WO2013111253A1 - Led package, led light-emitting element, and method of manufacturing same - Google Patents

Led package, led light-emitting element, and method of manufacturing same Download PDF

Info

Publication number
WO2013111253A1
WO2013111253A1 PCT/JP2012/008434 JP2012008434W WO2013111253A1 WO 2013111253 A1 WO2013111253 A1 WO 2013111253A1 JP 2012008434 W JP2012008434 W JP 2012008434W WO 2013111253 A1 WO2013111253 A1 WO 2013111253A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead frame
resin
led
end portion
laser processing
Prior art date
Application number
PCT/JP2012/008434
Other languages
French (fr)
Japanese (ja)
Inventor
一徹 久米田
関 則彰
徳行 新名
秀幸 戸高
隆治 永江
史章 別府
博文 杉
篤史 飯尾
後藤 雄一
森田 健一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012012705A external-priority patent/JP5083472B1/en
Priority claimed from JP2012246154A external-priority patent/JP6038598B2/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013111253A1 publication Critical patent/WO2013111253A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3142Sealing arrangements between parts, e.g. adhesion promotors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to an LED (Light Emitting Diode) package, an LED light emitting element, and a method for manufacturing them.
  • LED Light Emitting Diode
  • the LED package has an LED chip mounted in a cavity, is molded with a sealing material such as silicone resin, and is electrically and mechanically connected to the mounting substrate by an electrode exposed to the outside.
  • a sealing material such as silicone resin
  • the most common LED package is an integrated heat sink, lead frame, and case.
  • the heat sink is required for heat diffusion
  • the lead frame is required for electrical conduction
  • the case is required for insulation and heat dissipation.
  • the LED package is required to efficiently extract the light emitted from the LED chip.
  • the LED package reflects the light by providing a reflector, and more light is emitted to the outside. Such high-brightness packages are being studied.
  • the lead frame is manufactured by etching or stamping a metal material for a lead frame made of a plate-like alloy thin plate such as iron-nickel or a metal thin plate such as copper-nickel-tin.
  • the lead frame manufactured in this way includes a pad electrode (island electrode) for mounting an LED chip, an inner lead electrode, and an outer lead electrode electrically connected to an external substrate.
  • the inner lead electrode is insulated from the pad electrode and is electrically connected to the LED chip.
  • the sealing resin is filled in the cavity to protect the LED chip and the wiring, and contains a fluorescent material to convert the wavelength of the light from the LED chip from blue to white, for example. Since the sealing resin is required to be filled in a narrow gap, a low-viscosity organic resin (for example, a silicone resin) is often used. For this reason, as a package, it is necessary to prevent the sealing resin poured into the cavity from leaking out from the side surface or the bottom surface of the package.
  • a low-viscosity organic resin for example, a silicone resin
  • the package member is made of a resin material and a metal having different thermal expansion coefficients, the adhesion and adhesion are poor.
  • the sealing resin leaks from the gap at the interface between the resin part and the metal part, the LED chip and the wiring in the reflector intended for sealing cannot be protected, and various solder mounting defects, etc. Cause problems.
  • the fluorescent material when the fluorescent material is contained in the sealing resin, the fluorescent material also leaks together with the sealing resin, resulting in deviation from the target chromaticity.
  • Patent Document 1 describes a semiconductor device in which a groove or a protrusion is formed in a part of a lead frame to prevent the sealing resin from leaking from the interface between the outer lead electrode and the package member toward the outer wall surface. ing. It is described that the forming direction of the groove and the protrusion is a direction perpendicular to the extending direction of the outer lead electrode. Further, it is described that the method of forming the groove and the protrusion is formed by punching (pressing) or etching. In addition, as a material of the lead frame, it is described that an alloy based on copper and whose surface is treated with silver is preferable from the viewpoint of conductivity, heat dissipation, mechanical strength, light reflection, and the like. ing.
  • Patent Document 1 has the following problems because it is a technique that focuses on preventing leakage of the sealing resin from the interface between the outer lead electrode and the package resin portion toward the outer wall surface.
  • a groove or protrusion is formed by punching (pressing) or etching on a lead frame made of silver-plated copper alloy surface, the formed groove or protrusion is made of copper alloy.
  • the silver plating on the surface may be damaged. Further, even if the surface is subjected to a silver treatment having a sufficient film thickness, it is inevitable that the silver treatment is not uniform in the groove or the protrusion.
  • the silver plating becomes thin or the silver plating is peeled off in the groove or the protrusion, and a hydroxide, an oxide, or the like is generated due to moisture or the like and may be corroded.
  • the copper alloy is corroded, the corroded material is exposed on the surface, and the LED characteristics such as luminance are deteriorated.
  • the sealing resin does not necessarily prevent the penetration of gas and moisture. For this reason, the deterioration of the LED chip is often caused by the penetration of moisture and gas in the air, and the reliability is often lowered.
  • An object of the present invention is to provide an LED package, an LED light-emitting element, and a method for manufacturing the same that can prevent sealing resin from leaking out of the package and prevent sulfide penetration into the cavity. .
  • An LED package includes a first lead frame including one surface on which an LED is placed, a back surface of the one surface and the other flat surface, and parallel to the one surface.
  • a second lead frame that faces the first lead frame without contacting the first lead frame in any direction, and a resin that connects between the connection ends of the first lead frame and the second lead frame that face each other. At least a part of the other surface of the first lead frame is exposed from the resin, and an end of the other surface of the first lead frame on the connection end side, and the connection end A rough surface is formed on at least a part of the portion by laser processing on the first lead frame.
  • LED package which can prevent the sealing resin leaking out from a package, and can prevent the penetration
  • the perspective view which shows typically the LED package which concerns on one embodiment of this invention Cross-sectional perspective view of LED package according to the present embodiment Sectional drawing of the LED package which concerns on this Embodiment Sectional drawing of the LED package which concerns on this Embodiment Diagram showing reflectivity of various metals
  • the figure which shows the formation degree of the recessed part formed by laser processing with respect to the lead frame which concerns on this Embodiment, and the surrounding silver oxide layer Diagram explaining the optimum range of laser processing from the relationship between laser frequency and peak power Diagram showing equilibrium oxygen partial pressure curves of silver, silver oxide and other metal oxides Diagram showing the reaction between silver oxide and package resin Manufacturing process diagram until sealing of sealing resin of LED package according to the present embodiment The figure which shows the photograph which expanded the lead frame of the LED package which concerns on this Embodiment.
  • An LED package includes a first lead frame including one surface on which an LED is placed, a back surface of the one surface and the other flat surface, and the one surface.
  • a second lead frame that faces the first lead frame without contacting the first lead frame in a direction parallel to the first lead frame, and a connection between the first lead frame and the second lead frame that face each other.
  • a resin, and at least a part of the other surface of the first lead frame is exposed from the resin, the end of the other surface of the first lead frame on the connection end side, and the A rough surface is formed on at least a part of the connection end portion by laser processing on the first lead frame.
  • a metal oxide layer is further formed on at least a part of the connection end portion of the first lead frame by laser processing on the first lead frame.
  • the first lead frame further includes a silver film on at least a part of the one surface, the other surface, and the connection end surface,
  • the metal oxide layer formed on the surface of the first lead frame by the laser processing is a silver oxide layer.
  • An LED light-emitting device includes the LED package, the LED placed on the first lead frame, and the one of the LED and the first and second lead frames.
  • a transparent resin that seals at least part of the surface is provided. Thereby, it is possible to prevent the sealing resin from leaking from the package and to prevent the penetration of impurities such as sulfides that contaminate or corrode the inside of the cavity.
  • An LED package manufacturing method includes: a first lead frame including one surface on which an LED is placed; and a back surface of the one surface and the other plane; A second lead frame facing the first lead frame without contacting the first lead frame in a direction parallel to the one surface; and a connecting end between the first lead frame and the second lead frame facing each other.
  • At least a part of the other surface of the first lead frame is a method of manufacturing an LED package exposed from the resin, Forming a rough portion by scraping a part of the other surface of the first lead frame by laser processing with respect to an end portion of the other surface of the first lead frame on the connecting end side; Resin that covers the connection end portion to which the scattered matter generated by scraping off the first lead frame in the step of forming the rough portion is attached and fixing the first lead frame and the second lead frame. Forming. Thereby, it is possible to prevent the sealing resin from leaking from the package and to prevent the penetration of impurities such as sulfides that contaminate or corrode the inside of the cavity.
  • the method of manufacturing an LED package according to an embodiment of the present invention further includes a roughing process by laser processing on an end portion of the other surface of the first lead frame and on a connection end portion side of the first lead frame. And forming a rough portion by laser processing at the connection end after forming the portion.
  • the lead frame and the package resin are firmly and closely connected to each other, thereby maintaining the optical characteristics by preventing intrusion of impurities such as moisture and sulfur dioxide from the outside of the package through the gap between the lead frame and the package resin.
  • impurities such as moisture and sulfur dioxide
  • the first lead frame is opposed to the second lead frame at the end of the other surface of the first lead frame. Then, on the connection end portion side of the first lead frame connected to the package resin, a part of the other surface of the first lead frame is scraped off by laser processing to form a rough portion and a metal oxide layer. And a step of forming a package resin having the metal oxide layer at a part of the connection end portion of the first lead frame and fixing the first lead frame and the second lead frame. And comprising.
  • the lead frame and the package resin are tightly connected in the presence of a metal compound, thereby preventing the entry of impurities such as moisture and sulfur dioxide from the outside of the package through the gap between the lead frame and the package resin. Characteristics can be maintained.
  • FIG. 1 is a perspective view schematically showing an LED package according to an embodiment of the present invention.
  • the LED package 100 includes a pair of rectangular lead frames 101 and 102, a rectangular insulating portion 103, and a reflector portion 104.
  • the insulating unit 103 electrically insulates the lead frame 101 and the lead frame 102 from each other.
  • the reflector unit 104 surrounds the outer periphery of the lead frames 101 and 102 and the insulating unit 103.
  • these shapes are not limited to rectangles, and may be polygonal or curved.
  • the lead frames 101 and 102, the insulating portion 103, and the reflector portion 104 are integrated.
  • the lead frames 101 and 102 are used by processing a metal plate made of copper or a copper alloy from the viewpoint of conductivity, heat dissipation, mechanical strength, light reflection, and the like.
  • the lead frames 101 and 102 are used after being silver-plated in order to improve optical characteristics.
  • a pair of the lead frame 101 and the lead frame 102 is arranged so as to sandwich the insulating portion 103 from the horizontal direction. That is, the lead frame 101 and the lead frame 102 and the insulating portion 103 are connected at the connection end where the lead frame 101 and the lead frame 102 face each other.
  • the lead frame 101 is, for example, an anode side lead portion
  • the lead frame 102 is a cathode side lead portion.
  • the insulating portion 103 is made of a thermosetting resin such as epoxy or a thermoplastic resin such as polyphthalamide, and holds the lead frame 101 and the lead frame 102.
  • the upper surface (front surface) of the insulating portion 103 which is one surface forms the concave bottom portion of the LED package 100 together with the upper surfaces (front surface) of the lead frames 101 and 102.
  • the reflector unit 104 is made of a thermosetting resin such as epoxy or a thermoplastic resin such as polyphthalamide, and efficiently reflects light from the LED element toward the upper portion of the LED package 100.
  • the reflector unit 104 is preferably a white resin containing, for example, titanium oxide. Further, the reflector unit 104 may be configured by the lead frames 101 and 102.
  • the LED chip 110 which is a light emitting element is mounted on the upper surface (front surface) of the lead frame 102 of the LED package 100.
  • the upper surface (surface) of the lead frame 102 on which the LED chip 110 is mounted, the lead frame 101, and the insulating portion 103 is surrounded by the reflector portion 104, so that the upper side of the LED package 100 has a concave LED mounting space (cavity). ) 105 is formed.
  • the light from the LED chip 110 is reflected. Therefore, it is preferable to minimize the area occupied by the insulating portion 103 having a lower reflectance and maximize the area occupied by the lead frames 101 and 102 having a higher reflectance.
  • the reflector unit 104 is not always necessary.
  • the LED chip 110 is connected (wire bonded) to the lead frames 101 and 102 by bonding wires 111 and 112 which are conductive members.
  • the diameters of the bonding wires 111 and 112 are preferably ⁇ 25 ⁇ m to 35 ⁇ m.
  • As the material Al, Cu, Pt, Au or the like is preferably used.
  • the LED chip 110 is, for example, a GaN blue light emitting diode chip.
  • the cavity 105 is filled with a sealing resin (not shown), and the LED chip 110 and the bonding wires 111 and 112 disposed in the cavity 105 are sealed by the sealing resin. Since this sealing resin has a high light transmittance at the emission wavelength of the LED element and is required to be filled in a narrow gap, an organic resin having a low viscosity (for example, a silicone resin) is often used.
  • a sealing resin for example, a silicone resin
  • FIG. 2 is a cross-sectional perspective view of the LED package 100 according to the present embodiment
  • FIG. 3 is a cross-sectional view of the LED package 100 according to the present embodiment. 2 and 3, the description of the LED chip 110 and the bonding wires 111 and 112 of FIG. 1 is omitted.
  • the portion where the lead frames 101 and 102 and the insulating portion 103 are connected has a step structure in which concave and convex portions are combined. More specifically, the connection end portions of the lead frames 101 and 102 have a step structure in which the upper surface (front surface) as one surface is wide and the lower surface (back surface) as the other surface is narrow.
  • the insulating portion 103 sandwiched between 102 has a step structure opposite to that of the insulating portion 103 having a narrow upper surface (front surface) and a lower lower surface (back surface).
  • the connection end portions of the lead frames 101 and 102 are portions where the lead frames 101 and 102 face each other and are connected to the insulating portion 103. Further, as shown in FIG.
  • connection end portion between the lead frames 101 and 102 and the reflector portion 104 has a structure in which an uneven portion is fitted, and the lead frames 101 and 102 are sandwiched by the package resin of the reflector portion 104. be able to.
  • This step structure is not actually formed at a right angle as shown in FIGS. That is, it is difficult to form the step structure at a right angle by, for example, etching, and a gentle curve may be drawn. The size of the curve depends on the processing accuracy.
  • the step structure of the lead frames 101 and 102 and the insulating portion 103 is a structure that places more importance on improving the sealing performance between the inside and outside of the cavity. Therefore, the connection end portions of the lead frames 101 and 102 may be not a step structure but a straight line perpendicular to the front and back surfaces, a slope, a curved surface, or other shapes.
  • the part is a part for which adhesion is still required.
  • the lead frames 101 and 102 are not covered with the insulating portion 103 as in the present embodiment, the lead frames 101 and 102 are exposed, so that the entry path of an external substance such as moisture is short.
  • the adhesion between the connection end of the first electrode and the insulating portion 103 is important.
  • the heat generated by the LED chip 110 is efficiently radiated by the lead frames 101 and 102 having a high electric heat rate.
  • the adhesion between the lead frames 101 and 102 and the connecting end portion of the insulating portion 103 and the connecting end portions of the lead frames 101 and 102 and the reflector portion 104 surrounded by the broken lines in FIGS. Is drastically improved.
  • FIG. 4 is a cross-sectional view of the LED package 100 according to the present embodiment.
  • FIG. 4A is a reproduction of FIG.
  • FIG. 4B is an enlarged view of a main part of a connection end portion (A portion) between the lead frames 101 and 102 and the insulating portion 103.
  • FIG. 4C is an enlarged view showing a laser-processed portion of the interface of the connection end portion (A portion).
  • FIG. 5 is a diagram showing the reflectance of various metals, which is a well-known fact.
  • the lead frames 101 and 102 are made of a copper alloy, and the surface is silver-plated.
  • the insulating part 103 and the reflector part 104 are made of epoxy resin.
  • This embodiment is characterized in that the Ag plating surfaces of the lead frames 101 and 102 are roughened in a predetermined state by laser processing. That is, as shown in FIG. 4C, a rough surface with a surface roughness (Ra) of 0.1-10 ⁇ m is formed on the Ag-plated surfaces of the lead frames 101, 102 by laser processing.
  • the Ag plating surfaces of the lead frames 101 and 102 are roughened by laser processing so as to form a rough surface of 0.1 to 10 ⁇ m, and then the lead frames 101 and 102 are bonded to the epoxy resin of the insulating portion 103 or the reflector portion 104. Resin molding.
  • the step structure in the laser irradiation portion such as the A portion (connection end portion) is not actually formed at a right angle as shown in FIGS. That is, it is difficult to form the step structure at a right angle, and a gentle curve is often drawn. If the lead frames 101 and 102 are curved, irregularities cannot be formed on the surfaces of the lead frames 101 and 102 unless the laser is irradiated with high output. This is because the laser irradiation power density decreases as the irradiation area of the lead frames 101 and 102, which are objects, increases.
  • the lead frames 101 and 102 are flat and approach the direction perpendicular to the laser irradiation direction, so that irregularities are easily formed on the surfaces of the lead frames 101 and 102 even when the laser output is low. That is, the surface area of the lead frames 101 and 102 that receive the laser light is approximately the same as the area (size) of the laser light, such as the laser being irradiated onto the surfaces of the lead frames 101 and 102 more vertically. Is easy to form irregularities on the surfaces of the lead frames 101 and 102 even if the output is low.
  • the surface area of the lead frames 101 and 102 that receive the laser beam becomes too large relative to the area of the laser beam, and the lead frame 101 must be irradiated with a high output of the laser. , 102 cannot form irregularities on the surface.
  • the laser set to a high output if the laser is irradiated onto a portion where the laser hits vertically, such as a flat portion, the power is too large and the periphery of the processing portion is discolored by heat.
  • the lead frames 101 and 102 are discolored, the optical characteristics are deteriorated, and the luminance of the LED is lowered.
  • the lower surface (rear surface) of the lead frames 101 and 102 is used, the possibility of a decrease in solderability is increased due to the influence of a high-power laser.
  • the scattered matter when a large amount of scattered matter corresponding to the portion scraped by the laser is scattered, the scattered matter also scatters on the upper surface (surface) of the lead frames 101 and 102 and reflects the LED light, and is reflected on the upper surface.
  • the optical characteristics such as the rate decrease.
  • the lower surface (rear surface) of the lead frames 101 and 102 is scattered, the scattered matter becomes an obstacle and the possibility of a decrease in solderability increases. Therefore, in the laser processing, sufficient unevenness must be formed with a lower output in consideration of the influence on the surroundings that leads to quality degradation.
  • the reflectance of the surfaces of the lead frames 101 and 102 (Ag plating surface) is high, the laser beam is reflected without being absorbed by the surfaces of the lead frames 101 and 102 (Ag plating surface). Therefore, irregularities cannot be formed on the surfaces of the lead frames 101 and 102 without irradiating with a high laser output.
  • the LED package of the present invention needs to reflect the LED efficiently, and thus Ag plating is applied to improve the optical characteristics. Accordingly, the surface of the lead frames 101 and 102 (Ag plating surface) basically has high optical characteristics, and laser processing must be performed at a high output accordingly.
