the solid-liquid separation device through the peeled material discharge line L4, and magnetically solids and the filter aid. A magnet 42 is provided for separation. The magnet 42 is composed of a rod-like permanent magnet supported by a cylinder mechanism (not shown) so as to be movable up and down, and is housed in a cylindrical protective tube whose lower end is closed. When the magnet 42 is raised by the cylinder mechanism, the magnet 42 comes out of the protective tube, and the magnetic field applied to the water to be treated in the magnetic separation tank 4 disappears. On the other hand, when the magnet 42 is lowered by the cylinder mechanism, the magnet 42 is inserted into the protective tube, a magnetic field is applied to the water to be treated in the tank, and the magnetic filter aid is adsorbed on the outer periphery of the protective tube. It has become. In the embodiment described here, a rod-shaped permanent magnet is used as the magnetizing means, but a rod-shaped electromagnet may be used as the magnetizing means. Also, a magnetized metal mesh can be used as the magnetizing means.
 磁気分離槽4の上部には、剥離物排出ラインL4の他に、処理水配水ラインL3から分岐する第2の処理水利用ラインL33が接続されており、固液分離装置のフィルタ33を透過した処理水の一部が磁気分離槽4に供給され、磁気分離槽4において処理水の一部が再利用されるようになっている。一方、磁気分離槽4の下部には濃縮水排出ラインL8およびろ過助剤返送ラインL5がそれぞれ接続されている。濃縮水排出ラインL8は、ポンプP9を有し、磁気分離槽4から図示しない貯留槽に水不溶物濃縮水を排出するための配管である。ろ過助剤返送ラインL5は、ポンプP6を有し、磁気分離槽4から分離されたろ過助剤をろ過助剤供給装置5に戻すための配管である。 In addition to the separated product discharge line L4, a second treated water use line L33 branched from the treated water distribution line L3 is connected to the upper part of the magnetic separation tank 4, and has passed through the filter 33 of the solid-liquid separator. A part of the treated water is supplied to the magnetic separation tank 4, and a part of the treated water is reused in the magnetic separation tank 4. On the other hand, a concentrated water discharge line L8 and a filter aid return line L5 are connected to the lower part of the magnetic separation tank 4, respectively. The concentrated water discharge line L8 has a pump P9 and is a pipe for discharging water-insoluble matter concentrated water from the magnetic separation tank 4 to a storage tank (not shown). The filter aid return line L5 has a pump P6 and is a pipe for returning the filter aid separated from the magnetic separation tank 4 to the filter aid supply device 5.
 ろ過助剤供給装置5は、図示しないろ過助剤供給源から新たに未使用のろ過助剤が補給されるとともに、磁気分離槽4で分離されたろ過助剤が上述のろ過助剤返送ラインL5を通って返送されるようになっている。また、ろ過助剤供給装置5は、ポンプP7を有するろ過助剤供給ラインL6を介して混合原水槽2に適量のろ過助剤を供給するようになっている。 The filter aid supply device 5 is replenished with a fresh filter aid from a filter aid supply source (not shown), and the filter aid separated in the magnetic separation tank 4 is supplied to the filter aid return line L5. Will be sent back through. Moreover, the filter aid supply apparatus 5 supplies an appropriate amount of filter aid to the mixed raw water tank 2 through a filter aid supply line L6 having a pump P7.
 (第1の実施形態の方法)
 次に、図13と図12を参照して上記の装置を用いる第1の水処理方法としてボディーフィード法を説明する。第1の実施形態の水処理方法は、被処理水中のろ過助剤濃度が高い場合に有効である。ここに記載する実施の形態では、除去対象となる水不溶性の固形物には無機化合物ばかりでなく有機化合物も含まれる。
(Method of the first embodiment)
Next, a body feed method will be described as a first water treatment method using the above apparatus with reference to FIGS. The water treatment method of the first embodiment is effective when the concentration of the filter aid in the water to be treated is high. In the embodiment described here, the water-insoluble solid matter to be removed includes not only inorganic compounds but also organic compounds.
 本実施形態では、先ず適量のろ過助剤と分散媒とを混合して懸濁液を調整する。この場合に使用する分散媒は、混合原水槽2内に存在する被処理水とする。すなわち、本実施形態では被処理水である原水中にろ過助剤を直接投入して原水から懸濁液を調整する(工程K1)。懸濁液中のろ過助剤の濃度は以下の操作によってフィルタ33上に堆積層が形成できれば特に問わないが、例えば10000~200000mg/L程度に調整する。 In this embodiment, first, an appropriate amount of a filter aid and a dispersion medium are mixed to prepare a suspension. The dispersion medium used in this case is treated water existing in the mixed raw water tank 2. That is, in this embodiment, the filter aid is directly added to the raw water that is the treated water to adjust the suspension from the raw water (step K1). The concentration of the filter aid in the suspension is not particularly limited as long as a deposited layer can be formed on the filter 33 by the following operation, but is adjusted to, for example, about 10,000 to 200,000 mg / L.
 次いで、懸濁液(被処理水)をフィルタ33に通水し、懸濁液中のろ過助剤をろ別し、フィルタ33上にろ過助剤が堆積した堆積層を形成する(工程K2)。なお、フィルタ33に対する被処理水の供給は加圧下で行われる。このとき、堆積層の形成と被処理水のろ過処理とは同時並行して行われる。なお、本実施形態の方法では、フィルタ33のろ面は水平であるほうが好ましい。 Next, the suspension (treated water) is passed through the filter 33, the filter aid in the suspension is filtered, and a deposited layer in which the filter aid is deposited is formed on the filter 33 (step K2). . Note that the water to be treated is supplied to the filter 33 under pressure. At this time, the formation of the deposited layer and the filtration treatment of the water to be treated are performed in parallel. In the method of the present embodiment, the filter 33 is preferably horizontal.
 また、堆積層は、外力の作用によって形成及び保持されるので、上述したフィルタリングは、例えばフィルタ33を所定の容器の容器口を塞ぐようにして配置する。このように配置したフィルタ33上にろ過助剤が残留して堆積、配列及び積層されるようにする。この場合、上記容器の壁面からの外力及び上方に位置するろ過助剤の重さに起因した下方に向けての外力(重力)によって、堆積層は形成及び保持されることになる。 Further, since the deposited layer is formed and held by the action of an external force, the above-described filtering is performed, for example, by placing the filter 33 so as to close the container opening of a predetermined container. The filter aid remains on the filter 33 arranged in this way so that it is deposited, arranged and laminated. In this case, the deposited layer is formed and held by the external force from the wall surface of the container and the downward external force (gravity) due to the weight of the filter aid positioned above.
 次いで、図示しないノズルから剥離水をフィルタ33上の堆積層に向けて噴射し、水の噴射力により堆積層をフィルタ33から剥離させ、剥離物にさらに水噴射して剥離物をばらばらの状態に分解する(工程K3)。この剥離物中のろ過助剤は、金属粒子のような固形物を吸着している。剥離物の分解は、固液分離装置3の上部スペース31内で行なわれる。しかし、固液分離装置3以外の他の容器内において剥離物の分解を行なうようにしてもよい。他の容器内で剥離物の分解を行なう場合は、ノズルからの水噴射により剥離物をばらばらの粒子の状態まで分解する。剥離物を粒子の状態まで分解すると、懸濁液の状態になり、磁気分離槽4への輸送が容易になるばかりでなく、磁性のろ過助剤を磁気分離しやすくなる。なお、堆積層の剥離には水を使用するが、界面活性剤や有機溶媒を用いて洗浄することも可能である。 Next, peeling water is sprayed from a nozzle (not shown) toward the deposition layer on the filter 33, the deposition layer is peeled off from the filter 33 by the spray force of water, and water is further sprayed onto the peeling material to separate the peeling material. Decompose (step K3). The filter aid in the exfoliated material adsorbs solid materials such as metal particles. The peeled material is decomposed in the upper space 31 of the solid-liquid separator 3. However, the peeled material may be decomposed in a container other than the solid-liquid separator 3. In the case where the peeled material is decomposed in another container, the peeled material is decomposed into discrete particles by jetting water from a nozzle. When the exfoliated material is decomposed to a particle state, it becomes a suspension state, which facilitates transportation to the magnetic separation tank 4 and facilitates magnetic separation of the magnetic filter aid. In addition, although water is used for peeling of the deposited layer, it is possible to clean using a surfactant or an organic solvent.
 次いで、堆積層剥離物を上部スペース31から排出ラインL4を通って磁気分離槽4に供給する(工程K4)。磁気分離槽4内において撹拌スクリュウ41により堆積層剥離物を撹拌し、該剥離物を粒子レベルまでさらに分解し、ろ過助剤および固形物を分散させる。この撹拌を十分に行なうと、懸濁液中においてろ過助剤と固形物が均一に分散され、ろ過助剤と固形物との分離が容易になる。 Next, the deposited layer separation is supplied from the upper space 31 to the magnetic separation tank 4 through the discharge line L4 (step K4). In the magnetic separation tank 4, the deposit layer peeled material is stirred by the stirring screw 41, the peeled material is further decomposed to the particle level, and the filter aid and the solid matter are dispersed. When this stirring is sufficiently performed, the filter aid and the solid matter are uniformly dispersed in the suspension, and the filter aid and the solid matter are easily separated.
