WO2013108715A1 - Ceramic cylindrical sputtering target and method for producing same - Google Patents

Ceramic cylindrical sputtering target and method for producing same Download PDF

Info

Publication number
WO2013108715A1
WO2013108715A1 PCT/JP2013/050400 JP2013050400W WO2013108715A1 WO 2013108715 A1 WO2013108715 A1 WO 2013108715A1 JP 2013050400 W JP2013050400 W JP 2013050400W WO 2013108715 A1 WO2013108715 A1 WO 2013108715A1
Authority
WO
WIPO (PCT)
Prior art keywords
target material
sputtering target
ceramic
powder
cylindrical sputtering
Prior art date
Application number
PCT/JP2013/050400
Other languages
French (fr)
Japanese (ja)
Inventor
貴則 眞▲崎▼
石田 新太郎
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48799141&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013108715(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020167022127A priority Critical patent/KR20160101206A/en
Priority to KR1020147009792A priority patent/KR20140069146A/en
Priority to CN201380006061.2A priority patent/CN104066700B/en
Publication of WO2013108715A1 publication Critical patent/WO2013108715A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/003Pressing by means acting upon the material via flexible mould wall parts, e.g. by means of inflatable cores, isostatic presses
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape

Definitions

  • the present invention relates to a ceramic cylindrical sputtering target material and a manufacturing method thereof, and more particularly to a high-density and long ceramic cylindrical sputtering target material and a manufacturing method thereof.
  • a magnetron type rotary cathode sputtering device has a magnetic field generator inside a cylindrical target, and performs sputtering while rotating the target while cooling from the inside of the target.
  • the entire surface of the target material becomes erosion and becomes uniform. It is shaved.
  • the use efficiency of the flat plate type magnetron sputtering apparatus is 20 to 30%, whereas the magnetron type rotary cathode sputtering apparatus can obtain a remarkably high use efficiency of 60% or more.
  • by rotating the target it is possible to input a larger power per unit area as compared with the conventional flat plate type magnetron sputtering apparatus, so that a high deposition rate can be obtained.
  • Such a rotating cathode sputtering method is widely used for metal targets that can be easily processed into a cylindrical shape and have high mechanical strength.
  • the ceramic target material has low strength and is brittle, cracks and deformation are likely to occur during production. For this reason, in a ceramic target, although a short cylindrical target material could be manufactured, a long cylindrical target material with high performance could not be manufactured.
  • Patent Document 1 in a long cylindrical target produced by stacking short cylindrical target materials, each target material is bonded on the basis of the outer peripheral surface of the cylindrical target, and the steps generated in the divided portions of the target are detected.
  • a technique for suppressing arcing and particle generation due to a step by making the thickness 0.5 mm or less is disclosed.
  • this technique when the cylindrical target material is short, a long cylindrical target cannot be obtained unless a large number of target materials are stacked. The number increases. If there is a divided portion, the occurrence of arcing due to the divided portion is inevitable even if there is no step. For this reason, in the technique in which the number of division parts is large, the number of occurrences of arcing increases.
  • Patent Document 2 in firing a hollow cylindrical ceramic sintered body, the ceramic molded body is mounted on a plate-shaped ceramic molded body having a sintering shrinkage rate equivalent to that of the ceramic molded body.
  • Disclosed is a technique for preventing cracking during firing and obtaining a fired body having a relative density of 95% or more by placing and firing.
  • a ceramic powder is molded, degreased and fired to produce a long cylindrical ceramic sintered body having a length of 500 mm or more, cracking occurs in any of the steps of molding, degreasing or firing. There was a problem.
  • Patent Document 3 discloses a technique for manufacturing an ITO cylindrical target material having a length of 500 mm or more by a thermal spraying method.
  • the cylindrical target material obtained by the thermal spraying method cannot increase the relative density, and the relative density is at most about 70%.
  • the number of occurrences of arcing increases. For this reason, when sputtering is performed using a long cylindrical target material obtained by a thermal spraying method, the number of occurrences of arcing increases.
  • An object of the present invention is to provide a high-density and long ceramic cylindrical sputtering target material.
  • the present inventor has found a method of manufacturing a ceramic cylindrical sputtering target material that does not generate cracks or deformation during manufacturing even if the formed body is long, and manufactures a high-density and long ceramic cylindrical sputtering target material. Succeeded in doing.
  • the present invention is a ceramic cylindrical sputtering target material having a length of 500 mm or more and a relative density of 95% or more and being an integral product.
  • the length of the ceramic cylindrical sputtering target material is preferably 750 mm or more, 1000 mm or more, and more preferably 1500 mm or more.
  • the ceramic cylindrical sputtering target material is, for example, Made of ITO having a Sn content of 1 to 10% by mass in terms of SnO 2 ; Made of AZO having an Al content of 0.1 to 5% by mass in terms of Al 2 O 3 , or an In content of 40 to 60% by mass in terms of In 2 O 3 , and a Ga content of Ga 2 It can be made of IGZO having an O 3 content of 20 to 40% by mass and a Zn content of 10 to 30% by mass in terms of ZnO.
  • the present invention also provides: A ceramic cylindrical sputtering target comprising the ceramic cylindrical sputtering target material bonded to a backing tube with a bonding material.
  • the present invention also provides: Step 1 for preparing granules from a slurry containing ceramic raw material powder and an organic additive, Step 2 for producing a cylindrical shaped body by CIP molding the granules, Step 3 for degreasing the molded body, and Step 4 for firing the degreased molded body.
  • a method for producing a ceramic cylindrical sputtering target material comprising: In the step 1, the method for producing a ceramic cylindrical sputtering target material is characterized in that the amount of the organic additive is 0.1 to 1.2% by mass with respect to the amount of the ceramic raw material powder.
  • the organic additive includes a binder, and the binder is polyvinyl alcohol having a polymerization degree of 200 to 400 and a saponification degree of 60 to 80 mol%.
  • the ceramic cylindrical sputtering target material of the present invention is an integral product having a length of 500 mm or more, it is not necessary to stack a large number of sputtering target materials to make them long. For this reason, when the ceramic cylindrical sputtering target material of the present invention is used in a magnetron rotary cathode sputtering apparatus or the like, there are no divided parts in the entire target or the number thereof is small, so that arcing or particles are generated during sputtering. Few. Moreover, since the ceramic cylindrical sputtering target material of the present invention has a high density, there is little arcing during sputtering.
  • the method for producing a ceramic cylindrical sputtering target material of the present invention can efficiently produce the ceramic cylindrical sputtering target material without generating cracks or deformations.
  • the ceramic cylindrical sputtering target material of the present invention has a length of 500 mm or more and a relative density of 95% or more, and is an integral product.
  • An integral product does not consist of a plurality of parts, but means that the entire target material is a single article that is not divided as an object.
  • a target material formed by stacking or joining a plurality of target material parts is not an integral product. Therefore, the ceramic cylindrical sputtering target material of the present invention is distinguished from a cylindrical target material having a length of 500 mm or more formed by stacking or joining a plurality of cylindrical target materials.
  • the ceramic cylindrical sputtering target material of the present invention can be manufactured, for example, by a manufacturing method described later.
  • ceramic target materials are low in strength and brittle, so the conventional sintering method produces cracks, deformations, etc. during manufacturing, and manufactures an integrated ceramic cylindrical sputtering target material with a length of 500 mm or more. I could't. For this reason, conventionally, a long cylindrical sputtering target material having a length of less than 500 mm has to be connected to form a long cylindrical sputtering target material. With such a configuration, since the number of divided portions generated between the target material and the target material increases, when sputtering is performed using the target material having this configuration, the number of occurrences of arcing due to this divided portion Will increase.
  • the ceramic cylindrical sputtering target material of the present invention is a long body integrally having a length of 500 mm or more, it is not necessary to connect a large number of target materials to form a long body.
  • sputtering can be performed using only one, or sputtering can be performed by connecting a plurality.
  • sputtering is performed using only one, since there is no divided portion, arcing due to the divided portion does not occur. Even when sputtering is performed by connecting a plurality of pieces, since the ceramic cylindrical sputtering target material constituting the same has a length of 500 mm or more, the target length can be obtained with a small number.
  • the conventional thermal spraying method it is possible to produce a long ceramic cylindrical sputtering target material having a length of 500 mm or more integrally, but the cylindrical target material obtained by the thermal spraying method has a high relative density. 70%. For this reason, when sputtering is performed using a cylindrical target material obtained by a thermal spraying method, the number of occurrences of arcing increases. Since the ceramic cylindrical sputtering target material of the present invention has a relative density of 95% or more, the number of arcing generated during sputtering is smaller than that of the cylindrical target material obtained by the thermal spraying method.
  • the ceramic cylindrical sputtering target material of the present invention has a length of 500 mm or more, preferably 750 mm or more, more preferably 1000 mm or more, and further preferably 1500 mm or more.
  • the longer the target material the larger the area of film formation becomes possible, and arcing due to the divided portions does not occur.
  • the longer the target material the smaller the number of the target materials, the desired length can be reduced, and the number of divided portions can be reduced, resulting in the divided portions. The number of occurrences of arcing can be reduced.
  • the upper limit of the length of the ceramic cylindrical sputtering target material of the present invention is not particularly limited, but is about 3400 mm due to limitations of the magnetron rotary cathode sputtering apparatus.
  • the ceramic cylindrical sputtering target material of the present invention preferably has an inner diameter of 100 mm or more.
  • the inner diameter is as described above, efficient film formation is possible by the rotary cathode sputtering method.
  • the roundness, cylindricity and runout tolerance of the ceramic cylindrical sputtering target material of the present invention are preferably within 1 mm, more preferably within 0.5 mm, and even more preferably within 0.1 mm. The smaller the roundness, the cylindricity, and the run-out tolerance, the more preferable arcing is unlikely.
  • the ceramic cylindrical sputtering target material of the present invention has a relative density of 95% or more, preferably 99% or more, more preferably 99.5% or more. As the relative density of the target material is higher, the target material can be prevented from cracking due to thermal shock or temperature difference during sputtering, and the target material thickness can be effectively utilized without waste. In addition, generation of particles and arcing is reduced, and good film quality can be obtained.
  • the upper limit of the relative density is not particularly limited, but is usually 100%.
  • indium oxide-tin oxide based material ITO
  • aluminum oxide-zinc oxide based material AZO
  • indium oxide- Examples thereof include a gallium oxide-zinc oxide material (IGZO).
  • the Sn content in the target material is preferably 1 to 10% by mass, more preferably 2 to 10% by mass, and further preferably 3 to 10% by mass in terms of SnO 2 content. .
  • the Sn content is within the above range, there is an advantage that the target material has low resistance.
  • the Al content in the target material is preferably 0.1 to 5% by mass, more preferably 1 to 5% by mass, and still more preferably 2 to 5% in terms of Al 2 O 3 content. % By mass.
  • the Al content is within the above range, there is an advantage that the target material has low resistance.
  • the content of In in the target material is 40 to 60% by mass in terms of In 2 O 3
  • the content of Ga is 20 to 50% by mass in terms of Ga 2 O 3
  • Zn The content of Zn is preferably 5 to 30% by mass in terms of ZnO
  • the content of In is 40 to 55% by mass in terms of In 2 O 3
  • the content of Ga is 25 to 25% in terms of Ga 2 O 3.
  • the content of 35% by mass and the content of Zn is 15 to 30% by mass in terms of ZnO
  • the content of In is 40 to 50% by mass in terms of In 2 O 3 and the content of Ga is Ga 2 O.
  • the ceramic cylindrical sputtering target of the present invention is formed by bonding the ceramic cylindrical sputtering target material to a backing tube with a bonding material.
  • the backing tube usually has a cylindrical shape to which a ceramic cylindrical sputtering target material can be joined.
  • a ceramic cylindrical sputtering target material can be joined.
  • target material it can select and use from the conventionally used backing tube suitably.
  • the material for the backing tube include stainless steel and titanium.
  • the type of the bonding material is not particularly limited, and can be appropriately selected from conventionally used bonding materials according to the target material.
  • the bonding material may be indium solder or the like.
  • One ceramic cylindrical sputtering target material may be joined to the outside of one backing tube, or two or more may be joined on the same axis.
  • the gap between the ceramic cylindrical sputtering target materials that is, the length of the divided portion is usually 0.05 to 0.5 mm, preferably 0.05 to 0.3 mm, more preferably 0. .05 mm.
  • the target materials may collide and break due to thermal expansion during bonding or sputtering.
  • the method similar to the conventional ceramic cylindrical sputtering target can be employ
  • Method for manufacturing ceramic cylindrical sputtering target material The method for producing the ceramic cylindrical sputtering target material of the present invention, Step 1 for preparing granules from a slurry containing ceramic raw material powder and an organic additive, Step 2 for producing a cylindrical shaped body by CIP molding the granules, Step 3 for degreasing the molded body, and Step 4 for firing the degreased molded body.
  • a method for producing a ceramic cylindrical sputtering target material comprising: In the step 1, the amount of the organic additive is 0.1 to 1% by mass with respect to the amount of the ceramic raw material powder.
  • the ceramic cylindrical sputtering target material of the present invention can be efficiently manufactured without generating cracks or deformations.
  • the organic additive preferably contains a binder, and the binder is preferably polyvinyl alcohol having a polymerization degree of 200 to 400 and a saponification degree of 60 to 80 mol%.
  • the binder is preferably polyvinyl alcohol having a polymerization degree of 200 to 400 and a saponification degree of 60 to 80 mol%.
  • the filling property of the raw materials is improved, and a high-density molded body can be obtained. Further, uneven filling is less likely to occur, and uniform filling is possible. Uneven press is less likely to occur.
  • the ceramic raw material powder is a powder that can produce ceramics as a constituent material of the target material by this manufacturing method.
  • the ceramic when the ceramic is ITO, a mixed powder of In 2 O 3 powder and SnO 2 powder can be used as the ceramic raw material powder.
  • the ITO powder can be used alone or mixed with In 2 O 3 powder and SnO 2 powder. May be used.
  • In 2 O 3 powder, SnO 2 powder and ITO powder each have a specific surface area of usually 1 to 40 m 2 / g as measured by the BET (Brunauer-Emmett-Teller) method.
  • the mixing ratio of the In 2 O 3 powder, the SnO 2 powder, and the ITO powder is appropriately determined so that the content of the constituent elements in the target material is within the above-described range.
  • the ceramic is AZO
  • a mixed powder of Al 2 O 3 powder and ZnO powder can be used as the ceramic raw material powder, and the AZO powder can be used alone or mixed with Al 2 O 3 powder and ZnO powder. Also good.
  • the Al 2 O 3 powder, ZnO powder and AZO powder each have a specific surface area measured by the BET method of usually 1 to 40 m 2 / g.
  • the mixing ratio of the Al 2 O 3 powder, the ZnO powder, and the AZO powder is appropriately determined so that the content of the constituent elements in the target material is within the above range.
  • the content (mass%) of the Al 2 O 3 powder in the ceramic raw material powder is finally obtained. It has been confirmed that it can be equated with the Al content (mass%) in terms of Al 2 O 3 content in the material.