  • the optical characteristics are low, such as the reflectance of the surfaces of the lead frames 101 and 102 (Ag plating surface) is low, the surface of the lead frames 101 and 102 (Ag plating surface) absorbs the laser beam without reflection. Therefore, it is easy to form irregularities on the surfaces of the lead frames 101 and 102 even when the laser output is low. Further, for example, when irregularities are formed on the surfaces of the lead frames 101 and 102 (Ag plating surface) by the first laser irradiation, scattered objects corresponding to the portions of the lead frames 101 and 102 scraped around the irregularities. Splashes around. As a result, the optical characteristics of the surfaces of the lead frames 101 and 102 (Ag plating surface) are degraded.
  • laser processing of the Ag plating surfaces of the lead frames 101 and 102 is performed on the connection end portion side end portion of the lower surface (back surface) of the lead frames 101 and 102. It is applied to the boundary portion with the structure (C portion in FIG. 4B). In other words, it is applied to the lower surface (rear surface) which is the other surface of the lead frames 101 and 102 and the end portion which is the boundary portion (C portion in FIG. 4B) with the connection end portion (A portion). In addition, it may be formed on the surface (B portion in FIG. 4B) of the lead frames 101 and 102 at the connection end portion (A portion) between the lead frames 101 and 102 and the insulating portion 103 later.
  • irregularities can be easily formed in the C portion which is a planar shape even with a low-power laser. Then, scattered objects corresponding to the lead frames 101 and 102 scraped off by the formation of irregularities in the C portion are scattered, so that small irregularities due to the scattered objects are formed around the C portion (including the B portion). As a result, a rough surface is formed on the Ag-plated surface of the lead frames 101 and 102, so that the epoxy resin flows into the rough surface, and the adhesion area between the epoxy resin and the Ag-plated surface of the lead frames 101 and 102 is increased. Increase. As a result, the adhesion at the interface between the lead frames 101 and 102 and the insulating portion 103 and the reflector portion 104 is improved. However, in this case, the amount of scattered matter is not so large as to adhere to the upper surface (surface).
  • the optical characteristics of the periphery of C part deteriorate due to the above scattered matter, for example, the reflectance decreases.
  • the curved B portion can easily absorb the laser beam, and the unevenness can be sufficiently formed even with the low-power laser beam. That is, it is good to form a recessed part by laser processing in the boundary part with the connection surface (B part) of a lower surface, and to form a recessed part by laser processing in a connection surface (B part) after that.
  • a rough surface having large irregularities is easily formed on the Ag plating surfaces of the lead frames 101 and 102 by the low-power laser beam, so that the epoxy resin flows into the rough surface, and the epoxy resin and the lead frames 101 and 102.
  • This further increases the adhesion area between the Ag plating surface and the surface.
  • the adhesion at the interface between the lead frames 101 and 102 and the insulating portion 103 and the reflector portion 104 is greatly improved.
  • the laser irradiation portion is not always in the direction perpendicular to the lead frames 101 and 102 (directly above). Therefore, for example, when the laser beam is irradiated from an oblique direction (X direction in FIG. 4B) with respect to the lead frames 101 and 102, when the laser beam is applied to the portion B in FIG. The B part of 101 does not hit the laser well. That is, since the surface areas of the lead frames 101 and 102 that receive the laser beam are extremely different with respect to the same laser irradiation area, the degree of laser absorption between the lead frame 101 and the lead frame 102 varies greatly.
  • the surface areas of the lead frames 101 and 102 that receive the laser light are the same for the same laser irradiation area. Both are processed with approximately the same level of laser processing. Therefore, even if laser irradiation is performed from an oblique direction, the degree of laser processing is less likely to vary.
  • the lead frames 101 and 102 and the insulating portion 103 can be bonded more strongly.
  • the structure will be described below.
  • the silver plating surfaces of the lead frames 101 and 102 are roughened and oxidized in a predetermined state by laser processing. That is, as shown in FIG. 4C, a rough portion and a silver oxide layer are formed on the silver-plated surfaces of the lead frames 101 and 102 by laser processing.
  • the silver plating surfaces of the lead frames 101 and 102 are roughened and oxidized by laser processing, and the lead frames 101 and 102 are resin-molded with the epoxy resin of the insulating portion 103 or the reflector portion 104.
  • the depth of the rough portion formed by laser processing is not larger than the thickness of the silver plating. The rough portion thus formed increases the adhesion area with the resin, and the adhesion is improved by the anchor effect.
  • FIG. 5 shows the reflectance of various metal materials
  • silver has a higher reflectance in the visible light region than other metal materials. Therefore, in the laser processing, a sufficient rough portion and a silver oxide layer must be formed with a lower output in consideration of the influence on the environment that leads to quality degradation.
  • the laser processing of the lead frames 101 and 102 on the silver-plated surface is performed on the lower surface (rear surface) of the lead frames 101 and 102 and on the connection end side (C portion in FIG. 4B). It is good to apply to.
  • the laser is simultaneously applied to the lower surface (rear surface) which is the other surface of the lead frames 101 and 102, at the end portion (C portion in FIG. 4B) on the connection end portion (A portion) side and the connection end portion (A portion).
  • processing may be performed, it is preferable to process at least the end portion (C portion in FIG. 4B) on the connection end portion (A portion) side.
  • it may be formed on the surface (B portion in FIG. 4B) of the lead frames 101 and 102 at the connection end portion (A portion) between the lead frames 101 and 102 and the insulating portion 103 later.
  • the coarse portion and the silver oxide layer can be easily formed in the C portion having a planar shape even with a low-power laser. Then, when the scattered matter corresponding to the lead frames 101 and 102 scraped off by forming the rough portion of the C portion is scattered, small irregularities due to the scattered matter are formed around the C portion (including the B portion).
  • the optical properties of the periphery of C part deteriorate due to the above scattered matter and the silver oxide layer, for example, the reflectance decreases.
  • the curved portion B can easily absorb the laser beam, and the rough portion and the silver oxide layer can be sufficiently formed even with the low-power laser beam. That is, a rough portion and a silver oxide layer are formed by laser processing at the boundary with the connection surface (B portion) on the lower surface, and then a rough portion and a silver oxide layer are formed by laser processing on the connection surface (B portion). Good.
  • the epoxy resin flows into the rough surface, and the epoxy resin and the lead frame 101. , 102 further increases the adhesion area between the silver-plated surfaces.
  • the adhesion at the interface between the lead frames 101 and 102 and the insulating portion 103 and the reflector portion 104 is greatly improved.
  • the interface between the lead frames 101 and 102 and the epoxy resin of the insulating portion 103 is more closely attached through the chemical bond between the silver oxide layer and the epoxy resin formed at the same time.
  • a metal oxide layer by laser processing it is necessary to generate heat by absorbing the energy of the laser irradiated on the metal surface.
  • the heated metal surface and oxygen present in the air react to form a metal oxide layer on the metal surface.
  • a high laser output is required because it has a higher reflectance and higher thermal conductivity than other metals.
  • the area of the silver oxide layer formed by laser processing is usually larger than the area of the rough portion formed at the same time, it is more difficult to control than the formation of the rough portion.
  • the range of the wavelength of the laser is 400 to 2200 nm, preferably 800 to 1200 nm, in this embodiment, 1060 nm, peak power: 5 kW to 50 kW, preferably 8 kW or higher, and frequency: 10 to 200 kHz. .
  • the silver plating layer on the surface is appropriately oxidized.
  • FIG. 6 is a diagram showing the degree of formation of the recess formed by laser processing and the surrounding silver oxide layer on the lead frame according to the present embodiment.
  • FIG. 6A is a diagram showing the relationship between the distance from the recess formation position by laser processing and the amount of oxygen.
  • FIG. 6B is a diagram illustrating a relationship between the analysis position and the recess formation position in FIG. 6A.
  • the amount of oxygen in the laser processing peripheral portion is high, and a silver oxide layer is formed over a wide range from the rough portion by laser processing to the outside.
  • FIG. 7 is a diagram for explaining the optimum range of laser processing from the relationship between laser frequency and peak power.
  • the laser frequency when the laser frequency is high and the peak power is small, laser processing is not sufficient, and the adhesion between the lead frame and the package resin is insufficient.
  • the silver oxide layer extends beyond the region of the package resin joint of the insulating portion 103 to the silver surface corresponding to the cavity of the lead frames 101 and 102 and the outer lead portion. Many will be formed. For this reason, the resin burrs adhere firmly during subsequent molding, making it difficult to remove.
  • FIG. 8 is a diagram showing an equilibrium oxygen partial pressure curve of silver, silver oxide, and other metal oxides.
  • FIG. 8A shows the equilibrium oxygen partial pressure curves of silver and silver oxide
  • FIG. 8B shows the equilibrium oxygen partial pressure curves of various metals.
  • silver does not form silver oxide at room temperature and atmospheric pressure.
  • FIG. 8B it turns out that it is hard to oxidize compared with metal materials, such as copper, nickel, and iron. From the above, since silver is difficult to form an oxide film, a problem remains in the adhesion between the silver layer of the lead frame 102 and the package resin of the insulating portion 103.
  • 8A is a diagram showing the reflectance of various metals, which is a well-known fact (Source: R.O. Suzuki, T. Ogawa and K. Ono, J. Amer. Ceram. Soc., 82 [ 8] (1999) 2033-38).
  • FIG. 9 is a diagram showing the reaction between silver oxide and package resin.
  • FIG. 9A shows a package resin representing the insulating portion 103 and a laminate of the copper layer, the silver layer, and the silver oxide layer representing the lead frames 101 and 102.
  • a part of the package resin of the insulating portion 103 has an OH group that easily reacts with an inorganic substance.
  • the oxygen atom of Ag 2 O in the silver oxide layer reacts with moisture in the air and comes to have OH groups.
  • the insulating portion 103 and the lead frames 101 and 102 are firmly bonded to each other through chemical bonds via oxygen atoms.
  • the silane coupling agent is contained in the package resin, stronger adhesion can be expected.
  • the silver layer is changed to a silver oxide layer having oxygen atoms by being oxidized, and is thus easily bonded to the package resin.
  • the insulating portion 103 and the lead frames 101 and 102 bonded by chemical bonding can realize more stable adhesion due to a synergistic effect with the anchor effect.
  • connection end portions of the lead frames 101 and 102 may have a linear shape perpendicular to at least one of the front and back surfaces of the lead frames 101 and 102.
  • a directionality (vector) in a direction parallel to at least one of the front and back surfaces of the lead frames 101 and 102 as in the step shape shown in FIG. That is, for example, a slope shape, a curved surface shape, or an arc shape may be used.
  • the lead frames 101 and 102 approach on the front surface side of the lead frames 101 and 102, and the lead frames 101 and 102 on the back surface side of the lead frames 101 and 102. It is better to keep away.
  • the scattered matter of the lead frames 101 and 102 by laser processing becomes easy to adhere to a connection end part, and laser processing becomes easy also to a connection end part.
  • the adhesion of scattered matter includes the case where the scattered matter is simply on the connection end. Moreover, you may remove the scattered material adhering except a connection edge part.
  • the laser irradiation portion is not always in the direction perpendicular to the lead frames 101 and 102 (directly above). Therefore, for example, when the laser beam is irradiated from an oblique direction (X direction in FIG. 4B) with respect to the lead frames 101 and 102, when the laser beam is applied to the portion B in FIG. The B part of 101 does not hit the laser well. That is, since the surface areas of the lead frames 101 and 102 that receive the laser beam are extremely different with respect to the same laser irradiation area, the degree of laser absorption between the lead frame 101 and the lead frame 102 varies greatly.
  • the surface areas of the lead frames 101 and 102 that receive the laser light are comparable with respect to the same laser irradiation area. Therefore, substantially the same level of laser processing is performed on both the C portion of the lead frame 101 and the C portion of the lead frame 102. Therefore, even if laser irradiation is performed from an oblique direction, the degree of laser processing is less likely to vary.
  • Step S1 Lead frame board preparation process
  • Lead frame board used as material of lead frames 101 and 102 uses copper or copper alloy with good heat conduction.
  • Step S2 Lead Frame Processing Step
  • the lead frame is processed from the lead frame plate by etching. Further, instead of etching, the lead frame may be processed by die punching from the lead frame plate.
  • Step S3 Silver plating step
  • the processed lead frame is subjected to nickel plating + copper plating, and then silver plating is performed.
  • the nickel and copper plating is a very thin plating (flash plating).
  • the silver plating after nickel plating + copper plating is a plating having a film thickness of about 1 to 10 ⁇ m. Since silver is expensive, it is preferable to make it as thin as possible.
  • Silver plating uses glossy silver plating, but semi-glossy or matte silver plating may be used. Moreover, nickel plating and copper plating are not necessarily required.
  • Step S4 Silver plating surface processing step Laser irradiation is performed on the silver-plated lead frame to perform processing for roughening and oxidizing the surface of the lead frame.
  • a fiber laser is used for laser processing.
  • the surface roughness (Ra) of the silver plating surface of the lead frame is determined by the energy of the fiber laser.
  • the surface roughness (Ra) is applied to the silver plating surface of the lead frame by laser processing under the conditions of fiber laser (wavelength: 1060 nm, peak power of 5 kW or more, preferably 8 kW or more, frequency: 10 to 200 kHz).
  • a silver oxide layer is formed on a rough surface of 0.1 to 10 ⁇ m and a peripheral portion.
  • the silver plating surface of the lead frame processed with silver plating has a desired surface roughness (Ra): a rough surface of 0.1 to 10 ⁇ m and a silver oxide layer on the periphery.
  • Step S5 Resin Molding Process
  • the resin molding uses transfer molding or injection molding.
  • an epoxy resin is used in this embodiment, the resin material can be changed to another material.
  • silicone resin polyphthalamide (PPA), polycarbonate resin, polyphenylene sulfide (PPS) resin, liquid crystal polymer (LCP) resin, ABS resin, phenol resin, acrylic resin, PBT resin, etc. Resin or composite resin of resin and inorganic material.
  • Step S6 Thermosetting process
  • the package resin is thermoset to stabilize the chemical and mechanical properties of the package resin. Depending on the type of molding resin and the molding method, this step may be unnecessary.
  • Step S7 Deflash process
  • the package resin may protrude from the insulating portion 103 into a thin burr shape on the light reflecting surface and the back surface of the lead frames 101 and 102.
  • the resin burr is removed by a process such as electrolysis (deflash).
  • the silver oxide layer formed by laser processing exceeds the resin adhesion portion of the lead frames 101 and 102 and reaches the light reflecting surface and back surface of the lead frames 101 and 102, the resin burr and the silver oxide layer are strongly bonded. Therefore, deflashing becomes difficult.
  • the LED package 100 is completed.
  • FIG. 10 is a manufacturing process diagram up to sealing of the sealing resin of the LED package according to the present embodiment.
  • LED package 100 preparation process As shown in FIG. 10A, an LED package 100 having lead frames 101 and 102 having a rough surface formed on a silver-plated surface produced by an LED package manufacturing method is prepared.
  • the following silver plated surfaces (1) to (3) are resin-molded after a rough surface having a surface roughness (Ra) of 0.1-10 ⁇ m is formed by laser processing.
  • a surface roughness (Ra) of 0.1-10 ⁇ m is formed by laser processing.
  • Silver-plated surface of the lead frames 101 and 102 at the connection end portion between the lead frames 101 and 102 and the insulating portion 103 (2) Silver-plated surface between the lead frames 101 and 102 and the outer peripheral connection end portion of the reflector portion 104 3) Silver-plated surfaces at the connecting ends of the lead frames 101 and 102 and the trapezoidal bottom of the reflector 104
  • the LED chip 110 mounting process (see FIG. 10B) As shown in FIG. 10B, the LED chip 110 is placed on the upper surface (front surface) of the lead frame 102 of the LED package 100, and fixed via, for example, a die bonding paste.
  • a die bonding paste made of a heat-resistant / light-resistant resin such as epoxy or silicone, or a metal having higher thermal conductivity can be used.
  • the LED chip 110 is mounted on a substantially central portion of the bottom surface of the LED mounting space (cavity) 105 of the LED package 100. Further, the outer peripheral direction of the LED chip 110 is surrounded by the reflector portion 104.
  • Wire bonding process As shown in FIG. 10C, the anode electrode pad (not shown) of the LED chip 110 placed on the upper surface of the lead frame 102 and the lead frame 101 are wire-bonded by a bonding wire 111. Then, the cathode electrode pad (not shown) of the LED chip 110 and the lead frame 102 are electrically connected by wire bonding with the bonding wire 112.
  • the cavity 105 is filled with a sealing resin 120 containing a fluorescent material so as to cover the LED chip 110 and the bonding wires 111 and 112 disposed in the cavity 105.
  • the LED chip 110 and the bonding wires 111 and 112 disposed in the cavity 105 are sealed with the sealing resin 120.
  • a low-viscosity organic resin for example, a silicone resin
  • the sealing resin 120 contains a fluorescent material that converts the wavelength of light from the LED element.
  • the fluorescent material is variously selected according to the wavelength of light from the light emitting element. For example, when an LED element emitting blue light is used, nitrogen-containing CaO—Al activated with YAG: Ce, Eu and / or Cr is used.
  • An inorganic fluorescent material such as 2 O 3 —SiO 2 is preferably used.
  • Fluorescent substance that converts light from the LED element to a longer wavelength is good in luminous efficiency.
  • the mixed color light that has been wavelength-converted by the LED element and the fluorescent material is preferably white.
  • a silicone material is used as the fluorescent material (wavelength conversion member) that converts the wavelength of light emitted from the LED chip 110.
  • This silicone resin contains (Si ⁇ Al) 6 (O ⁇ N) 8 : Eu as a green phosphor and CaAlSiN 3 : Eu as a red phosphor. Thereby, part of the blue light emitted from the LED chip 110 is converted into red or green light having a longer wavelength than the blue light.
  • silicone resin that does not contain the fluorescent material may be used, or a sealing resin other than the silicone resin may be used.
  • FIG. 11 is a view showing an enlarged photograph of the lead frame of the LED package according to the present embodiment. It can be seen that laser processing is performed on the portion C in FIG. 4B.
  • the first step is performed in one of the first lead frame 102 having one surface (upper surface) on which the LED chip 110 is placed and the second lead frame 101 facing the first lead frame 102.
  • the other surface (lower surface) opposite to the surface (upper surface) of the first lead frame 102 and the boundary surface (C portion) between the connection surface (B portion) where the second lead frame 101 faces.
  • a coarse part and a silver oxide layer are formed.
  • the scattered matter of the lead frame 102 adheres in the first step, covers the connection surface (B part) formed with the silver oxide layer, and the first lead frame 102 and the second lead frame 101 are connected.
  • a package resin (insulating portion 103) to be fixed is formed.
  • planar shapes of the lead frames 101 and 102 and the insulating portion 103 are substantially rectangular, but the shape is not limited to this, and may be, for example, a circle, an ellipse, or a polygon.
  • one LED chip 110 is disposed in the cavity 105, but the number of LED chips may be one or more, and is not limited to this.
  • the name “LED package” is used. However, this is for convenience of explanation, and may be a package for a semiconductor element, a package for an optical semiconductor element, or the like. Moreover, the manufacturing method of an LED package may be called the manufacturing method of an optical semiconductor element.
  • each component constituting the LED package for example, the type of the substrate, the resin sealing method, etc. is not limited to the above-described embodiment.
  • the LED package, LED light-emitting element, and manufacturing method thereof of the present invention are suitable for use in a package on which an LED chip is mounted.
  • it is excellent in reliability and useful for use as a long-life light-emitting device having liquid leakage resistance of a sealing resin.
  • LED package 101 100 LED package 101, 102 Lead frame 103 Insulating part 104 Reflector part 105 Cavity (LED mounting space) 110 LED chip 111, 112 Bonding wire 120 Sealing resin