 次いで、シリンダ機構により磁石42を下降させ、磁気分離槽4の保護管のなかに磁石42を装入し、撹拌中の懸濁液に対して磁場を印加する。磁石42の磁力により磁性のろ過助剤が保護管に吸着するため、懸濁液からろ過助剤が磁気的に分離される。ろ過助剤を磁石保護管に吸着・固定した状態で、ポンプP7を起動し、固形物濃縮水を磁気分離槽4から排出する(工程K5)。排出される固形物濃縮水は、実質的にろ過助剤を含まず、多量の水不溶性の固形物を含んでいる。 Next, the magnet 42 is lowered by the cylinder mechanism, the magnet 42 is inserted into the protective tube of the magnetic separation tank 4, and a magnetic field is applied to the suspension being stirred. Since the magnetic filter aid is adsorbed on the protective tube by the magnetic force of the magnet 42, the filter aid is magnetically separated from the suspension. With the filter aid adsorbed and fixed to the magnet protective tube, the pump P7 is started and the solid concentrate is discharged from the magnetic separation tank 4 (step K5). The discharged solid concentrate is substantially free of filter aid and contains a large amount of water-insoluble solid.
 固形物濃縮水の排出後、シリンダ機構により磁石42を上昇させ、保護管から磁石42を引き抜く。これにより、磁性のろ過助剤に印加していた磁場が消失し、磁石保護管からろ過助剤が脱落する。 ¡After discharging the solid concentrated water, the magnet 42 is raised by the cylinder mechanism, and the magnet 42 is pulled out from the protective tube. Thereby, the magnetic field applied to the magnetic filter aid disappears, and the filter aid falls off from the magnet protective tube.
 次いで、バルブV2を開け、ポンプP4を起動し、固液分離装置3から処理水を磁気分離槽4内に導入する。磁気分離槽4内において導入水とろ過助剤とが混ざり合い、この混合物をスクリュウ41により撹拌する。これによりろ過助剤の懸濁液が作製される。懸濁液は、水不溶性の固形物を含まず、実質的にろ過助剤のみを含むものである。ポンプP4を停止し、バルブV2を閉じた後に、ポンプP5を起動し、磁気分離槽4からろ過助剤供給装置5にろ過助剤の懸濁液を送り、これにより分離したろ過助剤がろ過助剤供給装置5に戻される(工程K6)。 Next, the valve V2 is opened, the pump P4 is started, and treated water is introduced into the magnetic separation tank 4 from the solid-liquid separation device 3. The introduced water and the filter aid are mixed in the magnetic separation tank 4, and this mixture is stirred by the screw 41. Thereby, a suspension of the filter aid is produced. The suspension does not contain water-insoluble solids but substantially contains only a filter aid. After the pump P4 is stopped and the valve V2 is closed, the pump P5 is started and the suspension of the filter aid is sent from the magnetic separation tank 4 to the filter aid supply device 5 so that the separated filter aid is filtered. It is returned to the auxiliary agent supply device 5 (step K6).
 ろ過助剤は、ろ過助剤供給装置5内において一時的に貯留された後に、ポンプP6の駆動によりろ過助剤供給装置5から混合原水槽2へ送られ、混合原水槽2において再利用される(工程K6→工程K1)。 After the filter aid is temporarily stored in the filter aid supply device 5, it is sent from the filter aid supply device 5 to the mixed raw water tank 2 by driving the pump P <b> 6 and is reused in the mixed raw water tank 2. (Step K6 → Step K1).
 なお、本実施形態の水処理方法では、堆積層を構成するろ過助剤は、被処理水を利用して調整した懸濁液中に含まれているので、固形物を含む被処理水(懸濁液)とともに、常にろ過助剤が供給されることになる。 In the water treatment method of the present embodiment, the filter aid constituting the deposition layer is contained in the suspension adjusted using the water to be treated. The filter aid is always supplied together with the turbid liquid.
 したがって、特に被処理水(懸濁液)中の水不溶性固形物の量が多い場合においても、水不溶性固形物の供給とろ過助剤の供給とは同時に行われることになるので、過剰に吸着した固形物が、ろ過助剤の空隙(凝集体内粒子の相互間隔S)を塞いでしまうことがない。このため、長時間にわたり所望のろ過速度を維持することができる。 Therefore, even when the amount of water-insoluble solids in the water to be treated (suspension) is large, the supply of water-insoluble solids and the supply of filter aid are performed at the same time. Thus, the solid matter does not block the voids (interval S between the aggregated particles) of the filter aid. For this reason, a desired filtration rate can be maintained over a long time.
 このようにしてろ過助剤を、固形物の吸着→ろ過膜による固液分離→ろ過助剤からの固形物の脱離→磁気分離→回収→固形物の吸着に再利用のサイクルにおいて繰り返し使用することができる。 In this way, the filter aid is repeatedly used in the cycle of solids adsorption → solid-liquid separation by filtration membrane → desorption of solid matter from filter aid → magnetic separation → recovery → solids adsorption. be able to.
 (第2の実施形態の装置)
 次に、図14を参照して第2の実施形態に用いられる水処理装置を説明する。なお、本実施形態が上記の実施形態と重複する部分の説明は省略する。
(Device of Second Embodiment)
Next, a water treatment device used in the second embodiment will be described with reference to FIG. In addition, description of the part which this embodiment overlaps with said embodiment is abbreviate | omitted.
 本実施形態の水処理装置1Aは、プレコート法に用いられる装置であり、特に被処理水中の水不溶物の濃度が低い場合に有効に用いられる。水処理装置1Aは、凝集析出槽2A、固液分離装置3、分離槽4、ろ過助剤タンク5、混合槽6、凝集剤添加装置7、アルカリ添加装置8および図示しない原水供給源および濃縮水貯留槽を有しており、これらの機器及び装置が複数の配管ラインL1~L10により互いに接続されている。配管ラインL1~L10には各種のポンプP1~P9、バルブV1~V3、図示しない計測器およびセンサが取り付けられている。これらの計測器およびセンサから図示しない制御器の入力部に検出信号が入り、当該制御器の出力部からポンプP1~P9およびバルブV1~V3にそれぞれ制御信号が出され、それらの動作が制御されるようになっている。このように水処理装置1Aの全体は図示しない制御器によって統括的にコントロールされるようになっている。 The water treatment apparatus 1A of the present embodiment is an apparatus used for the precoat method, and is particularly effective when the concentration of water insoluble matter in the water to be treated is low. A water treatment apparatus 1A includes a coagulation precipitation tank 2A, a solid-liquid separation apparatus 3, a separation tank 4, a filter aid tank 5, a mixing tank 6, a coagulant addition apparatus 7, an alkali addition apparatus 8, and a raw water supply source and concentrated water (not shown). A storage tank is provided, and these devices and apparatuses are connected to each other by a plurality of piping lines L1 to L10. Various pumps P1 to P9, valves V1 to V3, measuring instruments and sensors (not shown) are attached to the piping lines L1 to L10. A detection signal is input from these measuring instruments and sensors to an input section of a controller (not shown), and control signals are output from the output section of the controller to pumps P1 to P9 and valves V1 to V3, respectively, and their operations are controlled. It has become so. In this way, the entire water treatment apparatus 1A is comprehensively controlled by a controller (not shown).
 凝集析出槽2Aは、被処理水を撹拌する撹拌スクリュウ21を有し、図示しない原水供給源からラインL1を介して被処理水となる工場排水が導入され、被処理水を一時的に貯留するものである。凝集析出槽2Aの上部には凝集剤添加装置7およびアルカリ剤添加装置8がそれぞれ設置されている。凝集剤添加装置7からラインL9を通って凝集析出槽2A内の被処理水に適量の凝集剤が添加され、被処理水中に含まれる微細な固形物粒子を凝集させるようになっている。また、アルカリ添加装置8からラインL10を通って凝集析出槽2A内の被処理水に適量のアルカリ剤が添加され、被処理水中に含まれる金属イオンまたは非金属イオンを化合物塩の粒子として析出させるようになっている。 The coagulation / precipitation tank 2A has a stirring screw 21 for stirring the water to be treated, and factory wastewater to be treated water is introduced through a line L1 from a raw water supply source (not shown) to temporarily store the water to be treated. Is. A coagulant adding device 7 and an alkali agent adding device 8 are installed above the coagulation precipitation tank 2A. An appropriate amount of the flocculant is added from the flocculant addition device 7 through the line L9 to the water to be treated in the coagulation / precipitation tank 2A, thereby aggregating fine solid particles contained in the water to be treated. Further, an appropriate amount of an alkali agent is added to the water to be treated in the coagulation precipitation tank 2A from the alkali addition device 8 through the line L10, and metal ions or non-metal ions contained in the water to be treated are precipitated as compound salt particles. It is like that.
