WO2013111259A1 - Équipement de génération d'énergie éolienne - Google Patents

Équipement de génération d'énergie éolienne Download PDF

Info

Publication number
WO2013111259A1
WO2013111259A1 PCT/JP2012/051312 JP2012051312W WO2013111259A1 WO 2013111259 A1 WO2013111259 A1 WO 2013111259A1 JP 2012051312 W JP2012051312 W JP 2012051312W WO 2013111259 A1 WO2013111259 A1 WO 2013111259A1
Authority
WO
WIPO (PCT)
Prior art keywords
nacelle
wind power
rotor
heat exchanger
generator
Prior art date
Application number
PCT/JP2012/051312
Other languages
English (en)
Japanese (ja)
Inventor
坂本潔
隆 松信
卓司 柳橋
茂久 舩橋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2013555023A priority Critical patent/JP5703397B2/ja
Priority to PCT/JP2012/051312 priority patent/WO2013111259A1/fr
Priority to TW102100544A priority patent/TWI541435B/zh
Publication of WO2013111259A1 publication Critical patent/WO2013111259A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind power generation facility, and more particularly to a wind power generation facility suitable for a downwind system in which a rotor composed of a hub and blades is located on the leeward side of a tower that supports a nacelle.
  • the wind which is the driving force of wind power generation
  • a wind power generation facility includes a nacelle that supports a rotor that is rotated by blades, and a generator that is driven by the rotation of the blades is incorporated in the nacelle. Since the generator in the nacelle generates thermal energy as a loss, various measures for reducing this thermal energy have been proposed. For example, in Patent Document 1, as a method of cooling thermal energy generated as a loss, a first cooling system in which a generator is closed is provided, and a second cooling system installed in a nacelle cools the first cooling system. Techniques to do this are disclosed.
  • the wind power generation facility of Patent Document 1 is an upwind system in which a rotor composed of a hub and blades is located on the windward side of the tower that supports the nacelle, and a second cooling system is provided on the leeward side of the rotor rotated by the blades. Will be located. For this reason, after the wind hits the rotor or tower, it is guided to the second cooling system, and the air flow sucked by the second cooling system is disturbed by the wind hitting the rotor or tower, and the cooling system The cooling efficiency is reduced as compared with the case where the air flow is not disturbed.
  • the second cooling system needs to employ a part with a larger dimension (such as a heat exchanger) to increase the surface area in contact with air.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a wind power generation facility capable of preventing a decrease in cooling efficiency of the cooling system without increasing the size of the component parts of the cooling system. There is.
  • a wind turbine generator includes a rotor composed of a hub and blades, a generator connected to the rotor via a main shaft connected to the hub, and at least the generator.
  • a nacelle that pivotally supports the rotor via the main shaft; and a tower that supports the nacelle at the top, wherein the rotor is located on the leeward side of the tower.
  • the nacelle located on the windward side is composed of a horizontal straight line portion in a vertical cross section and an inclined portion that extends from the horizontal straight line portion toward the vertical center of the nacelle, and is inclined with respect to the horizontal straight line portion of the nacelle.
  • a heat exchanger is provided outside the boundary portion of the section, and the cooling medium from the generator is cooled by exchanging heat with the outside air by the heat exchanger,
  • a heat exchanger that cools the cooling medium from the generator by exchanging heat with outside air is provided, and the heat exchanger includes a heat exchanger body, It is composed of an intake side duct and an exhaust side duct connected to the heat exchanger body, and the intake port of the intake side duct is located on the windward side, and the exhaust port of the exhaust duct is located on the leeward side.
  • the present invention it is possible to prevent a decrease in the cooling efficiency of the cooling system without increasing the size of the components of the cooling system, and to obtain a wind power generation facility that does not cause a decrease in the power generation efficiency.
  • Example 1 of the wind power generation equipment of this invention is a side view which shows schematic structure of the nacelle part installed in the tower top part. It is the top view which looked at FIG. 1 from upper direction. It is a top view of the nacelle part which shows the flow of the air at the time of removing a heat exchanger from the structure of Example 1 of the wind power generation equipment of this invention. It is Example 2 of the wind power generation equipment of this invention, and is a side view which shows schematic structure of the nacelle part installed in the tower top part.
  • FIG. 1 and FIG. 2 show Example 1 of the wind power generation facility of the present invention.
  • the wind power generation facility of this embodiment shown in the figure includes a rotor composed of a hub 4 and blades 5, a generator 1 connected to the rotor via a main shaft 13 connected to the hub 4, and the generator 1.
  • At least housed, and supported by the rotor via the main shaft 13, and the horizontal direction in the vertical cross section is a straight portion 2A, and a curved portion 2B that is an inclined portion from the horizontal straight portion 2A toward the vertical center 14.
  • a tower 3 that supports the nacelle 2 at the top, and a rotor composed of a hub 4 and blades 5 is a downwind type wind power generation facility located on the leeward side of the tower 3. It is assumed that it is installed offshore.