Abstract

Provided is an LED package that can prevent sealing resin from leaking out of the package, and prevent sulfide from permeating into a cavity. This LED package is provided with: a first lead frame (102) that is further provided with one face upon which an LED is placed and the other face that is the back face thereof; a second lead frame (101); and resin (103) that connects a connection end section (A section) of the first and second lead frames (101, 102) that are opposed to each other. At least a portion of the other face of the first lead frame (102) is exposed from the resin. A rough surface is formed at the end section (C section) at the connection end section (A section) side of the other face of the first lead frame (102), and at least at portions of the connection end section (A section), by executing laser processing on the first lead frame (102).

Description

LEDパッケージ、LED発光素子及びそれらの製造方法LED package, LED light emitting device and manufacturing method thereof
 本発明は、LED(Light Emitting Diode)パッケージ、LED発光素子及びそれらの製造方法に関する。 The present invention relates to an LED (Light Emitting Diode) package, an LED light emitting element, and a method for manufacturing them.
 近年、数十μmから数mm程度角の大きさのLEDチップをパッケージ内に収めた発光装置が開発され、電子機器、車両、各種の照明装置として利用が拡大している。 In recent years, a light emitting device in which an LED chip with a size of about several tens of μm to several mm is housed in a package has been developed and its use is expanding as an electronic device, a vehicle, and various lighting devices.
 LEDパッケージは、キャビティにLEDチップを搭載し、シリコーン樹脂などの封止材料でモールドして、外部に露出した電極によって、実装基板と電気的・機械的な接続を行う。 The LED package has an LED chip mounted in a cavity, is molded with a sealing material such as silicone resin, and is electrically and mechanically connected to the mounting substrate by an electrode exposed to the outside.
 LEDパッケージは、ヒートシンク、リードフレーム、ケースが一体となっているものが最も一般的である。ヒートシンクは熱の拡散を、リードフレームは電気的導通を、ケースは絶縁及び放熱効果をそれぞれ要求されている。LEDパッケージは、LEDチップから放出される光を効率よく取り出すことが求められており、LEDから直接放たれた光だけでなく、リフレクタを設けることで反射させ、外部に光をより多く放出されるような輝度の高いパッケージが検討されている。 The most common LED package is an integrated heat sink, lead frame, and case. The heat sink is required for heat diffusion, the lead frame is required for electrical conduction, and the case is required for insulation and heat dissipation. The LED package is required to efficiently extract the light emitted from the LED chip. In addition to the light emitted directly from the LED, the LED package reflects the light by providing a reflector, and more light is emitted to the outside. Such high-brightness packages are being studied.
 上記リードフレームは、板状の鉄-ニッケル等の合金薄板、銅-ニッケル-錫等の金属薄板からなるリードフレーム用金属材料を、エッチング加工やスタンピング加工等にて製造される。このように製造されるリードフレームは、LEDチップを搭載するためのパッド電極(アイランド電極)と、インナーリード電極と、外部基板と電気的に接続されるアウターリード電極とを備える。インナーリード電極は、パッド電極とは絶縁状態であり、LEDチップと電気的に接続される。 The lead frame is manufactured by etching or stamping a metal material for a lead frame made of a plate-like alloy thin plate such as iron-nickel or a metal thin plate such as copper-nickel-tin. The lead frame manufactured in this way includes a pad electrode (island electrode) for mounting an LED chip, an inner lead electrode, and an outer lead electrode electrically connected to an external substrate. The inner lead electrode is insulated from the pad electrode and is electrically connected to the LED chip.
 上記封止樹脂は、キャビティ内に充填してLEDチップや配線を保護すると共に、蛍光物質を含有することによってLEDチップからの光を、例えば青色から白色に波長変換する。封止樹脂は、狭い隙間への充填性が求められるため、低粘度の有機系樹脂(例えば、シリコーン系樹脂)が使用されることが多い。このため、パッケージとしては、キャビティに流し込んだ封止樹脂が、パッケージの側面や底面から漏れ出ないようにすることが必要である。 The sealing resin is filled in the cavity to protect the LED chip and the wiring, and contains a fluorescent material to convert the wavelength of the light from the LED chip from blue to white, for example. Since the sealing resin is required to be filled in a narrow gap, a low-viscosity organic resin (for example, a silicone resin) is often used. For this reason, as a package, it is necessary to prevent the sealing resin poured into the cavity from leaking out from the side surface or the bottom surface of the package.
 パッケージ部材は、熱膨張係数の異なる樹脂材料と金属からなるため、密着性・接着性が悪い。結果、樹脂部と金属部との界面の隙間から封止樹脂が漏れ出すと、封止の目的とするリフレクタ内のLEDチップや配線の保護ができなくなるばかりか、はんだの実装性不良等の種々の問題を発生させる原因になる。また、封止樹脂に蛍光物質が含有されている場合は、封止樹脂と共に蛍光物質も漏れ出すことになり、目的の色度からずれることになる。 Since the package member is made of a resin material and a metal having different thermal expansion coefficients, the adhesion and adhesion are poor. As a result, if the sealing resin leaks from the gap at the interface between the resin part and the metal part, the LED chip and the wiring in the reflector intended for sealing cannot be protected, and various solder mounting defects, etc. Cause problems. Moreover, when the fluorescent material is contained in the sealing resin, the fluorescent material also leaks together with the sealing resin, resulting in deviation from the target chromaticity.
 特許文献1には、リードフレームの一部に溝部又は突起部を形成して、アウターリード電極とパッケージ部材との界面から外壁面方向へ封止樹脂が漏出することを防止する半導体装置が記載されている。上記溝部及び突起部の形成方向は、アウターリード電極の延伸方向に対して垂直方向であることが記載されている。また、溝部や突起部の形成方法は、打ち抜き加工(プレス加工)やエッチングにより形成されることが記載されている。また、リードフレームの材質としては、導電性・放熱性・機械的強度・光の反射等の観点から、銅をベースとした合金で、表面を銀で処理したものが好適であることが記載されている。 Patent Document 1 describes a semiconductor device in which a groove or a protrusion is formed in a part of a lead frame to prevent the sealing resin from leaking from the interface between the outer lead electrode and the package member toward the outer wall surface. ing. It is described that the forming direction of the groove and the protrusion is a direction perpendicular to the extending direction of the outer lead electrode. Further, it is described that the method of forming the groove and the protrusion is formed by punching (pressing) or etching. In addition, as a material of the lead frame, it is described that an alloy based on copper and whose surface is treated with silver is preferable from the viewpoint of conductivity, heat dissipation, mechanical strength, light reflection, and the like. ing.
特開2006-222382号公報JP 2006-222382 A
 しかしながら、特許文献1記載の半導体装置は、アウターリード電極とパッケージ樹脂部との界面から外壁面方向への封止樹脂の漏出防止に着目した技術であるため、以下の課題がある。 However, the semiconductor device described in Patent Document 1 has the following problems because it is a technique that focuses on preventing leakage of the sealing resin from the interface between the outer lead electrode and the package resin portion toward the outer wall surface.
 (1)銅合金の表面を銀メッキした材質であるリードフレームに、打ち抜き加工(プレス加工)やエッチングにより溝部又は突起部を形成しているので、形成される溝部又は突起部が、銅合金の表面の銀メッキを損傷してしまう場合がある。また、該表面に十分な膜厚の銀処理を施したとしても溝部又は突起部では、銀処理が不均一になることは避けられない。 (1) Since a groove or protrusion is formed by punching (pressing) or etching on a lead frame made of silver-plated copper alloy surface, the formed groove or protrusion is made of copper alloy. The silver plating on the surface may be damaged. Further, even if the surface is subjected to a silver treatment having a sufficient film thickness, it is inevitable that the silver treatment is not uniform in the groove or the protrusion.
 このため、溝部又は突起部において、銀メッキが薄くなる、または銀メッキが剥がれ、湿気等により水酸化物及び酸化物等が生成されて腐食する場合があることが判明した。銅合金が腐食すると、腐食物が該表面に露出し、輝度などLEDの特性を低下させる。 For this reason, it has been found that the silver plating becomes thin or the silver plating is peeled off in the groove or the protrusion, and a hydroxide, an oxide, or the like is generated due to moisture or the like and may be corroded. When the copper alloy is corroded, the corroded material is exposed on the surface, and the LED characteristics such as luminance are deteriorated.
 (2)パッケージ樹脂とリードフレームの密着低下に起因する封止樹脂漏れについては記載されているが、LEDパッケージの外からLEDチップの実装領域であるキャビティ内に浸透する銀メッキの硫化対策については記載されていない。アウターリード電極とパッケージ部材との界面からキャビティ内に、空気中の二酸化硫黄などの硫化物が浸透すると、銀メッキは、硫化銀となり黒色化し、反射率が低下するなど光学特性が劣化する。この銀メッキの硫化対策については、記載がなく、有効な対策が講じられていない。 (2) Although the sealing resin leakage due to the decrease in the adhesion between the package resin and the lead frame is described, as for the countermeasure against silver plating sulfidation penetrating from the outside of the LED package into the cavity which is the mounting area of the LED chip Not listed. When sulfides such as sulfur dioxide in the air permeate into the cavity from the interface between the outer lead electrode and the package member, the silver plating becomes silver sulfide and blackens, and the optical characteristics deteriorate, for example, the reflectance decreases. There is no description about the countermeasure against sulfuration of this silver plating, and no effective countermeasure has been taken.
 また、封止樹脂は、必ずしもガスや水分の浸透を防ぐことができていない。このため、空気中の水分やガスの浸透によりLEDチップの劣化が発生して、信頼性を落とすことが多い。 Also, the sealing resin does not necessarily prevent the penetration of gas and moisture. For this reason, the deterioration of the LED chip is often caused by the penetration of moisture and gas in the air, and the reliability is often lowered.
 (3)さらに、リードフレームに銀メッキを使用する場合、銀メッキとパッケージ樹脂間の化学的な結合を形成することが難しく、接着強度が不十分なため、封止樹脂が漏出する恐れがある。特にキャビティ内に少なくとも2つのリードフレームでスリットが形成され、その一方のリードフレームのキャビティ側の裏面の一部がパッケージ樹脂から露出されているタイプのLEDパッケージでは、対向するリードフレームの側面とパッケージ樹脂の界面での接着力が重要視されている。これに対し、リードフレームとパッケージ樹脂との界面における封止樹脂の漏出対策及び、キャビティ内への硫化対策については、記載されていない。 (3) Further, when silver plating is used for the lead frame, it is difficult to form a chemical bond between the silver plating and the package resin, and since the adhesive strength is insufficient, the sealing resin may leak out. . In particular, in an LED package in which a slit is formed in at least two lead frames in the cavity and a part of the back surface of the cavity side of one lead frame is exposed from the package resin, the side surface of the opposing lead frame and the package The adhesive strength at the resin interface is regarded as important. On the other hand, the countermeasure for leakage of the sealing resin at the interface between the lead frame and the package resin and the countermeasure for sulfurization into the cavity are not described.
 本発明の目的は、パッケージから封止樹脂が漏れ出すことを防止し、かつキャビティ内への硫化物浸透を防止することができるLEDパッケージ、LED発光素子及びそれらの製造方法を提供することである。 An object of the present invention is to provide an LED package, an LED light-emitting element, and a method for manufacturing the same that can prevent sealing resin from leaking out of the package and prevent sulfide penetration into the cavity. .
 本発明の一態様に係るLEDパッケージは、LEDを載置する一方の面と、前記一方の面の裏面であって他方の平面と、を備える第1のリードフレームと、前記一方の面と平行な方向において前記第1のリードフレームと接触せずに対向する第2のリードフレームと、前記第1のリードフレームと前記第2のリードフレームがお互いに対向する接続端部間を接続する樹脂と、を備え、前記第1のリードフレームの他方の面の少なくとも一部は、前記樹脂から露出し、前記第1のリードフレームの他方の面の前記接続端部側の端部、及び前記接続端部の少なくとも一部には、前記第1のリードフレームに対するレーザ加工によって粗面が形成されることを特徴とする。 An LED package according to an aspect of the present invention includes a first lead frame including one surface on which an LED is placed, a back surface of the one surface and the other flat surface, and parallel to the one surface. A second lead frame that faces the first lead frame without contacting the first lead frame in any direction, and a resin that connects between the connection ends of the first lead frame and the second lead frame that face each other. At least a part of the other surface of the first lead frame is exposed from the resin, and an end of the other surface of the first lead frame on the connection end side, and the connection end A rough surface is formed on at least a part of the portion by laser processing on the first lead frame.
 本発明によれば、パッケージから封止樹脂が漏れ出すことを防止し、かつキャビティ内を汚染、または腐食する硫化物等の不純物の浸透を防止することができるLEDパッケージ、LED発光素子及びそれらの製造方法を実現することができる。 ADVANTAGE OF THE INVENTION According to this invention, LED package which can prevent the sealing resin leaking out from a package, and can prevent the penetration | infiltration of impurities, such as sulfide which contaminates or corrodes the inside of a cavity, LED light emitting element, and those A manufacturing method can be realized.
本発明の一実施の形態に係るLEDパッケージを模式的に示す斜視図The perspective view which shows typically the LED package which concerns on one embodiment of this invention 本実施の形態に係るLEDパッケージの断面斜視図Cross-sectional perspective view of LED package according to the present embodiment 本実施の形態に係るLEDパッケージの断面図Sectional drawing of the LED package which concerns on this Embodiment 本実施の形態に係るLEDパッケージの断面図Sectional drawing of the LED package which concerns on this Embodiment 各種金属の反射率を示す図Diagram showing reflectivity of various metals 本実施の形態に係るリードフレームに対してレーザ加工により形成された凹部とその周囲の酸化銀層の形成度合いを示す図The figure which shows the formation degree of the recessed part formed by laser processing with respect to the lead frame which concerns on this Embodiment, and the surrounding silver oxide layer レーザの周波数とピークパワーとの関係からレーザ加工の最適範囲を説明する図Diagram explaining the optimum range of laser processing from the relationship between laser frequency and peak power 銀および酸化銀、その他金属酸化物の平衡酸素分圧曲線を示す図Diagram showing equilibrium oxygen partial pressure curves of silver, silver oxide and other metal oxides 酸化銀とパッケージ樹脂との反応を示す図Diagram showing the reaction between silver oxide and package resin 本実施の形態に係るLEDパッケージの封止樹脂の封止までの製造工程図Manufacturing process diagram until sealing of sealing resin of LED package according to the present embodiment 本実施の形態に係るLEDパッケージのリードフレームを拡大した写真を示す図The figure which shows the photograph which expanded the lead frame of the LED package which concerns on this Embodiment.
 本発明の一実施の形態に係るLEDパッケージは、LEDを載置する一方の面と、前記一方の面の裏面であって他方の平面と、を備える第1のリードフレームと、前記一方の面と平行な方向において前記第1のリードフレームと接触せずに対向する第2のリードフレームと、前記第1のリードフレームと前記第2のリードフレームがお互いに対向する接続端部間を接続する樹脂と、を備え、前記第1のリードフレームの他方の面の少なくとも一部は、前記樹脂から露出し、前記第1のリードフレームの他方の面の前記接続端部側の端部、及び前記接続端部の少なくとも一部には、前記第1のリードフレームに対するレーザ加工によって粗面が形成される。これにより、パッケージから封止樹脂が漏れ出すことを防止し、かつキャビティ内を汚染、または腐食する硫化物等の不純物の浸透を防止することができる。 An LED package according to an embodiment of the present invention includes a first lead frame including one surface on which an LED is placed, a back surface of the one surface and the other flat surface, and the one surface. A second lead frame that faces the first lead frame without contacting the first lead frame in a direction parallel to the first lead frame, and a connection between the first lead frame and the second lead frame that face each other. A resin, and at least a part of the other surface of the first lead frame is exposed from the resin, the end of the other surface of the first lead frame on the connection end side, and the A rough surface is formed on at least a part of the connection end portion by laser processing on the first lead frame. Thereby, it is possible to prevent the sealing resin from leaking from the package and to prevent the penetration of impurities such as sulfides that contaminate or corrode the inside of the cavity.
 本発明の一実施の形態に係るLEDパッケージは更に、第1のリードフレームの前記接続端部の少なくとも一部には、前記第1のリードフレームに対するレーザ加工によって金属酸化物層が形成される。これにより、より強固にパッケージから封止樹脂が漏れ出すことを防止し、かつキャビティ内を汚染、または腐食する硫化物等の不純物の浸透を防止することができる。 In the LED package according to an embodiment of the present invention, a metal oxide layer is further formed on at least a part of the connection end portion of the first lead frame by laser processing on the first lead frame. As a result, the sealing resin can be more securely prevented from leaking out of the package, and the penetration of impurities such as sulfides that contaminate or corrode the cavity can be prevented.
 本発明の一実施の形態に係るLEDパッケージは更に、前記第1のリードフレームは、前記一方の面と前記他方の面と前記接続端部表面とのそれぞれの少なくとも一部に銀膜を備え、前記レーザ加工によって前記第1のリードフレーム表面に形成された金属酸化物層は酸化銀層である。これにより、第1のリードフレームの反射率を高く維持しても第1のリードフレームと樹脂とをより強固に接続することができ、パッケージから封止樹脂が漏れ出すことを防止し、かつキャビティ内を汚染、または腐食する硫化物等の不純物の浸透を防止することができる。 In the LED package according to an embodiment of the present invention, the first lead frame further includes a silver film on at least a part of the one surface, the other surface, and the connection end surface, The metal oxide layer formed on the surface of the first lead frame by the laser processing is a silver oxide layer. Thereby, even if the reflectance of the first lead frame is maintained high, the first lead frame and the resin can be more firmly connected, the sealing resin is prevented from leaking from the package, and the cavity Infiltration of impurities such as sulfides that contaminate or corrode the inside can be prevented.
 本発明の一実施の形態に係るLED発光素子は、上記のLEDパッケージと、前記第1のリードフレームに載置されるLEDと、前記LED及び前記第1、第2のリードフレームの前記一方の面の少なくとも一部を封止する透明樹脂と、を備える。これにより、パッケージから封止樹脂が漏れ出すことを防止し、かつキャビティ内を汚染、または腐食する硫化物等の不純物の浸透を防止することができる。 An LED light-emitting device according to an embodiment of the present invention includes the LED package, the LED placed on the first lead frame, and the one of the LED and the first and second lead frames. A transparent resin that seals at least part of the surface. Thereby, it is possible to prevent the sealing resin from leaking from the package and to prevent the penetration of impurities such as sulfides that contaminate or corrode the inside of the cavity.
 本発明の一実施の形態に係るLEDパッケージの製造方法は、LEDを載置する一方の面と、前記一方の面の裏面であって他方の平面と、を備える第1のリードフレームと、前記一方の面と平行な方向において前記第1のリードフレームと接触せずに対向する第2のリードフレームと、前記第1のリードフレームと前記第2のリードフレームがお互いに対向する接続端部間を接続する樹脂と、を備え、前記第1のリードフレームの他方の面の少なくとも一部は、前記樹脂から露出したLEDパッケージの製造方法であって、
 前記接続端部側の前記第1のリードフレームの他方の面の端部に対して、レーザ加工により前記第1のリードフレームの他方の面の一部を削り取って粗部を形成する工程と、
 前記粗部を形成する工程において前記第1のリードフレームが削り取られて生じる飛散物が付着した前記接続端部を覆い、前記第1のリードフレームと前記第2のリードフレームとを固定する樹脂を形成する工程と、を備える。これにより、パッケージから封止樹脂が漏れ出すことを防止し、かつキャビティ内を汚染、または腐食する硫化物等の不純物の浸透を防止することができる。
An LED package manufacturing method according to an embodiment of the present invention includes: a first lead frame including one surface on which an LED is placed; and a back surface of the one surface and the other plane; A second lead frame facing the first lead frame without contacting the first lead frame in a direction parallel to the one surface; and a connecting end between the first lead frame and the second lead frame facing each other. And at least a part of the other surface of the first lead frame is a method of manufacturing an LED package exposed from the resin,
Forming a rough portion by scraping a part of the other surface of the first lead frame by laser processing with respect to an end portion of the other surface of the first lead frame on the connecting end side;
Resin that covers the connection end portion to which the scattered matter generated by scraping off the first lead frame in the step of forming the rough portion is attached and fixing the first lead frame and the second lead frame. Forming. Thereby, it is possible to prevent the sealing resin from leaking from the package and to prevent the penetration of impurities such as sulfides that contaminate or corrode the inside of the cavity.
 本発明の一実施の形態に係るLEDパッケージの製造方法はさらに、前記第1のリードフレームの他方の面の端部であって、前記第1のリードフレームの接続端部側にレーザ加工により粗部を形成したあと、前記接続端部にレーザ加工により粗部を形成する工程を備える。これにより、リードフレームとパッケージ樹脂とを強固に密着接続することにより、リードフレームとパッケージ樹脂との隙間を通してパッケージ外部からの水分や二酸化硫黄といった不純物の浸入を防止することにより光学特性を維持することで光学装置として寿命を延ばすことができる。また、接続端部に低出力レーザ加工をすることができる。 The method of manufacturing an LED package according to an embodiment of the present invention further includes a roughing process by laser processing on an end portion of the other surface of the first lead frame and on a connection end portion side of the first lead frame. And forming a rough portion by laser processing at the connection end after forming the portion. As a result, the lead frame and the package resin are firmly and closely connected to each other, thereby maintaining the optical characteristics by preventing intrusion of impurities such as moisture and sulfur dioxide from the outside of the package through the gap between the lead frame and the package resin. Thus, the lifetime of the optical device can be extended. Further, low power laser processing can be performed on the connection end.