 固液分離装置3は、内部を上部スペース31と下部スペース32とに仕切るフィルタ33を内蔵している。固液分離装置の上部スペース31は、加圧ポンプP1を有する被処理水供給ラインL2を介して凝集析出槽2に接続されている。また、上部スペース31の側部にはポンプP5を有する剥離水供給ラインL31および剥離物排出ラインL4がそれぞれ接続されている。 The solid-liquid separator 3 has a built-in filter 33 that partitions the interior into an upper space 31 and a lower space 32. The upper space 31 of the solid-liquid separator is connected to the coagulation / precipitation tank 2 via a to-be-treated water supply line L2 having a pressure pump P1. Further, a peeling water supply line L31 having a pump P5 and a peeled material discharge line L4 are connected to the side portions of the upper space 31, respectively.
 一方、固液分離装置の排出スペース32は、3つの三方弁V1,V2,V3を有する処理水配水ラインL3に接続されている。第1の三方弁V1のところで被処理水配水ラインL3から上述の剥離水供給ラインL31が分岐している。第2の三方弁V2のところで被処理水配水ラインL3からポンプP2を有する処理水ラインL32が分岐している。第3の三方弁V3のところで被処理水配水ラインL3から2つのラインL33とL34がそれぞれ分岐している。一方の分岐ラインL33は、ポンプP4を有し、磁気分離槽4に接続されている。他方の分岐ラインL34は、ポンプP5を有し、後述する混合槽6に接続されている。 On the other hand, the discharge space 32 of the solid-liquid separator is connected to a treated water distribution line L3 having three three-way valves V1, V2, and V3. At the first three-way valve V1, the above-described separation water supply line L31 branches from the treated water distribution line L3. A treated water line L32 having a pump P2 branches from the treated water distribution line L3 at the second three-way valve V2. At the third three-way valve V3, two lines L33 and L34 are branched from the treated water distribution line L3. One branch line L33 has a pump P4 and is connected to the magnetic separation tank 4. The other branch line L34 has a pump P5 and is connected to a mixing tank 6 described later.
 磁気分離槽4は、剥離物排出ラインL4を通って固液分離装置の上部スペース31から受け入れた洗浄排出水を撹拌するための撹拌スクリュウ41を有し、かつ析出銅化合物粒子(水酸化銅の粒子)とろ過助剤とに分離するための永久磁石42を内蔵している。 The magnetic separation tank 4 has a stirring screw 41 for stirring the washed discharged water received from the upper space 31 of the solid-liquid separator through the peeled material discharge line L4, and the precipitated copper compound particles (copper hydroxide particles). A permanent magnet 42 for separating particles) and a filter aid is incorporated.
 磁気分離槽4の上部には、剥離物排出ラインL4の他に、処理水配水ラインL3から分岐する分岐ラインL33が接続されており、固液分離装置のフィルタ33を透過した処理水の一部が磁気分離槽4に供給され、磁気分離槽4において処理水の一部が再利用されるようになっている。一方、磁気分離槽4の下部には濃縮水排出ラインL8およびろ過助剤返送ラインL5がそれぞれ接続されている。濃縮水排出ラインL8は、ポンプP9を有し、磁気分離槽4から図示しない貯留槽に水不溶物濃縮水を排出するための配管である。ろ過助剤返送ラインL5は、ポンプP6を有し、磁気分離槽4から分離されたろ過助剤をろ過助剤タンク5に戻すための配管である。 A branch line L33 that branches from the treated water distribution line L3 is connected to the upper part of the magnetic separation tank 4 in addition to the separated matter discharge line L4, and a part of the treated water that has passed through the filter 33 of the solid-liquid separator. Is supplied to the magnetic separation tank 4, and a part of the treated water is reused in the magnetic separation tank 4. On the other hand, a concentrated water discharge line L8 and a filter aid return line L5 are connected to the lower part of the magnetic separation tank 4, respectively. The concentrated water discharge line L8 has a pump P9 and is a pipe for discharging water-insoluble concentrated water from the magnetic separation tank 4 to a storage tank (not shown). The filter aid return line L5 has a pump P6 and is a pipe for returning the filter aid separated from the magnetic separation tank 4 to the filter aid tank 5.
 ろ過助剤タンク5は、図示しないろ過助剤供給源から新たにろ過助剤が補給されるとともに、磁気分離槽4で分離されたろ過助剤が上述のろ過助剤返送ラインL5を通って返送されるようになっている。また、ろ過助剤タンク5は、ポンプP7を有するろ過助剤供給ラインL6を介して混合槽6に適量のろ過助剤を供給するようになっている。 The filter aid tank 5 is newly replenished with a filter aid supply source (not shown), and the filter aid separated in the magnetic separation tank 4 is returned through the above-described filter aid return line L5. It has come to be. Moreover, the filter aid tank 5 supplies an appropriate amount of filter aid to the mixing tank 6 through a filter aid supply line L6 having a pump P7.
 混合槽6は、水を撹拌するための撹拌スクリュウ61を有し、ろ過助剤タンク5から供給されたろ過助剤に分散媒を添加して撹拌混合し、ろ過助剤を含む混合物(懸濁液)を作製するようになっている。分散媒として水を使用するのが好ましい。混合槽6の上部には、処理水配水ラインL3から分岐する分岐ラインL34が接続され、固液分離装置のフィルタ33を透過した処理水の一部が混合槽6に供給され、混合槽6において処理水の一部が分散媒として再利用されるようになっている。 The mixing tank 6 has a stirring screw 61 for stirring water, and a dispersion medium is added to the filter aid supplied from the filter aid tank 5 and the mixture is stirred and mixed. Liquid). It is preferable to use water as the dispersion medium. A branch line L34 branched from the treated water distribution line L3 is connected to the upper part of the mixing tank 6, and a part of the treated water that has passed through the filter 33 of the solid-liquid separator is supplied to the mixing tank 6. A part of the treated water is reused as a dispersion medium.
 また、混合槽6の適所にはポンプP8を有する懸濁液供給ラインL7が連通している。懸濁液供給ラインL7は、被処理水供給ラインL2の適所にて接続・合流している。懸濁液供給ラインL7からのろ過助剤を含む混合物(懸濁液)が被処理水供給ラインL2を流れる被処理水に添加されるようになっている。なお、懸濁液供給ラインL7には図示しない流量制御弁が取り付けられ、懸濁液の流量が制御器により調整されるようになっている。 In addition, a suspension supply line L7 having a pump P8 communicates with an appropriate place of the mixing tank 6. The suspension supply line L7 is connected and merged at an appropriate position of the treated water supply line L2. The mixture (suspension) containing the filter aid from the suspension supply line L7 is added to the water to be treated flowing through the water supply line L2. The suspension supply line L7 is provided with a flow rate control valve (not shown) so that the flow rate of the suspension is adjusted by the controller.
 (第2の実施形態の水処理方法)
 次に、図15と図14を参照して上記の装置を用いる第2実施形態の水処理方法を説明する。
(Water treatment method of the second embodiment)
Next, a water treatment method according to a second embodiment using the above apparatus will be described with reference to FIGS. 15 and 14.
 プレコート法は、特に被処理水中に含まれる水不溶性の固形物の濃度が低い場合に有効である。ここに記載する実施の形態では、除去対象となる水不溶性の固形物には無機化合物ばかりでなく有機化合物も含まれる。水不溶性の固形物が金属水酸化物のような難脱水性の粒子であったり、粒子以外の難脱水成分、例えば油脂が含まれていたとしても、本実施形態の特定構造のろ過助剤により容易に分離除去することができる。 The precoat method is particularly effective when the concentration of water-insoluble solids contained in the water to be treated is low. In the embodiment described here, the water-insoluble solid matter to be removed includes not only inorganic compounds but also organic compounds. Even if the water-insoluble solid is a hardly dehydrating particle such as a metal hydroxide, or a non-particle dehydrating component other than the particle, such as oil or fat, the filter aid of the specific structure of the present embodiment It can be easily separated and removed.
 プレコート法においては、先ず、混合槽6内でろ過助剤と分散媒とを混合し、ろ過助剤を含む懸濁液を調整する(工程S1)。分散媒には主に水を用いるが、水以外にアルコール水溶液のような他の分散媒を用いることができる。懸濁液中のろ過助剤濃度は以下の操作によってプレコート層、すなわちろ過助剤の堆積層を形成できればよいが、例えば10000~200000mg/L程度に調整する。 In the precoat method, first, the filter aid and the dispersion medium are mixed in the mixing tank 6 to prepare a suspension containing the filter aid (step S1). Although water is mainly used as the dispersion medium, other dispersion media such as an aqueous alcohol solution can be used in addition to water. The concentration of the filter aid in the suspension may be adjusted to about 10,000 to 200,000 mg / L, for example, as long as a precoat layer, that is, a deposited layer of filter aid, can be formed by the following operation.