  • a plurality of (three in this embodiment) heat exchangers 7a and 7b are installed at predetermined intervals.
  • the heat exchanger 7a is provided with an intake port 11a and an exhaust port 12a
  • the heat exchanger 7b is provided with an intake port 11b and an exhaust port 12b.
  • the intake ports 11a and 11b are located on the windward side. Yes.
  • heat exchangers 7a and 7b in the present embodiment for example, a multi-tube heat exchanger is adopted, and a large number of heat transfer tubes (not shown) are arranged in a cylindrical body, and intake ports 11a and 11b are provided in the heat transfer tubes.
  • the external air 9a, 9b from the arrow 6 flows in via the external air 9a, 9b in the heat transfer tube and the warmed cooling medium 8 from the generator 1 exchanges heat, and the cooled cooling medium 8 is
  • the warm external air 9a, 9b, which is guided into the generator 1 and cools the generator, is exhausted from the exhaust ports 12a, 12b.
  • the wind power generation facility is operated so that the wind is directed at the wind direction indicated by the arrow 6, that is, the wind power generation facility is operated as a downwind system, and the hub 4 and the blade A rotor consisting of 5 is located on the leeward side of the tower 3.
  • the heat exchangers 7a and 7b are located on the windward side when viewed from the rotor.
  • FIGS. 1 and 2 the shape of the nacelle 2 is streamlined (curved) as seen from the wind direction indicated by the arrow 6 in order to reduce air resistance. Part 2B).
  • the flow of air is separated from the outer surface of the nacelle 2 at the portion where the curvature of the outer surface of the nacelle 2 changes (the boundary portion between the horizontal linear portion 2A and the curved portion 2B), resulting in turbulence.
  • FIG. 3 schematically shows the turbulence of the air flow (FIG. 3 is obtained by removing the heat exchangers 7a and 7b from the wind power generation facility of FIG. 2).
  • the flow of air from the windward indicated by the arrow 6 is divided into both sides along the streamline shape of the nacelle 2 on the front surface of the nacelle 2 as indicated by the arrow 10, and the outer surface of the nacelle 2. It flows parallel to the curved portion (curved portion 2B, which is an inclined portion).
  • the air flow indicated by the arrow 10 is largely separated from the outer surface of the nacelle 2. Eddy. This air turbulence (vortex) results in mechanical stress on the blade 5 on the wake side, which is a problem.
  • the heat exchanger 7a is applied to a portion where the air flow indicated by the arrow 10 is separated from the outer surface of the nacelle 2, that is, a portion where the curvature of the outer surface of the nacelle 2 is large (A portion in FIG. 3). , 7b.
  • the air flow turbulent by passing through the heat exchangers 7a and 7b is not separated from the outer surface of the nacelle 2 according to the same principle as that of a known vortex generator used in airplanes and glider wings. Air flows like external air 9a and 9b shown in FIG. Thereby, there is an effect that mechanical stress applied to the blade 5 on the downstream side is reduced.
  • the present embodiment it is possible to obtain a wind power generation facility that can cool the generator 1 satisfactorily without increasing the size of the facility as well as being not affected by salt damage when installed on the ocean. Can do. Moreover, even if a cooling system is installed, it is possible to stabilize the behavior of the wake of the cooling system, suppress turbulence to the windmill blade, and obtain a wind power generation facility that does not cause a decrease in power generation efficiency.
  • FIG. 4 shows a second embodiment of the wind power generation facility of the present invention. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • Example 4 is different from Example 1 in that the heat exchanger 7c is installed not inside the nacelle 2 but inside the nacelle 2 as shown in FIG.
  • the heat exchanger 7c includes a heat exchanger body 7c1, an intake side duct 7c2 and an exhaust side duct 7c3 connected to the heat exchanger body 7c1, and the intake port 11c of the intake side duct 7c2 has an air flow.
  • the exhaust port 12c of the exhaust duct 7c3 is located on the leeward side.
  • the configuration of the heat exchanger body 7c1 is the same as that of the heat exchangers 7a and 7b of the first embodiment.
  • the external air 9c flowing in the direction indicated by the arrow 6 enters the intake port 11c installed on the windward side of the intake side duct 7c2 of the heat exchanger body 7c1, while the external air 9c is generated in the generator 1.
  • Heat is transferred to the heat exchanger main body 7c1 by the cooling medium 8, and the heat exchanger main body 7c1 exchanges heat between the cooling medium 8 which is heat generated in the generator 1 and the external air 9c flowing from the intake port 11c.
  • the cooling medium 8 is cooled by the external air 9c.
  • the cooled cooling medium 8 is guided into the generator 1 to cool the generator 1, and the warmed external air 9c is exhausted from the exhaust port 12c.
  • the nacelle 2 is shorter in the horizontal direction than the first embodiment (the depth in the direction of the arrow 6).
  • the shape of the nacelle 2 having a large shape is located on the windward side of the blade 5 in the downwind method.
  • the example of the multi-tube heat exchanger has been described as the heat exchanger.
  • the heat exchanger is not limited to the multi-tube heat exchanger, and other heat exchanges are also possible. It goes without saying that the same effect can be obtained even if a vessel is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