 また、本発明の一実施の形態に係るLEDパッケージの製造方法は、前記第1のリードフレームの他方の面の端部であって、前記第1のリードフレームが前記第2のリードフレームと対向し前記パッケージ樹脂に接続される前記第1のリードフレームの接続端部側に、レーザ加工により前記第1のリードフレームの他方の面の一部を削り取って粗部と金属酸化物層とを形成する工程と、前記第1のリードフレームの接続端部の一部に前記金属酸化物層を有し、前記第1のリードフレームと前記第2のリードフレームとを固定するパッケージ樹脂を形成する工程と、を備える。これにより、リードフレームとパッケージ樹脂とを金属化合物の存在によって強固に密着接続することにより、リードフレームとパッケージ樹脂との隙間を通してパッケージ外部からの水分や二酸化硫黄といった不純物の浸入を防止することにより光学特性を維持することができる。 Also, in the LED package manufacturing method according to an embodiment of the present invention, the first lead frame is opposed to the second lead frame at the end of the other surface of the first lead frame. Then, on the connection end portion side of the first lead frame connected to the package resin, a part of the other surface of the first lead frame is scraped off by laser processing to form a rough portion and a metal oxide layer. And a step of forming a package resin having the metal oxide layer at a part of the connection end portion of the first lead frame and fixing the first lead frame and the second lead frame. And comprising. As a result, the lead frame and the package resin are tightly connected in the presence of a metal compound, thereby preventing the entry of impurities such as moisture and sulfur dioxide from the outside of the package through the gap between the lead frame and the package resin. Characteristics can be maintained.
 (実施の形態)
 図1は、本発明の一実施の形態に係るLEDパッケージを模式的に示す斜視図である。
(Embodiment)
FIG. 1 is a perspective view schematically showing an LED package according to an embodiment of the present invention.
 図1に示すように、LEDパッケージ100は、一対の矩形状のリードフレーム101、102と、矩形状の絶縁部103と、リフレクタ部104と、を備える。絶縁部103は、リードフレーム101とリードフレーム102とを電気的に絶縁する。リフレクタ部104は、リードフレーム101、102及び絶縁部103の外周部を取り囲む。もちろん、これらの形状は矩形に限定されず、多角形である、もしくは曲面を有してもよい。 As shown in FIG. 1, the LED package 100 includes a pair of rectangular lead frames 101 and 102, a rectangular insulating portion 103, and a reflector portion 104. The insulating unit 103 electrically insulates the lead frame 101 and the lead frame 102 from each other. The reflector unit 104 surrounds the outer periphery of the lead frames 101 and 102 and the insulating unit 103. Of course, these shapes are not limited to rectangles, and may be polygonal or curved.
 リードフレーム101、102と絶縁部103とリフレクタ部104とは、一体化されて構成されている。 The lead frames 101 and 102, the insulating portion 103, and the reflector portion 104 are integrated.
 リードフレーム101、102は、導電性・放熱性・機械的強度・光の反射等の観点から銅又は銅合金からなる金属板を加工して使用する。リードフレーム101、102は、光学特性を向上させるために表面を銀メッキ処理して用いる。 The lead frames 101 and 102 are used by processing a metal plate made of copper or a copper alloy from the viewpoint of conductivity, heat dissipation, mechanical strength, light reflection, and the like. The lead frames 101 and 102 are used after being silver-plated in order to improve optical characteristics.
 リードフレーム101とリードフレーム102は、絶縁部103を水平方向から挟み込むように一対が配置されている。すなわち、リードフレーム101及びリードフレーム102と絶縁部103とは、リードフレーム101とリードフレーム102とが向かい合う接続端部で接続される。リードフレーム101は、例えばアノード側リード部、リードフレーム102は、カソード側リード部である。 A pair of the lead frame 101 and the lead frame 102 is arranged so as to sandwich the insulating portion 103 from the horizontal direction. That is, the lead frame 101 and the lead frame 102 and the insulating portion 103 are connected at the connection end where the lead frame 101 and the lead frame 102 face each other. The lead frame 101 is, for example, an anode side lead portion, and the lead frame 102 is a cathode side lead portion.
 絶縁部103は、エポキシなどの熱硬化性樹脂やポリフタルアミドなどの熱可塑性樹脂からなり、リードフレーム101とリードフレーム102とを保持する。一方の面である絶縁部103の上面(表面)は、リードフレーム101、102の上面(表面)と共に、LEDパッケージ100の凹状の底部を形成している。 The insulating portion 103 is made of a thermosetting resin such as epoxy or a thermoplastic resin such as polyphthalamide, and holds the lead frame 101 and the lead frame 102. The upper surface (front surface) of the insulating portion 103 which is one surface forms the concave bottom portion of the LED package 100 together with the upper surfaces (front surface) of the lead frames 101 and 102.
 リフレクタ部104は、エポキシなどの熱硬化性樹脂やポリフタルアミドなどの熱可塑性樹脂からなり、LED素子からの光をLEDパッケージ100の上部方向に効率よく反射する。リフレクタ部104は、例えば、酸化チタンなどを含有する白色樹脂が望ましい。また、リードフレーム101、102でリフレクタ部104を構成しても良い。 The reflector unit 104 is made of a thermosetting resin such as epoxy or a thermoplastic resin such as polyphthalamide, and efficiently reflects light from the LED element toward the upper portion of the LED package 100. The reflector unit 104 is preferably a white resin containing, for example, titanium oxide. Further, the reflector unit 104 may be configured by the lead frames 101 and 102.
 LEDパッケージ100のリードフレーム102の上面(表面)には、発光素子であるLEDチップ110が搭載される。LEDチップ110が搭載されるリードフレーム102とリードフレーム101と絶縁部103の上面(表面)が、リフレクタ部104により取り囲まれることで、LEDパッケージ100の上部側は、凹状のLED載置空間(キャビティ)105を形成している。また、同時にLEDチップ110の光を反射する。従って、反射率がより低い絶縁部103の占有面積を最小限とし、反射率がより高いリードフレーム101、102の占有面積を最大とすると良い。なお、リフレクタ部104は必ずしも必要であるわけではない。 The LED chip 110 which is a light emitting element is mounted on the upper surface (front surface) of the lead frame 102 of the LED package 100. The upper surface (surface) of the lead frame 102 on which the LED chip 110 is mounted, the lead frame 101, and the insulating portion 103 is surrounded by the reflector portion 104, so that the upper side of the LED package 100 has a concave LED mounting space (cavity). ) 105 is formed. At the same time, the light from the LED chip 110 is reflected. Therefore, it is preferable to minimize the area occupied by the insulating portion 103 having a lower reflectance and maximize the area occupied by the lead frames 101 and 102 having a higher reflectance. The reflector unit 104 is not always necessary.
 LEDチップ110は、導電部材であるボンディングワイヤ111、112によりリードフレーム101、102にそれぞれ接続(ワイヤボンディング)されている。なお、ボンディングワイヤ111、112の径は、φ25μm~35μmが好ましい。材質としては、Al、Cu、Pt、Au等が好適に用いられる。 The LED chip 110 is connected (wire bonded) to the lead frames 101 and 102 by bonding wires 111 and 112 which are conductive members. The diameters of the bonding wires 111 and 112 are preferably φ25 μm to 35 μm. As the material, Al, Cu, Pt, Au or the like is preferably used.
 LEDチップ110は、例えばGaN系青色発光ダイオードチップを用いる。 The LED chip 110 is, for example, a GaN blue light emitting diode chip.
 キャビティ105内には、封止樹脂(図示省略)が充填され、この封止樹脂により、キャビティ105内に配置されたLEDチップ110及びボンディングワイヤ111、112が、封止される。この封止樹脂は、LED素子の発光波長において光透過率が高く、また狭い隙間への充填性が求められるため、低粘度の有機系樹脂(例えばシリコーン系樹脂)が使用されることが多い。 The cavity 105 is filled with a sealing resin (not shown), and the LED chip 110 and the bonding wires 111 and 112 disposed in the cavity 105 are sealed by the sealing resin. Since this sealing resin has a high light transmittance at the emission wavelength of the LED element and is required to be filled in a narrow gap, an organic resin having a low viscosity (for example, a silicone resin) is often used.
 図2は、本実施の形態に係るLEDパッケージ100の断面斜視図、図3は、本実施の形態に係るLEDパッケージ100の断面図である。図2及び図3において、図1のLEDチップ110、及びボンディングワイヤ111、112の記載は省略されている。 2 is a cross-sectional perspective view of the LED package 100 according to the present embodiment, and FIG. 3 is a cross-sectional view of the LED package 100 according to the present embodiment. 2 and 3, the description of the LED chip 110 and the bonding wires 111 and 112 of FIG. 1 is omitted.
 図2及び図3に示すように、リードフレーム101、102と絶縁部103が接続する部分は、凹凸部が組み合わされた段差構造となっている。より具体的には、リードフレーム101、102の接続端部は、一方の面である上面(表面)が広く、他方の面である下面(裏面)が狭い段差構造を有し、リードフレーム101、102に挟み込まれる絶縁部103は、それとは逆の上面(表面)が狭く、下面(裏面)が広い段差構造を有する。リードフレーム101、102の接続端部とは、リードフレーム101、102がお互いに対向し、絶縁部103と接続された部分のことをいう。また、リードフレーム101、102とリフレクタ部104の接続端部は、図2に示すように凹凸部が嵌合された構造となっており、リフレクタ部104のパッケージ樹脂でリードフレーム101、102を挟み込むことができる。この段差構造は、実際には図2、3のように直角に形成されているわけではない。すなわち、段差構造形成の加工は、例えばエッチング加工では直角に形成することが困難であり、緩やかな曲線を描く場合がある。曲線の大小は、加工の精度による。 2 and 3, the portion where the lead frames 101 and 102 and the insulating portion 103 are connected has a step structure in which concave and convex portions are combined. More specifically, the connection end portions of the lead frames 101 and 102 have a step structure in which the upper surface (front surface) as one surface is wide and the lower surface (back surface) as the other surface is narrow. The insulating portion 103 sandwiched between 102 has a step structure opposite to that of the insulating portion 103 having a narrow upper surface (front surface) and a lower lower surface (back surface). The connection end portions of the lead frames 101 and 102 are portions where the lead frames 101 and 102 face each other and are connected to the insulating portion 103. Further, as shown in FIG. 2, the connection end portion between the lead frames 101 and 102 and the reflector portion 104 has a structure in which an uneven portion is fitted, and the lead frames 101 and 102 are sandwiched by the package resin of the reflector portion 104. be able to. This step structure is not actually formed at a right angle as shown in FIGS. That is, it is difficult to form the step structure at a right angle by, for example, etching, and a gentle curve may be drawn. The size of the curve depends on the processing accuracy.
 これらの構造により、リードフレーム101、102と絶縁部103とリフレクタ部104との密着性を高め、低粘度の封止樹脂(例えば、シリコーン系樹脂)の漏出を防止し、かつ外気のキャビティ105内への侵入を防止している。なお、リードフレーム101、102及び絶縁部103の段差構造は、キャビティ内部と外部との封止性を向上させることをより重視した構造である。従って、リードフレーム101、102の接続端部は、段差構造ではなくて表裏面と垂直な直線状であってもよいし、斜面、曲面、その他の形状であっても良い。 With these structures, adhesion between the lead frames 101 and 102, the insulating portion 103, and the reflector portion 104 is improved, leakage of a low-viscosity sealing resin (for example, silicone resin) is prevented, and the inside of the cavity 105 of the outside air To prevent intrusion. Note that the step structure of the lead frames 101 and 102 and the insulating portion 103 is a structure that places more importance on improving the sealing performance between the inside and outside of the cavity. Therefore, the connection end portions of the lead frames 101 and 102 may be not a step structure but a straight line perpendicular to the front and back surfaces, a slope, a curved surface, or other shapes.
 しかし、上記構造を採ったとしても、図2及び図3の破線で囲んだ箇所、すなわちリードフレーム101、102と絶縁部103の接続端部、及びリードフレーム101、102とリフレクタ部104の接続端部は、依然として密着性が必要とされる部分である。特に、本実施の形態のようにリードフレーム101、102の裏面が絶縁部103に覆われていない場合は、露出しているため、水分など外部の物質の進入経路も短く、リードフレーム101、102の接続端部と絶縁部103との密着性は重要である。なお、リードフレーム101、102の裏面の少なくとも一部、好ましくは大半が露出していることにより、LEDチップ110の発熱が、電熱率の高いリードフレーム101、102によって効率よく放熱される。 However, even if the above structure is adopted, the portions surrounded by the broken lines in FIGS. 2 and 3, that is, the connection end portions of the lead frames 101 and 102 and the insulating portion 103, and the connection ends of the lead frames 101 and 102 and the reflector portion 104. The part is a part for which adhesion is still required. In particular, when the back surfaces of the lead frames 101 and 102 are not covered with the insulating portion 103 as in the present embodiment, the lead frames 101 and 102 are exposed, so that the entry path of an external substance such as moisture is short. The adhesion between the connection end of the first electrode and the insulating portion 103 is important. In addition, since at least a part, preferably most of the back surfaces of the lead frames 101 and 102 are exposed, the heat generated by the LED chip 110 is efficiently radiated by the lead frames 101 and 102 having a high electric heat rate.
 本実施の形態に係る発明は、図2及び図3の破線で囲んだリードフレーム101、102と絶縁部103の接続端部、及びリードフレーム101、102とリフレクタ部104の接続端部の密着性を飛躍的に向上させるものである。 In the invention according to the present embodiment, the adhesion between the lead frames 101 and 102 and the connecting end portion of the insulating portion 103 and the connecting end portions of the lead frames 101 and 102 and the reflector portion 104 surrounded by the broken lines in FIGS. Is drastically improved.
 図4は、本実施の形態に係るLEDパッケージ100の断面図である。図4Aは、図3の再掲図である。図4Bは、リードフレーム101、102と絶縁部103の接続端部(A部)の要部拡大図である。図4Cは、接続端部(A部)の界面のうちレーザ加工された部分を拡大して示す図である。図5は、各種金属の反射率を示す図であり、周知の事実である。 FIG. 4 is a cross-sectional view of the LED package 100 according to the present embodiment. FIG. 4A is a reproduction of FIG. FIG. 4B is an enlarged view of a main part of a connection end portion (A portion) between the lead frames 101 and 102 and the insulating portion 103. FIG. 4C is an enlarged view showing a laser-processed portion of the interface of the connection end portion (A portion). FIG. 5 is a diagram showing the reflectance of various metals, which is a well-known fact.
 上述したように、本実施の形態では、リードフレーム101、102は、銅合金からなり、表面が銀メッキされている。また、絶縁部103及びリフレクタ部104は、エポキシ樹脂からなる。 As described above, in the present embodiment, the lead frames 101 and 102 are made of a copper alloy, and the surface is silver-plated. The insulating part 103 and the reflector part 104 are made of epoxy resin.
 本実施の形態は、リードフレーム101、102のAgメッキ表面を、レーザ加工により、所定状態で荒らすことを特徴とする。すなわち、図4Cに示すように、リードフレーム101、102のAgメッキ表面に対し、レーザ加工により、表面粗さ(Ra):0.1-10μmの粗面を形成する。レーザ加工により、リードフレーム101、102のAgメッキ表面を、0.1-10μmの粗面を形成するよう荒らした上で、このリードフレーム101、102を絶縁部103又はリフレクタ部104のエポキシ樹脂と樹脂成形する。 This embodiment is characterized in that the Ag plating surfaces of the lead frames 101 and 102 are roughened in a predetermined state by laser processing. That is, as shown in FIG. 4C, a rough surface with a surface roughness (Ra) of 0.1-10 μm is formed on the Ag-plated surfaces of the lead frames 101, 102 by laser processing. The Ag plating surfaces of the lead frames 101 and 102 are roughened by laser processing so as to form a rough surface of 0.1 to 10 μm, and then the lead frames 101 and 102 are bonded to the epoxy resin of the insulating portion 103 or the reflector portion 104. Resin molding.
 次に、レーザ加工を施す箇所について説明する。 Next, the location where laser processing is performed will be described.
 図4Bに示されるように、A部(接続端部)などの上記のレーザ照射部分における段差構造は、実際には図2、3のように直角に形成されているわけではない。すなわち、段差構造形成の加工は、直角に形成することが困難であり、緩やかな曲線を描くことが多い。そして、リードフレーム101、102が曲線状であると、レーザを高出力にして照射しなくてはリードフレーム101、102表面に凹凸を形成できない。これは、対象物であるリードフレーム101、102の照射面積が広がることにより、レーザ照射パワー密度が低下するからである。対して、例えばリードフレーム101、102が平面状でありレーザの照射方向と垂直に近づくことで、レーザが低出力であってもリードフレーム101、102表面に凹凸を形成しやすい。すなわち、レーザがより垂直にリードフレーム101、102表面に照射されるなど、レーザ光の面積(大きさ)に対して、レーザ光を受けるリードフレーム101、102表面積が略同程度であると、レーザが低出力であってもリードフレーム101、102表面に凹凸を形成しやすい。リードフレーム101、102が曲線状であることによって、レーザ光の面積に対して、レーザ光を受けるリードフレーム101、102表面積が大きくなりすぎ、レーザを高出力にして照射しなくてはリードフレーム101、102表面に凹凸を形成できない。そして、レーザを高出力に設定して加工した場合、平面部分などレーザが垂直に当たる部分にレーザが照射されると、パワーが大きすぎて加工部周辺が熱によって変色する。この結果、リードフレーム101、102の上面(表面)であってLEDの光を反射させる部分においては、リードフレーム101、102が変色して光学特性が低下し、LEDの輝度低下が起こる。また、リードフレーム101、102の下面(裏面)であれば、高出力レーザの影響でハンダヌレ性低下の可能性が高くなる。更に、レーザによって削り取られた部分に相当する飛散物が大量に飛び散ることによって、リードフレーム101、102の上面(表面)であってLEDの光を反射させる部分にも飛散物が飛び散り、上面において反射率などの光学特性が低下する。また、リードフレーム101、102の下面(裏面)であれば、飛散物が邪魔となりハンダヌレ性低下の可能性が高くなる。従って、レーザ加工は、品質低下につながる周囲への影響を考慮すると、より低出力によって十分な凹凸を形成しなくてはならない。 As shown in FIG. 4B, the step structure in the laser irradiation portion such as the A portion (connection end portion) is not actually formed at a right angle as shown in FIGS. That is, it is difficult to form the step structure at a right angle, and a gentle curve is often drawn. If the lead frames 101 and 102 are curved, irregularities cannot be formed on the surfaces of the lead frames 101 and 102 unless the laser is irradiated with high output. This is because the laser irradiation power density decreases as the irradiation area of the lead frames 101 and 102, which are objects, increases. On the other hand, for example, the lead frames 101 and 102 are flat and approach the direction perpendicular to the laser irradiation direction, so that irregularities are easily formed on the surfaces of the lead frames 101 and 102 even when the laser output is low. That is, the surface area of the lead frames 101 and 102 that receive the laser light is approximately the same as the area (size) of the laser light, such as the laser being irradiated onto the surfaces of the lead frames 101 and 102 more vertically. Is easy to form irregularities on the surfaces of the lead frames 101 and 102 even if the output is low. Since the lead frames 101 and 102 are curved, the surface area of the lead frames 101 and 102 that receive the laser beam becomes too large relative to the area of the laser beam, and the lead frame 101 must be irradiated with a high output of the laser. , 102 cannot form irregularities on the surface. When processing is performed with the laser set to a high output, if the laser is irradiated onto a portion where the laser hits vertically, such as a flat portion, the power is too large and the periphery of the processing portion is discolored by heat. As a result, in the upper surface (surface) of the lead frames 101 and 102 where the light of the LED is reflected, the lead frames 101 and 102 are discolored, the optical characteristics are deteriorated, and the luminance of the LED is lowered. In addition, if the lower surface (rear surface) of the lead frames 101 and 102 is used, the possibility of a decrease in solderability is increased due to the influence of a high-power laser. Furthermore, when a large amount of scattered matter corresponding to the portion scraped by the laser is scattered, the scattered matter also scatters on the upper surface (surface) of the lead frames 101 and 102 and reflects the LED light, and is reflected on the upper surface. The optical characteristics such as the rate decrease. Further, if the lower surface (rear surface) of the lead frames 101 and 102 is scattered, the scattered matter becomes an obstacle and the possibility of a decrease in solderability increases. Therefore, in the laser processing, sufficient unevenness must be formed with a lower output in consideration of the influence on the surroundings that leads to quality degradation.
 一方で、リードフレーム101、102表面(Agメッキ表面)の反射率が高いと、レーザ光をリードフレーム101、102表面(Agメッキ表面)が吸収せずに反射してしまう。そのため、レーザを高出力にして照射しなくてはリードフレーム101、102表面に凹凸を形成できない。これは、本願発明のLEDパッケージはLEDを効率的に反射させることが必要であるため、光学特性を向上させるためにAgメッキを施しているためである。従って、リードフレーム101、102表面(Agメッキ表面)はいずれの部分も基本的に光学特性が高く、その分だけレーザ加工を高出力にて行わなくてはならない。 On the other hand, if the reflectance of the surfaces of the lead frames 101 and 102 (Ag plating surface) is high, the laser beam is reflected without being absorbed by the surfaces of the lead frames 101 and 102 (Ag plating surface). Therefore, irregularities cannot be formed on the surfaces of the lead frames 101 and 102 without irradiating with a high laser output. This is because the LED package of the present invention needs to reflect the LED efficiently, and thus Ag plating is applied to improve the optical characteristics. Accordingly, the surface of the lead frames 101 and 102 (Ag plating surface) basically has high optical characteristics, and laser processing must be performed at a high output accordingly.
 また、リードフレーム101、102表面(Agメッキ表面)の反射率が低いなど光学特性が低いと、レーザ光をリードフレーム101、102表面(Agメッキ表面)が反射せずに吸収する。そのため、レーザが低出力であってもリードフレーム101、102表面に凹凸を形成しやすい。また、例えば一回目のレーザ照射でリードフレーム101、102表面(Agメッキ表面)に凹凸を形成した場合、その凹凸の周りには、リードフレーム101、102のうち削り取られた部分に相当する飛散物が周囲に飛び散る。それにより、リードフレーム101、102表面(Agメッキ表面)の光学特性は低下する。 Also, if the optical characteristics are low, such as the reflectance of the surfaces of the lead frames 101 and 102 (Ag plating surface) is low, the surface of the lead frames 101 and 102 (Ag plating surface) absorbs the laser beam without reflection. Therefore, it is easy to form irregularities on the surfaces of the lead frames 101 and 102 even when the laser output is low. Further, for example, when irregularities are formed on the surfaces of the lead frames 101 and 102 (Ag plating surface) by the first laser irradiation, scattered objects corresponding to the portions of the lead frames 101 and 102 scraped around the irregularities. Splashes around. As a result, the optical characteristics of the surfaces of the lead frames 101 and 102 (Ag plating surface) are degraded.