 次いで、懸濁液を固液分離装置3のフィルタ33に通水し、懸濁液中のろ過助剤をろ別して、フィルタ33上にろ過助剤のプレコート層を形成する(工程S2)。なお、加圧ポンプP1によるフィルタ33への懸濁液の通水は、所定の圧力で行われる。フィルタ33としてろ布やろ過膜、金属メッシュ、多孔質セラミックまたは多孔質ポリマーを用いることができる。この中でもろ布が好ましい。例えばポリプロピレン、ナイロン、ポリエステルなどの繊維を、二重織、綾織、平織、朱子織などで編んだ布がフィルタ33に用いられる。 Next, the suspension is passed through the filter 33 of the solid-liquid separator 3, the filter aid in the suspension is filtered, and a precoat layer of the filter aid is formed on the filter 33 (step S2). In addition, the water flow of the suspension to the filter 33 by the pressurization pump P1 is performed at a predetermined pressure. As the filter 33, a filter cloth, a filtration membrane, a metal mesh, a porous ceramic, or a porous polymer can be used. Among these, a filter cloth is preferable. For example, a cloth knitted with a double woven fabric, a twill woven fabric, a plain woven fabric, a satin woven fabric, or the like is used for the filter 33.
 フィルタ33のろ面は、重力が作用する方向に直交する向き(すなわち水平)にすることが好ましい。本実施形態のろ過助剤は、ろ面上に保持されにくい。このため、フィルタ33のろ面が水平でないと、ろ面上でろ過助剤が滑り、一様な厚さの堆積層が形成されにくい場合がある。 The filter surface of the filter 33 is preferably in a direction (that is, horizontal) orthogonal to the direction in which gravity acts. The filter aid of this embodiment is difficult to be held on the filter surface. For this reason, if the filter surface of the filter 33 is not horizontal, the filter aid slips on the filter surface, and a deposited layer having a uniform thickness may be difficult to form.
 フィルタ33を固液分離装置3の入口を塞ぐように取り付け、固液分離装置の3内における懸濁液の圧力の低下ができるだけ少なくなるようにして、フィルタ33による懸濁液のフィルタリングを行なうようにする。具体的には、固液分離装置3の容器壁とろ過膜33とで周囲を規定される上部スペース31を小さくし、この小容積の狭いスペース31に加圧した懸濁液を押し込むことにより、フィルタ33によるろ過助剤と液体との分離が促進される。このとき加圧ポンプP1の駆動による圧力と重力との相乗作用により、懸濁液の液体成分はフィルタ33を速やかに透過し、懸濁液の固体成分(ろ過助剤)はフィルタ33に捕捉され、その結果、フィルタ33上にプレコート層が形成される。なお、プレコート層の厚さは、処理する液の濃度で変わってくるが、概ね0.1~10mm程度である。 The filter 33 is attached so as to close the inlet of the solid-liquid separation device 3, and the suspension 33 is filtered by the filter 33 so that the pressure drop of the suspension in the solid-liquid separation device 3 is minimized. To. Specifically, by reducing the upper space 31 defined by the container wall of the solid-liquid separator 3 and the filtration membrane 33 and pushing the pressurized suspension into the small space 31 with a small volume, Separation of the filter aid and the liquid by the filter 33 is promoted. At this time, the liquid component of the suspension quickly permeates through the filter 33 and the solid component of the suspension (filter aid) is captured by the filter 33 due to the synergistic action of the pressure and gravity generated by driving the pressurizing pump P1. As a result, a precoat layer is formed on the filter 33. The thickness of the precoat layer varies depending on the concentration of the liquid to be treated, but is about 0.1 to 10 mm.
 図示しない原水供給源から被処理水を凝集析出槽2A内に導入する(工程S3)。被処理水となる工場排水中には銅イオンが含まれている。アルカリ添加装置8から凝集析出槽2A内の被処理水に所定量の水酸化ナトリウム(NaOH)を添加する(工程S4)。凝集析出槽2A内の被処理水をスクリュウ撹拌して水酸化ナトリウムを溶解させ、被処理水をアルカリ性とし、被処理水中から水酸化銅の微粒子を析出させる(工程S5)。 The water to be treated is introduced into the coagulation / deposition tank 2A from a raw water supply source (not shown) (step S3). Copper ions are contained in the factory effluent to be treated. A predetermined amount of sodium hydroxide (NaOH) is added to the water to be treated in the coagulation precipitation tank 2A from the alkali addition device 8 (step S4). The water to be treated in the coagulation precipitation tank 2A is stirred with a screw to dissolve sodium hydroxide, the water to be treated is made alkaline, and copper hydroxide fine particles are precipitated from the water to be treated (step S5).
 次いで、ポンプP1の駆動により凝集析出槽2AからラインL2を介して固液分離装置3に被処理水を圧送し、フィルタ33上のプレコート層により被処理水をろ過し、被処理水から水酸化銅粒子を吸着・捕捉する(工程S6)。フィルタ33上のプレコート層への被処理水の通水は主に加圧下で行われる。このとき、水酸化銅の粒子は、プレコート層中のろ過助剤の表面に吸着することによって被処理水から分離除去される。このとき、ろ過助剤を後述するように特定の構成とすることにより、水酸化銅の粒子を効率よく捕捉できるとともに、十分な通水速度を得ることができる。 Next, the water to be treated is pumped from the coagulation / precipitation tank 2A to the solid-liquid separation device 3 through the line L2 by driving the pump P1, and the water to be treated is filtered by the precoat layer on the filter 33, and hydroxylated from the water to be treated. Copper particles are adsorbed and captured (step S6). The water to be treated is passed through the precoat layer on the filter 33 mainly under pressure. At this time, the copper hydroxide particles are separated and removed from the water to be treated by adsorbing on the surface of the filter aid in the precoat layer. At this time, by setting the filter aid to a specific configuration as described later, copper hydroxide particles can be captured efficiently and a sufficient water flow rate can be obtained.
 プレコート層による被処理水のろ過処理が終了すると、バルブV1を切り替え、ポンプP3を起動し、ポンプP3の駆動によりラインL3→L31を通って固液分離装置の上部スペース31に処理水の一部又は全部を戻す。この戻される処理水は、プレコート層をフィルタ33から剥離させる剥離水として利用される。処理水(剥離水)を上部スペース31の側方からプレコート層に吹き付け、フィルタ33からプレコート層を剥離し、剥離物にさらに処理水を吹き付けて剥離物をばらばらに分解し、ろ過助剤および水酸化銅粒子を水中に分散させる(工程S7)。 When filtration of the water to be treated by the precoat layer is completed, the valve V1 is switched, the pump P3 is started, and a part of the treated water enters the upper space 31 of the solid-liquid separator through the line L3 → L31 by driving the pump P3. Or return everything. The returned treated water is used as peeling water for peeling the precoat layer from the filter 33. Treated water (peeling water) is sprayed onto the precoat layer from the side of the upper space 31, the precoat layer is peeled off from the filter 33, and further treated water is sprayed on the peeled material to decompose the peeled material into pieces, and a filter aid and water Copper oxide particles are dispersed in water (step S7).
 このプレコート層の剥離・分解は固液分離装置3内で行ってもよいし、他の容器内でおこなってもよい。他の容器内でプレコート層剥離物の分解を行う場合は、ノズルからの水噴射によりプレコート層剥離物を粒子の状態になるまでばらばらに分解する。このように剥離物を懸濁液の状態にすると、他の容器から磁気分離槽4へ移送しやすくなる。なお、剥離水となる処理水が不足する場合は、ラインL31に他所から工業用水や水道水を補給するようにしてもよい。プレコート層の剥離・分解には水を使用することが好ましいが、界面活性剤や有機溶媒を用いてプレコート層を剥離・分解することも可能である。 The separation / decomposition of the precoat layer may be performed in the solid-liquid separator 3 or in another container. When disassembling the precoat layer exfoliated material in another container, the precoat layer exfoliated material is disintegrated by water injection from a nozzle until it becomes particles. When the peeled material is in a suspension state in this way, it becomes easy to transfer it from another container to the magnetic separation tank 4. In addition, when the treatment water used as peeling water is insufficient, the industrial water or tap water may be replenished to the line L31 from another place. Although water is preferably used for peeling / decomposing the precoat layer, it is also possible to peel / decompose the precoat layer using a surfactant or an organic solvent.
 次いで、プレコート層剥離物を上部スペース31から排出ラインL4を通って磁気分離槽4に供給する(工程S8)。磁気分離槽4内において撹拌スクリュウ41によりプレコート層剥離物を撹拌し、該剥離物を粒子レベルまでさらに分解し、ろ過助剤および銅化合物粒子を分散させる。この撹拌を十分に行なうと、懸濁液中においてろ過助剤と銅化合物粒子が均一に分散され、ろ過助剤と銅化合物粒子との分離が容易になる。 Next, the precoat layer peeled material is supplied from the upper space 31 to the magnetic separation tank 4 through the discharge line L4 (step S8). In the magnetic separation tank 4, the peeled precoat layer is stirred by the stirring screw 41, the peeled material is further decomposed to the particle level, and the filter aid and the copper compound particles are dispersed. When this stirring is sufficiently performed, the filter aid and the copper compound particles are uniformly dispersed in the suspension, and the filter aid and the copper compound particles are easily separated.