  • a mixed powder of In 2 O 3 powder, Ga 2 O 3 powder and ZnO powder can be used as the ceramic raw material powder, and the IGZO powder alone or In 2 O 3 powder, Ga 2 it may be mixed with O 3 powder and ZnO powder.
  • In 2 O 3 powder, Ga 2 O 3 powder, ZnO powder and IGZO powder each have a specific surface area of usually 1 to 40 m 2 / g measured by the BET method.
  • the mixing ratio of the In 2 O 3 powder, the Ga 2 O 3 powder, the ZnO powder, and the IGZO powder is appropriately determined so that the content of the constituent elements in the target material is within the above range.
  • each powder and zirconia balls can be put in a pot and mixed by ball mill.
  • the organic additive is a substance added to suitably adjust the properties of the slurry and the molded body.
  • examples of the organic additive include a binder, a dispersant, and a plasticizer.
  • the amount of the organic additive is 0.1 to 1.2% by mass, preferably 0.2 to 1.0% by mass, more preferably 0.4 to 0%, based on the amount of the ceramic raw material powder. 0.8% by mass.
  • the blending amount of the organic additive is more than 1.2% by mass, the strength of the molded body during the removal of the solvent is greatly reduced, and it becomes easy to degrease and cracks. It may be difficult to increase the density.
  • the said compounding quantity of an organic additive is less than 0.1 mass%, sufficient effect of each component may not be acquired.
  • the blending amount of the organic additive is within the above range, a ceramic cylindrical sputtering target material having a length of 500 mm or more and a relative density of 95% or more can be manufactured.
  • the binder is added to bind the ceramic raw material powder in the molded body and increase the strength of the molded body.
  • the binder normally used when obtaining a molded object in the well-known powder sintering method can be used.
  • polyvinyl alcohol is preferable, and polyvinyl alcohol having a polymerization degree of 200 to 400 and a saponification degree of 60 to 80 mol% is preferable.
  • PVA polyvinyl alcohol
  • polyvinyl alcohol having a polymerization degree of 200 to 400 and a saponification degree of 60 to 80 mol% is preferable.
  • a binder is used, even if the amount of the binder added is small, granules that are easily crushed at the time of CIP molding are prepared, and a compact body that is densely filled with ceramic raw material powder is obtained by CIP molding. As a result, it is possible to produce a long ceramic cylindrical target material with high density without causing cracks or deformation.
  • the blending amount of the organic additive is within the above range and the binder is further used, an integrated ceramic cylindrical target material can be stably produced with a length of 750 mm or more and a relative density of 95% or more.
  • Increasing the binder amount can eliminate molding cracks, but increasing the binder amount causes the cylindrical molded body to become brittle and crack during degreasing or firing. Excessive binder addition is not preferable because the binder is segregated and becomes a starting point of degreasing cracks.
  • a molded body that is difficult to break can be obtained by adding a small amount of binder, even if it is a long molded body. Hard to break. That is, when the binder is used, cracks are unlikely to occur in any of the steps of molding, degreasing and firing, and a long ceramic cylindrical target material can be stably obtained.
  • a slurry with a low viscosity is obtained with little entanglement of the polymer that is a component of the binder.
  • a binder with a low binder degree is used with a constant binder ratio, a slurry having a low viscosity and a high concentration of raw material powder is produced. For this reason, since there is little movement of water in the droplets during spraying of the slurry, the inside of the granule is not easily hollowed out and is not easily depressed. Since the entanglement of the binder in the granule is small, the binding force of the binder is weak, and the granule is easily crushed.
  • the raw material powder and the binder cannot be aggregated on the surface portion of the droplet, so that the surface portion is difficult to be dense and the strength of the granules is lowered. For these reasons, it is considered that a ceramic body powder that is densely filled with CIP molding can be obtained that is difficult to break.
  • the binder when a binder having a low saponification degree of 60 to 80 mol% is used, in the slurry composed of the raw material powder, the binder and water, the hydrophobic group of the binder is adsorbed on the powder, and a highly dispersible slurry is obtained.
  • the slurry is sprayed at a temperature equal to or higher than the cloud point, the binder precipitates in a short time and does not move to the outside of the liquid droplets, so the granules are dried with the binder uniformly dispersed throughout the granules, and granules with low surface strength are obtained. It is done. For these reasons, it is considered that a ceramic body powder that is densely filled with CIP molding can be obtained that is difficult to break.
  • the polymerization degree of polyvinyl alcohol as a binder is 400 or less and the saponification degree is 80 mol% or less.
  • the degree of polymerization and the degree of saponification are too small, the resulting molded product becomes too soft and the handling properties are lowered.
  • the polymerization degree of polyvinyl alcohol as a binder is 200 or more and the saponification degree is 60 mol% or more.
  • the polyvinyl alcohol as the binder preferably has a polymerization degree of 250 to 350 and a saponification degree of 65 to 75 mol%, more preferably a polymerization degree of 280 to 320 and a saponification degree of 68 to 72 mol%.
  • the addition amount of polyvinyl alcohol as a binder is preferably 0.1 to 1.0% by mass, more preferably 0.1 to 0.65% by mass, and still more preferably 0.1 to 0.00% by mass with respect to the ceramic raw material powder. 3% by mass.
  • amount of polyvinyl alcohol added increases, plasticity increases and molding cracks are less likely to be cracked.
  • strength reduction of the molded body during removal of the solvent increases, and it becomes easier to degrease cracks. , It may be difficult to increase the density. For this reason, the said range is suitable.
  • Dispersant is added to increase the dispersibility of the raw material powder and binder in the slurry.
  • examples of the dispersant include ammonium polycarboxylate and ammonium polyacrylate.
  • the plasticizer is added to increase the plasticity of the molded body.
  • the plasticizer include polyethylene glycol (PRG) and ethylene glycol (EG).
  • the dispersion medium used when preparing the slurry containing the ceramic raw material powder and the organic additive is not particularly limited, and can be appropriately selected from water, alcohol and the like according to the purpose.
  • the method for preparing the slurry containing the ceramic raw material powder and the organic additive is not particularly limited, and for example, a method in which the ceramic raw material powder, the organic additive and the dispersion medium are placed in a pot and ball mill mixed can be used.
  • step 2 the granules prepared in step 1 are CIP-molded (Cold Isostatic Pressing) to produce a cylindrical shaped body.
  • CIP-molded Cold Isostatic Pressing
  • a mold used for CIP molding there is a mold that can be used to produce a long cylindrical molded body that is usually used for CIP molding, such as a cylinder having a cylindrical core (mandrel) that can be sealed up and down.
  • a urethane rubber mold having a shape can be used.
  • Pressure during CIP molding is usually 800 kgf / cm 2 or more, preferably 1000 kgf / cm 2 or more, more preferably 3000 kgf / cm 2 or more.
  • the pressure reduction rate below 200kgf / cm 2 ⁇ h that below 100kgf / cm 2 ⁇ h Is more preferably 50 kgf / cm 2 ⁇ h or less.
  • the pressure reduction speed is 200 kgf / cm 2 ⁇ h or less, the springback force becomes weak and the molded body is difficult to break.
  • a high-density and long ceramic cylindrical target material can be stably produced.
  • the binder is used, the blending amount of the organic additive is within the above range, and the decompression speed is adopted, the integrated ceramic cylindrical target material is stable with a length of 1000 mm or more and a relative density of 95% or more. Can be manufactured.
  • the pressure reduction speed Usually, it is 30 kgf / cm ⁇ 2 >.
  • step 3 the molded body produced in step 2 is degreased. Degreasing is performed by heating the compact.
  • the degreasing temperature is usually 600 to 800 ° C, preferably 700 to 800 ° C, more preferably 750 to 800 ° C.
  • the higher the degreasing temperature the higher the strength of the molded body. However, when the temperature exceeds 800 ° C, shrinkage of the molded body occurs.
  • the degreasing time is usually 3 to 10 hours, preferably 5 to 10 hours, more preferably 10 hours.
  • the temperature rising rate is preferably 50 ° C./h or less, more preferably 30 ° C./h or less, and further preferably 20 ° C./h or less in the temperature range up to 400 ° C.
  • the temperature is preferably increased at a low speed of 50 ° C./h or less up to 400 ° C.
  • the blending amount of the organic additive is within the above range
  • the decompression speed during CIP molding is within the above range
  • the heating rate during degreasing is within the above range, a length of 1500 mm or more, relative An integrated ceramic cylindrical target material having a density of 95% or more can be stably produced.
  • the removal of the solvent is completed, so that the lead time can be shortened, and the temperature can be increased at a higher rate, for example, about 80 ° C./h.
  • the molded body degreased in step 3 is fired.
  • the firing furnace is not particularly limited, and a firing furnace conventionally used for manufacturing ceramic target materials can be used.
  • the firing temperature is usually 1450 to 1700 ° C., preferably 1500 to 1650 ° C., more preferably 1550 to 1600 ° C. when the ceramic is ITO.
  • the temperature is usually 1250 to 1500 ° C., preferably 1300 to 1450 ° C., more preferably 1350 to 1400 ° C.
  • the higher the firing temperature the higher the density of the target material is obtained.
  • the firing temperature is too high, the sintered structure of the target material becomes enlarged and easily cracked.
  • Calcination time is usually 3 to 30 hours, preferably 5 to 10 hours, more preferably 5 to 8 hours. The longer the firing time, the more easily the target material is densified. However, if the firing time is too long, the sintered structure of the target material is enlarged and easily broken.
  • the heating rate is usually 100 to 500 ° C./h.
  • the temperature lowering rate is usually 10 to 100 ° C./h, preferably 10 to 50 ° C./h, more preferably 10 to 30 ° C./h. As the rate of temperature decrease is smaller, cracking due to the difference in thermal stress is less likely to occur.
  • the firing atmosphere is not particularly limited, and is usually an air atmosphere or an oxygen atmosphere.
  • the obtained sintered body is subjected to necessary processing such as cutting and used as a sputtering target material.
  • C 1 to C i indicate the contents (weight%) of the constituent materials of the target material, respectively, and ⁇ 1 to ⁇ i are the densities (g of each constituent material corresponding to C 1 to C i ). / cm 3 ).
  • Example 1 And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 10 m 2 / g surface area of 10 m 2 / g, the content of SnO 2 powder 1
  • a ceramic raw material powder was prepared by blending to a mass% and ball mill mixing with zirconia balls in a pot.
  • the slurry was supplied to a spray drying apparatus, and spray drying was performed under the conditions of an atomizing rotation speed of 10,000 rpm and an inlet temperature of 250 ° C. to prepare granules.
  • a lid that can be sealed up and down, and a cylindrical urethane rubber mold with an inner diameter of 210 mm (thickness 10 mm) and a length of 1219 mm having a cylindrical core (mandrel) with an outer diameter of 165 mm is filled while tapping the granules.
  • CIP molding was performed at a pressure of 800 kgf / cm 2 to prepare a cylindrical molded body. Decompression rate after CIP molding at high pressure range than 200kgf / cm 2 300kgf / cm 2 ⁇ h, at 200 kgf / cm 2 or less in the pressure range was 200kgf / cm 2 ⁇ h.
  • the length of the obtained molded body was 1212 mm.
  • the molded body was heat degreased.
  • the degreasing temperature was 700 ° C.
  • the degreasing time was 10 hours
  • the heating rate was 20 ° C./h in the temperature range up to 400 ° C., and 50 ° C./h in the temperature range higher than 400 ° C.
  • the degreased compact was fired to produce a sintered body. Firing was performed in an air atmosphere at a firing temperature of 1600 ° C., a firing time of 10 hours, a heating rate of 300 ° C./h, and a cooling rate of 50 ° C./h.
  • the obtained sintered body was cut to produce an ITO cylindrical sputtering target material having an outer diameter of 155 mm, an inner diameter of 135 mm, and a length of 1000 mm.
  • Three target materials were joined with In solder to an SUS304 backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm to produce an ITO target.
  • the interval between the target materials was 0.2 mm.
  • Table 1 shows the relative density of the target material and the evaluation of cracks in the target material and the molded body. [Examples 2 to 20, Comparative Examples 1 to 9] Examples 2 to 20 and Comparative Examples 1 to 9 were performed under the following conditions.
  • the content of SnO 2 powder in the ceramic raw material powder, the polymerization degree and saponification degree of polyvinyl alcohol, and the addition amount of polyvinyl alcohol and the addition amount of ammonium polycarboxylate were set to the conditions shown in Table 1, except that In the same manner, granules were prepared.
  • This granule was CIP-molded to produce a cylindrical molded body having the length shown in Table 1.
  • the same urethane rubber mold as in Example 1 was used for Examples 2, 3, 9 to 18 and Comparative Example 6, and the urethane rubber mold used in Example 1 was used for other Examples and Comparative Examples.
  • a urethane rubber mold having the same core and the same inner diameter as that of the length of the molded body having the length shown in Table 1 was used.
  • the pressure reduction rate in the pressure range of 200 kgf / cm 2 or less after CIP molding was set to the conditions shown in Table 1.
  • the other CIP molding conditions were the same as in Example 1.
  • Comparative Example 5 cracks occurred in the molded body during the molding process.
  • the molded body that was not cracked in the molding process was heat degreased.
  • the heating rate in the temperature range up to 400 ° C. was set to the conditions shown in Table 1, and the other degreasing conditions were the same as in Example 1.
  • Comparative Examples 1 to 4 and 8 to 9 cracks occurred in the molded body during the degreasing process.
  • the degreased molded body that was not cracked in the degreasing step was fired under the same conditions as in Example 1 to produce a sintered body.
  • the obtained sintered body was cut to produce an ITO cylindrical sputtering target material having the outer diameter, inner diameter, and length shown in Table 1.
  • a plurality of target materials are provided on a SUS304 backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm. Were bonded with In solder to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.2 mm.
  • Table 1 shows the relative density of each target material obtained and the evaluation of cracks in the target material and the molded body.
  • ⁇ AZO target> [Example 21] The ratio specific surface area measured by the BET method was measured by Al 2 O 3 powder and the BET method is 5 m 2 / g surface area and ZnO powder is 10 m 2 / g, the content of Al 2 O 3 powder It mix
  • Granules were prepared in the same manner as in Example 1 except that this ceramic raw material powder was used.
  • This granule has a lid capable of sealing up and down, and uses a cylindrical urethane rubber mold having an inner diameter of 213 mm (thickness of 10 mm) and a length of 1233 mm having a cylindrical core (mandrel) having an outer diameter of 167 mm.
  • CIP molding was performed under the same conditions as in No. 1, and cylindrical molded bodies having the lengths shown in Table 2 were produced.
  • the molded body was degreased under the same conditions as in Example 1.
  • the degreased shaped body was fired under the same conditions as in Example 1 to produce a sintered body.
  • the obtained sintered body was cut to produce an AZO cylindrical sputtering target material having the outer diameter, inner diameter and length shown in Table 2.
  • the three target materials were joined with In solder to an SUS304 backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm to produce an AZO target.
  • the interval between the target materials was 0.2 mm.
  • Table 2 shows the relative density of the target material and the evaluation of cracks in the target material and the molded body.