 このような関係から、本実施の形態においては、リードフレーム101、102のAgメッキ表面へのレーザ加工は、リードフレーム101、102の下面(裏面)の接続端部側端部であって、段差構造との境界部分(図4BのC部)に施す。言い換えれば、リードフレーム101、102の他方の面である下面(裏面)であって、接続端部(A部)との境界部(図4BのC部)である端部に施す。それに加えて、後からリードフレーム101、102と絶縁部103の接続端部(A部)のリードフレーム101、102の表面(図4BのB部)にも形成して良い。 From this relationship, in the present embodiment, laser processing of the Ag plating surfaces of the lead frames 101 and 102 is performed on the connection end portion side end portion of the lower surface (back surface) of the lead frames 101 and 102. It is applied to the boundary portion with the structure (C portion in FIG. 4B). In other words, it is applied to the lower surface (rear surface) which is the other surface of the lead frames 101 and 102 and the end portion which is the boundary portion (C portion in FIG. 4B) with the connection end portion (A portion). In addition, it may be formed on the surface (B portion in FIG. 4B) of the lead frames 101 and 102 at the connection end portion (A portion) between the lead frames 101 and 102 and the insulating portion 103 later.
 前述したように、平面形状であるC部には低出力のレーザであっても容易に凹凸を形成することができる。そして、C部の凹凸形成により削り取られたリードフレーム101、102に相当する飛散物が飛び散ることによって、C部の周囲(B部を含む)には飛散物による小さな凹凸が形成される。これにより、リードフレーム101、102のAgメッキ表面に粗面が形成されるので、エポキシ樹脂が、上記粗面に流れ込み、エポキシ樹脂とリードフレーム101、102のAgメッキ表面との間の接着面積が増大する。その結果、リードフレーム101、102と絶縁部103及びリフレクタ部104との界面の密着性が向上する。但し、この場合、飛散物の量は上面(表面)に付着するほどではない。 As described above, irregularities can be easily formed in the C portion which is a planar shape even with a low-power laser. Then, scattered objects corresponding to the lead frames 101 and 102 scraped off by the formation of irregularities in the C portion are scattered, so that small irregularities due to the scattered objects are formed around the C portion (including the B portion). As a result, a rough surface is formed on the Ag-plated surface of the lead frames 101 and 102, so that the epoxy resin flows into the rough surface, and the adhesion area between the epoxy resin and the Ag-plated surface of the lead frames 101 and 102 is increased. Increase. As a result, the adhesion at the interface between the lead frames 101 and 102 and the insulating portion 103 and the reflector portion 104 is improved. However, in this case, the amount of scattered matter is not so large as to adhere to the upper surface (surface).
 さらに、上記の飛散物によってC部の周囲(B部を含む)は光学特性が劣化し、例えば反射率が低下する。その結果、例え曲線形状のB部であってもレーザ光を吸収しやすくなり、低出力のレーザ光であっても十分に凹凸を形成することができる。すなわち、下面の接続面(B部)との境界部にレーザ加工により凹部を形成し、その後、接続面(B部)にレーザ加工により凹部を形成するとよい。その結果、低出力のレーザ光によってリードフレーム101、102のAgメッキ表面に凹凸の大きな粗面が容易に形成されるので、エポキシ樹脂が、上記粗面に流れ込み、エポキシ樹脂とリードフレーム101、102のAgメッキ表面との間の接着面積が更に増大する。その結果、リードフレーム101、102と絶縁部103及びリフレクタ部104との界面の密着性が大幅に向上する。 Furthermore, the optical characteristics of the periphery of C part (including B part) deteriorate due to the above scattered matter, for example, the reflectance decreases. As a result, even the curved B portion can easily absorb the laser beam, and the unevenness can be sufficiently formed even with the low-power laser beam. That is, it is good to form a recessed part by laser processing in the boundary part with the connection surface (B part) of a lower surface, and to form a recessed part by laser processing in a connection surface (B part) after that. As a result, a rough surface having large irregularities is easily formed on the Ag plating surfaces of the lead frames 101 and 102 by the low-power laser beam, so that the epoxy resin flows into the rough surface, and the epoxy resin and the lead frames 101 and 102. This further increases the adhesion area between the Ag plating surface and the surface. As a result, the adhesion at the interface between the lead frames 101 and 102 and the insulating portion 103 and the reflector portion 104 is greatly improved.
 また、レーザとリードフレーム101、102との位置関係によっては、レーザの照射部がリードフレーム101、102に対して垂直の方向(真上)にあるとは限らない。従って、例えばレーザ光がリードフレーム101、102に対して斜めの方向(図4BのX方向)から照射される場合、絶縁部103と接する図4BのB部にレーザを照射しようとすると、リードフレーム101のB部には上手くレーザが当たらない。すなわち、同じレーザの照射面積に対して、レーザ光を受けるリードフレーム101、102表面積が極端に異なってしまうため、リードフレーム101とリードフレーム102とでレーザを吸収する度合いに大きなバラツキが生じる。対してC部にレーザを照射すると、同じレーザの照射面積に対して、レーザ光を受けるリードフレーム101、102表面積が同程度であるため、リードフレーム101のC部とリードフレーム102のC部との両方にほぼ同程度のレーザ加工がなされる。そのため、例えレーザの照射が斜め方向からなされても、レーザ加工の度合いにバラツキが生じにくい。 Further, depending on the positional relationship between the laser and the lead frames 101 and 102, the laser irradiation portion is not always in the direction perpendicular to the lead frames 101 and 102 (directly above). Therefore, for example, when the laser beam is irradiated from an oblique direction (X direction in FIG. 4B) with respect to the lead frames 101 and 102, when the laser beam is applied to the portion B in FIG. The B part of 101 does not hit the laser well. That is, since the surface areas of the lead frames 101 and 102 that receive the laser beam are extremely different with respect to the same laser irradiation area, the degree of laser absorption between the lead frame 101 and the lead frame 102 varies greatly. On the other hand, when the laser is applied to the part C, the surface areas of the lead frames 101 and 102 that receive the laser light are the same for the same laser irradiation area. Both are processed with approximately the same level of laser processing. Therefore, even if laser irradiation is performed from an oblique direction, the degree of laser processing is less likely to vary.
 また、レーザの条件をさらに最適化することで、リードフレーム101、102と絶縁部103とをより強力に接合することができる。以下、その構造について説明する。 Further, by further optimizing the laser conditions, the lead frames 101 and 102 and the insulating portion 103 can be bonded more strongly. The structure will be described below.
 すなわち、リードフレーム101、102の銀メッキ表面を、レーザ加工により、所定状態で粗化及び酸化させる。すなわち、図4Cに示すように、リードフレーム101、102の銀メッキ表面に対し、レーザ加工により、粗部と酸化銀層を形成する。レーザ加工により、リードフレーム101、102の銀メッキ表面を粗化及び酸化させ、このリードフレーム101、102を絶縁部103又はリフレクタ部104のエポキシ樹脂と樹脂成形する。このとき、レーザ加工によって形成される粗部の深さが銀メッキの厚みよりも大きくならないようにすると良い。これにより形成された粗部が樹脂との接着面積を増大させ、また、アンカー効果により密着性が向上している。今回さらにレーザ加工におけるレーザ周波数やピークパワーなどの条件を調整し、粗化に加えて適度な酸化銀層を形成させる条件を見出した。これにより、同時に形成した酸化銀層とエポキシ樹脂との界面において化学的な結合を介して、リードフレーム101、102と絶縁部103のエポキシ樹脂との界面が強く密着する。レーザ加工によるリードフレームとパッケージ樹脂との密着性向上は粗部アンカー効果のみでも十分効果が認められるが、酸化銀形成による密着性向上の効果を付加することで、密着性向上の効果がより安定して得られるようになる。これにより、接着界面に負担をかける後加工において、より多くの工法や過酷な条件を幅広く選択できるようになる。 That is, the silver plating surfaces of the lead frames 101 and 102 are roughened and oxidized in a predetermined state by laser processing. That is, as shown in FIG. 4C, a rough portion and a silver oxide layer are formed on the silver-plated surfaces of the lead frames 101 and 102 by laser processing. The silver plating surfaces of the lead frames 101 and 102 are roughened and oxidized by laser processing, and the lead frames 101 and 102 are resin-molded with the epoxy resin of the insulating portion 103 or the reflector portion 104. At this time, it is preferable that the depth of the rough portion formed by laser processing is not larger than the thickness of the silver plating. The rough portion thus formed increases the adhesion area with the resin, and the adhesion is improved by the anchor effect. This time, we have further adjusted conditions such as laser frequency and peak power in laser processing, and found conditions for forming an appropriate silver oxide layer in addition to roughening. As a result, the interface between the lead frames 101 and 102 and the epoxy resin of the insulating portion 103 is in close contact with each other through a chemical bond at the interface between the silver oxide layer and the epoxy resin formed simultaneously. The improvement in adhesion between the lead frame and the package resin by laser processing is sufficiently effective only by the rough anchor effect, but the effect of improving adhesion by adding silver oxide is more stable. Will be obtained. As a result, in post-processing that places a burden on the bonding interface, it is possible to select a wider variety of construction methods and harsh conditions.
 次に、レーザ加工を施す箇所について説明する。 Next, the location where laser processing is performed will be described.
 図5に各種金属材料の反射率を示しているように、銀は他の金属材料と比較して可視光領域において高い反射率を有している。従って、レーザ加工は、品質低下につながる周囲への影響を考慮すると、より低出力によって十分な粗部と酸化銀層とを形成しなくてはならない。 As FIG. 5 shows the reflectance of various metal materials, silver has a higher reflectance in the visible light region than other metal materials. Therefore, in the laser processing, a sufficient rough portion and a silver oxide layer must be formed with a lower output in consideration of the influence on the environment that leads to quality degradation.
 一方で、前述したように、リードフレーム101、102表面(銀メッキ表面)の反射率が高いと、レーザ光をリードフレーム101、102表面(銀メッキ表面)が吸収せずに反射してしまう。そのため、レーザを高出力にして照射しなくてはリードフレーム101、102表面に粗部と酸化銀層とを形成できない。 On the other hand, as described above, when the reflectivity of the surfaces of the lead frames 101 and 102 (silver plated surface) is high, the laser beam is reflected without being absorbed by the surfaces of the lead frames 101 and 102 (silver plated surface). For this reason, the rough portion and the silver oxide layer cannot be formed on the surfaces of the lead frames 101 and 102 without irradiating with high laser output.
 本実施の形態においては、リードフレーム101、102の銀メッキ表面へのレーザ加工は、リードフレーム101、102の下面(裏面)であって、接続端部側の端部(図4BのC部)に施すとよい。例えば、リードフレーム101、102の他方の面である下面(裏面)であって、接続端部(A部)側の端部(図4BのC部)と接続端部(A部)に同時にレーザ加工を施しても良いが、少なくとも接続端部(A部)側の端部(図4BのC部)に加工すると良い。それに加えて、後からリードフレーム101、102と絶縁部103の接続端部(A部)のリードフレーム101、102の表面(図4BのB部)にも形成して良い。 In the present embodiment, the laser processing of the lead frames 101 and 102 on the silver-plated surface is performed on the lower surface (rear surface) of the lead frames 101 and 102 and on the connection end side (C portion in FIG. 4B). It is good to apply to. For example, the laser is simultaneously applied to the lower surface (rear surface) which is the other surface of the lead frames 101 and 102, at the end portion (C portion in FIG. 4B) on the connection end portion (A portion) side and the connection end portion (A portion). Although processing may be performed, it is preferable to process at least the end portion (C portion in FIG. 4B) on the connection end portion (A portion) side. In addition, it may be formed on the surface (B portion in FIG. 4B) of the lead frames 101 and 102 at the connection end portion (A portion) between the lead frames 101 and 102 and the insulating portion 103 later.
 前述したように、平面形状であるC部には低出力のレーザであっても容易に粗部と酸化銀層とを形成することができる。そして、C部の粗部形成により削り取られたリードフレーム101、102に相当する飛散物が飛び散ることによって、C部の周囲(B部を含む)には飛散物による小さな凹凸が形成される。 As described above, the coarse portion and the silver oxide layer can be easily formed in the C portion having a planar shape even with a low-power laser. Then, when the scattered matter corresponding to the lead frames 101 and 102 scraped off by forming the rough portion of the C portion is scattered, small irregularities due to the scattered matter are formed around the C portion (including the B portion).
 さらに、上記の飛散物と酸化銀層とによってC部の周囲(B部を含む)は光学特性が劣化し、例えば反射率が低下する。その結果、例え曲線形状のB部であってもレーザ光を吸収しやすくなり、低出力のレーザ光であっても十分に粗部と酸化銀層とを形成することができる。すなわち、下面の接続面(B部)との境界部にレーザ加工により粗部と酸化銀層とを形成し、その後、接続面(B部)にレーザ加工により粗部と酸化銀層とを形成するとよい。その結果、低出力のレーザ光によってリードフレーム101、102の銀メッキ表面に粗部と酸化銀層とが容易に形成されるので、エポキシ樹脂が、上記粗面に流れ込み、エポキシ樹脂とリードフレーム101、102の銀メッキ表面との間の接着面積が更に増大する。その結果、リードフレーム101、102と絶縁部103及びリフレクタ部104との界面の密着性が大幅に向上する。加えて、同時に形成された酸化銀層とエポキシ樹脂とが化学的な結合を介して、リードフレーム101、102と絶縁部103のエポキシ樹脂との界面がより強く密着する。 Furthermore, the optical properties of the periphery of C part (including B part) deteriorate due to the above scattered matter and the silver oxide layer, for example, the reflectance decreases. As a result, even the curved portion B can easily absorb the laser beam, and the rough portion and the silver oxide layer can be sufficiently formed even with the low-power laser beam. That is, a rough portion and a silver oxide layer are formed by laser processing at the boundary with the connection surface (B portion) on the lower surface, and then a rough portion and a silver oxide layer are formed by laser processing on the connection surface (B portion). Good. As a result, since the rough portion and the silver oxide layer are easily formed on the silver plating surface of the lead frames 101 and 102 by the low-power laser beam, the epoxy resin flows into the rough surface, and the epoxy resin and the lead frame 101. , 102 further increases the adhesion area between the silver-plated surfaces. As a result, the adhesion at the interface between the lead frames 101 and 102 and the insulating portion 103 and the reflector portion 104 is greatly improved. In addition, the interface between the lead frames 101 and 102 and the epoxy resin of the insulating portion 103 is more closely attached through the chemical bond between the silver oxide layer and the epoxy resin formed at the same time.
 ここで、銀層の一部がレーザ加工によって酸化銀層へ変化することについて説明する。 Here, it will be described that a part of the silver layer is changed to a silver oxide layer by laser processing.
 一般に、レーザ加工で金属酸化物層を得るためには、金属表面に照射されるレーザのエネルギを吸収して、発熱しなければならない。熱された金属表面と空気中に存在する酸素が反応し、金属表面に金属酸化物層が形成される。本発明の実施の形態である、銀メッキ層においては、他の金属に比べて反射率が高く、また熱伝導率も高いため、高いレーザ出力が要求される。また、レーザ加工によって形成される酸化銀層のエリアは、通常、同時に形成される粗部のエリアよりも広いため、粗部形成よりも制御が困難である。レーザの波長の範囲は400~2200nm、好ましくは800~1200nm、本実施の形態においては1060nm、ピークパワー:5kW以上50kW以下、好ましくは8kW以上、周波数:10~200kHzの高出力条件で処理を行う。この条件であれば、表面の銀メッキ層が適度に酸化する。図6は、本実施の形態に係るリードフレームに対してレーザ加工により形成された凹部とその周囲の酸化銀層の形成度合いを示す図である。図6Aは、レーザ加工による凹部形成位置からの距離と酸素量の関係を示す図である。図6Bは、図6Aの分析位置と凹部形成位置との関係を示す図である。図6Aにおいて、レーザ加工周辺部の酸素量が高くなっており、レーザ加工による粗部よりも外側まで広範囲に渡り、酸化銀層が形成されている。 Generally, in order to obtain a metal oxide layer by laser processing, it is necessary to generate heat by absorbing the energy of the laser irradiated on the metal surface. The heated metal surface and oxygen present in the air react to form a metal oxide layer on the metal surface. In the silver plating layer, which is an embodiment of the present invention, a high laser output is required because it has a higher reflectance and higher thermal conductivity than other metals. Moreover, since the area of the silver oxide layer formed by laser processing is usually larger than the area of the rough portion formed at the same time, it is more difficult to control than the formation of the rough portion. The range of the wavelength of the laser is 400 to 2200 nm, preferably 800 to 1200 nm, in this embodiment, 1060 nm, peak power: 5 kW to 50 kW, preferably 8 kW or higher, and frequency: 10 to 200 kHz. . Under this condition, the silver plating layer on the surface is appropriately oxidized. FIG. 6 is a diagram showing the degree of formation of the recess formed by laser processing and the surrounding silver oxide layer on the lead frame according to the present embodiment. FIG. 6A is a diagram showing the relationship between the distance from the recess formation position by laser processing and the amount of oxygen. FIG. 6B is a diagram illustrating a relationship between the analysis position and the recess formation position in FIG. 6A. In FIG. 6A, the amount of oxygen in the laser processing peripheral portion is high, and a silver oxide layer is formed over a wide range from the rough portion by laser processing to the outside.
 また、図7は、レーザの周波数とピークパワーとの関係からレーザ加工の最適範囲を説明する図である。図7に示すように、レーザの周波数が高く、及びピークパワーが小さい場合は、レーザ加工が十分ではなくなり、リードフレームとパッケージ樹脂との密着性が不足する。また、レーザの周波数が低く、及びピークパワーが大きい場合は、絶縁部103のパッケージ樹脂接合部の領域を超えて、リードフレーム101、102のキャビティ内およびアウターリード部にあたる銀面にまで酸化銀層が多く形成されてしまう。そのため、その後の成形時に樹脂バリが強固に接着し、除去が困難となる。 FIG. 7 is a diagram for explaining the optimum range of laser processing from the relationship between laser frequency and peak power. As shown in FIG. 7, when the laser frequency is high and the peak power is small, laser processing is not sufficient, and the adhesion between the lead frame and the package resin is insufficient. Further, when the laser frequency is low and the peak power is high, the silver oxide layer extends beyond the region of the package resin joint of the insulating portion 103 to the silver surface corresponding to the cavity of the lead frames 101 and 102 and the outer lead portion. Many will be formed. For this reason, the resin burrs adhere firmly during subsequent molding, making it difficult to remove.
 次に、酸化銀層と絶縁部103を構成するパッケージ樹脂との接着について説明する。 Next, adhesion between the silver oxide layer and the package resin constituting the insulating portion 103 will be described.
 一般的に金属などの無機物と樹脂などの有機物を化学結合させる場合、無機物の表面に酸化膜が存在した方が良い。 Generally, when an inorganic material such as a metal and an organic material such as a resin are chemically bonded, it is better that an oxide film exists on the surface of the inorganic material.
 図8は、銀および酸化銀、その他金属酸化物の平衡酸素分圧曲線を示す図である。図8Aに銀および酸化銀の平衡酸素分圧曲線、図8Bに各種金属の平衡酸素分圧曲線を示している。図8Aに示すように、銀は常温、大気圧下では酸化銀を形成しない。また、図8Bに示すように、銅、ニッケル、鉄などの金属材料に比べ、酸化しにくいことがわかる。以上のことから、銀は酸化膜を形成しにくいために、リードフレーム102の銀層と絶縁部103のパッケージ樹脂との密着力には課題を残す。なお、図8Aは、各種金属の反射率を示す図であり、周知の事実である(出典:R.O.Suzuki,T.Ogawa and K.Ono, J.Amer.Ceram.Soc.,82 [8] (1999)2033-38)。 FIG. 8 is a diagram showing an equilibrium oxygen partial pressure curve of silver, silver oxide, and other metal oxides. FIG. 8A shows the equilibrium oxygen partial pressure curves of silver and silver oxide, and FIG. 8B shows the equilibrium oxygen partial pressure curves of various metals. As shown in FIG. 8A, silver does not form silver oxide at room temperature and atmospheric pressure. Moreover, as shown to FIG. 8B, it turns out that it is hard to oxidize compared with metal materials, such as copper, nickel, and iron. From the above, since silver is difficult to form an oxide film, a problem remains in the adhesion between the silver layer of the lead frame 102 and the package resin of the insulating portion 103. 8A is a diagram showing the reflectance of various metals, which is a well-known fact (Source: R.O. Suzuki, T. Ogawa and K. Ono, J. Amer. Ceram. Soc., 82 [ 8] (1999) 2033-38).
 図9は、酸化銀とパッケージ樹脂との反応を示す図である。 FIG. 9 is a diagram showing the reaction between silver oxide and package resin.
 図9Aは、絶縁部103を表すパッケージ樹脂と、リードフレーム101、102を表す銅層、銀層、酸化銀層の積層体と、を示す。絶縁部103のパッケージ樹脂は一部に、無機物と反応しやすいOH基を持つ。酸化銀層内のAgOの酸素原子は、空気中の水分と反応し、OH基を備えるようになる。
 AgO+HO→2AgOH
FIG. 9A shows a package resin representing the insulating portion 103 and a laminate of the copper layer, the silver layer, and the silver oxide layer representing the lead frames 101 and 102. A part of the package resin of the insulating portion 103 has an OH group that easily reacts with an inorganic substance. The oxygen atom of Ag 2 O in the silver oxide layer reacts with moisture in the air and comes to have OH groups.
Ag 2 O + H 2 O → 2AgOH
 その結果、図9Bに示すように絶縁部103のパッケージ樹脂が持つOH基及びリードフレーム101、102の酸化銀層のOH基が反応し、脱水反応が起こる。 As a result, as shown in FIG. 9B, the OH group of the package resin of the insulating portion 103 and the OH group of the silver oxide layers of the lead frames 101 and 102 react to cause a dehydration reaction.
 その結果、図9Cに示すように、酸素原子を介して絶縁部103及びリードフレーム101、102が化学結合により強固に結合する。特にパッケージ樹脂中にシランカップリング剤を含有する場合は、より強固な接着が期待できる。 As a result, as shown in FIG. 9C, the insulating portion 103 and the lead frames 101 and 102 are firmly bonded to each other through chemical bonds via oxygen atoms. In particular, when the silane coupling agent is contained in the package resin, stronger adhesion can be expected.
 すなわち、銀層は、酸化することにより酸素原子を持つ酸化銀層へと変化し、それによりパッケージ樹脂と結合しやすくなる。化学結合によって結合している絶縁部103とリードフレーム101、102とは、アンカー効果との相乗効果により、より安定した密着性を実現できる。 That is, the silver layer is changed to a silver oxide layer having oxygen atoms by being oxidized, and is thus easily bonded to the package resin. The insulating portion 103 and the lead frames 101 and 102 bonded by chemical bonding can realize more stable adhesion due to a synergistic effect with the anchor effect.