 次いで、シリンダ機構により磁石42を下降させ、磁気分離槽4の保護管のなかに磁石42を装入し、撹拌中の懸濁液に対して磁場を印加する。これにより磁性のろ過助剤が磁石保護管に吸着し、懸濁液からろ過助剤が磁気的に分離される。ろ過助剤を磁石保護管に吸着・固定した状態で、ポンプP9を起動し、銅濃縮水を磁気分離槽4から排出する(工程S9)。排出される銅濃縮水は、実質的にろ過助剤を含まず、銅化合物粒子(主成分が水酸化銅)を高濃度に含んでいる。 Next, the magnet 42 is lowered by the cylinder mechanism, the magnet 42 is inserted into the protective tube of the magnetic separation tank 4, and a magnetic field is applied to the suspension being stirred. As a result, the magnetic filter aid is adsorbed on the magnet protective tube, and the filter aid is magnetically separated from the suspension. With the filter aid adsorbed and fixed to the magnet protective tube, the pump P9 is activated and the copper concentrate is discharged from the magnetic separation tank 4 (step S9). The copper concentrate discharged | emitted contains substantially no filter aid, and contains the copper compound particle | grains (a main component is copper hydroxide) in high concentration.
 銅濃縮水の排出後、シリンダ機構により磁石42を上昇させ、磁気分離槽4の保護管から磁石42を退出させ、磁性のろ過助剤に印加していた磁場を消失させ、保護管からろ過助剤を脱落させる。 After discharging the copper concentrate, the magnet 42 is raised by the cylinder mechanism, the magnet 42 is withdrawn from the protective tube of the magnetic separation tank 4, the magnetic field applied to the magnetic filter aid is lost, and the filter aid is removed from the protective tube. Drop off the agent.
 次いで、バルブV3を開け、ポンプP4を起動し、固液分離装置3から処理水を磁気分離槽4内に導入する。磁気分離槽4内において導入水とろ過助剤とが混ざり合い、この混合物をスクリュウ41により撹拌する。これによりろ過助剤の懸濁液が作製される。懸濁液は、水不溶性の固形物を含まず、実質的にろ過助剤のみを含むものである。ポンプP4を停止し、バルブV3を閉じた後に、ポンプP6を起動し、磁気分離槽4からろ過助剤タンク5にろ過助剤の懸濁液を送り、これにより分離したろ過助剤がろ過助剤タンク5に戻される(工程S10)。 Next, the valve V3 is opened, the pump P4 is started, and the treated water is introduced from the solid-liquid separator 3 into the magnetic separation tank 4. The introduced water and the filter aid are mixed in the magnetic separation tank 4, and this mixture is stirred by the screw 41. Thereby, a suspension of the filter aid is produced. The suspension does not contain water-insoluble solids but substantially contains only a filter aid. After the pump P4 is stopped and the valve V3 is closed, the pump P6 is started and the suspension of the filter aid is sent from the magnetic separation tank 4 to the filter aid tank 5 so that the separated filter aid is filtered. It is returned to the agent tank 5 (step S10).
 ろ過助剤は、ろ過助剤タンク5内において一時的に貯留された後に、ポンプP7の駆動によりろ過助剤タンク5から混合槽6へ送られ、混合槽6において再利用される(工程S10→工程S1)。 After the filter aid is temporarily stored in the filter aid tank 5, it is sent from the filter aid tank 5 to the mixing tank 6 by driving the pump P7 and reused in the mixing tank 6 (step S10 → Step S1).
 その後に、分離回収したろ過助剤をろ過助剤供給装置5からラインL6を介して固液分離装置3の上部スペース31に供給し、プレコート層の形成に回収ろ過助剤を再使用する。このようにしてろ過助剤を、プレコート層の形成→ろ過・吸着→脱離→磁気分離→プレコート層の形成からなるサイクルプロセスにおいて繰り返し使用することができる。 Thereafter, the separated and recovered filter aid is supplied from the filter aid supply device 5 to the upper space 31 of the solid-liquid separation device 3 via the line L6, and the recovered filter aid is reused to form the precoat layer. In this way, the filter aid can be used repeatedly in a cycle process consisting of precoat layer formation → filtration / adsorption → desorption → magnetic separation → precoat layer formation.
 ここに記載した実施の形態に係るろ過助剤は、水中の水不溶性の固形物を効率よく吸着し、吸着した固形物を容易に脱離し、脱離した固形物から容易に磁気分離されることから、再利用に適する。 The filter aid according to the embodiment described herein efficiently adsorbs water-insoluble solids in water, easily desorbs the adsorbed solids, and is easily magnetically separated from the desorbed solids. Suitable for reuse.
 以下に実施例と比較例を説明する。 Examples and comparative examples will be described below.
 (ろ過助剤A)
 平均粒子径15μmのマンガンマグネシウムフェライト粉末をヘンシェルミキサーで混合しながら、フッ素有機化合物としてテトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)とアルコキシ基を有する信越化学工業社のKY-108(製品番号)をフェライトの重量に対して1%となるように噴霧した。
(Filter aid A)
KY-108 from Shin-Etsu Chemical Co., Ltd., which has tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA) and an alkoxy group as a fluorine organic compound while mixing manganese magnesium ferrite powder with an average particle size of 15 μm with a Henschel mixer. ) Was sprayed to 1% with respect to the weight of ferrite.
 このフェライト粒子を100℃の恒温槽の中で2時間加熱した後、100メッシュの篩を通過させて、ろ過助剤Aを得た。このろ過助剤Aを構成する磁性一次粒子の円形度を測定したところ円形度値は0.90であった。さらに、ろ過助剤Aの粒子の相互間隔Sを測定したところ、図8に示す相互間隔Sの分布Aを得た。分布Aにおいて、最頻値Paでの間隔値(=4.1μm)より大きいほうの間隔の分布幅DLと比べて最頻値Paでの間隔値(=4.1μm)より小さいほうの間隔の分布幅DSのほうが幅広であった(DL< DS)。 The ferrite particles were heated in a constant temperature bath at 100 ° C. for 2 hours and then passed through a 100 mesh sieve to obtain a filter aid A. When the circularity of the magnetic primary particles constituting the filter aid A was measured, the circularity value was 0.90. Furthermore, when the mutual space | interval S of the particle | grains of the filter aid A was measured, distribution A of the mutual space | interval S shown in FIG. 8 was obtained. In the distribution A, interval value (= 4.1 .mu.m) than larger interval value in the distribution width D L as compared to the mode P a spacing (= 4.1 .mu.m) smaller intervals than in the mode P a The distribution width D S of was wider (D L <D S ).
 (ろ過助剤B)
 平均粒子径5μmのマンガンマグネシウムフェライト粒子を用いたこと以外は上記のろ過助剤Aと同様にしてろ過助剤Bを得た。このろ過助剤Bを構成する磁性一次粒子の円形度を測定したところ円形度値は0.91であった。また、最頻の間隔値は2.3μmであった。ろ過助剤Bにおいてもろ過助剤Aと同様に、最頻の間隔値より小さいほうの間隔の分布幅DSのほうが最頻の間隔値より大きいほうの間隔の分布幅DLと比べて幅広であった(DL< DS)。
(Filter aid B)
A filter aid B was obtained in the same manner as the filter aid A except that manganese magnesium ferrite particles having an average particle size of 5 μm were used. When the circularity of the magnetic primary particles constituting the filter aid B was measured, the circularity value was 0.91. The most frequent interval value was 2.3 μm. In the filter aid B, as in the case of the filter aid A, the distribution width D S of the interval smaller than the most frequent interval value is wider than the distribution width D L of the interval larger than the most frequent interval value. (D L <D S ).
 (ろ過助剤C)
 平均粒子径35μmの多孔質のマンガンマグネシウムフェライト粒子を流動床に入れ、PFA樹脂とポリアミドイミド(無水マレイン酸とジアミノジフェニルメタンからなる)の共重合体の樹脂を樹脂含有量が5%になるまで添加した。この磁性一次粒子を取り出し、200℃で2時間加熱硬化させてろ過助剤Cを得た。
(Filter aid C)
Porous manganese magnesium ferrite particles with an average particle size of 35 μm are put into a fluidized bed, and a resin of a copolymer of PFA resin and polyamideimide (made of maleic anhydride and diaminodiphenylmethane) is added until the resin content reaches 5%. did. The magnetic primary particles were taken out and cured by heating at 200 ° C. for 2 hours to obtain a filter aid C.