  • the content of Al 2 O 3 powder in the ceramic raw material powder, the polymerization degree and saponification degree of polyvinyl alcohol, the addition amount of polyvinyl alcohol and the addition amount of ammonium polycarboxylate were set to the conditions shown in Table 2, and the other examples.
  • Granules were prepared in the same manner as in No. 21.
  • This granule was CIP molded to produce a cylindrical molded body having the length shown in Table 2.
  • the same urethane rubber mold as in Example 21 was used for Examples 22, 28 to 30, 33 and Comparative Example 14, and the urethane rubber mold used in Example 21 for the other Examples and Comparative Examples.
  • a urethane rubber mold having the same core and the same inner diameter as that of the length of the molded body having the length shown in Table 2 was used.
  • the pressure reduction rate in the pressure range of 200 kgf / cm 2 or less after CIP molding was set to the conditions shown in Table 2.
  • the other CIP molding conditions were the same as in Example 21.
  • Comparative Example 13 cracks occurred in the molded body during the molding process.
  • the molded body that was not cracked in the molding process was heat degreased.
  • the temperature increase rate in the temperature range up to 400 ° C. was set to the conditions shown in Table 2, and other degreasing conditions were the same as in Example 21.
  • the degreased molded body in which cracking did not occur in the degreasing process was fired under the same conditions as in Example 21 to produce a sintered body.
  • the obtained sintered body was cut to produce an AZO cylindrical sputtering target material having the outer diameter, inner diameter and length shown in Table 2.
  • a plurality of target materials are provided on a SUS304 backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm. Were joined by In solder to produce an AZO target. The interval between the target materials (the length of the divided portion) was 0.2 mm.
  • Table 2 shows the relative density of each target material obtained and the evaluation of cracks in the target material and the molded body.
  • ⁇ IGZO target> The specific surface area specific surface area measured by the BET method was measured by Ga 2 O 3 powder and the BET method measured specific surface area of 10 m 2 / g by In 2 O 3 powder and the BET method is 10 m 2 / g There the ZnO powder is 10m 2 / g, in 2 O 3 content of the powder is 44.2 weight%, content of Ga 2 O 3 powder is 29.9 mass%, the content of ZnO powder 25.
  • a ceramic raw material powder was prepared by blending to 9% by mass and ball mill mixing with zirconia balls in a pot.
  • Example 1 was performed except that this ceramic raw material powder was used, and polyvinyl alcohol (polymerization degree: 500, saponification degree: 90 mol%) was used instead of polyvinyl alcohol (polymerization degree: 280, saponification degree: 68 mol%). Granules were prepared.
  • CIP molding is performed using a cylindrical urethane rubber mold with a lid that can seal the granules up and down, an inner diameter of 218 mm (thickness of 10 mm), and a length of 653 mm.
  • CIP molding was performed under the same conditions as in Example 1 except that the decompression speed in the pressure range of 200 kgf / cm 2 or less was changed to 300 kgf / cm 2 ⁇ h, and a cylindrical shape having the length shown in Table 3 A molded body was prepared.
  • the molded body was degreased under the same conditions as in Example 1.
  • the degreased shaped body was fired under the same conditions as in Example 1 to produce a sintered body.
  • the obtained sintered body was cut to produce an IGZO cylindrical sputtering target material having the outer diameter, inner diameter and length shown in Table 3.
  • the six target materials were joined with In solder to an SUS304 backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm to produce an IGZO target.
  • the interval between the target materials was 0.2 mm.
  • Table 3 shows the relative density of the target material and the evaluation of cracks in the target material and the molded body.
  • In 2 O 3 powder content, Ga 2 O 3 powder content and ZnO powder content, degree of polymerization and saponification of polyvinyl alcohol, addition amount of polyvinyl alcohol and addition of ammonium polycarboxylate in ceramic raw material powder Granules were prepared in the same manner as in Example 34, except that the amount was changed as shown in Table 3.
  • This granule was CIP-molded to produce a cylindrical molded body having the length shown in Table 3.
  • the same urethane rubber mold as in Example 34 was used for Examples 35 to 36, Comparative Examples 19 to 20, and 22 to 25, and the urethane used in Example 34 was used for the other Examples and Comparative Examples.
  • a urethane rubber mold having the same core and inner diameter as the rubber mold and having such a length as to obtain a molded body having the length shown in Table 2 was used.
  • the pressure reduction rate in the pressure range of 200 kgf / cm 2 or less after CIP molding was set to the conditions shown in Table 3.
  • the other CIP molding conditions were the same as in Example 34.
  • Comparative Example 20 cracks occurred in the molded body during the molding process.
  • the molded body that was not cracked in the molding process was heat degreased.
  • the temperature increase rate in the temperature range up to 400 ° C. was set to the conditions shown in Table 3, and other degreasing conditions were the same as in Example 34.
  • Comparative Examples 19 and 23 to 25 the molded body was cracked in the degreasing process.
  • the degreased molded body in which cracking did not occur in the degreasing process was fired under the same conditions as in Example 34 to produce a sintered body.
  • the obtained sintered body was cut to produce an IGZO cylindrical sputtering target material having the outer diameter, inner diameter and length shown in Table 3.
  • a plurality of target materials are provided on a SUS304 backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3000 mm. Were joined by In solder to produce an IGZO target. The interval between the target materials (the length of the divided portion) was 0.2 mm.
  • Table 3 shows the relative density of each target material obtained and the evaluation of cracks in the target material and the molded body.
  • the target material and the molded body were not cracked in the target production process, and had a length of 500 mm or more.
  • an ITO cylindrical sputtering target material, an AZO cylindrical sputtering target material or an IGZO cylindrical sputtering target material having a relative density of 95% or more, and a target formed from these were obtained.

Abstract

The present invention provides a ceramic cylindrical sputtering target characterized in being a single article having a length of 500 mm or longer and a relative density of 95% or greater. The ceramic cylindrical sputtering target is a single article having a high density and length of 500 mm or longer and therefore eliminates the need to use a stack of multiple sputtering targets in order to obtain a long target. Consequently, when the ceramic cylindrical sputtering target of the present invention is used in a magnetron rotary cathode sputtering target, and the like, there are no or few partitions in the target as a whole and therefore there is little arcing and particle generation during sputtering.

Description

セラミックス円筒形スパッタリングターゲット材およびその製造方法Ceramic cylindrical sputtering target material and manufacturing method thereof
 本発明は、セラミックス円筒形スパッタリングターゲット材およびその製造方法に関し、さらに詳しくは、高密度で長尺のセラミックス円筒形スパッタリングターゲット材およびその製造方法に関する。 The present invention relates to a ceramic cylindrical sputtering target material and a manufacturing method thereof, and more particularly to a high-density and long ceramic cylindrical sputtering target material and a manufacturing method thereof.
 マグネトロン型回転カソードスパッタリング装置は、円筒形ターゲットの内側に磁場発生装置を有し、ターゲットの内側から冷却しつつ、ターゲットを回転させながらスパッタリングを行う装置であり、ターゲット材の全面がエロージョンとなり均一に削られる。このため、平板型マグネトロンスパッタリング装置の使用効率が20~30%であるのに対し、マグネトロン型回転カソードスパッタリング装置では60%以上の格段に高い使用効率が得られる。さらに、ターゲットを回転させることで、従来の平板型マグネトロンスパッタリング装置に比べて単位面積当り大きなパワーを投入できることから高い成膜速度が得られる。 A magnetron type rotary cathode sputtering device has a magnetic field generator inside a cylindrical target, and performs sputtering while rotating the target while cooling from the inside of the target. The entire surface of the target material becomes erosion and becomes uniform. It is shaved. For this reason, the use efficiency of the flat plate type magnetron sputtering apparatus is 20 to 30%, whereas the magnetron type rotary cathode sputtering apparatus can obtain a remarkably high use efficiency of 60% or more. Further, by rotating the target, it is possible to input a larger power per unit area as compared with the conventional flat plate type magnetron sputtering apparatus, so that a high deposition rate can be obtained.
 近年は、フラットパネルディスプレイや太陽電池で使用されるガラス基板が大型化され、この大型化された基板上に薄膜を形成するために、長さ3mを超える長尺の円筒形ターゲットが必要となっている。 In recent years, glass substrates used in flat panel displays and solar cells have been enlarged, and in order to form a thin film on the enlarged substrate, a long cylindrical target exceeding 3 m in length is required. ing.
 このような回転カソードスパッタリング方式は、円筒形状へ加工が容易で機械的強度が強い金属ターゲットでは広く普及している。しかし、セラミックスターゲット材は、強度が低く脆いので、製造中に割れや変形などが発生しやすい。このため、セラミックスターゲットにおいては、短尺の円筒形ターゲット材を製造することはできたが、性能の高い長尺の円筒形ターゲット材を製造することはできなかった。 Such a rotating cathode sputtering method is widely used for metal targets that can be easily processed into a cylindrical shape and have high mechanical strength. However, since the ceramic target material has low strength and is brittle, cracks and deformation are likely to occur during production. For this reason, in a ceramic target, although a short cylindrical target material could be manufactured, a long cylindrical target material with high performance could not be manufactured.
 特許文献1には、短尺の円筒形ターゲット材を積み重ねて作製した長尺の円筒形ターゲットにおいて、円筒形ターゲットの外周面を基準に各ターゲット材をボンディングして、ターゲットの分割部に生じる段差を0.5mm以下にすることにより、段差に起因するアーキングやパーティクルの発生を抑制する技術が開示されている。しかし、この技術においては、円筒形ターゲット材が短い場合には、多数のターゲット材を積み重ねなければ長尺の円筒形ターゲットが得られないので、ターゲット材とターゲット材との間に生じる分割部の数が多くなる。分割部が存在すれば、たとえ段差がなくても、その分割部に起因するアーキングの発生は避けられない。このため、分割部の数が多く生じる前記技術においては、アーキングの発生回数が増大する。また、スパッタリング中には分割部に放電が集中するので、分割部の数が多い場合には、スパッタリング中に分割部を起点にした割れが生じやすくなる。多数のターゲット材をボンディングすると時間がかかり、製造上効率も悪い。 In Patent Document 1, in a long cylindrical target produced by stacking short cylindrical target materials, each target material is bonded on the basis of the outer peripheral surface of the cylindrical target, and the steps generated in the divided portions of the target are detected. A technique for suppressing arcing and particle generation due to a step by making the thickness 0.5 mm or less is disclosed. However, in this technique, when the cylindrical target material is short, a long cylindrical target cannot be obtained unless a large number of target materials are stacked. The number increases. If there is a divided portion, the occurrence of arcing due to the divided portion is inevitable even if there is no step. For this reason, in the technique in which the number of division parts is large, the number of occurrences of arcing increases. In addition, since discharge concentrates on the divided portions during sputtering, if the number of divided portions is large, cracks starting from the divided portions are likely to occur during sputtering. Bonding a large number of target materials takes time and is inefficient in manufacturing.
 特許文献2には、中空円筒形状のセラミックス焼結体の焼成において、セラミックス成形体の焼結収縮率と同等の焼結収縮率を有する板状のセラミックス成形体上に、前記セラミックス成形体を載置して焼成することにより、焼成時の割れを防止し、相対密度95%以上の焼成体を得る技術が開示されている。しかし、この技術においても、セラミックス粉末を成形、脱脂および焼成して長さが500mm以上の長尺の円筒セラミックス焼結体を作製する場合、成形、脱脂または焼成のいずれかの工程で割れが生じるという問題があった。 In Patent Document 2, in firing a hollow cylindrical ceramic sintered body, the ceramic molded body is mounted on a plate-shaped ceramic molded body having a sintering shrinkage rate equivalent to that of the ceramic molded body. Disclosed is a technique for preventing cracking during firing and obtaining a fired body having a relative density of 95% or more by placing and firing. However, even in this technique, when a ceramic powder is molded, degreased and fired to produce a long cylindrical ceramic sintered body having a length of 500 mm or more, cracking occurs in any of the steps of molding, degreasing or firing. There was a problem.
 特許文献3には、溶射法にて長さ500mm以上のITO円筒形ターゲット材を製造する技術が開示されている。しかし、溶射法で得られた円筒形ターゲット材は、相対密度を高くすることができず、相対密度はせいぜい70%台である。相対密度の低いターゲット材を用いてスパッタリングを行うと、アーキングの発生回数が多くなる。このため、溶射法で得られた長尺の円筒形ターゲット材を用いてスパッタリングを行うと、アーキングの発生回数が多くなる。 Patent Document 3 discloses a technique for manufacturing an ITO cylindrical target material having a length of 500 mm or more by a thermal spraying method. However, the cylindrical target material obtained by the thermal spraying method cannot increase the relative density, and the relative density is at most about 70%. When sputtering is performed using a target material having a low relative density, the number of occurrences of arcing increases. For this reason, when sputtering is performed using a long cylindrical target material obtained by a thermal spraying method, the number of occurrences of arcing increases.
特開2010-100930号公報JP 2010-1000093 A 特開2005-281862号公報JP 2005-281862 A 特開平10-68072号公報JP-A-10-68072
 本発明の目的は、高密度で長尺のセラミックス円筒形スパッタリングターゲット材を提供することである。 An object of the present invention is to provide a high-density and long ceramic cylindrical sputtering target material.
 本発明者は、成形体が長尺であっても製造中に割れや変形などが発生しないセラミックス円筒形スパッタリングターゲット材の製造方法を見出し、高密度で長尺のセラミックス円筒形スパッタリングターゲット材を製造することに成功した。 The present inventor has found a method of manufacturing a ceramic cylindrical sputtering target material that does not generate cracks or deformation during manufacturing even if the formed body is long, and manufactures a high-density and long ceramic cylindrical sputtering target material. Succeeded in doing.
 すなわち、本発明は、長さが500mm以上かつ相対密度が95%以上であり、一体品であることを特徴とするセラミックス円筒形スパッタリングターゲット材である。 That is, the present invention is a ceramic cylindrical sputtering target material having a length of 500 mm or more and a relative density of 95% or more and being an integral product.
 前記セラミックス円筒形スパッタリングターゲット材は、長さが750mm以上であること、1000mm以上であること、さらには1500mm以上であることが好ましい。 The length of the ceramic cylindrical sputtering target material is preferably 750 mm or more, 1000 mm or more, and more preferably 1500 mm or more.
 前記セラミックス円筒形スパッタリングターゲット材は、たとえば、
 Snの含有量がSnO2量換算で1~10質量%であるITO製、
 Alの含有量がAl23量換算で0.1~5質量%であるAZO製、または
 Inの含有量がIn23量換算で40~60質量%、Gaの含有量がGa23量換算で20~40質量%、Znの含有量がZnO量換算で10~30質量%であるIGZO製とすることができる。
The ceramic cylindrical sputtering target material is, for example,
Made of ITO having a Sn content of 1 to 10% by mass in terms of SnO 2 ;
Made of AZO having an Al content of 0.1 to 5% by mass in terms of Al 2 O 3 , or an In content of 40 to 60% by mass in terms of In 2 O 3 , and a Ga content of Ga 2 It can be made of IGZO having an O 3 content of 20 to 40% by mass and a Zn content of 10 to 30% by mass in terms of ZnO.