 このような加工を施すためには、リードフレーム101、102の接続端部は、リードフレーム101、102の表面または裏面の少なくともいずれか一方に対して垂直な直線形状であってもよい。しかし、図2などに示す段差形状のように、リードフレーム101、102の表面または裏面の少なくともいずれか一方に対して平行な方向の方向性(ベクトル)をもつ方が好ましい。すなわち、例えば斜面形状や曲面形状、円弧形状などでもよく、基本的にはリードフレーム101、102の表面側においてリードフレーム101、102が近づき、リードフレーム101、102の裏面側においてリードフレーム101、102が遠ざかるようにすると良い。このようにすることで、レーザ加工によるリードフレーム101、102の飛散物が接続端部に付着しやすくなるし、接続端部に対してもレーザ加工が容易となる。なお、飛散物の付着とは、接続端部上に飛散物が単にのっている場合も含まれる。また、接続端部以外に付着した飛散物は除去しても良い。 In order to perform such processing, the connection end portions of the lead frames 101 and 102 may have a linear shape perpendicular to at least one of the front and back surfaces of the lead frames 101 and 102. However, it is preferable to have a directionality (vector) in a direction parallel to at least one of the front and back surfaces of the lead frames 101 and 102 as in the step shape shown in FIG. That is, for example, a slope shape, a curved surface shape, or an arc shape may be used. Basically, the lead frames 101 and 102 approach on the front surface side of the lead frames 101 and 102, and the lead frames 101 and 102 on the back surface side of the lead frames 101 and 102. It is better to keep away. By doing in this way, the scattered matter of the lead frames 101 and 102 by laser processing becomes easy to adhere to a connection end part, and laser processing becomes easy also to a connection end part. In addition, the adhesion of scattered matter includes the case where the scattered matter is simply on the connection end. Moreover, you may remove the scattered material adhering except a connection edge part.
 また、レーザとリードフレーム101、102との位置関係によっては、レーザの照射部がリードフレーム101、102に対して垂直の方向(真上)にあるとは限らない。従って、例えばレーザ光がリードフレーム101、102に対して斜めの方向(図4BのX方向)から照射される場合、絶縁部103と接する図4BのB部にレーザを照射しようとすると、リードフレーム101のB部には上手くレーザが当たらない。すなわち、同じレーザの照射面積に対して、レーザ光を受けるリードフレーム101、102表面積が極端に異なってしまうため、リードフレーム101とリードフレーム102とでレーザを吸収する度合いに大きなバラツキが生じる。一方、C部にレーザを照射すると、同じレーザの照射面積に対して、レーザ光を受けるリードフレーム101、102表面積が同程度である。そのため、リードフレーム101のC部とリードフレーム102のC部との両方にほぼ同程度のレーザ加工がなされる。そのため、例えレーザの照射が斜め方向からなされても、レーザ加工の度合いにバラツキが生じにくい。 Further, depending on the positional relationship between the laser and the lead frames 101 and 102, the laser irradiation portion is not always in the direction perpendicular to the lead frames 101 and 102 (directly above). Therefore, for example, when the laser beam is irradiated from an oblique direction (X direction in FIG. 4B) with respect to the lead frames 101 and 102, when the laser beam is applied to the portion B in FIG. The B part of 101 does not hit the laser well. That is, since the surface areas of the lead frames 101 and 102 that receive the laser beam are extremely different with respect to the same laser irradiation area, the degree of laser absorption between the lead frame 101 and the lead frame 102 varies greatly. On the other hand, when the laser is applied to the portion C, the surface areas of the lead frames 101 and 102 that receive the laser light are comparable with respect to the same laser irradiation area. Therefore, substantially the same level of laser processing is performed on both the C portion of the lead frame 101 and the C portion of the lead frame 102. Therefore, even if laser irradiation is performed from an oblique direction, the degree of laser processing is less likely to vary.
 以下、上述のように構成されたLEDパッケージ100の製造方法について説明する。 Hereinafter, a method for manufacturing the LED package 100 configured as described above will be described.
 ステップS1:リードフレーム板準備工程
 リードフレーム101、102(図2参照)の材料となるリードフレーム板は、熱伝導の良い銅又は銅合金を使用する。
Step S1: Lead frame board preparation process Lead frame board used as material of lead frames 101 and 102 (refer to Drawing 2) uses copper or copper alloy with good heat conduction.
 ステップS2:リードフレーム加工工程
 本実施の形態では、リードフレーム板からエッチング加工によりリードフレームを加工する。また、エッチング加工に代えて、リードフレーム板から金型打ち抜き加工によりリードフレームを加工してもよい。
Step S2: Lead Frame Processing Step In this embodiment, the lead frame is processed from the lead frame plate by etching. Further, instead of etching, the lead frame may be processed by die punching from the lead frame plate.
 ステップS3:銀メッキ工程
 本実施の形態では、加工したリードフレームに、ニッケルメッキ+銅メッキし、さらにその後に銀メッキを施す。上記ニッケル及び銅メッキは、非常に薄いメッキ(フラッシュメッキ)である。また、ニッケルメッキ+銅メッキ後の銀メッキは、膜厚1~10μm程度のメッキである。銀は高価なため、極力均一に薄くする方が好ましい。
Step S3: Silver plating step In this embodiment, the processed lead frame is subjected to nickel plating + copper plating, and then silver plating is performed. The nickel and copper plating is a very thin plating (flash plating). Further, the silver plating after nickel plating + copper plating is a plating having a film thickness of about 1 to 10 μm. Since silver is expensive, it is preferable to make it as thin as possible.
 銀メッキは、光沢銀メッキを使用しているが、半光沢、無光沢銀メッキなどを使用してもよい。また、ニッケルメッキ及び銅メッキは必ずしも必要ではない。 Silver plating uses glossy silver plating, but semi-glossy or matte silver plating may be used. Moreover, nickel plating and copper plating are not necessarily required.
 ステップS4:銀メッキ表面加工工程
 銀メッキしたリードフレームにレーザ照射して、リードフレームの表面粗化および酸化させる加工を行う。本実施の形態では、レーザ加工は、例えばファイバーレーザを使用する。また、リードフレームの銀メッキ表面の表面粗さ(Ra)は、ファイバーレーザのエネルギにより決定される。
Step S4: Silver plating surface processing step Laser irradiation is performed on the silver-plated lead frame to perform processing for roughening and oxidizing the surface of the lead frame. In the present embodiment, for example, a fiber laser is used for laser processing. The surface roughness (Ra) of the silver plating surface of the lead frame is determined by the energy of the fiber laser.
 銀メッキ表面加工工程では、ファイバーレーザの条件(波長:1060nm、ピークパワー5kW以上、好ましくは8kW以上、周波数:10~200kHz)でレーザ加工により、リードフレームの銀メッキ表面に表面粗さ(Ra):0.1~10μmの粗面と周辺部に酸化銀層を形成する。このように、レーザによって銀メッキ表面を加工することによって、銀メッキ表面もしくはリードフレーム板が粗面となる。このときに、削り取られた部分の飛散物が、その削り取られた部分の周りに飛び散る。それによって、削り取られた部分だけでなく、そのまわりまで銀メッキ表面またはリードフレーム板が飛散物で粗面となる。これにより、リードフレーム101、102の表面積が飛散物の分だけ増加すると同時に、加工周辺の光学特性が低下してレーザの吸収率、レーザ加工性が向上する。その後再度リードフレーム101、102の接続端部にレーザ加工を施す。銀メッキ表面加工のリードフレームの銀メッキ表面は、所望の表面粗さ(Ra):0.1~10μmの粗面と周辺部に酸化銀層が形成される。 In the silver plating surface processing step, the surface roughness (Ra) is applied to the silver plating surface of the lead frame by laser processing under the conditions of fiber laser (wavelength: 1060 nm, peak power of 5 kW or more, preferably 8 kW or more, frequency: 10 to 200 kHz). : A silver oxide layer is formed on a rough surface of 0.1 to 10 μm and a peripheral portion. Thus, by processing the silver-plated surface with a laser, the silver-plated surface or the lead frame plate becomes a rough surface. At this time, the scattered matter of the scraped portion scatters around the scraped portion. As a result, the silver-plated surface or the lead frame plate becomes a rough surface with scattered matter not only in the shaved portion but also around it. As a result, the surface areas of the lead frames 101 and 102 are increased by the amount of scattered matter, and at the same time, the optical characteristics around the processing are lowered, so that the laser absorption rate and laser workability are improved. After that, laser processing is performed again on the connection end portions of the lead frames 101 and 102. The silver plating surface of the lead frame processed with silver plating has a desired surface roughness (Ra): a rough surface of 0.1 to 10 μm and a silver oxide layer on the periphery.
 以下、粗面と酸化銀層が形成されたリードフレームを使用して、従来と同様の工程を実施する。 Hereafter, using the lead frame on which the rough surface and the silver oxide layer are formed, the same process as before is performed.
 ステップS5:樹脂成形工程
 本実施の形態では、樹脂成形は、トランスファー成形または射出成形などを用いる。なお、本実施の形態では、エポキシ樹脂を用いているが、樹脂材料を他の材料に変更することも可能である。例えば、シリコーン系、ポリフタルアミド(PPA)、ポリカーボネート系、ポリフェニレンサルファイド(PPS)系、液晶ポリマー(LCP)系、ABS系、フェノール系、アクリル系、PBT系等の樹脂、複数の樹脂から成る複合樹脂、または、樹脂と無機材等との複合樹脂などである。
Step S5: Resin Molding Process In this embodiment, the resin molding uses transfer molding or injection molding. Note that although an epoxy resin is used in this embodiment, the resin material can be changed to another material. For example, silicone resin, polyphthalamide (PPA), polycarbonate resin, polyphenylene sulfide (PPS) resin, liquid crystal polymer (LCP) resin, ABS resin, phenol resin, acrylic resin, PBT resin, etc. Resin or composite resin of resin and inorganic material.
 ステップS6:熱硬化工程
 パッケージ樹脂を熱硬化させて、パッケージ樹脂の化学的、機械的な特性を安定させる。成形樹脂の種類や成形方法により、この工程は不要になる場合もある。
Step S6: Thermosetting process The package resin is thermoset to stabilize the chemical and mechanical properties of the package resin. Depending on the type of molding resin and the molding method, this step may be unnecessary.
 ステップS7:デフラッシュ工程
 樹脂成形後の状態ではパッケージ樹脂が絶縁部103からリードフレーム101、102の光反射面や裏面に薄いバリ状にはみ出す場合がある。この樹脂バリを電解等の加工によって除去する(デフラッシュ)。その際、レーザ加工による酸化銀層がリードフレーム101、102の樹脂接着部を超えて、リードフレーム101、102の光反射面や裏面にまで至った場合、樹脂バリと酸化銀層が強力に接着しているため、デフラッシュが困難となる。
Step S7: Deflash process In a state after the resin molding, the package resin may protrude from the insulating portion 103 into a thin burr shape on the light reflecting surface and the back surface of the lead frames 101 and 102. The resin burr is removed by a process such as electrolysis (deflash). At that time, if the silver oxide layer formed by laser processing exceeds the resin adhesion portion of the lead frames 101 and 102 and reaches the light reflecting surface and back surface of the lead frames 101 and 102, the resin burr and the silver oxide layer are strongly bonded. Therefore, deflashing becomes difficult.
 樹脂バリを除去したのち、LEDパッケージ100を完成させる。 After the resin burr is removed, the LED package 100 is completed.
 次に、LEDパッケージの封止樹脂の封止までの製造工程について説明する。 Next, the manufacturing process up to the sealing of the sealing resin of the LED package will be described.
 図10は、本実施の形態に係るLEDパッケージの封止樹脂の封止までの製造工程図である。 FIG. 10 is a manufacturing process diagram up to sealing of the sealing resin of the LED package according to the present embodiment.
 LEDパッケージ100準備工程(図10A参照)
 図10Aに示すように、LEDパッケージの製造方法により作製された銀メッキ表面に粗面が形成されたリードフレーム101、102を有するLEDパッケージ100を準備する。
LED package 100 preparation process (see FIG. 10A)
As shown in FIG. 10A, an LED package 100 having lead frames 101 and 102 having a rough surface formed on a silver-plated surface produced by an LED package manufacturing method is prepared.
 図10Aにおいて、以下の(1)~(3)の銀メッキ表面は、レーザ加工により表面粗さ(Ra):0.1-10μmの粗面が形成された上で、樹脂成形されている。
 (1)リードフレーム101、102と絶縁部103との接続端部のリードフレーム101、102の銀メッキ表面
 (2)リードフレーム101、102とリフレクタ部104の外周接続端部との銀メッキ表面
 (3)リードフレーム101、102とリフレクタ部104の台形底部との接続端部との銀メッキ表面
In FIG. 10A, the following silver plated surfaces (1) to (3) are resin-molded after a rough surface having a surface roughness (Ra) of 0.1-10 μm is formed by laser processing.
(1) Silver-plated surface of the lead frames 101 and 102 at the connection end portion between the lead frames 101 and 102 and the insulating portion 103 (2) Silver-plated surface between the lead frames 101 and 102 and the outer peripheral connection end portion of the reflector portion 104 3) Silver-plated surfaces at the connecting ends of the lead frames 101 and 102 and the trapezoidal bottom of the reflector 104
 LEDチップ110搭載工程(図10B参照)
 図10Bに示すように、LEDパッケージ100のリードフレーム102の上面(表面)にLEDチップ110を載置し、例えばダイボンディングペーストを介して固定する。このダイボンディングペーストとしては、耐熱性・耐光性のあるエポキシやシリコーン等の樹脂、またはより熱伝導率の高い金属からなるダイボンディングペーストを用いることができる。
LED chip 110 mounting process (see FIG. 10B)
As shown in FIG. 10B, the LED chip 110 is placed on the upper surface (front surface) of the lead frame 102 of the LED package 100, and fixed via, for example, a die bonding paste. As the die bonding paste, a die bonding paste made of a heat-resistant / light-resistant resin such as epoxy or silicone, or a metal having higher thermal conductivity can be used.
 これにより、LEDチップ110は、LEDパッケージ100のLED載置空間(キャビティ)105の底面の略中央部に搭載される。またLEDチップ110の外周方向は、リフレクタ部104により取り囲まれている。 Thereby, the LED chip 110 is mounted on a substantially central portion of the bottom surface of the LED mounting space (cavity) 105 of the LED package 100. Further, the outer peripheral direction of the LED chip 110 is surrounded by the reflector portion 104.
 ワイヤボンディング工程(図10C参照)
 図10Cに示すように、リードフレーム102の上面に載置されたLEDチップ110のアノード電極パッド(図示略)とリードフレーム101とをボンディングワイヤ111によりワイヤボンディングする。そして、LEDチップ110のカソード電極パッド(図示略)とリードフレーム102とをボンディングワイヤ112によりワイヤボンディングして電気的に接続する。
Wire bonding process (see Fig. 10C)
As shown in FIG. 10C, the anode electrode pad (not shown) of the LED chip 110 placed on the upper surface of the lead frame 102 and the lead frame 101 are wire-bonded by a bonding wire 111. Then, the cathode electrode pad (not shown) of the LED chip 110 and the lead frame 102 are electrically connected by wire bonding with the bonding wire 112.
 樹脂封止工程(図10D参照)
 図10Dに示すように、キャビティ105に配置されたLEDチップ110及びボンディングワイヤ111、112を覆うように、キャビティ105内に蛍光物質を含有した封止樹脂120を充填する。封止樹脂120により、キャビティ105内に配置されたLEDチップ110及びボンディングワイヤ111、112が、封止される。封止樹脂120は、LED素子の発光波長において光透過率が高く、また狭い隙間への充填性が求められるため、低粘度の有機系樹脂(例えばシリコーン系樹脂)が使用される。また、封止樹脂120には、LED素子からの光を波長変換する蛍光物質が含有されている。蛍光物質は、発光素子からの光の波長に応じて種々選択され、例えば青色光を発するLED素子を利用する場合には、YAG:Ce、Eu及び/又はCrで賦活された窒素含有CaO-Al23-SiO2等の無機蛍光物質等が好適に用いられる。
Resin sealing process (see Fig. 10D)
As shown in FIG. 10D, the cavity 105 is filled with a sealing resin 120 containing a fluorescent material so as to cover the LED chip 110 and the bonding wires 111 and 112 disposed in the cavity 105. The LED chip 110 and the bonding wires 111 and 112 disposed in the cavity 105 are sealed with the sealing resin 120. Since the sealing resin 120 has a high light transmittance at the emission wavelength of the LED element and needs to be filled in a narrow gap, a low-viscosity organic resin (for example, a silicone resin) is used. Further, the sealing resin 120 contains a fluorescent material that converts the wavelength of light from the LED element. The fluorescent material is variously selected according to the wavelength of light from the light emitting element. For example, when an LED element emitting blue light is used, nitrogen-containing CaO—Al activated with YAG: Ce, Eu and / or Cr is used. An inorganic fluorescent material such as 2 O 3 —SiO 2 is preferably used.
 蛍光物質は、LED素子からの光をより長波長に変換させるものが発光効率として良い。LED素子と蛍光物質により波長変換された混色光は白色であることが好ましい。 Fluorescent substance that converts light from the LED element to a longer wavelength is good in luminous efficiency. The mixed color light that has been wavelength-converted by the LED element and the fluorescent material is preferably white.
 例えば、LEDチップ110にGaN系青色発光ダイオードチップを用いる場合、LEDチップ110から出射された光の波長を変換させる蛍光物質(波長変換部材)は、シリコーン樹脂を用いる。このシリコーン樹脂は、緑蛍光体として、(Si・Al)(O・N):Eu、赤蛍光体として、CaAlSiN3:Euを含有している。これにより、LEDチップ110から出射された青色の光の一部が、青色の光より波長の長い赤色又は緑色の光に変換される。 For example, when a GaN-based blue light-emitting diode chip is used for the LED chip 110, a silicone material is used as the fluorescent material (wavelength conversion member) that converts the wavelength of light emitted from the LED chip 110. This silicone resin contains (Si · Al) 6 (O · N) 8 : Eu as a green phosphor and CaAlSiN 3 : Eu as a red phosphor. Thereby, part of the blue light emitted from the LED chip 110 is converted into red or green light having a longer wavelength than the blue light.
 なお、上記蛍光物質を含まないシリコーン樹脂を用いてもよく、またシリコーン樹脂以外の封止樹脂を用いてもよい。 It should be noted that a silicone resin that does not contain the fluorescent material may be used, or a sealing resin other than the silicone resin may be used.
 図11は、本実施の形態に係るLEDパッケージのリードフレームを拡大した写真を示す図である。図4BのC部にレーザ加工されていることが分かる。このように、第1工程は、LEDチップ110を載置する一方の面(上面)を備える第1のリードフレーム102と第1のリードフレーム102に対向する第2のリードフレーム101とにおいて、一方の面(上面)とは反対の他方の面(下面)であって第1のリードフレーム102と第2のリードフレーム101とが対向する接続面(B部)との境界部(C部)に粗部と酸化銀層とを形成する。続く第2工程は、第1工程においてリードフレーム102の飛散物が付着し、酸化銀層が形成した接続面(B部)を覆い、第1のリードフレーム102と第2のリードフレーム101とを固定するパッケージ樹脂(絶縁部103)を形成する。このような第1工程と第2工程により、一対のリードフレームとパッケージ樹脂とを強固に密着接続する。これにより、リードフレームとパッケージ樹脂との隙間を通してパッケージ外部からの水分や二酸化硫黄といった不純物の浸入を防止でき、その結果、光学特性を維持することができる。 FIG. 11 is a view showing an enlarged photograph of the lead frame of the LED package according to the present embodiment. It can be seen that laser processing is performed on the portion C in FIG. 4B. As described above, the first step is performed in one of the first lead frame 102 having one surface (upper surface) on which the LED chip 110 is placed and the second lead frame 101 facing the first lead frame 102. The other surface (lower surface) opposite to the surface (upper surface) of the first lead frame 102 and the boundary surface (C portion) between the connection surface (B portion) where the second lead frame 101 faces. A coarse part and a silver oxide layer are formed. In the subsequent second step, the scattered matter of the lead frame 102 adheres in the first step, covers the connection surface (B part) formed with the silver oxide layer, and the first lead frame 102 and the second lead frame 101 are connected. A package resin (insulating portion 103) to be fixed is formed. Through such first and second steps, the pair of lead frames and the package resin are firmly and tightly connected. Thereby, the intrusion of impurities such as moisture and sulfur dioxide from the outside of the package through the gap between the lead frame and the package resin can be prevented, and as a result, the optical characteristics can be maintained.
 以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されることはない。 The above description is an illustration of a preferred embodiment of the present invention, and the scope of the present invention is not limited to this.
 例えば、リードフレーム101、102及び絶縁部103平面形状は略矩形状であるが、これに限らず、例えば円形、楕円形、多角形等の形状とすることも可能である。 For example, the planar shapes of the lead frames 101 and 102 and the insulating portion 103 are substantially rectangular, but the shape is not limited to this, and may be, for example, a circle, an ellipse, or a polygon.
 また、本実施の形態では、キャビティ105内に1つのLEDチップ110を配置しているが、LEDチップの個数は1個以上であればよく、これに限られるものではない。 In this embodiment, one LED chip 110 is disposed in the cavity 105, but the number of LED chips may be one or more, and is not limited to this.
 上記実施の形態では、LEDパッケージという名称を用いたが、これは説明の便宜上であり、半導体素子用パッケージ、光半導体素子用パッケージ等であってもよい。また、LEDパッケージの製造方法は、光半導体素子の製造方法と呼称してもよい。 In the above embodiment, the name “LED package” is used. However, this is for convenience of explanation, and may be a package for a semiconductor element, a package for an optical semiconductor element, or the like. Moreover, the manufacturing method of an LED package may be called the manufacturing method of an optical semiconductor element.
 さらに、上記LEDパッケージを構成する各構成部、例えば基板の種類、樹脂封止方法などは前述した実施の形態に限られない。 Further, each component constituting the LED package, for example, the type of the substrate, the resin sealing method, etc. is not limited to the above-described embodiment.
 2012年1月25日出願の特願2012-012705の日本出願、および、2012年11月8日出願の特願2012-246154の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure contents of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2012-012705 filed on January 25, 2012 and the Japanese Patent Application No. 2012-246154 filed on November 8, 2012 are as follows: All incorporated herein by reference.
 本発明のLEDパッケージ、LED発光素子及びそれらの製造方法は、LEDチップを搭載するパッケージに用いて好適である。特に、信頼性に優れ、封止樹脂の耐液漏れ性を有する高寿命の発光装置としての利用に有用である。 The LED package, LED light-emitting element, and manufacturing method thereof of the present invention are suitable for use in a package on which an LED chip is mounted. In particular, it is excellent in reliability and useful for use as a long-life light-emitting device having liquid leakage resistance of a sealing resin.
 100 LEDパッケージ
 101、102 リードフレーム
 103 絶縁部
 104 リフレクタ部
 105 キャビティ(LED載置空間)
 110 LEDチップ
 111、112 ボンディングワイヤ
 120 封止樹脂
100 LED package 101, 102 Lead frame 103 Insulating part 104 Reflector part 105 Cavity (LED mounting space)
110 LED chip 111, 112 Bonding wire 120 Sealing resin