 このろ過助剤Cを構成する磁性一次粒子の円形度を測定したところ円形度値は1.08であった。また、粒子間孔径S及び開気孔の径d3,d4を水銀圧入法により測定したところ、図10に示す分布C1~C2が得られた。分布C1において、粒子間孔径Sの最頻値Pc1での間隔値(=10μm)より大きいほうの間隔の分布幅DLと比べて最頻値Pc1での間隔値(=10μm)より小さいほうの間隔の分布幅DSのほうが幅広であった(DL< DS)。また、分布C2において開気孔の径d3,d4について最頻値Pc2での孔径値(=1.5μm)を得た。 When the circularity of the magnetic primary particles constituting the filter aid C was measured, the circularity value was 1.08. Further, when the interparticle pore diameter S and the open pore diameters d 3 and d 4 were measured by mercury porosimetry, distributions C1 and C2 shown in FIG. 10 were obtained. In the distribution C1, the interval width D L is larger than the interval value at the mode value P c1 (= 10 μm) of the interparticle pore diameter S, and is smaller than the interval value (= 10 μm) at the mode value P c1. The distribution width D S of the gap was wider (D L <D S ). Further, in the distribution C2, pore diameter values (= 1.5 μm) at the mode value P c2 were obtained for the diameters d 3 and d 4 of the open pores.
 (ろ過助剤D)
 平均粒子径25μmの多孔質のマンガンマグネシウムフェライト粒子にしたこと以外は上記ろ過助剤Cと同様にしてろ過助剤Dを得た。このろ過助剤Dを構成する磁性一次粒子の円形度を測定したところ円形度値は1.09であった。また、最頻の粒子の相互間隔値8μmを得た。また、開気孔の径d3,d4について最頻の孔径値1.5μmを得た。
(Filter aid D)
A filter aid D was obtained in the same manner as the filter aid C except that porous manganese magnesium ferrite particles having an average particle size of 25 μm were used. When the circularity of the magnetic primary particles constituting the filter aid D was measured, the circularity value was 1.09. In addition, the mutual spacing value of the most frequent particles was 8 μm. Further, the most frequent pore diameter value of 1.5 μm was obtained for the diameters d 3 and d 4 of the open pores.
 (ろ過助剤E)
 上記ろ過助剤Aと同じマンガンマグネシウムフェライト粒子にフルオロカーボンを担持しない磁性体粒子Eを作製した。この磁性体粒子Eは後述のように比較例に用いた。
(Filter aid E)
Magnetic particles E that do not carry a fluorocarbon on the same manganese magnesium ferrite particles as the filter aid A were prepared. This magnetic particle E was used in a comparative example as described later.
 (実施例1)
 平均粒子径2μmのセラミックを200mg/Lと粘着性の接着剤を含有する工場排水を準備した。また、水平なろ過面に通気度20cc/minであるろ布をセットした固液分離器を準備した。この固液分離器のろ面に、1平方メートルあたり1kgのろ過助剤Aを均一に積層させたあと、工場排水を加圧下でフィルタ(ろ布)に通水させたところ、水中のセラミック粒子の99.5%以上を除去し、セラミック濃度1mg/L以下であった。フィルタへの通水速度を表す流束は、平均5m/hであった。
Example 1
A factory effluent containing 200 mg / L ceramic with an average particle size of 2 μm and a sticky adhesive was prepared. In addition, a solid-liquid separator in which a filter cloth having an air permeability of 20 cc / min was set on a horizontal filtration surface was prepared. After uniformly laminating 1 kg of filter aid A per square meter on the filter surface of this solid-liquid separator, the factory wastewater was passed through a filter (filter cloth) under pressure. 99.5% or more was removed, and the ceramic concentration was 1 mg / L or less. The average flux representing the water flow rate through the filter was 5 m / h.
 この使用後のろ過助剤を回収してステンレス製の容器に洗浄水(水道水)と共に入れた。この容器を撹拌機で混合しながら、容器の外からネオジム磁石を近づけて磁石を分離したところ、洗浄水中にセラミックのみが分散しており、ろ過助剤Aの洗浄を行うことができた。この洗浄後のろ過助剤Aを再度使用して工場排水を処理したところ、水中のセラミック粒子の99.5%以上を除去し、セラミック濃度1mg/L以下であった。フィルタへの通水速度を表す流束は、平均4.7m/hであった。これと同様の操作を繰り返して10回再生時であってもろ過助剤Aを用いると、セラミック濃度1mg/L以下の除去効率が維持され、また流束4.5m/h以上の通水速度が維持された。 The filter aid after use was recovered and put into a stainless steel container together with washing water (tap water). While mixing this container with a stirrer, a neodymium magnet was brought close to the outside of the container to separate the magnet. As a result, only ceramic was dispersed in the washing water, and the filter aid A could be washed. When the industrial wastewater was treated using the filter aid A after the washing again, 99.5% or more of the ceramic particles in the water were removed, and the ceramic concentration was 1 mg / L or less. The flux representing the water flow rate to the filter was an average of 4.7 m / h. Even if the same operation is repeated 10 times, and the filter aid A is used even when regenerated 10 times, the removal efficiency is maintained at a ceramic concentration of 1 mg / L or less, and the water flow rate is 4.5 m / h or more. Maintained.
 (比較例1)
 フルオロカーボンを担持しないろ過助剤Eを実施例1と同様に通水したところ、実施例1と同様に水中のセラミック粒子の99.5%以上を除去し、セラミック濃度1mg/L以下であった。フィルタへの通水速度を表す流束は、平均4.6m/hであった。しかし、洗浄水で同様にしてセラミック粒子とろ過助剤Eとの分離を行ったところ、セラミック粒子の大半を回収することができなかった。このろ過助剤Eを用いて再度フィルタに通水したところ、水中のセラミック粒子の99.5%以上を除去し、セラミック濃度1mg/L以下であったものの、流束は2.0m/hまで低下したためろ過助剤Eの再利用はできなかった。
(Comparative Example 1)
When the filter aid E not supporting the fluorocarbon was passed in the same manner as in Example 1, 99.5% or more of the ceramic particles in the water were removed as in Example 1, and the ceramic concentration was 1 mg / L or less. The flux representing the water flow rate to the filter was an average of 4.6 m / h. However, when the ceramic particles and the filter aid E were separated in the same manner with washing water, most of the ceramic particles could not be recovered. When this filter aid E was used to pass through the filter again, 99.5% or more of the ceramic particles in the water were removed and the ceramic concentration was 1 mg / L or less. The auxiliary E could not be reused.
 (実施例2)
 ろ過助剤Aの代わりにろ過助剤Bを用いたこと以外は同様に試験をおこなったところ、実施例1と同様にして水中のセラミック粒子の99.5%以上を除去し、セラミック濃度1mg/L以下であった。フィルタへの通水速度を表す流束は、平均4.2m/hであった。また、ろ過助剤Bの洗浄も問題なく行うことができ、10回再生時であってもろ過助剤Bを用いると、セラミック濃度1mg/L以下の除去効率が得られ、また、流束4.0m/h以上の通水速度が維持された。
(Example 2)
A test was conducted in the same manner except that filter aid B was used instead of filter aid A. As in Example 1, 99.5% or more of the ceramic particles in the water were removed, and the ceramic concentration was 1 mg / L or less. Met. The flux representing the water flow rate through the filter was an average of 4.2 m / h. Further, the filter aid B can be washed without any problem. When the filter aid B is used even when regenerated 10 times, the removal efficiency with a ceramic concentration of 1 mg / L or less can be obtained. Water flow rate of m / h or more was maintained.
 (実施例3)
 ろ過助剤Aの代わりにろ過助剤Cを用いたこと以外は同様に試験をおこなったところ、実施例1と同様に水中のセラミック粒子の98.5%を除去し、セラミック濃度3mg/Lであった。フィルタへの通水速度を表す流束は、平均8.0m/hであった。また、ろ過助剤の洗浄も問題なく行うことができ、10回再生時であってもろ過助剤Cを用いると、セラミック濃度1mg/L以下の除去効率が得られ、また流束7.0m/h以上の通水速度が維持された。
(Example 3)
A similar test was conducted except that filter aid C was used instead of filter aid A. As in Example 1, 98.5% of the ceramic particles in the water were removed, and the ceramic concentration was 3 mg / L. . The flux representing the water flow rate to the filter was an average of 8.0 m / h. In addition, the filter aid can be washed without any problem, and even when the filter is regenerated 10 times, the use of the filter aid C provides a removal efficiency with a ceramic concentration of 1 mg / L or less, and a flux of 7.0 m / L. The water flow rate over h was maintained.