 また、本発明は、
 前記セラミックス円筒形スパッタリングターゲット材をバッキングチューブにボンディング材によって接合してなることを特徴とするセラミックス円筒形スパッタリングターゲットである。
The present invention also provides:
A ceramic cylindrical sputtering target comprising the ceramic cylindrical sputtering target material bonded to a backing tube with a bonding material.
 また、本発明は、
 セラミックス原料粉末および有機添加物を含有するスラリーから顆粒を調製する工程1、
 前記顆粒をCIP成形して円筒形の成形体を作製する工程2、
 前記成形体を脱脂する工程3、および
 前記脱脂された成形体を焼成する工程4
 を含むセラミックス円筒形スパッタリングターゲット材の製造方法であって、
 前記工程1において、前記有機添加物の量が前記セラミックス原料粉末の量に対して0.1~1.2質量%であることを特徴とするセラミックス円筒形スパッタリングターゲット材の製造方法である。
The present invention also provides:
Step 1 for preparing granules from a slurry containing ceramic raw material powder and an organic additive,
Step 2 for producing a cylindrical shaped body by CIP molding the granules,
Step 3 for degreasing the molded body, and Step 4 for firing the degreased molded body.
A method for producing a ceramic cylindrical sputtering target material comprising:
In the step 1, the method for producing a ceramic cylindrical sputtering target material is characterized in that the amount of the organic additive is 0.1 to 1.2% by mass with respect to the amount of the ceramic raw material powder.
 前記セラミックス円筒形スパッタリングターゲット材の製造方法においては、前記有機添加物がバインダを含み、該バインダが、重合度が200~400かつ鹸化度が60~80mol%であるポリビニルアルコールであることが好ましい。 In the method for producing the ceramic cylindrical sputtering target material, it is preferable that the organic additive includes a binder, and the binder is polyvinyl alcohol having a polymerization degree of 200 to 400 and a saponification degree of 60 to 80 mol%.
 本発明のセラミックス円筒形スパッタリングターゲット材は、500mm以上の長さを有する一体品であるので、多数のスパッタリングターゲット材を積み重ねて長尺にして使用する必要がない。このため、マグネトロン回転カソードスパッタリング装置等において本発明のセラミックス円筒形スパッタリングターゲット材を使用する場合、ターゲット全体に分割部が存在しないか、またはその数が少ないので、スパッタリング中にアーキングやパーティクルの発生が少ない。また、本発明のセラミックス円筒形スパッタリングターゲット材は高密度であるので、スパッタリング中にアーキングの発生が少ない。 Since the ceramic cylindrical sputtering target material of the present invention is an integral product having a length of 500 mm or more, it is not necessary to stack a large number of sputtering target materials to make them long. For this reason, when the ceramic cylindrical sputtering target material of the present invention is used in a magnetron rotary cathode sputtering apparatus or the like, there are no divided parts in the entire target or the number thereof is small, so that arcing or particles are generated during sputtering. Few. Moreover, since the ceramic cylindrical sputtering target material of the present invention has a high density, there is little arcing during sputtering.
 本発明のセラミックス円筒形スパッタリングターゲット材の製造方法は、前記のセラミックス円筒形スパッタリングターゲット材を、割れや変形などを発生させないで効率的に製造することができる。 The method for producing a ceramic cylindrical sputtering target material of the present invention can efficiently produce the ceramic cylindrical sputtering target material without generating cracks or deformations.
<セラミックス円筒形スパッタリングターゲット材>
 本発明のセラミックス円筒形スパッタリングターゲット材は、長さが500mm以上かつ相対密度が95%以上であり、一体品である。一体品とは、複数のパーツから構成されるのではなく、ターゲット材全体が物体として分割のない、一個の物品であることを意味する。複数のターゲット材部品を積み重ねて、または接合して形成されたターゲット材は一体品ではない。したがって、本発明のセラミックス円筒形スパッタリングターゲット材は、複数の円筒形ターゲット材を積み重ねて、または接合して形成される長さ500mm以上の円筒状のターゲット材とは区別される。
<Ceramics cylindrical sputtering target material>
The ceramic cylindrical sputtering target material of the present invention has a length of 500 mm or more and a relative density of 95% or more, and is an integral product. An integral product does not consist of a plurality of parts, but means that the entire target material is a single article that is not divided as an object. A target material formed by stacking or joining a plurality of target material parts is not an integral product. Therefore, the ceramic cylindrical sputtering target material of the present invention is distinguished from a cylindrical target material having a length of 500 mm or more formed by stacking or joining a plurality of cylindrical target materials.
 本発明のセラミックス円筒形スパッタリングターゲット材は、たとえば後述する製造方法により製造することができる。 The ceramic cylindrical sputtering target material of the present invention can be manufactured, for example, by a manufacturing method described later.
 前述のとおり、セラミックスターゲット材は強度が低く脆いので、従来の焼結法では、製造中に割れや変形などが発生し、長さが500mm以上である一体品のセラミックス円筒形スパッタリングターゲット材を製造することはできなかった。このため、従来は、長さが500mm未満である短尺の円筒形スパッタリングターゲット材を多数つなげて、長尺の円筒状のスパッタリングターゲット材を形成しなければならなかった。このような構成にすると、ターゲット材とターゲット材との間に生じる分割部の数が多くなるので、この構成を有するターゲット材を用いてスパッタリングを行うと、この分割部に起因するアーキングの発生回数が増大する。 As mentioned above, ceramic target materials are low in strength and brittle, so the conventional sintering method produces cracks, deformations, etc. during manufacturing, and manufactures an integrated ceramic cylindrical sputtering target material with a length of 500 mm or more. I couldn't. For this reason, conventionally, a long cylindrical sputtering target material having a length of less than 500 mm has to be connected to form a long cylindrical sputtering target material. With such a configuration, since the number of divided portions generated between the target material and the target material increases, when sputtering is performed using the target material having this configuration, the number of occurrences of arcing due to this divided portion Will increase.
 本発明のセラミックス円筒形スパッタリングターゲット材は、一体で500mm以上の長さを有する長尺体であるので、ターゲット材を多数つなげて長尺体にする必要がない。本発明のセラミックス円筒形スパッタリングターゲット材においては、必要とされる長さに応じて、1本のみを用いてスパッタリングを行うことができ、また複数本をつなげてスパッタリングすることもできる。1本のみを用いてスパッタリングを行う場合には、分割部が存在しないので、分割部に起因するアーキングは発生しない。複数本をつなげてスパッタリングを行う場合にも、これを構成するセラミックス円筒形スパッタリングターゲット材が500mm以上の長さを有するので、少ない本数で目的とする長さにすることができる。このため、短尺のターゲット材を多数つなげて長尺の円筒状スパッタリングターゲット材を形成する場合に比べて分割部の数が少ないので、分割部に起因するアーキングの発生回数が少ない。 Since the ceramic cylindrical sputtering target material of the present invention is a long body integrally having a length of 500 mm or more, it is not necessary to connect a large number of target materials to form a long body. In the ceramic cylindrical sputtering target material of the present invention, depending on the required length, sputtering can be performed using only one, or sputtering can be performed by connecting a plurality. When sputtering is performed using only one, since there is no divided portion, arcing due to the divided portion does not occur. Even when sputtering is performed by connecting a plurality of pieces, since the ceramic cylindrical sputtering target material constituting the same has a length of 500 mm or more, the target length can be obtained with a small number. For this reason, since the number of division | segmentation parts is few compared with the case where many short target materials are connected and a long cylindrical sputtering target material is formed, the frequency | count of the occurrence of arcing resulting from a division | segmentation part is few.
 従来の溶射法では、一体で500mm以上の長さを有する長尺のセラミックス円筒形スパッタリングターゲット材を製造することは可能であるが、溶射法で得られた円筒形ターゲット材は、相対密度が高くて70%台である。このため、溶射法で得られた円筒形ターゲット材を用いてスパッタリングを行うとアーキングの発生回数が多くなる。本発明のセラミックス円筒形スパッタリングターゲット材は相対密度が95%以上であるので、溶射法で得られた円筒形ターゲット材に比較して、スパッタリング時に発生するアーキングの回数が少ない。 In the conventional thermal spraying method, it is possible to produce a long ceramic cylindrical sputtering target material having a length of 500 mm or more integrally, but the cylindrical target material obtained by the thermal spraying method has a high relative density. 70%. For this reason, when sputtering is performed using a cylindrical target material obtained by a thermal spraying method, the number of occurrences of arcing increases. Since the ceramic cylindrical sputtering target material of the present invention has a relative density of 95% or more, the number of arcing generated during sputtering is smaller than that of the cylindrical target material obtained by the thermal spraying method.
 本発明のセラミックス円筒形スパッタリングターゲット材は、長さが500mm以上であり、好ましくは750mm以上、より好ましくは1000mm以上、さらに好ましくは1500mm以上である。本発明のターゲット材1本を用いてスパッタリングを行う場合には、ターゲット材が長いほど大面積の成膜が可能になり、分割部に起因するアーキングが発生しない。本発明のターゲット材を複数本つなげてスパッタリングを行う場合には、ターゲット材が長いほど少ない本数で目的とする長さにすることができ、分割部の数を少なくできるので、分割部に起因するアーキングの発生回数を減らすことができる。 The ceramic cylindrical sputtering target material of the present invention has a length of 500 mm or more, preferably 750 mm or more, more preferably 1000 mm or more, and further preferably 1500 mm or more. When sputtering is performed using one target material of the present invention, the longer the target material, the larger the area of film formation becomes possible, and arcing due to the divided portions does not occur. When performing sputtering by connecting a plurality of target materials of the present invention, the longer the target material, the smaller the number of the target materials, the desired length can be reduced, and the number of divided portions can be reduced, resulting in the divided portions. The number of occurrences of arcing can be reduced.
 本発明のセラミックス円筒形スパッタリングターゲット材の長さの上限には特に制限はないが、マグネトロン回転カソードスパッタリング装置の制約などから、3400mm程度である。 The upper limit of the length of the ceramic cylindrical sputtering target material of the present invention is not particularly limited, but is about 3400 mm due to limitations of the magnetron rotary cathode sputtering apparatus.
 本発明のセラミックス円筒形スパッタリングターゲット材は、内径が100mm以上であることが好ましい。前記のような内径であると、回転カソードスパッタリング方式により効率的な成膜が可能になる。 The ceramic cylindrical sputtering target material of the present invention preferably has an inner diameter of 100 mm or more. When the inner diameter is as described above, efficient film formation is possible by the rotary cathode sputtering method.
 本発明のセラミックス円筒形スパッタリングターゲット材の真円度、円筒度および振れ公差は好ましくは1mm以内、より好ましくは0.5mm以内、さらに好ましくは0.1mm以内である。真円度、円筒度および振れ公差は、小さいほどアーキングが発生しにくいので好ましい。 The roundness, cylindricity and runout tolerance of the ceramic cylindrical sputtering target material of the present invention are preferably within 1 mm, more preferably within 0.5 mm, and even more preferably within 0.1 mm. The smaller the roundness, the cylindricity, and the run-out tolerance, the more preferable arcing is unlikely.
 本発明のセラミックス円筒形スパッタリングターゲット材は、相対密度が95%以上であり、好ましくは99%以上、より好ましくは99.5%以上である。ターゲット材の相対密度が高いほど、スパッタリング時の熱衝撃や温度差などに起因するターゲット材の割れを防止することができ、ターゲット材厚を無駄なく有効に活用することができる。また、パーティクルおよびアーキングの発生が低減し、良好な膜質を得ることができる。前記相対密度の上限には特に制限はないが、通常100%である。 The ceramic cylindrical sputtering target material of the present invention has a relative density of 95% or more, preferably 99% or more, more preferably 99.5% or more. As the relative density of the target material is higher, the target material can be prevented from cracking due to thermal shock or temperature difference during sputtering, and the target material thickness can be effectively utilized without waste. In addition, generation of particles and arcing is reduced, and good film quality can be obtained. The upper limit of the relative density is not particularly limited, but is usually 100%.
 本発明のセラミックス円筒形スパッタリングターゲット材の材料であるセラミックスの種類には、特に制限はなく、たとえば酸化インジウム-酸化錫系材料(ITO)、酸化アルミニウム-酸化亜鉛系材料(AZO)および酸化インジウム-酸化ガリウム-酸化亜鉛系材料(IGZO)等が挙げられる。 There are no particular limitations on the type of ceramic that is the material of the ceramic cylindrical sputtering target material of the present invention. For example, indium oxide-tin oxide based material (ITO), aluminum oxide-zinc oxide based material (AZO), and indium oxide- Examples thereof include a gallium oxide-zinc oxide material (IGZO).
 セラミックスがITOである場合には、本ターゲット材におけるSnの含有量はSnO2量換算で好ましくは1~10質量%、より好ましくは2~10質量%、さらに好ましくは3~10質量%である。Snの含有量が前記範囲内であると、ターゲット材が低抵抗になるという利点がある。 When the ceramic is ITO, the Sn content in the target material is preferably 1 to 10% by mass, more preferably 2 to 10% by mass, and further preferably 3 to 10% by mass in terms of SnO 2 content. . When the Sn content is within the above range, there is an advantage that the target material has low resistance.
 セラミックスがAZOである場合には、本ターゲット材におけるAlの含有量はAl23量換算で好ましくは0.1~5質量%、より好ましくは1~5質量%、さらに好ましくは2~5質量%である。Alの含有量が前記範囲内であると、ターゲット材が低抵抗になるという利点がある。 When the ceramic is AZO, the Al content in the target material is preferably 0.1 to 5% by mass, more preferably 1 to 5% by mass, and still more preferably 2 to 5% in terms of Al 2 O 3 content. % By mass. When the Al content is within the above range, there is an advantage that the target material has low resistance.
 セラミックスがIGZOである場合には、本ターゲット材におけるInの含有量がIn23量換算で40~60質量%、Gaの含有量がGa23量換算で20~50質量%、Znの含有量がZnO量換算で5~30質量%あることが好ましく、Inの含有量がIn23量換算で40~55質量%、Gaの含有量がGa23量換算で25~35質量%、Znの含有量がZnO量換算で15~30質量%あることがより好ましく、Inの含有量がIn23量換算で40~50質量%、Gaの含有量がGa23量換算で25~35質量%、Znの含有量がZnO量換算で20~30質量%あることがさらに好ましい。In、GaおよびZnの含有量が前記範囲内であると、スパッタリングにより良好なTFT(薄膜トランジスタ:Thin Film Transistor)特性が得られるという利点がある。
<セラミックス円筒形スパッタリングターゲット>
 本発明のセラミックス円筒形スパッタリングターゲットは、前記セラミックス円筒形スパッタリングターゲット材をバッキングチューブにボンディング材によって接合してなる。
When the ceramic is IGZO, the content of In in the target material is 40 to 60% by mass in terms of In 2 O 3 , the content of Ga is 20 to 50% by mass in terms of Ga 2 O 3 , Zn The content of Zn is preferably 5 to 30% by mass in terms of ZnO, the content of In is 40 to 55% by mass in terms of In 2 O 3 , and the content of Ga is 25 to 25% in terms of Ga 2 O 3. More preferably, the content of 35% by mass and the content of Zn is 15 to 30% by mass in terms of ZnO, the content of In is 40 to 50% by mass in terms of In 2 O 3 and the content of Ga is Ga 2 O. More preferably, it is 25 to 35% by mass in terms of 3 amounts, and the Zn content is 20 to 30% by mass in terms of ZnO. When the contents of In, Ga and Zn are within the above ranges, there is an advantage that good TFT (Thin Film Transistor) characteristics can be obtained by sputtering.