Claims (13)

  1.  LEDを載置する一方の面と、前記一方の面の裏面であって他方の平面と、を備える第1のリードフレームと、
     前記一方の面と平行な方向において前記第1のリードフレームと接触せずに対向する第2のリードフレームと、
     前記第1のリードフレームと前記第2のリードフレームがお互いに対向する接続端部間を接続する樹脂と、を備え、
     前記第1のリードフレームの他方の面の少なくとも一部は、前記樹脂から露出し、
     前記第1のリードフレームの他方の面の前記接続端部側の端部、及び前記接続端部の少なくとも一部には、前記第1のリードフレームに対するレーザ加工によって粗面が形成される、
     LEDパッケージ。
    A first lead frame comprising: one surface on which the LED is placed; and the other surface of the back surface of the one surface;
    A second lead frame that is opposed to the first lead frame without contacting the first lead frame in a direction parallel to the one surface;
    The first lead frame and the second lead frame include a resin that connects between connection ends facing each other, and
    At least a portion of the other surface of the first lead frame is exposed from the resin;
    A rough surface is formed by laser processing on the first lead frame at an end portion on the connection end portion side of the other surface of the first lead frame and at least a part of the connection end portion.
    LED package.
  2.  前記第1のリードフレームの前記接続端部の少なくとも一部には、前記第1のリードフレームに対するレーザ加工によって金属酸化物層が形成された、
     請求項1に記載のLEDパッケージ。
    A metal oxide layer is formed on at least a part of the connection end of the first lead frame by laser processing on the first lead frame.
    The LED package according to claim 1.
  3.  前記第1のリードフレームは、前記一方の面と前記他方の面と前記接続端部表面とのそれぞれの少なくとも一部に銀膜を備え、前記レーザ加工によって前記第1のリードフレーム表面に形成された金属酸化物層は酸化銀層である、
     請求項1に記載のLEDパッケージ。
    The first lead frame includes a silver film on at least a part of each of the one surface, the other surface, and the connection end surface, and is formed on the surface of the first lead frame by the laser processing. The metal oxide layer is a silver oxide layer,
    The LED package according to claim 1.
  4.  請求項1に記載のLEDパッケージと、
     前記第1のリードフレームに載置されるLEDと、
     前記LED及び前記第1、第2のリードフレームの前記一方の面の少なくとも一部を封止する透明樹脂と、を備えた、
     LED発光素子。
    An LED package according to claim 1;
    An LED mounted on the first lead frame;
    A transparent resin that seals at least a part of the one surface of the LED and the first and second lead frames;
    LED light emitting element.
  5.  LEDを載置する一方の面と、前記一方の面の裏面であって他方の平面と、を備える第1のリードフレームと、前記一方の面と平行な方向において前記第1のリードフレームと接触せずに対向する第2のリードフレームと、前記第1のリードフレームと前記第2のリードフレームがお互いに対向する接続端部間を接続する樹脂と、を備え、前記第1のリードフレームの他方の面の少なくとも一部は、前記樹脂から露出したLEDパッケージの製造方法であって、
     前記接続端部側の前記第1のリードフレームの他方の面の端部に対して、レーザ加工により前記第1のリードフレームの他方の面の一部を削り取って粗部を形成する工程と、
     前記粗部を形成する工程において前記第1のリードフレームが削り取られて生じる飛散物が付着した前記接続端部を覆い、前記第1のリードフレームと前記第2のリードフレームとを固定する樹脂を形成する工程と、を備えた、
     LEDパッケージの製造方法。
    A first lead frame having one surface on which the LED is mounted; a back surface of the one surface and the other flat surface; and a contact with the first lead frame in a direction parallel to the one surface. A second lead frame opposed to each other, and a resin connecting between the connection ends of the first lead frame and the second lead frame facing each other, At least a part of the other surface is a method of manufacturing an LED package exposed from the resin,
    Forming a rough portion by scraping a part of the other surface of the first lead frame by laser processing with respect to an end portion of the other surface of the first lead frame on the connecting end side;
    Resin that covers the connection end portion to which the scattered matter generated by scraping off the first lead frame in the step of forming the rough portion is attached and fixing the first lead frame and the second lead frame. Forming a process,
    LED package manufacturing method.
  6.  前記第1のリードフレームの他方の面の端部であって、前記第1のリードフレームの接続端部側にレーザ加工により粗部を形成したあと、前記接続端部にレーザ加工により粗部を形成する工程を備えた、
     請求項5に記載のLEDパッケージの製造方法。
    A rough portion is formed by laser processing on an end portion of the other surface of the first lead frame on the connection end portion side of the first lead frame, and then the rough portion is formed by laser processing on the connection end portion. Comprising the step of forming,
    The manufacturing method of the LED package of Claim 5.
  7.  前記レーザ加工により、前記第1のリードフレームの他方の面の一部を削り取って粗部と金属酸化物層とを形成し、
     前記粗部を形成する工程において前記第1のリードフレームが削り取られて生じる飛散物及び前記金属酸化物層が付着した前記接続端部を覆い、前記第1のリードフレームと前記第2のリードフレームとを固定する樹脂を形成する、
     請求項5に記載のLEDパッケージの製造方法。
    By the laser processing, a part of the other surface of the first lead frame is scraped to form a rough portion and a metal oxide layer,
    The first lead frame and the second lead frame cover the connection end portion to which the scattered matter generated by scraping off the first lead frame in the step of forming the rough portion and the metal oxide layer are attached. Forming a resin to fix the
    The manufacturing method of the LED package of Claim 5.
  8.  前記第1のリードフレームの他方の面の端部であって、前記第1のリードフレームの接続端部側にレーザ加工により粗部と前記金属酸化物層とを形成したあと、前記接続端部にレーザ加工をして金属酸化物層を形成する工程を備えた、
     請求項7に記載のLEDパッケージの製造方法。
    The end portion of the other surface of the first lead frame, the rough end portion and the metal oxide layer formed by laser processing on the connection end portion side of the first lead frame, and then the connection end portion And a step of forming a metal oxide layer by laser processing.
    The manufacturing method of the LED package of Claim 7.
  9.  LEDを載置する一方の面と、前記一方の面の裏面であって他方の平面と、を備える第1のリードフレームと、前記一方の面と平行な方向において前記第1のリードフレームと接触せずに対向する第2のリードフレームと、前記第1のリードフレームと前記第2のリードフレームがお互いに対向する接続端部間を接続する樹脂と、を備え、前記第1のリードフレームの他方の面の少なくとも一部は、前記樹脂から露出したLEDパッケージを備えるLED発光素子の製造方法であって、
     前記接続端部側の前記第1のリードフレームの他方の面の端部に対して、レーザ加工により前記第1のリードフレームの他方の面の一部を削り取って粗部を形成する工程と、
     前記粗部を形成する工程において前記第1のリードフレームが削り取られて生じる飛散物が付着した前記接続端部を覆い、前記第1のリードフレームと前記第2のリードフレームとを固定する樹脂を形成する工程と、
     前記第1のリードフレームの前記一方の面にLEDを電気的に接続する工程と、
     前記LEDと、前記第1のリードフレームと前記第2のリードフレームとの前記一方の面の少なくとも一部と、を封止する工程と、を備えた、
     LED発光素子の製造方法。
    A first lead frame having one surface on which the LED is mounted; a back surface of the one surface and the other flat surface; and a contact with the first lead frame in a direction parallel to the one surface. A second lead frame opposed to each other, and a resin connecting between the connection ends of the first lead frame and the second lead frame facing each other, At least a part of the other surface is a method for manufacturing an LED light-emitting element including an LED package exposed from the resin,
    Forming a rough portion by scraping a part of the other surface of the first lead frame by laser processing with respect to an end portion of the other surface of the first lead frame on the connecting end side;
    Resin that covers the connection end portion to which the scattered matter generated by scraping off the first lead frame in the step of forming the rough portion is attached and fixing the first lead frame and the second lead frame. Forming, and
    Electrically connecting an LED to the one side of the first lead frame;
    Sealing the LED and at least a part of the one surface of the first lead frame and the second lead frame,
    Manufacturing method of LED light emitting element.
  10.  前記第1のリードフレームの他方の面の端部であって、前記第1のリードフレームの接続端部側にレーザ加工により粗部を形成したあと、前記接続端部にレーザ加工により粗部を形成する工程を備えた、
     請求項9に記載のLED発光素子の製造方法。
    A rough portion is formed by laser processing on an end portion of the other surface of the first lead frame on the connection end portion side of the first lead frame, and then the rough portion is formed by laser processing on the connection end portion. Comprising the step of forming,
    The manufacturing method of the LED light emitting element of Claim 9.
  11.  前記レーザ加工により、前記第1のリードフレームの他方の面の一部を削り取って粗部と金属酸化物層とを形成し、
     前記粗部を形成する工程において前記第1のリードフレームが削り取られて生じる飛散物及び前記金属酸化物層が付着した前記接続端部を覆い、前記第1のリードフレームと前記第2のリードフレームとを固定する樹脂を形成する、
     請求項9に記載のLED発光素子の製造方法。
    By the laser processing, a part of the other surface of the first lead frame is scraped to form a rough portion and a metal oxide layer,
    The first lead frame and the second lead frame cover the connection end portion to which the scattered matter generated by scraping off the first lead frame in the step of forming the rough portion and the metal oxide layer are attached. Forming a resin to fix the
    The manufacturing method of the LED light emitting element of Claim 9.
  12.  前記第1のリードフレームの他方の面の端部であって、前記第1のリードフレームの接続端部側にレーザ加工により粗部と前記金属酸化物層とを形成したあと、前記接続端部にレーザ加工により金属酸化物層とを形成する工程を備えた、
     請求項9に記載のLED発光素子の製造方法。
    The end portion of the other surface of the first lead frame, the rough end portion and the metal oxide layer formed by laser processing on the connection end portion side of the first lead frame, and then the connection end portion And a step of forming a metal oxide layer by laser processing.
    The manufacturing method of the LED light emitting element of Claim 9.
  13.  前記レーザ加工は、レーザの波長が800~1200nm、ピークパワー5kW以上である、
     請求項9に記載のLED発光素子の製造方法。
     