 (実施例4)
 ろ過助剤Aの代わりにろ過助剤Dを用いたこと以外は同様に試験をおこなったところ、実施例1と同様に水中のセラミック粒子の99.0%を除去し、セラミック濃度2mg/Lであった。フィルタへの通水速度を表す流束は、平均7.1 m/hであった。また、ろ過助剤の洗浄も問題なく行うことができ、10回再生時であってもろ過助剤Dを用いると、セラミック濃度1mg/L以下の除去効率が得られ、また流束6.2m/h以上の通水速度が維持された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(Example 4)
A test was conducted in the same manner except that filter aid D was used instead of filter aid A. As in Example 1, 99.0% of the ceramic particles in water were removed, and the ceramic concentration was 2 mg / L. . The average flux representing the water flow rate through the filter was 7.1 m / h. In addition, the filter aid can be washed without any problem, and even when regenerated 10 times, the filter aid D can be used to obtain a removal efficiency with a ceramic concentration of 1 mg / L or less and a flux of 6.2 m / L. The water flow rate over h was maintained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (10)

  1.  被処理水中に含まれる異物を吸着し、吸着した異物とともに被処理水から膜ろ過により分離され、膜ろ過された分離物中の異物から磁気的に分離され、繰り返し使用される水処理用ろ過助剤であって、
     前記ろ過助剤は、複数の磁性一次粒子が凝集した凝集体からなり、
     前記磁性一次粒子は、
     平均粒子径が5μm以上40μm以下の磁性無機物粒子と、
     前記磁性無機物粒子の表面の一部または全部を覆い、前記磁性無機物粒子に担持されるフッ素有機化合物を含む被覆層と、を有し、かつ、
     顕微鏡視野内において平面に投影される二次元投影像の円形度の値が0.40以上1.00未満(1.00を除く)の範囲にある、
    ことを特徴とする水処理用ろ過助剤。
    Water treatment filter aid that adsorbs foreign matter contained in the water to be treated, is separated from the treated water together with the adsorbed foreign matter by membrane filtration, is magnetically separated from foreign matter in the membrane-filtered separation, and is used repeatedly. An agent,
    The filter aid comprises an aggregate in which a plurality of magnetic primary particles are aggregated,
    The magnetic primary particles are:
    Magnetic inorganic particles having an average particle size of 5 μm to 40 μm,
    Covering a part or all of the surface of the magnetic inorganic particles, and having a coating layer containing a fluorine organic compound supported on the magnetic inorganic particles, and
    The circularity value of the two-dimensional projection image projected on the plane in the microscope field is in the range of 0.40 to less than 1.00 (excluding 1.00).
    The filter aid for water treatment characterized by the above-mentioned.
  2.  前記磁性無機物粒子がフェライト系化合物からなることを特徴とする請求項1記載の水処理用ろ過助剤。 The filter aid for water treatment according to claim 1, wherein the magnetic inorganic particles are made of a ferrite compound.
  3.  前記磁性一次粒子の相互間隔Sの分布において、最頻値 Pa, Pc1での間隔より小さい間隔の分布幅DSのほうが最頻値Pa, Pc1での間隔より大きい間隔の分布幅DLよりも広いことを特徴とする請求項1記載の水処理用ろ過助剤。 In the distribution of the mutual spacing S of the magnetic primary particles, the mode P a, the mode is better distribution width D S of the smaller interval than the interval at P c1 P a, the width of the distribution of intervals greater than the interval at P c1 D for water treatment filter aid according to claim 1, wherein a wider than L.
  4.  前記磁性無機物粒子は、見掛けの比重が1より大きく、かつ表面に開口する多数の開気孔を有し、かつ前記開気孔の径が前記磁性一次粒子の相互間隔Sよりも小さいことを特徴とする請求項1記載の水処理用ろ過助剤。 The magnetic inorganic particles have an apparent specific gravity of greater than 1, have a large number of open pores opened on the surface, and the diameter of the open pores is smaller than the mutual spacing S of the magnetic primary particles. The filter aid for water treatment according to claim 1.
  5.  前記フッ素有機化合物が、フルオロカーボンとアルコキシ基を有する化合物を前記磁性無機物粒子の表面に反応させて得られることを特徴とする請求項1記載の水処理用ろ過助剤。 The filter aid for water treatment according to claim 1, wherein the fluorine organic compound is obtained by reacting a compound having a fluorocarbon and an alkoxy group with the surface of the magnetic inorganic particles.
  6.  前記異物が被処理水中に含まれる水不溶性の固形物であることを特徴とする請求項1記載の水処理用ろ過助剤。 2. The filter aid for water treatment according to claim 1, wherein the foreign matter is a water-insoluble solid contained in the water to be treated.
  7.  被処理水中に含まれる異物をろ過助剤に吸着させ、吸着した異物とともにろ過助剤を被処理水から膜ろ過により分離し、膜ろ過した分離物中の異物からろ過助剤を磁気的に分離し、分離したろ過助剤を繰り返し使用する水処理方法において、
     (A)平均粒子径が5μm以上40μm以下の磁性無機物粒子と、前記磁性無機物粒子の表面の一部または全部を覆い、前記磁性無機物粒子に担持されるフッ素有機化合物を含む被覆層と、を有し、かつ、顕微鏡視野内において平面に投影される二次元投影像の円形度の値が0.40以上1.00未満(1.00を除く)の範囲にある磁性一次粒子を作製し、前記ろ過助剤として複数の前記磁性一次粒子が凝集した凝集体を準備し、
     (B)水不溶性の固形物を含む被処理水と前記ろ過助剤とを混合し、前記被処理水中に前記ろ過助剤が分散する懸濁液を作製し、
     (C)ろ過膜により前記懸濁液をろ過し、前記ろ過膜上に前記ろ過助剤および前記水不溶性の固形物を含む堆積層を形成し、前記堆積層中において前記ろ過助剤に前記水不溶性の固形物を吸着・捕捉させ、これにより被処理水から前記水不溶性の固形物を分離し、
     (D)剥離水を前記堆積層に注いで前記ろ過膜から前記堆積層を剥離させ、これにより前記水不溶性の固形物を捕捉した前記堆積層の剥離物と前記剥離水との混合物を提供し、
     (E)前記混合物から前記ろ過助剤を磁気的に分離し、
     (F)分離したろ過助剤を前記(B)工程において再利用する、
    ことを特徴とする水処理方法。
    Foreign matter contained in the water to be treated is adsorbed to the filter aid, and the filter aid is separated from the treated water together with the adsorbed foreign matter by membrane filtration, and the filter aid is magnetically separated from the foreign matter in the membrane-filtered separation. In the water treatment method in which the separated filter aid is repeatedly used,
    (A) a magnetic inorganic particle having an average particle diameter of 5 μm or more and 40 μm or less, and a coating layer that covers a part or all of the surface of the magnetic inorganic particle and contains a fluorine organic compound supported on the magnetic inorganic particle. In addition, magnetic primary particles having a circularity value in the range of 0.40 or more and less than 1.00 (excluding 1.00) of a two-dimensional projection image projected onto a plane within a microscope field of view are prepared, and a plurality of filtration aids are used. Preparing an aggregate in which the magnetic primary particles are aggregated;
    (B) Mixing the water to be treated containing water-insoluble solids and the filter aid to produce a suspension in which the filter aid is dispersed in the water to be treated;
    (C) The suspension is filtered through a filtration membrane, a deposition layer containing the filter aid and the water-insoluble solid is formed on the filtration membrane, and the water is added to the filtration aid in the deposition layer. Adsorb and capture insoluble solids, thereby separating the water-insoluble solids from the water to be treated,
    (D) providing a mixture of exfoliated material of the deposited layer and the exfoliated water in which exfoliated water is poured into the accumulated layer to exfoliate the accumulated layer from the filtration membrane, thereby capturing the water-insoluble solid matter. ,
    (E) magnetically separating the filter aid from the mixture;
    (F) Reusing the separated filter aid in the step (B),
    A water treatment method characterized by that.
  8.  前記磁性一次粒子の相互間隔Sの分布において、最頻値(mode) Pa, Pc1での間隔より小さい間隔の分布幅DSのほうが最頻値Pa, Pc1での間隔より大きい間隔の分布幅DLよりも広いことを特徴とする請求項7記載の方法。 In the distribution of the mutual spacing S of the magnetic primary particles, the mode (mode) P a, the mode is better distribution width D S of the smaller interval than the interval at P c1 P a, larger spacing than the spacing at the P c1 The method according to claim 7, wherein the distribution width is wider than the distribution width D L of .