<Ceramics cylindrical sputtering target>
The ceramic cylindrical sputtering target of the present invention is formed by bonding the ceramic cylindrical sputtering target material to a backing tube with a bonding material.
 前記バッキングチューブは、通常、セラミックス円筒形スパッタリングターゲット材を接合しうる円筒形状を有する。バッキングチューブの種類には特に制限はなく、ターゲット材に応じて、従来使用されているバッキングチューブから適宜選択して使用することができる。たとえば、バッキングチューブの材料としてはステンレス、チタン等を挙げることができる。 The backing tube usually has a cylindrical shape to which a ceramic cylindrical sputtering target material can be joined. There is no restriction | limiting in particular in the kind of backing tube, According to target material, it can select and use from the conventionally used backing tube suitably. For example, examples of the material for the backing tube include stainless steel and titanium.
 前記ボンディング材の種類にも特に制限はなく、ターゲット材に応じて、従来使用されているボンディング材から適宜選択して使用することができる。たとえば、ボンディング材としては、インジウム製の半田等が挙げられる。 The type of the bonding material is not particularly limited, and can be appropriately selected from conventionally used bonding materials according to the target material. For example, the bonding material may be indium solder or the like.
 セラミックス円筒形スパッタリングターゲット材は、1本のバッキングチューブの外側に、1本接合されてもよく、2本以上を同一軸線上に並べて接合されてもよい。2本以上を並べて接合する場合、各セラミックス円筒形スパッタリングターゲット材間の隙間、つまり分割部の長さは通常0.05~0.5mm、好ましくは0.05~0.3mm、より好ましくは0.05mmである。分割部の長さが短いほどスパッタリング時にアーキングが発生しにくいが、0.05mm未満だとボンディング中やスパッタリング中の熱膨張によりターゲット材同士がぶつかり、割れることがある。 One ceramic cylindrical sputtering target material may be joined to the outside of one backing tube, or two or more may be joined on the same axis. When two or more are joined side by side, the gap between the ceramic cylindrical sputtering target materials, that is, the length of the divided portion is usually 0.05 to 0.5 mm, preferably 0.05 to 0.3 mm, more preferably 0. .05 mm. As the length of the divided portion is shorter, arcing is less likely to occur during sputtering. However, if it is less than 0.05 mm, the target materials may collide and break due to thermal expansion during bonding or sputtering.
 ボンディング方法にも特に制限はなく、従来のセラミックス円筒形スパッタリングターゲットと同様の方法を採用することができる。
<セラミックス円筒形スパッタリングターゲット材の製造方法>
 本発明のセラミックス円筒形スパッタリングターゲット材の製造方法は、
 セラミックス原料粉末および有機添加物を含有するスラリーから顆粒を調製する工程1、
 前記顆粒をCIP成形して円筒形の成形体を作製する工程2、
 前記成形体を脱脂する工程3、および
 前記脱脂された成形体を焼成する工程4
 を含むセラミックス円筒形スパッタリングターゲット材の製造方法であって、
 前記工程1において、前記有機添加物の量が前記セラミックス原料粉末の量に対して0.1~1質量%であることを特徴とする。
There is no restriction | limiting in particular also in the bonding method, The method similar to the conventional ceramic cylindrical sputtering target can be employ | adopted.
<Method for manufacturing ceramic cylindrical sputtering target material>
The method for producing the ceramic cylindrical sputtering target material of the present invention,
Step 1 for preparing granules from a slurry containing ceramic raw material powder and an organic additive,
Step 2 for producing a cylindrical shaped body by CIP molding the granules,
Step 3 for degreasing the molded body, and Step 4 for firing the degreased molded body.
A method for producing a ceramic cylindrical sputtering target material comprising:
In the step 1, the amount of the organic additive is 0.1 to 1% by mass with respect to the amount of the ceramic raw material powder.
 この製造方法により、前記本発明のセラミックス円筒形スパッタリングターゲット材を、割れや変形などを発生させないで効率的に製造することができる。 By this manufacturing method, the ceramic cylindrical sputtering target material of the present invention can be efficiently manufactured without generating cracks or deformations.
 この製造方法においては、前記有機添加物がバインダを含み、該バインダが、重合度が200~400かつ鹸化度が60~80mol%であるポリビニルアルコールことが好ましい。
(工程1)
 工程1では、セラミックス原料粉末および有機添加物を含有するスラリーから顆粒を調製する。
In this production method, the organic additive preferably contains a binder, and the binder is preferably polyvinyl alcohol having a polymerization degree of 200 to 400 and a saponification degree of 60 to 80 mol%.
(Process 1)
In step 1, granules are prepared from a slurry containing ceramic raw material powder and an organic additive.
 セラミックス原料粉末および有機添加物から顆粒を調製し、その顆粒を工程2のCIP成形に供することにより、原料の充填性が向上し、高密度の成形体を得ることができる。また、充填むらが生じにくくなり、均一な充填が可能になる。プレスむらも生じにくくなる。 By preparing granules from the ceramic raw material powder and the organic additive and subjecting the granules to CIP molding in Step 2, the filling property of the raw materials is improved, and a high-density molded body can be obtained. Further, uneven filling is less likely to occur, and uniform filling is possible. Uneven press is less likely to occur.
 セラミックス原料粉末は、この製造方法によってターゲット材の構成材料であるセラミックスを作製できる粉末である。 The ceramic raw material powder is a powder that can produce ceramics as a constituent material of the target material by this manufacturing method.
 たとえば、セラミックスがITOである場合には、セラミックス原料粉末として、In23粉末およびSnO2粉末の混合粉末を使用でき、ITO粉末を単独で、またはIn23粉末およびSnO2粉末と混合して用いてもよい。In23粉末、SnO2粉末およびITO粉末は、BET(Brunauer-Emmett-Teller)法で測定した比表面積がそれぞれ通常1~40m2/gである。In23粉末、SnO2粉末およびITO粉末の混合比率は、本ターゲット材における構成元素の含有量が前述の範囲内になるように適宜決定される。本製造方法においては、In23粉末およびSnO2粉末の混合粉末をセラミックス原料粉末として使用する場合、セラミックス原料粉末におけるSnO2粉末の含有量(質量%)が、最終的に得られるターゲット材におけるSnO2量換算でのSnの含有量(質量%)と同視できることが確認されている。 For example, when the ceramic is ITO, a mixed powder of In 2 O 3 powder and SnO 2 powder can be used as the ceramic raw material powder. The ITO powder can be used alone or mixed with In 2 O 3 powder and SnO 2 powder. May be used. In 2 O 3 powder, SnO 2 powder and ITO powder each have a specific surface area of usually 1 to 40 m 2 / g as measured by the BET (Brunauer-Emmett-Teller) method. The mixing ratio of the In 2 O 3 powder, the SnO 2 powder, and the ITO powder is appropriately determined so that the content of the constituent elements in the target material is within the above-described range. In this production method, when a mixed powder of In 2 O 3 powder and SnO 2 powder is used as a ceramic raw material powder, the content (mass%) of the SnO 2 powder in the ceramic raw material powder is finally obtained. It is confirmed that it can be equated with the Sn content (mass%) in terms of SnO 2 content.
 セラミックスがAZOである場合には、セラミックス原料粉末として、Al23粉末およびZnO粉末の混合粉末を使用でき、AZO粉末を単独で、またはAl23粉末およびZnO粉末と混合して用いてもよい。Al23粉末、ZnO粉末およびAZO粉末は、BET法で測定した比表面積がそれぞれ通常1~40m2/gである。Al23粉末、ZnO粉末およびAZO粉末の混合比率は、本ターゲット材における構成元素の含有量が前述の範囲内になるように適宜決定される。本製造方法においては、Al23粉末およびZnO粉末の混合粉末をセラミックス原料粉末として使用する場合、セラミックス原料粉末におけるAl23粉末の含有量(質量%)が、最終的に得られるターゲット材におけるAl23量換算でのAlの含有量(質量%)と同視できることが確認されている。 When the ceramic is AZO, a mixed powder of Al 2 O 3 powder and ZnO powder can be used as the ceramic raw material powder, and the AZO powder can be used alone or mixed with Al 2 O 3 powder and ZnO powder. Also good. The Al 2 O 3 powder, ZnO powder and AZO powder each have a specific surface area measured by the BET method of usually 1 to 40 m 2 / g. The mixing ratio of the Al 2 O 3 powder, the ZnO powder, and the AZO powder is appropriately determined so that the content of the constituent elements in the target material is within the above range. In this production method, when a mixed powder of Al 2 O 3 powder and ZnO powder is used as the ceramic raw material powder, the content (mass%) of the Al 2 O 3 powder in the ceramic raw material powder is finally obtained. It has been confirmed that it can be equated with the Al content (mass%) in terms of Al 2 O 3 content in the material.
 セラミックスがIGZOである場合には、セラミックス原料粉末として、In23粉末、Ga23粉末およびZnO粉末の混合粉末を使用でき、IGZO粉末を単独で、またはIn23粉末、Ga23粉末およびZnO粉末と混合して用いてもよい。In23粉末、Ga23粉末、ZnO粉末およびIGZO粉末は、BET法で測定した比表面積がそれぞれ通常1~40m2/gである。In23粉末、Ga23粉末、ZnO粉末およびIGZO粉末の混合比率は、本ターゲット材における構成元素の含有量が前述の範囲内になるように適宜決定される。本製造方法においては、In23粉末、Ga23粉末およびZnO粉末の混合粉末をセラミックス原料粉末として使用する場合、セラミックス原料粉末におけるIn23粉末、Ga23粉末およびZnO粉末の含有量(質量%)が、それぞれ最終的に得られるターゲット材におけるIn23量換算でのInの含有量(質量%)、Ga23量換算でのGaの含有量(質量%)およびZnO量換算でのZnの含有量(質量%)と同視できることが確認されている。 When the ceramic is IGZO, a mixed powder of In 2 O 3 powder, Ga 2 O 3 powder and ZnO powder can be used as the ceramic raw material powder, and the IGZO powder alone or In 2 O 3 powder, Ga 2 it may be mixed with O 3 powder and ZnO powder. In 2 O 3 powder, Ga 2 O 3 powder, ZnO powder and IGZO powder each have a specific surface area of usually 1 to 40 m 2 / g measured by the BET method. The mixing ratio of the In 2 O 3 powder, the Ga 2 O 3 powder, the ZnO powder, and the IGZO powder is appropriately determined so that the content of the constituent elements in the target material is within the above range. In this production method, when a mixed powder of In 2 O 3 powder, Ga 2 O 3 powder and ZnO powder is used as the ceramic raw material powder, In 2 O 3 powder, Ga 2 O 3 powder and ZnO powder in the ceramic raw material powder are used. The content (mass%) of In is the In content (mass%) in terms of In 2 O 3 in the target material finally obtained, and the Ga content (mass% in terms of Ga 2 O 3 ). ) And Zn content (% by mass) in terms of ZnO, it has been confirmed that it can be equated.
 粒子径の異なる2種類以上の粉末を混合して得られたセラミックス原料粉末を用いると、粒子径の大きい粉末の粒子間に粒子径の小さい粉末の粒子が入り込むので、成形体の密度が高くなり、焼結体の強度も向上するという利点がある。 When ceramic raw material powder obtained by mixing two or more kinds of powders having different particle diameters is used, powder particles with small particle diameters enter between powder particles with large particle diameters, which increases the density of the compact. There is an advantage that the strength of the sintered body is also improved.
 粉末の混合方法には特に制限はなく、たとえば、各粉末およびジルコニアボールをポットに入れ、ボールミル混合することができる。 There is no particular limitation on the method of mixing the powder. For example, each powder and zirconia balls can be put in a pot and mixed by ball mill.
 前記有機添加物は、スラリーや成形体の性状を好適に調整するために添加される物質である。有機添加物としては、バインダ、分散剤および可塑剤等を挙げることができる。 The organic additive is a substance added to suitably adjust the properties of the slurry and the molded body. Examples of the organic additive include a binder, a dispersant, and a plasticizer.
 工程1において、有機添加物の量はセラミックス原料粉末の量に対して0.1~1.2質量%であり、好ましくは0.2~1.0質量%、より好ましくは0.4~0.8質量%である。有機添加物の前記配合量が1.2質量%より多いと、脱媒中の成形体の強度低下が大きくなり、脱脂割れしやすくなったり、脱脂後に成形体中に空孔が多くなり、高密度化しにくくなったりする場合がある。有機添加物の前記配合量が0.1質量%より少ないと、各成分の十分な効果が得られない場合がある。有機添加物の配合量を前記範囲内にすると、長さが500mm以上かつ相対密度が95%以上であり、一体品であるセラミックス円筒形スパッタリングターゲット材を製造することができる。 In step 1, the amount of the organic additive is 0.1 to 1.2% by mass, preferably 0.2 to 1.0% by mass, more preferably 0.4 to 0%, based on the amount of the ceramic raw material powder. 0.8% by mass. When the blending amount of the organic additive is more than 1.2% by mass, the strength of the molded body during the removal of the solvent is greatly reduced, and it becomes easy to degrease and cracks. It may be difficult to increase the density. When the said compounding quantity of an organic additive is less than 0.1 mass%, sufficient effect of each component may not be acquired. When the blending amount of the organic additive is within the above range, a ceramic cylindrical sputtering target material having a length of 500 mm or more and a relative density of 95% or more can be manufactured.
 バインダは、成形体においてセラミックス原料粉末をバインドし、成形体の強度を高めるために添加される。バインダとしては、公知の粉末焼結法において成形体を得るときに通常使用されるバインダを使用することができる。 The binder is added to bind the ceramic raw material powder in the molded body and increase the strength of the molded body. As a binder, the binder normally used when obtaining a molded object in the well-known powder sintering method can be used.
 その中でも、ポリビニルアルコール(PVA)が好適であり、さらに重合度が200~400かつ鹸化度が60~80mol%であるポリビニルアルコールが好適である。このようなバインダを使用すると、バインダの添加量が少量であっても、CIP成形時に潰れやすい顆粒が調製され、CIP成形によりセラミックス原料粉末が緻密に充填された割れにくい成形体が得られ、その結果、割れや変形を生じさせることなく高密度で長尺のセラミックス円筒形ターゲット材を製造することができる。たとえば、有機添加物の配合量を前記範囲内にし、さらに前記バインダを使用すると、長さ750mm以上、相対密度95%以上で一体品のセラミックス円筒形ターゲット材を安定的に製造することができる。 Among them, polyvinyl alcohol (PVA) is preferable, and polyvinyl alcohol having a polymerization degree of 200 to 400 and a saponification degree of 60 to 80 mol% is preferable. When such a binder is used, even if the amount of the binder added is small, granules that are easily crushed at the time of CIP molding are prepared, and a compact body that is densely filled with ceramic raw material powder is obtained by CIP molding. As a result, it is possible to produce a long ceramic cylindrical target material with high density without causing cracks or deformation. For example, when the blending amount of the organic additive is within the above range and the binder is further used, an integrated ceramic cylindrical target material can be stably produced with a length of 750 mm or more and a relative density of 95% or more.