    The laser processing has a laser wavelength of 800 to 1200 nm and a peak power of 5 kW or more.
    The manufacturing method of the LED light emitting element of Claim 9.
PCT/JP2012/008434 2012-01-25 2012-12-28 Led package, led light-emitting element, and method of manufacturing same WO2013111253A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-012705 2012-01-25
JP2012012705A JP5083472B1 (en) 2012-01-25 2012-01-25 LED package manufacturing method
JP2012246154A JP6038598B2 (en) 2012-11-08 2012-11-08 LED package, LED light emitting device and manufacturing method thereof
JP2012-246154 2012-11-08

Publications (1)

Publication Number Publication Date
WO2013111253A1 true WO2013111253A1 (en) 2013-08-01

Family

ID=48873027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008434 WO2013111253A1 (en) 2012-01-25 2012-12-28 Led package, led light-emitting element, and method of manufacturing same

Country Status (1)

Country Link
WO (1) WO2013111253A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326845A (en) * 1997-03-25 1998-12-08 Mitsui Chem Inc Resin package, semiconductor device and manufacture of resin package
JP2002083917A (en) * 2000-06-28 2002-03-22 Noge Denki Kogyo:Kk Lead frame having protrusions on surface, method of manufacturing the same, semiconductor device and manufacturing method thereof
JP2004349497A (en) * 2003-05-22 2004-12-09 Shinko Electric Ind Co Ltd Packaging component and semiconductor package
JP2007234629A (en) * 2006-02-27 2007-09-13 Matsushita Electric Ind Co Ltd Semiconductor device package component, and semiconductor device using same
JP2009266931A (en) * 2008-04-23 2009-11-12 Nec Tokin Corp Solid-state electrolytic capacitor
JP2011176270A (en) * 2010-01-29 2011-09-08 Toshiba Corp Led package
JP2011233821A (en) * 2010-04-30 2011-11-17 Nichia Chem Ind Ltd Light-emitting device and method of manufacturing light-emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326845A (en) * 1997-03-25 1998-12-08 Mitsui Chem Inc Resin package, semiconductor device and manufacture of resin package
JP2002083917A (en) * 2000-06-28 2002-03-22 Noge Denki Kogyo:Kk Lead frame having protrusions on surface, method of manufacturing the same, semiconductor device and manufacturing method thereof
JP2004349497A (en) * 2003-05-22 2004-12-09 Shinko Electric Ind Co Ltd Packaging component and semiconductor package
JP2007234629A (en) * 2006-02-27 2007-09-13 Matsushita Electric Ind Co Ltd Semiconductor device package component, and semiconductor device using same
JP2009266931A (en) * 2008-04-23 2009-11-12 Nec Tokin Corp Solid-state electrolytic capacitor
JP2011176270A (en) * 2010-01-29 2011-09-08 Toshiba Corp Led package
JP2011233821A (en) * 2010-04-30 2011-11-17 Nichia Chem Ind Ltd Light-emitting device and method of manufacturing light-emitting device

Similar Documents

Publication Publication Date Title
US8421088B2 (en) Surface mounting type light emitting diode
TWI481070B (en) Slim led package
JP5350658B2 (en) Light emitting element
US8604506B2 (en) Surface mounting type light emitting diode and method for manufacturing the same
US8629549B2 (en) Carrier body for a semiconductor component, semiconductor component and method for producing a carrier body
US20090090928A1 (en) Light emitting module and method for manufacturing the same
JP5083472B1 (en) LED package manufacturing method
JP5106094B2 (en) Surface mount type light emitting diode and method for manufacturing the same
WO2010013396A1 (en) Light-emitting device
JP2008060344A (en) Semiconductor light-emitting device
US20110121335A1 (en) Light emitting module and manufacturing method thereof
US20080237621A1 (en) Light emitting device and method of producing the same
JP2007250979A (en) Semiconductor package
JP2006245032A (en) Light emitting device and led lamp
JP2008235867A (en) Surface mount light-emitting diode and method of manufacturing the same
JP2009283653A (en) Light-emitting device and production method therefor
US20140063822A1 (en) Wiring board, light-emitting device, and method of manufacturing the wiring board
US20160233401A1 (en) Substrate for light emitting device, light emitting device, and method for manufacturing substrate for light emitting device
US9755123B2 (en) Light emitting device and method of manufacturing the light emitting device
JP6521032B2 (en) Optical semiconductor device and method of manufacturing the same
JP5988782B2 (en) LED package and LED light emitting device
JP5233478B2 (en) Light emitting device
JP5057371B2 (en) Surface mount type light emitting diode and method for manufacturing the same
JP2004327632A (en) Package for housing light emitting element and light emitting device
JP6038598B2 (en) LED package, LED light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866788

Country of ref document: EP

Kind code of ref document: A1