  9.  被処理水中に含まれる異物をろ過助剤に吸着させ、吸着した異物とともにろ過助剤を被処理水から膜ろ過により分離し、膜ろ過した分離物中の異物からろ過助剤を磁気的に分離し、分離したろ過助剤を繰り返し使用する水処理方法において、
     (a)平均粒子径が5μm以上40μm以下の磁性無機物粒子と、前記磁性無機物粒子の表面の一部または全部を覆い、前記磁性無機物粒子に担持されるフッ素有機化合物を含む被覆層と、を有し、かつ、顕微鏡視野内において平面に投影される二次元投影像の円形度の値が0.40以上1.00未満(1.00を除く)の範囲にある磁性一次粒子を作製し、前記ろ過助剤として複数の前記磁性一次粒子が凝集した凝集体を準備し、
     (b)前記ろ過助剤に分散媒を混合し、前記分散媒中に前記ろ過助剤が分散する懸濁液を作製し、
     (c)ろ過膜により前記懸濁液をろ過し、前記ろ過膜の上に前記ろ過助剤を含むプレコート層を形成し、次いで水不溶性の固体物を含む被処理水を前記プレコート層および前記ろ過膜に通過させ、前記プレコート層のろ過助剤に前記水不溶性の固体物を吸着・捕捉させ、これにより被処理水から前記水不溶性の固体物を分離し、
     (d)剥離水を前記プレコート層に注いで前記ろ過膜から前記プレコート層を剥離させ、これにより前記水不溶性の固体物を捕捉した前記プレコート層の剥離物と前記剥離水との混合物を提供し、
     (e)前記混合物から前記ろ過助剤を磁気的に分離し、
     (f)分離したろ過助剤を前記(b)工程において再利用する、
    ことを特徴とする水処理方法。
    Foreign matter contained in the water to be treated is adsorbed to the filter aid, and the filter aid is separated from the treated water together with the adsorbed foreign matter by membrane filtration, and the filter aid is magnetically separated from the foreign matter in the membrane-filtered separation. In the water treatment method in which the separated filter aid is repeatedly used,
    (A) a magnetic inorganic particle having an average particle size of 5 μm or more and 40 μm or less, and a coating layer that covers a part or all of the surface of the magnetic inorganic particle and contains a fluorine organic compound supported on the magnetic inorganic particle. In addition, magnetic primary particles having a circularity value in the range of 0.40 or more and less than 1.00 (excluding 1.00) of a two-dimensional projection image projected onto a plane within a microscope field of view are prepared, and a plurality of filtration aids are used. Preparing an aggregate in which the magnetic primary particles are aggregated;
    (B) Mixing a dispersion medium with the filter aid, producing a suspension in which the filter aid is dispersed in the dispersion medium,
    (C) The suspension is filtered through a filtration membrane, a precoat layer containing the filter aid is formed on the filtration membrane, and then water to be treated containing a water-insoluble solid material is added to the precoat layer and the filtration. Passing through a membrane, the pre-coat layer filter aid adsorbs and captures the water-insoluble solid material, thereby separating the water-insoluble solid material from the water to be treated,
    (D) Pour release water into the precoat layer to release the precoat layer from the filtration membrane, thereby providing a mixture of the precoat layer exfoliation and the release water capturing the water-insoluble solid material. ,
    (E) magnetically separating the filter aid from the mixture;
    (F) Reusing the separated filter aid in the step (b).
    A water treatment method characterized by the above.
  10.  前記磁性一次粒子の相互間隔Sの分布において、最頻値(mode) Pa, Pc1での間隔より小さい間隔の分布幅DSのほうが最頻値Pa, Pc1での間隔より大きい間隔の分布幅DLよりも広いことを特徴とする請求項9記載の方法。 In the distribution of the mutual spacing S of the magnetic primary particles, the mode (mode) P a, the mode is better distribution width D S of the smaller interval than the interval at P c1 P a, larger spacing than the spacing at the P c1 The method according to claim 9, wherein the distribution width is wider than the distribution width D L of .
PCT/JP2012/073191 2012-03-29 2012-09-11 Water treatment filter aid and water treatment method WO2013145372A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IN7415DEN2014 IN2014DN07415A (en) 2012-03-29 2012-09-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012076723A JP5583162B2 (en) 2012-03-29 2012-03-29 Filter aid for water treatment and water treatment method
JP2012-076723 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013145372A1 true WO2013145372A1 (en) 2013-10-03

Family

ID=49258716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073191 WO2013145372A1 (en) 2012-03-29 2012-09-11 Water treatment filter aid and water treatment method

Country Status (4)

Country Link
JP (1) JP5583162B2 (en)
IN (1) IN2014DN07415A (en)
TW (1) TWI444228B (en)
WO (1) WO2013145372A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064408A (en) * 2014-07-30 2016-04-28 三菱マテリアル株式会社 Oil-water separation filtration device, oil-water separation body recovery method
US10294125B2 (en) 2014-07-30 2019-05-21 Mitsubishi Materials Corporation Filter medium, method for producing filter medium, water treatment module, and water treatment device
US10364360B2 (en) 2014-07-30 2019-07-30 Mitsubishi Materials Corporation Surface coating material, coating film, and hydrophilic oil repellent member
CN111268845A (en) * 2020-03-16 2020-06-12 南京霄祥工程技术有限公司 Zero-discharge treatment process and system for papermaking wastewater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6773284B2 (en) * 2016-11-28 2020-10-21 清水建設株式会社 Algae-containing liquid concentration method, algae recovery method, algae concentration system, and algae recovery system
KR101967213B1 (en) * 2017-07-20 2019-04-10 한국기계연구원 Method of manufacturing magnetic porous membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254316A (en) * 1993-03-04 1994-09-13 Shinpei Sato Filter device
JP2000034118A (en) * 1998-07-15 2000-02-02 Agency Of Ind Science & Technol Production of high-purity amorphous silicic acid
JP2010207680A (en) * 2009-03-09 2010-09-24 Toshiba Corp Adsorbent, method for recovering organic matter, and method for recovering oil
JP2011142301A (en) * 2009-12-08 2011-07-21 Jnc Corp Magnetic fine particle and method of producing the same
JP2012055784A (en) * 2010-09-03 2012-03-22 Toshiba Corp Wastewater treatment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254316A (en) * 1993-03-04 1994-09-13 Shinpei Sato Filter device
JP2000034118A (en) * 1998-07-15 2000-02-02 Agency Of Ind Science & Technol Production of high-purity amorphous silicic acid
JP2010207680A (en) * 2009-03-09 2010-09-24 Toshiba Corp Adsorbent, method for recovering organic matter, and method for recovering oil
JP2011142301A (en) * 2009-12-08 2011-07-21 Jnc Corp Magnetic fine particle and method of producing the same
JP2012055784A (en) * 2010-09-03 2012-03-22 Toshiba Corp Wastewater treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064408A (en) * 2014-07-30 2016-04-28 三菱マテリアル株式会社 Oil-water separation filtration device, oil-water separation body recovery method
US10294125B2 (en) 2014-07-30 2019-05-21 Mitsubishi Materials Corporation Filter medium, method for producing filter medium, water treatment module, and water treatment device
US10364360B2 (en) 2014-07-30 2019-07-30 Mitsubishi Materials Corporation Surface coating material, coating film, and hydrophilic oil repellent member
US10399868B2 (en) 2014-07-30 2019-09-03 Mitsubishi Materials Corporation Oil-water separation apparatus and drainage system
CN111268845A (en) * 2020-03-16 2020-06-12 南京霄祥工程技术有限公司 Zero-discharge treatment process and system for papermaking wastewater

Also Published As

Publication number Publication date
TWI444228B (en) 2014-07-11
IN2014DN07415A (en) 2015-04-24
JP5583162B2 (en) 2014-09-03
TW201338861A (en) 2013-10-01
JP2013202569A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
WO2013145372A1 (en) Water treatment filter aid and water treatment method
JP5823221B2 (en) Filter aid, filter aid for water treatment, precoat material for water treatment, and water treatment method
JP5826683B2 (en) Magnetic powder for water treatment
JP5319730B2 (en) Fluorine recovery device and fluorine recovery method
Salahshoor et al. Review of the use of mesoporous silicas for removing dye from textile wastewater
US8986541B2 (en) Copper recovery apparatus
JP5389196B2 (en) Water treatment method and water treatment apparatus
Samadi et al. Fabrication of novel chitosan/PAN/magnetic ZSM-5 zeolite coated sponges for absorption of oil from water surfaces
Li et al. Adsorption of Cr (VI) from aqueous solution by a litchi shell-based adsorbent
Tomaszewska et al. A polypropylene cartridge filter with hematite nanoparticles for solid particles retention and arsenic removal
JP2015000385A (en) Water treatment method using filter aid, and device for the method
JP2012187083A (en) Apparatus and method for concentrating microorganism
JP2011036746A (en) Flocculant, sewage clarifying method using the flocculant and water purifying device using the flocculant
JP2013173117A (en) Magnetic particle for water treatment, and water treatment method
JP5826668B2 (en) Metal recovery apparatus and metal recovery method
Hariyanti et al. Magnetized algae-silica hybrid from Porphyridium sp. biomass with Fe3O4 particle and its application as adsorbent for the removal of methylene blue from aqueous solution
JP2014057920A (en) Water treatment method
JP5710664B2 (en) Water treatment method using filtration aid concentration management device, water treatment device, and filtration aid concentration management device
Sabeela et al. New smart magnetic ionic liquid nanocomposites based on chemically bonded imidazole silica for water treatment
JP2010167391A (en) Particle aggregate and method for producing particle aggregate
JP2013184099A (en) Magnetic particle for water treatment and water treatment method
JP5818670B2 (en) Oil-containing wastewater treatment equipment
JP5175671B2 (en) Functional particles and water treatment method using the same
JP2013063363A (en) Wastewater treatment apparatus and wastewater treatment method
JP2012187506A (en) Cleaning apparatus for magnetic body-containing filter aid, and water treatment method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873086

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201405234

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873086

Country of ref document: EP

Kind code of ref document: A1