 一般に、セラミックス粉末を成形、脱脂および焼成という工程により長尺のセラミックス円筒形ターゲット材を作製しようとすると、成形、脱脂および焼成の何れかの工程で割れが発生する。このため従来の製造方法では、長さ500mm以上、相対密度95%以上で一体品のセラミックス円筒形ターゲット材を製造することはできなかった。成形時の割れは、CIP成形体の場合には、長尺すなわち大型になるとスプリングバックの力が大きくなるために起こると考えられる。鋳込み成形体の場合には、水分ムラや粒子偏析が起点となり割れると考えられる。バインダ量を増やせば成形割れをなくすことはできるが、バインダ量を増やすと、脱脂または焼成中に円筒成形体が脆化して割れる。また過度のバインダの添加は、バインダが偏析して脱脂割れの起点となるため好ましくない。 Generally, when an attempt is made to produce a long ceramic cylindrical target material by the steps of forming, degreasing and firing ceramic powder, cracking occurs in any of the steps of forming, degreasing and firing. For this reason, in the conventional manufacturing method, it was not possible to manufacture an integrated ceramic cylindrical target material having a length of 500 mm or more and a relative density of 95% or more. In the case of a CIP molded body, cracking at the time of molding is considered to occur because the springback force increases when it is long or large. In the case of a cast-molded body, it is considered that cracks are caused by moisture unevenness and particle segregation. Increasing the binder amount can eliminate molding cracks, but increasing the binder amount causes the cylindrical molded body to become brittle and crack during degreasing or firing. Excessive binder addition is not preferable because the binder is segregated and becomes a starting point of degreasing cracks.
 本発明の製造方法においては、前記のバインダを使用することにより、長尺の成形体であっても、少量のバインダ添加により割れにくい成形体が得られるので、脱脂および焼成中に円筒成形体が割れにくい。つまり、前記バインダを使用すると、成形、脱脂および焼成のいずれの工程でも割れが発生しにくく、長尺のセラミックス円筒形ターゲット材が安定的に得られる。 In the production method of the present invention, by using the above-mentioned binder, a molded body that is difficult to break can be obtained by adding a small amount of binder, even if it is a long molded body. Hard to break. That is, when the binder is used, cracks are unlikely to occur in any of the steps of molding, degreasing and firing, and a long ceramic cylindrical target material can be stably obtained.
 前記バインダの使用により、このような効果が得られるのは、次のような理由によると考えられる。 The reason why such an effect can be obtained by using the binder is considered as follows.
 たとえば原料粉末、バインダおよび水を含有したスラリーをスプレードライにより顆粒を調製する場合、スラリーを噴霧して形成された液滴中で、乾燥により水が液滴の外側に移動し、それと共に原料粉末およびバインダも液滴の外側に移動する。水は液滴外に揮発し、その結果、液滴表面部に原料粉末およびバインダが緻密に凝集し、堅い被膜を持った顆粒が形成される。この顆粒は、原料粉末、バインダおよび水が外周部に移動しているため中空となり、その中空部は負圧になっている。その圧力差をなくそうとして、顆粒は陥没する。このような陥没した顆粒は堅いので、成形時に潰れにくい。このため、成形体は緻密化せず、割れの起点となる粗大欠陥を生じる。長尺の成形体を作製するとき割れが発生するのは、このようなことが主因になっていると考えられる。 For example, when preparing a granule by spray drying a slurry containing raw material powder, a binder and water, in the droplets formed by spraying the slurry, water moves to the outside of the droplets by drying, and together with the raw material powder And the binder also moves outside the droplet. Water volatilizes out of the droplet, and as a result, the raw material powder and the binder are densely aggregated on the surface of the droplet to form granules having a hard coating. This granule becomes hollow because the raw material powder, the binder and water move to the outer peripheral portion, and the hollow portion has a negative pressure. The granules sink, trying to eliminate the pressure difference. Such depressed granules are stiff and are not easily crushed during molding. For this reason, a molded object is not densified but produces the coarse defect used as the starting point of a crack. It is considered that this is the main cause of the occurrence of cracks when producing a long shaped body.
 重合度200~400という重合度の低いバインダを使用すると、バインダの成分である高分子の絡み合いが少なく、粘度の低いスラリーが得られる。バインダ比を一定にして重合度の低いバインダを使用すると、低粘度で原料粉末の濃度が高いスラリーが作製される。このため、スラリーの噴霧時に液滴中で水の移動が少ないため、顆粒内部が中空になりにくく、陥没しにくい。顆粒においてはバインダの絡み合いが少ないので、バインダの結合力が弱く、顆粒が簡単に潰れる。また高濃度スラリーを噴霧すると、原料粉末およびバインダが液滴の表面部に凝集できないので、表面部が緻密になりにくく、顆粒の強度が低くなる。このような理由により、CIP成形によりセラミックス原料粉末が緻密に充填された割れにくい成形体が得られると考えられる。 When a binder with a low polymerization degree of 200 to 400 is used, a slurry with a low viscosity is obtained with little entanglement of the polymer that is a component of the binder. When a binder with a low binder degree is used with a constant binder ratio, a slurry having a low viscosity and a high concentration of raw material powder is produced. For this reason, since there is little movement of water in the droplets during spraying of the slurry, the inside of the granule is not easily hollowed out and is not easily depressed. Since the entanglement of the binder in the granule is small, the binding force of the binder is weak, and the granule is easily crushed. Further, when the high-concentration slurry is sprayed, the raw material powder and the binder cannot be aggregated on the surface portion of the droplet, so that the surface portion is difficult to be dense and the strength of the granules is lowered. For these reasons, it is considered that a ceramic body powder that is densely filled with CIP molding can be obtained that is difficult to break.
 また、鹸化度60~80mol%という鹸化度の低いバインダを使用すると、原料粉末、バインダおよび水からなるスラリーにおいて、バインダの疎水基が粉末に吸着して、分散性の高いスラリーが得られる。曇点以上の温度でスラリーを噴霧すると、バインダが短時間で析出し、液滴の外側に移動しないので、顆粒全体にバインダが均一分散した状態で乾燥され、表面部の強度が低い顆粒が得られる。このような理由により、CIP成形によりセラミックス原料粉末が緻密に充填された割れにくい成形体が得られると考えられる。 In addition, when a binder having a low saponification degree of 60 to 80 mol% is used, in the slurry composed of the raw material powder, the binder and water, the hydrophobic group of the binder is adsorbed on the powder, and a highly dispersible slurry is obtained. When the slurry is sprayed at a temperature equal to or higher than the cloud point, the binder precipitates in a short time and does not move to the outside of the liquid droplets, so the granules are dried with the binder uniformly dispersed throughout the granules, and granules with low surface strength are obtained. It is done. For these reasons, it is considered that a ceramic body powder that is densely filled with CIP molding can be obtained that is difficult to break.
 以上のとおり、バインダであるポリビニルアルコールの重合度および鹸化度はともに小さいほうが、潰れやすい顆粒が得られる。このためバインダであるポリビニルアルコールの重合度は400以下、鹸化度は80mol%以下であることが好ましい。一方、重合度および鹸化度が小さすぎると、得られる成形体が柔らかくなりすぎ、ハンドリング性が低下する。このためバインダであるポリビニルアルコールの重合度は200以上、鹸化度は60mol%以上であることが好ましい。バインダであるポリビニルアルコールは、重合度が250~350、鹸化度が65~75mol%であることがより好ましく、重合度が280~320、鹸化度が68~72mol%であることがさらに好ましい。 As described above, granules having a lower degree of polymerization and saponification of polyvinyl alcohol, which is a binder, can be easily crushed. For this reason, it is preferable that the polymerization degree of polyvinyl alcohol as a binder is 400 or less and the saponification degree is 80 mol% or less. On the other hand, when the degree of polymerization and the degree of saponification are too small, the resulting molded product becomes too soft and the handling properties are lowered. For this reason, it is preferable that the polymerization degree of polyvinyl alcohol as a binder is 200 or more and the saponification degree is 60 mol% or more. The polyvinyl alcohol as the binder preferably has a polymerization degree of 250 to 350 and a saponification degree of 65 to 75 mol%, more preferably a polymerization degree of 280 to 320 and a saponification degree of 68 to 72 mol%.
 バインダであるポリビニルアルコールの添加量は、セラミックス原料粉末に対して好ましくは0.1~1.0質量%、より好ましくは0.1~0.65質量%、さらに好ましくは0.1~0.3質量%である。ポリビニルアルコールの添加量が多いほど、塑性が上がり成形割れしにくくなる一方、脱媒中の成形体の強度低下が大きくなり、脱脂割れしやすくなったり、脱脂後に成形体中に空孔が多くなり、高密度化しにくくなったりする場合がある。このため前記範囲が好適である。 The addition amount of polyvinyl alcohol as a binder is preferably 0.1 to 1.0% by mass, more preferably 0.1 to 0.65% by mass, and still more preferably 0.1 to 0.00% by mass with respect to the ceramic raw material powder. 3% by mass. As the amount of polyvinyl alcohol added increases, plasticity increases and molding cracks are less likely to be cracked. On the other hand, the strength reduction of the molded body during removal of the solvent increases, and it becomes easier to degrease cracks. , It may be difficult to increase the density. For this reason, the said range is suitable.
 分散剤は、スラリー中の原料粉末およびバインダの分散性を高めるために添加される。分散剤としては、たとえばポリカルボン酸アンモニウム、ポリアクリル酸アンモニウム等を挙げることができる。 Dispersant is added to increase the dispersibility of the raw material powder and binder in the slurry. Examples of the dispersant include ammonium polycarboxylate and ammonium polyacrylate.
 可塑剤は、成形体の可塑性を高めるために添加される。可塑剤としては、たとえば、ポリエチレングリコール(PRG)、エチレングリコール(EG)等を挙げることができる。 The plasticizer is added to increase the plasticity of the molded body. Examples of the plasticizer include polyethylene glycol (PRG) and ethylene glycol (EG).
 セラミックス原料粉末および有機添加物を含有するスラリーを調製する際に使用する分散媒には特に制限はなく、目的に応じて、水、アルコール等から適宜選択して使用することができる。 The dispersion medium used when preparing the slurry containing the ceramic raw material powder and the organic additive is not particularly limited, and can be appropriately selected from water, alcohol and the like according to the purpose.
 セラミックス原料粉末および有機添加物を含有するスラリーを調製する方法には特に制限はなく、たとえば、セラミックス原料粉末、有機添加物および分散媒をポットに入れ、ボールミル混合する方法が使用できる。 The method for preparing the slurry containing the ceramic raw material powder and the organic additive is not particularly limited, and for example, a method in which the ceramic raw material powder, the organic additive and the dispersion medium are placed in a pot and ball mill mixed can be used.
 スラリーから顆粒を調製する方法には、特に制限はなく、たとえばスプレードライ法、転動造粒法、押出し造粒法等を使用することができる。これらのうちで、顆粒の流動性が高く、成形時に潰れやすい顆粒を作製しやすいなどの点で、スプレードライ法が好ましい。スプレードライ法の条件には特に制限はなく、セラミックス原料粉末の造粒に通常使用される条件を適宜選択して実施することができる。
(工程2)
 工程2では、工程1で調製された顆粒をCIP成形(Cold Isostatic Pressing(冷間等方圧成形))して円筒形の成形体を作製する。CIP成形により成形体を作製すると、密度が均一で方向性の少ない、脱脂および焼成を行っても割れにくい長尺円筒形の成形体を得ることができる。
There is no restriction | limiting in particular in the method of preparing a granule from a slurry, For example, a spray-drying method, a rolling granulation method, an extrusion granulation method etc. can be used. Of these, the spray-drying method is preferable because the granules have high fluidity and are easy to produce granules that are easily crushed during molding. The conditions of the spray drying method are not particularly limited, and can be carried out by appropriately selecting the conditions usually used for granulating the ceramic raw material powder.
(Process 2)
In step 2, the granules prepared in step 1 are CIP-molded (Cold Isostatic Pressing) to produce a cylindrical shaped body. When a molded body is produced by CIP molding, a long cylindrical molded body having a uniform density and less directivity, which is hard to break even after degreasing and firing can be obtained.
 CIP成形に使用する型としては、CIP成形に通常使用される、長尺円筒形の成形体を作製できる型、たとえば、上下に密閉できる蓋があり、円柱状の中子(心棒)を有する円筒形状のウレタンゴム型などを使用することができる。 As a mold used for CIP molding, there is a mold that can be used to produce a long cylindrical molded body that is usually used for CIP molding, such as a cylinder having a cylindrical core (mandrel) that can be sealed up and down. A urethane rubber mold having a shape can be used.
 CIP成形時の圧力は、通常800kgf/cm2以上、好ましくは1000kgf/cm2以上、より好ましくは3000kgf/cm2以上である。圧力が高いほど、顆粒を緻密に充填でき、成形体を高密度化および高強度化できる。CIP成形時の圧力の上限値には特に制限はなく、通常5000kgf/cm2である。 Pressure during CIP molding is usually 800 kgf / cm 2 or more, preferably 1000 kgf / cm 2 or more, more preferably 3000 kgf / cm 2 or more. The higher the pressure, the denser the granules, and the higher the density and strength of the molded body. There is no particular limitation on the upper limit of the pressure during CIP molding, and it is usually 5000 kgf / cm 2 .
 CIP成形において加圧した後、減圧するときに、圧力が200kgf/cm2以下の範囲では、減圧速度を200kgf/cm2・h以下にすることが好ましく、100kgf/cm2・h以下にすることがより好ましく、50kgf/cm2・h以下にすることがさらに好ましい。200kgf/cm2以下の圧力範囲における減圧では、成形体に生じるスプリングバックの力が強いので、成形体が割れやすい。減圧速度を200kgf/cm2・h以下にすると、スプリングバックの力が弱くなり、成形体が割れにくくなる。このような減圧速度で減圧を行うと、高密度で長尺のセラミックス円筒形ターゲット材を安定的に製造することができる。たとえば、前記バインダを使用し、有機添加物の配合量を前記範囲内にし、さらに前記減圧速度を採用すると、長さ1000mm以上、相対密度95%以上で一体品のセラミックス円筒形ターゲット材を安定的に製造することができる。減圧速度の下限値には特に制限はなく、通常30kgf/cm2である。 After pressurizing the CIP molding, when depressurizing the range pressure of 200 kgf / cm 2 or less, it is preferred that the pressure reduction rate below 200kgf / cm 2 · h, that below 100kgf / cm 2 · h Is more preferably 50 kgf / cm 2 · h or less. When the pressure is reduced within a pressure range of 200 kgf / cm 2 or less, since the springback force generated in the molded body is strong, the molded body is easily cracked. When the pressure reduction speed is 200 kgf / cm 2 · h or less, the springback force becomes weak and the molded body is difficult to break. When depressurization is performed at such a depressurization rate, a high-density and long ceramic cylindrical target material can be stably produced. For example, when the binder is used, the blending amount of the organic additive is within the above range, and the decompression speed is adopted, the integrated ceramic cylindrical target material is stable with a length of 1000 mm or more and a relative density of 95% or more. Can be manufactured. There is no restriction | limiting in particular in the lower limit of the pressure reduction speed, Usually, it is 30 kgf / cm < 2 >.