La présente invention concerne un équipement de génération d'énergie éolienne qui peut empêcher une diminution de rendement de refroidissement dans un système de refroidissement sans augmenter la taille de composants élémentaires dans le système de refroidissement. Cet équipement de génération d'énergie éolienne est muni : d'un rotor formé par un moyeu et des pales ; d'un générateur relié au rotor par l'intermédiaire d'un arbre principal relié au moyeu ; d'une nacelle dans laquelle au moins le générateur est logé et qui supporte axialement le rotor par l'intermédiaire de l'arbre principal ; et une tour qui supporte la nacelle sur sa partie supérieure. Un équipement de génération d'énergie éolienne de type sous le vent, dans lequel le rotor est positionné sur le côté sous le vent de la tour, est caractérisé par la nacelle, qui est positionnée sur le côté contre le vent du rotor, étant formé à partir d'une partie de ligne droite horizontale dans un plan de coupe transversale, vertical, et une partie inclinée orientée vers le centre de la nacelle dans la direction verticale par rapport à la partie de ligne droite horizontale, par un échangeur de chaleur prévu sur l'extérieur de la partie d'interface entre la partie de ligne droite horizontale et la partie inclinée de nacelle, et par l'échangeur de chaleur échangeant de la chaleur à partir du réfrigérant du générateur avec l'air extérieur pour réaliser le refroidissement.
PCT/JP2012/051312 2012-01-23 2012-01-23 Équipement de génération d'énergie éolienne WO2013111259A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013555023A JP5703397B2 (ja) 2012-01-23 2012-01-23 風力発電設備
PCT/JP2012/051312 WO2013111259A1 (fr) 2012-01-23 2012-01-23 Équipement de génération d'énergie éolienne
TW102100544A TWI541435B (zh) 2012-01-23 2013-01-08 風力發電設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051312 WO2013111259A1 (fr) 2012-01-23 2012-01-23 Équipement de génération d'énergie éolienne

Publications (1)

Publication Number Publication Date
WO2013111259A1 true WO2013111259A1 (fr) 2013-08-01

Family

ID=48873031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051312 WO2013111259A1 (fr) 2012-01-23 2012-01-23 Équipement de génération d'énergie éolienne

Country Status (3)

Country Link
JP (1) JP5703397B2 (fr)
TW (1) TWI541435B (fr)
WO (1) WO2013111259A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104426281A (zh) * 2013-09-03 2015-03-18 西门子公司 用于风力涡轮机的发电机
JP2015068243A (ja) * 2013-09-30 2015-04-13 株式会社日立製作所 風力発電設備
JP2015068244A (ja) * 2013-09-30 2015-04-13 株式会社日立製作所 風力発電設備
CN107420273A (zh) * 2017-08-14 2017-12-01 山东中车风电有限公司 海上风力发电机组环境控制机构、系统及应用
JP2018109412A (ja) * 2018-03-08 2018-07-12 株式会社日立製作所 風力発電設備
CN108612632A (zh) * 2018-07-05 2018-10-02 国电联合动力技术有限公司 风电齿轮箱换热机构及含有该机构的风力发电机组
US11831226B2 (en) 2019-01-10 2023-11-28 Vestas Wind Systems A/S Cooling of electrical generators in wind turbines