 圧力が200kgf/cm2より高い範囲での減圧速度には特に制限はなく、通常200~1000kgf/cm2・hである。
(工程3)
 工程3では、工程2で作製された成形体を脱脂する。脱脂は成形体を加熱することにより行われる。
There is no particular limitation on the pressure reduction rate in the range of a pressure higher than 200 kgf / cm 2, usually 200 ~ 1000kgf / cm 2 · h .
(Process 3)
In step 3, the molded body produced in step 2 is degreased. Degreasing is performed by heating the compact.
 脱脂温度は、通常600~800℃、好ましくは700~800℃、より好ましくは750~800℃である。脱脂温度が高いほど成形体の強度が高くなるが、800℃を超えると成形体の収縮が起こるので、800℃以下で脱脂することが好ましい。 The degreasing temperature is usually 600 to 800 ° C, preferably 700 to 800 ° C, more preferably 750 to 800 ° C. The higher the degreasing temperature, the higher the strength of the molded body. However, when the temperature exceeds 800 ° C, shrinkage of the molded body occurs.
 脱脂時間は通常3~10時間、好ましくは5~10時間、より好ましくは10時間である。脱脂時間が長いほど成形体の強度が高くなるが、10時間の加熱でほぼ脱脂は完了するので、脱脂時間をこれ以上長くしても成形体の強度は高くならない。 The degreasing time is usually 3 to 10 hours, preferably 5 to 10 hours, more preferably 10 hours. The longer the degreasing time is, the higher the strength of the molded body is. However, the degreasing is almost completed by heating for 10 hours. Therefore, even if the degreasing time is longer, the strength of the molded body does not increase.
 昇温速度は、400℃までの温度範囲では、好ましくは50℃/h以下、より好ましくは30℃/h以下、さらに好ましくは20℃/h以下である。400℃までに脱媒が行われ、脱媒中に高速で昇温すると、成形体が割れやすくなるので、400℃までは50℃/h以下の低速で昇温することが好ましい。昇温速度を前記範囲にすると、高密度で長尺のセラミックス円筒形ターゲット材を安定的に製造することができる。たとえば、前記バインダを使用し、有機添加物の配合量を前記範囲内にし、CIP成形時の減圧速度を前記範囲とし、さらに脱脂時の昇温速度を前記範囲にすると、長さ1500mm以上、相対密度95%以上で一体品のセラミックス円筒形ターゲット材を安定的に製造することができる。400℃より高い温度では、脱媒が完了しているのでリードタイムを短くするために、より高い速度、たとえば80℃/h程度で昇温することができる。
(工程4)
 工程4では、工程3で脱脂された成形体を焼成する。
The temperature rising rate is preferably 50 ° C./h or less, more preferably 30 ° C./h or less, and further preferably 20 ° C./h or less in the temperature range up to 400 ° C. When the solvent is removed up to 400 ° C. and the temperature is increased at a high speed during the removal, the molded body is easily cracked. Therefore, the temperature is preferably increased at a low speed of 50 ° C./h or less up to 400 ° C. When the temperature rising rate is in the above range, a long and dense ceramic cylindrical target material can be stably produced. For example, when the binder is used, the blending amount of the organic additive is within the above range, the decompression speed during CIP molding is within the above range, and the heating rate during degreasing is within the above range, a length of 1500 mm or more, relative An integrated ceramic cylindrical target material having a density of 95% or more can be stably produced. At a temperature higher than 400 ° C., the removal of the solvent is completed, so that the lead time can be shortened, and the temperature can be increased at a higher rate, for example, about 80 ° C./h.
(Process 4)
In step 4, the molded body degreased in step 3 is fired.
 焼成炉には特に制限はなく、セラミックターゲット材の製造に従来使用されている焼成炉を使用することができる。 The firing furnace is not particularly limited, and a firing furnace conventionally used for manufacturing ceramic target materials can be used.
 焼成温度は、セラミックスがITOである場合には、通常1450~1700℃、好ましくは1500~1650℃、より好ましくは1550~1600℃である。セラミックスがAZOまたはIGZOである場合には、通常1250~1500℃、好ましくは1300~1450℃、より好ましくは1350~1400℃である。焼成温度が高いほど高密度のターゲット材が得られるが、高すぎるとターゲット材の焼結組織が肥大化して割れやすくなる。 The firing temperature is usually 1450 to 1700 ° C., preferably 1500 to 1650 ° C., more preferably 1550 to 1600 ° C. when the ceramic is ITO. When the ceramic is AZO or IGZO, the temperature is usually 1250 to 1500 ° C., preferably 1300 to 1450 ° C., more preferably 1350 to 1400 ° C. The higher the firing temperature, the higher the density of the target material is obtained. However, when the firing temperature is too high, the sintered structure of the target material becomes enlarged and easily cracked.
 焼成時間は、通常3~30時間、好ましくは5~10時間、より好ましくは5~8時間である。焼成時間が長いほどターゲット材が高密度化しやすいが、長すぎるとターゲット材の焼結組織が肥大化して割れやすくなる。 Calcination time is usually 3 to 30 hours, preferably 5 to 10 hours, more preferably 5 to 8 hours. The longer the firing time, the more easily the target material is densified. However, if the firing time is too long, the sintered structure of the target material is enlarged and easily broken.
 昇温速度は通常100~500℃/hである。降温速度は通常10~100℃/h、好ましくは10~50℃/h、より好ましくは10~30℃/hである。降温速度が小さいほど熱応力差による割れが起こりにくくなるが、10℃/hより小さくしても熱応力差は通常変わらない。 The heating rate is usually 100 to 500 ° C./h. The temperature lowering rate is usually 10 to 100 ° C./h, preferably 10 to 50 ° C./h, more preferably 10 to 30 ° C./h. As the rate of temperature decrease is smaller, cracking due to the difference in thermal stress is less likely to occur.
 焼成雰囲気には特に制限なく、通常、大気雰囲気や酸素雰囲気である。 The firing atmosphere is not particularly limited, and is usually an air atmosphere or an oxygen atmosphere.
 得られた焼結体は、切削加工等、必要な加工を施されてスパッタリングターゲット材として使用される。 The obtained sintered body is subjected to necessary processing such as cutting and used as a sputtering target material.
 実施例および比較例において得られたスパッタリングターゲット材の評価方法は以下のとおりである。
1.相対密度
 スパッタリングターゲット材の相対密度はアルキメデス法に基づき測定した。具体的には、スパッタリングターゲット材の空中重量を体積(=スパッタリングターゲット焼結体の水中重量/計測温度における水比重)で除し、下記式(X)に基づく理論密度ρ(g/cm3)に対する百分率の値を相対密度(単位:%)とした。
The evaluation method of the sputtering target material obtained in the Example and the comparative example is as follows.
1. Relative density The relative density of the sputtering target material was measured based on the Archimedes method. Specifically, the aerial weight of the sputtering target material is divided by the volume (= weight of the sputtering target sintered body in water / water specific gravity at the measurement temperature), and the theoretical density ρ (g / cm 3 ) based on the following formula (X) The percentage value relative to the relative density (unit:%).
Figure JPOXMLDOC01-appb-M000001

 (式(X)中、C1~Ciはそれぞれターゲット材の構成物質の含有量(重量%)を示し、ρ1~ρiはC1~Ciに対応する各構成物質の密度(g/cm3)を示す。)。
2.スパッタリングターゲット材または成形体の割れの評価
 スパッタリングターゲット材および成形体を目視で観察し、スパッタリングターゲット材または成形体に割れが認められなかった場合には「A」、認められた場合には「B」と評価した。
<ITOターゲット>
[実施例1]
 BET法により測定された比表面積が10m2/gであるSnO2粉末とBET法により測定された比表面積が10m2/gであるIn23粉末とを、SnO2粉末の含有量が1質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、セラミックス原料粉末を調製した。
Figure JPOXMLDOC01-appb-M000001

(In the formula (X), C 1 to C i indicate the contents (weight%) of the constituent materials of the target material, respectively, and ρ 1 to ρ i are the densities (g of each constituent material corresponding to C 1 to C i ). / cm 3 ).
2. Evaluation of Sputtering Target Material or Molded Body Cracks When the sputtering target material or molded body is visually observed and no cracks are observed in the sputtering target material or molded body, “B” is indicated. ".
<ITO target>
[Example 1]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 10 m 2 / g surface area of 10 m 2 / g, the content of SnO 2 powder 1 A ceramic raw material powder was prepared by blending to a mass% and ball mill mixing with zirconia balls in a pot.
 このポットに、バインダとして、セラミックス原料粉末に対して0.1質量%のポリビニルアルコール(重合度:280、鹸化度68mol%)、分散剤として、セラミックス原料粉末に対して0.3質量%のポリカルボン酸アンモニウム、および分散媒として、セラミックス原料粉末に対して15質量%の水を加え、ボールミル混合してスラリーを調製した。有機添加物の合計量(ポリビニルアルコール量とポリカルボン酸アンモニウム量との合計)のセラミックス原料粉末の量に対する比率は0.4質量%であった。 In this pot, 0.1% by mass of polyvinyl alcohol (polymerization degree: 280, saponification degree: 68 mol%) as a binder as a binder, and 0.3% by mass of a polymer as a dispersing agent as a binder. As an ammonium carboxylate and a dispersion medium, 15% by mass of water was added to the ceramic raw material powder, and a slurry was prepared by ball mill mixing. The ratio of the total amount of organic additives (the total amount of polyvinyl alcohol and the amount of ammonium polycarboxylate) to the amount of the ceramic raw material powder was 0.4% by mass.
 このスラリーをスプレードライ装置に供給し、アトマイズ回転数10,000rpm、入口温度250℃の条件でスプレードライを行い、顆粒を調製した。 The slurry was supplied to a spray drying apparatus, and spray drying was performed under the conditions of an atomizing rotation speed of 10,000 rpm and an inlet temperature of 250 ° C. to prepare granules.
 上下に密閉できる蓋があり、外径165mmの円柱状の中子(心棒)を有する内径210mm(肉厚10mm)、長さ1219mmの円筒形状のウレタンゴム型に、前記顆粒をタッピングさせながら充填し、ゴム型を密閉後、800kgf/cm2の圧力でCIP成形して、円筒形の成形体を作製した。CIP成形後の減圧速度は、200kgf/cm2より高い圧力範囲では300kgf/cm2・h、200kgf/cm2以下の圧力範囲では200kgf/cm2・hとした。得られた成形体の長さは1212mmであった。 There is a lid that can be sealed up and down, and a cylindrical urethane rubber mold with an inner diameter of 210 mm (thickness 10 mm) and a length of 1219 mm having a cylindrical core (mandrel) with an outer diameter of 165 mm is filled while tapping the granules. After sealing the rubber mold, CIP molding was performed at a pressure of 800 kgf / cm 2 to prepare a cylindrical molded body. Decompression rate after CIP molding at high pressure range than 200kgf / cm 2 300kgf / cm 2 · h, at 200 kgf / cm 2 or less in the pressure range was 200kgf / cm 2 · h. The length of the obtained molded body was 1212 mm.
 この成形体を加熱脱脂した。脱脂温度は700℃、脱脂時間は10時間、昇温速度は、400℃までの温度範囲では20℃/h、400℃より高い温度範囲では50℃/hとした。 The molded body was heat degreased. The degreasing temperature was 700 ° C., the degreasing time was 10 hours, and the heating rate was 20 ° C./h in the temperature range up to 400 ° C., and 50 ° C./h in the temperature range higher than 400 ° C.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、大気雰囲気中で、焼成温度1600℃、焼成時間10時間、昇温速度300℃/h、降温速度50℃/hとした。 The degreased compact was fired to produce a sintered body. Firing was performed in an air atmosphere at a firing temperature of 1600 ° C., a firing time of 10 hours, a heating rate of 300 ° C./h, and a cooling rate of 50 ° C./h.
 得られた焼結体を切削加工し、外径155mm、内径135mm、長さ1000mmのITO円筒形スパッタリングターゲット材を製造した。 The obtained sintered body was cut to produce an ITO cylindrical sputtering target material having an outer diameter of 155 mm, an inner diameter of 135 mm, and a length of 1000 mm.
 外径133mm、内径123mm、長さ3200mmのSUS304製バッキングチューブに、前記ターゲット材3本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.2mmとした。 Three target materials were joined with In solder to an SUS304 backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.2 mm.
 ターゲット材の相対密度、ならびにターゲット材および成形体の割れの評価を表1に記した。
[実施例2~20、比較例1~9]
 実施例2~20および比較例1~9を以下の条件で行った。
Table 1 shows the relative density of the target material and the evaluation of cracks in the target material and the molded body.
[Examples 2 to 20, Comparative Examples 1 to 9]
Examples 2 to 20 and Comparative Examples 1 to 9 were performed under the following conditions.
 セラミックス原料粉末におけるSnO2粉末の含有量、ポリビニルアルコールの重合度および鹸化度、ならびにポリビニルアルコールの添加量およびポリカルボン酸アンモニウムの添加量を表1に示した条件にし、それ以外は実施例1と同様に行い、顆粒を調製した。 The content of SnO 2 powder in the ceramic raw material powder, the polymerization degree and saponification degree of polyvinyl alcohol, and the addition amount of polyvinyl alcohol and the addition amount of ammonium polycarboxylate were set to the conditions shown in Table 1, except that In the same manner, granules were prepared.
 この顆粒をCIP成形して、表1に示した長さを有する円筒形の成形体を作製した。CIP成形には、実施例2、3、9~18、比較例6については実施例1と同じウレタンゴム型を用い、他の実施例および比較例については、実施例1で用いたウレタンゴム型と同じ中子および内径を有し、表1に示した長さの成形体が得られるような長さを有するウレタンゴム型を用いた。CIP成形後の、200kgf/cm2以下の圧力範囲における減圧速度を表1に示した条件にした。それ以外のCIP成形の条件は実施例1と同様とした。比較例5においては、成形工程で成形体に割れが生じた。 This granule was CIP-molded to produce a cylindrical molded body having the length shown in Table 1. For CIP molding, the same urethane rubber mold as in Example 1 was used for Examples 2, 3, 9 to 18 and Comparative Example 6, and the urethane rubber mold used in Example 1 was used for other Examples and Comparative Examples. A urethane rubber mold having the same core and the same inner diameter as that of the length of the molded body having the length shown in Table 1 was used. The pressure reduction rate in the pressure range of 200 kgf / cm 2 or less after CIP molding was set to the conditions shown in Table 1. The other CIP molding conditions were the same as in Example 1. In Comparative Example 5, cracks occurred in the molded body during the molding process.