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108443090A (zh) * 2018-01-30 2018-08-24 内蒙古久和能源装备有限公司 一种风力发电机组轮毂组件通风散热装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510492A (ja) * 1999-09-24 2003-03-18 ラヘルウェイ・ウィントトゥルビネ・ベスローテン・フェンノートシャップ 風力発電機
DE10351844A1 (de) * 2003-11-06 2005-06-09 Alstom Windkraftanlage
JP2008255922A (ja) * 2007-04-06 2008-10-23 Fuji Heavy Ind Ltd 水平軸風車
DE102007042338A1 (de) * 2007-09-06 2009-03-12 Siemens Ag Windkraftanlage mit Wärmetauschersystem
DE102008050848A1 (de) * 2008-10-08 2010-04-15 Wobben, Aloys Ringgenerator
WO2010048560A2 (fr) * 2008-10-24 2010-04-29 Lew Holdings, Llc Turbines éoliennes en mer et procédés de déploiement correspondants
JP2011196183A (ja) * 2010-03-17 2011-10-06 Mitsubishi Heavy Ind Ltd 風力発電装置
JP2012501401A (ja) * 2008-09-01 2012-01-19 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド 風力タービンのナセル冷却システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510492A (ja) * 1999-09-24 2003-03-18 ラヘルウェイ・ウィントトゥルビネ・ベスローテン・フェンノートシャップ 風力発電機
DE10351844A1 (de) * 2003-11-06 2005-06-09 Alstom Windkraftanlage
JP2008255922A (ja) * 2007-04-06 2008-10-23 Fuji Heavy Ind Ltd 水平軸風車
DE102007042338A1 (de) * 2007-09-06 2009-03-12 Siemens Ag Windkraftanlage mit Wärmetauschersystem
JP2012501401A (ja) * 2008-09-01 2012-01-19 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド 風力タービンのナセル冷却システム
DE102008050848A1 (de) * 2008-10-08 2010-04-15 Wobben, Aloys Ringgenerator
WO2010048560A2 (fr) * 2008-10-24 2010-04-29 Lew Holdings, Llc Turbines éoliennes en mer et procédés de déploiement correspondants
JP2011196183A (ja) * 2010-03-17 2011-10-06 Mitsubishi Heavy Ind Ltd 風力発電装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104426281A (zh) * 2013-09-03 2015-03-18 西门子公司 用于风力涡轮机的发电机
CN104426281B (zh) * 2013-09-03 2018-12-21 西门子公司 用于风力涡轮机的发电机
JP2015068243A (ja) * 2013-09-30 2015-04-13 株式会社日立製作所 風力発電設備
JP2015068244A (ja) * 2013-09-30 2015-04-13 株式会社日立製作所 風力発電設備
US9926915B2 (en) 2013-09-30 2018-03-27 Hitachi, Ltd. Wind power generation system
CN107420273A (zh) * 2017-08-14 2017-12-01 山东中车风电有限公司 海上风力发电机组环境控制机构、系统及应用
JP2018109412A (ja) * 2018-03-08 2018-07-12 株式会社日立製作所 風力発電設備
CN108612632A (zh) * 2018-07-05 2018-10-02 国电联合动力技术有限公司 风电齿轮箱换热机构及含有该机构的风力发电机组
US11831226B2 (en) 2019-01-10 2023-11-28 Vestas Wind Systems A/S Cooling of electrical generators in wind turbines

Also Published As

Publication number Publication date
TWI541435B (zh) 2016-07-11
JPWO2013111259A1 (ja) 2015-05-11
TW201348581A (zh) 2013-12-01
JP5703397B2 (ja) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5703397B2 (ja) 風力発電設備
US7345376B2 (en) Passively cooled direct drive wind turbine
US9022721B2 (en) Vertical axis wind turbine
JP5002309B2 (ja) 水平軸風車
MX2013003122A (es) Sistema de doble turbina que sigue el viento/agua (seguidor de viento) para energia del viento y/o del agua, con sistema de alabes optimizado.
JP2004528509A (ja) 集風式風力発電方法とその設備
WO2012105032A1 (fr) Installation de turbine éolienne
EP2535580A1 (fr) Générateur électrique de type éolienne
WO2017115565A1 (fr) Système de production d'énergie éolienne vertical, système de production d'énergie hydraulique vertical et procédé de commande associé
EP2762719B1 (fr) Turbine omnidirectionnelle à écoulement combiné
JP2006300030A (ja) 風車装置およびこれを用いた風力発電装置
EP2450570B1 (fr) Agencement de refroidissement pour une éolienne
CN110242496B (zh) 一种摆动叶片式导流型垂直轴风轮机
RU2642706C2 (ru) Ветрогенераторная башня
JP2003328921A (ja) 二重集風装置
JP2010223207A (ja) 垂直型反動風車発電機
TW202233958A (zh) 能夠對移動體進行設置的風力發電裝置
JP6074033B2 (ja) 風力発電設備
CN207245927U (zh) 风力发电叶片及风力发电系统
RU158481U1 (ru) Ветродвигатель
CN203100470U (zh) 一种改善直接空冷机组换热能力的防风装置
CN101504257A (zh) 直接空冷电站空冷岛与风力发电一体化装置
TWI712735B (zh) 風力發電系統
CN104948388B (zh) 涡轮式风力发电装置
CN204900162U (zh) 一种风力发电机的导流管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555023

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866858

Country of ref document: EP

Kind code of ref document: A1