 成形工程で割れが生じなかった成形体を加熱脱脂した。400℃までの温度範囲での昇温速度を表1に示した条件にし、それ以外の脱脂条件は実施例1と同様とした。比較例1~4および8~9においては、脱脂工程で成形体に割れが生じた。 The molded body that was not cracked in the molding process was heat degreased. The heating rate in the temperature range up to 400 ° C. was set to the conditions shown in Table 1, and the other degreasing conditions were the same as in Example 1. In Comparative Examples 1 to 4 and 8 to 9, cracks occurred in the molded body during the degreasing process.
 脱脂工程で割れが生じなかった脱脂された成形体を実施例1と同様の条件で焼成して、焼結体を作製した。得られた焼結体を切削加工し、表1に示した外径、内径および長さを有するITO円筒形スパッタリングターゲット材を製造した。 The degreased molded body that was not cracked in the degreasing step was fired under the same conditions as in Example 1 to produce a sintered body. The obtained sintered body was cut to produce an ITO cylindrical sputtering target material having the outer diameter, inner diameter, and length shown in Table 1.
 表1に示した分割部の数が得られるように、外径133mm、内径123mm、長さ3200mmのSUS304製バッキングチューブに、複数本(分割部の数より1多い数の本数)の前記ターゲット材をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.2mmとした。 In order to obtain the number of divided parts shown in Table 1, a plurality of target materials (one more than the number of divided parts) are provided on a SUS304 backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm. Were bonded with In solder to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.2 mm.
 得られた各ターゲット材の相対密度、ならびにターゲット材および成形体の割れの評価を表1に記した。
<AZOターゲット>
[実施例21]
 BET法により測定された比表面積が5m2/gであるAl23粉末とBET法により測定された比表面積が10m2/gであるZnO粉末とを、Al23粉末の含有量が0.5質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、セラミックス原料粉末を調製した。
Table 1 shows the relative density of each target material obtained and the evaluation of cracks in the target material and the molded body.
<AZO target>
[Example 21]
The ratio specific surface area measured by the BET method was measured by Al 2 O 3 powder and the BET method is 5 m 2 / g surface area and ZnO powder is 10 m 2 / g, the content of Al 2 O 3 powder It mix | blended so that it might become 0.5 mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and the ceramic raw material powder was prepared.
 このセラミックス原料粉末を用いたこと以外は実施例1と同様に行い、顆粒を調製した。 Granules were prepared in the same manner as in Example 1 except that this ceramic raw material powder was used.
 この顆粒を、上下に密閉できる蓋があり、外径167mmの円柱状の中子(心棒)を有する内径213mm(肉厚10mm)、長さ1233mmの円筒形状のウレタンゴム型を用いて、実施例1と同様の条件でCIP成形を行い、表2に示した長さを有する円筒形の成形体を作製した。 This granule has a lid capable of sealing up and down, and uses a cylindrical urethane rubber mold having an inner diameter of 213 mm (thickness of 10 mm) and a length of 1233 mm having a cylindrical core (mandrel) having an outer diameter of 167 mm. CIP molding was performed under the same conditions as in No. 1, and cylindrical molded bodies having the lengths shown in Table 2 were produced.
 この成形体を実施例1と同様の条件で脱脂した。 The molded body was degreased under the same conditions as in Example 1.
 脱脂された成形体を実施例1と同様の条件で焼成して、焼結体を作製した。得られた焼結体を切削加工し、表2に示した外径、内径および長さを有するAZO円筒形スパッタリングターゲット材を製造した。 The degreased shaped body was fired under the same conditions as in Example 1 to produce a sintered body. The obtained sintered body was cut to produce an AZO cylindrical sputtering target material having the outer diameter, inner diameter and length shown in Table 2.
 外径133mm、内径123mm、長さ3200mmのSUS304製バッキングチューブに、前記ターゲット材3本をIn半田により接合し、AZOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.2mmとした。 The three target materials were joined with In solder to an SUS304 backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm to produce an AZO target. The interval between the target materials (the length of the divided portion) was 0.2 mm.
 ターゲット材の相対密度、ならびにターゲット材および成形体の割れの評価を表2に記した。
[実施例22~33、比較例10~18]
 実施例22~33および比較例10~18を以下の条件でおこなった。
Table 2 shows the relative density of the target material and the evaluation of cracks in the target material and the molded body.
[Examples 22 to 33, Comparative Examples 10 to 18]
Examples 22 to 33 and Comparative Examples 10 to 18 were performed under the following conditions.
 セラミックス原料粉末におけるAl23粉末の含有量、ポリビニルアルコールの重合度および鹸化度、ならびにポリビニルアルコールの添加量およびポリカルボン酸アンモニウムの添加量を表2に示した条件にし、それ以外は実施例21と同様に行い、顆粒を調製した。 The content of Al 2 O 3 powder in the ceramic raw material powder, the polymerization degree and saponification degree of polyvinyl alcohol, the addition amount of polyvinyl alcohol and the addition amount of ammonium polycarboxylate were set to the conditions shown in Table 2, and the other examples. Granules were prepared in the same manner as in No. 21.
 この顆粒をCIP成形して、表2に示した長さを有する円筒形の成形体を作製した。CIP成形には、実施例22、28~30、33、比較例14については実施例21と同じウレタンゴム型を用い、他の実施例および比較例については、実施例21で用いたウレタンゴム型と同じ中子および内径を有し、表2に示した長さの成形体が得られるような長さを有するウレタンゴム型を用いた。CIP成形後の、200kgf/cm2以下の圧力範囲における減圧速度を表2に示した条件にした。それ以外のCIP成形の条件は実施例21と同様とした。比較例13においては、成形工程で成形体に割れが生じた。 This granule was CIP molded to produce a cylindrical molded body having the length shown in Table 2. For the CIP molding, the same urethane rubber mold as in Example 21 was used for Examples 22, 28 to 30, 33 and Comparative Example 14, and the urethane rubber mold used in Example 21 for the other Examples and Comparative Examples. A urethane rubber mold having the same core and the same inner diameter as that of the length of the molded body having the length shown in Table 2 was used. The pressure reduction rate in the pressure range of 200 kgf / cm 2 or less after CIP molding was set to the conditions shown in Table 2. The other CIP molding conditions were the same as in Example 21. In Comparative Example 13, cracks occurred in the molded body during the molding process.
 成形工程で割れが生じなかった成形体を加熱脱脂した。400℃までの温度範囲での昇温速度を表2に示した条件にし、それ以外の脱脂条件は実施例21と同様とした。比較例10~12および16~18においては、脱脂工程で成形体に割れが生じた。 The molded body that was not cracked in the molding process was heat degreased. The temperature increase rate in the temperature range up to 400 ° C. was set to the conditions shown in Table 2, and other degreasing conditions were the same as in Example 21. In Comparative Examples 10 to 12 and 16 to 18, cracks occurred in the molded bodies during the degreasing process.
 脱脂工程で割れが生じなかった脱脂された成形体を実施例21と同様の条件で焼成して、焼結体を作製した。得られた焼結体を切削加工し、表2に示した外径、内径および長さを有するAZO円筒形スパッタリングターゲット材を製造した。 The degreased molded body in which cracking did not occur in the degreasing process was fired under the same conditions as in Example 21 to produce a sintered body. The obtained sintered body was cut to produce an AZO cylindrical sputtering target material having the outer diameter, inner diameter and length shown in Table 2.
 表2に示した分割部の数が得られるように、外径133mm、内径123mm、長さ3200mmのSUS304製バッキングチューブに、複数本(分割部の数より1多い数の本数)の前記ターゲット材をIn半田により接合し、AZOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.2mmとした。 In order to obtain the number of divided parts shown in Table 2, a plurality of target materials (one more than the number of divided parts) are provided on a SUS304 backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm. Were joined by In solder to produce an AZO target. The interval between the target materials (the length of the divided portion) was 0.2 mm.
 得られた各ターゲット材の相対密度、ならびにターゲット材および成形体の割れの評価を表2に記した。
<IGZOターゲット>
[実施例34]
 BET法により測定された比表面積が10m2/gであるIn23粉末とBET法により測定された比表面積が10m2/gであるGa23粉末とBET法により測定された比表面積が10m2/gであるZnO粉末とを、In23粉末の含有量が44.2質量%、Ga23粉末の含有量が29.9質量%、ZnO粉末の含有量が25.9質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、セラミックス原料粉末を調製した。
Table 2 shows the relative density of each target material obtained and the evaluation of cracks in the target material and the molded body.
<IGZO target>
[Example 34]
The specific surface area specific surface area measured by the BET method was measured by Ga 2 O 3 powder and the BET method measured specific surface area of 10 m 2 / g by In 2 O 3 powder and the BET method is 10 m 2 / g There the ZnO powder is 10m 2 / g, in 2 O 3 content of the powder is 44.2 weight%, content of Ga 2 O 3 powder is 29.9 mass%, the content of ZnO powder 25. A ceramic raw material powder was prepared by blending to 9% by mass and ball mill mixing with zirconia balls in a pot.
 このセラミックス原料粉末を用いたこと、およびポリビニルアルコール(重合度:280、鹸化度68mol%)の代わりにポリビニルアルコール(重合度:500、鹸化度90mol%)を以外は実施例1と同様に行い、顆粒を調製した。 Example 1 was performed except that this ceramic raw material powder was used, and polyvinyl alcohol (polymerization degree: 500, saponification degree: 90 mol%) was used instead of polyvinyl alcohol (polymerization degree: 280, saponification degree: 68 mol%). Granules were prepared.
 この顆粒を、上下に密閉できる蓋があり、外径171mmの円柱状の中子(心棒)を有する内径218mm(肉厚10mm)、長さ653mmの円筒形状のウレタンゴム型を用いて、CIP成形後の、200kgf/cm2以下の圧力範囲における減圧速度を300kgf/cm2・hにしたこと以外は実施例1と同様の条件でCIP成形を行い、表3に示した長さを有する円筒形の成形体を作製した。 CIP molding is performed using a cylindrical urethane rubber mold with a lid that can seal the granules up and down, an inner diameter of 218 mm (thickness of 10 mm), and a length of 653 mm. CIP molding was performed under the same conditions as in Example 1 except that the decompression speed in the pressure range of 200 kgf / cm 2 or less was changed to 300 kgf / cm 2 · h, and a cylindrical shape having the length shown in Table 3 A molded body was prepared.
 この成形体を実施例1と同様の条件で脱脂した。 The molded body was degreased under the same conditions as in Example 1.
 脱脂された成形体を実施例1と同様の条件で焼成して、焼結体を作製した。得られた焼結体を切削加工し、表3に示した外径、内径および長さを有するIGZO円筒形スパッタリングターゲット材を製造した。 The degreased shaped body was fired under the same conditions as in Example 1 to produce a sintered body. The obtained sintered body was cut to produce an IGZO cylindrical sputtering target material having the outer diameter, inner diameter and length shown in Table 3.
 外径133mm、内径123mm、長さ3200mmのSUS304製バッキングチューブに、前記ターゲット材6本をIn半田により接合し、IGZOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.2mmとした。 The six target materials were joined with In solder to an SUS304 backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm to produce an IGZO target. The interval between the target materials (the length of the divided portion) was 0.2 mm.
 ターゲット材の相対密度、ならびにターゲット材および成形体の割れの評価を表3に記した。
[実施例35~44、比較例19~25]
 実施例35~44および比較例19~25を以下の条件でおこなった。
Table 3 shows the relative density of the target material and the evaluation of cracks in the target material and the molded body.
[Examples 35 to 44, Comparative Examples 19 to 25]
Examples 35 to 44 and Comparative Examples 19 to 25 were performed under the following conditions.
 セラミックス原料粉末におけるIn23粉末の含有量、Ga23粉末の含有量およびZnO粉末の含有量、ポリビニルアルコールの重合度および鹸化度、ならびにポリビニルアルコールの添加量およびポリカルボン酸アンモニウムの添加量を表3に示した条件にし、それ以外は実施例34と同様に行い、顆粒を調製した。 In 2 O 3 powder content, Ga 2 O 3 powder content and ZnO powder content, degree of polymerization and saponification of polyvinyl alcohol, addition amount of polyvinyl alcohol and addition of ammonium polycarboxylate in ceramic raw material powder Granules were prepared in the same manner as in Example 34, except that the amount was changed as shown in Table 3.
 この顆粒をCIP成形して、表3に示した長さを有する円筒形の成形体を作製した。CIP成形には、実施例35~36、比較例19~20、22~25については実施例34と同じウレタンゴム型を用い、他の実施例および比較例については、実施例34で用いたウレタンゴム型と同じ中子および内径を有し、表2に示した長さの成形体が得られるような長さを有するウレタンゴム型を用いた。CIP成形後の、200kgf/cm2以下の圧力範囲における減圧速度を表3に示した条件にした。それ以外のCIP成形の条件は実施例34と同様とした。比較例20においては、成形工程で成形体に割れが生じた。 This granule was CIP-molded to produce a cylindrical molded body having the length shown in Table 3. For CIP molding, the same urethane rubber mold as in Example 34 was used for Examples 35 to 36, Comparative Examples 19 to 20, and 22 to 25, and the urethane used in Example 34 was used for the other Examples and Comparative Examples. A urethane rubber mold having the same core and inner diameter as the rubber mold and having such a length as to obtain a molded body having the length shown in Table 2 was used. The pressure reduction rate in the pressure range of 200 kgf / cm 2 or less after CIP molding was set to the conditions shown in Table 3. The other CIP molding conditions were the same as in Example 34. In Comparative Example 20, cracks occurred in the molded body during the molding process.
 成形工程で割れが生じなかった成形体を加熱脱脂した。400℃までの温度範囲での昇温速度を表3に示した条件にし、それ以外の脱脂条件は実施例34と同様とした。比較例19および23~25においては、脱脂工程で成形体に割れが生じた。 The molded body that was not cracked in the molding process was heat degreased. The temperature increase rate in the temperature range up to 400 ° C. was set to the conditions shown in Table 3, and other degreasing conditions were the same as in Example 34. In Comparative Examples 19 and 23 to 25, the molded body was cracked in the degreasing process.
 脱脂工程で割れが生じなかった脱脂された成形体を実施例34と同様の条件で焼成して、焼結体を作製した。得られた焼結体を切削加工し、表3に示した外径、内径および長さを有するIGZO円筒形スパッタリングターゲット材を製造した。 The degreased molded body in which cracking did not occur in the degreasing process was fired under the same conditions as in Example 34 to produce a sintered body. The obtained sintered body was cut to produce an IGZO cylindrical sputtering target material having the outer diameter, inner diameter and length shown in Table 3.
 表3に示した分割部の数が得られるように、外径133mm、内径123mm、長さ3000mmのSUS304製バッキングチューブに、複数本(分割部の数より1多い数の本数)の前記ターゲット材をIn半田により接合し、IGZOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.2mmとした。 In order to obtain the number of divided parts shown in Table 3, a plurality of target materials (one more than the number of divided parts) are provided on a SUS304 backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3000 mm. Were joined by In solder to produce an IGZO target. The interval between the target materials (the length of the divided portion) was 0.2 mm.
 得られた各ターゲット材の相対密度、ならびにターゲット材および成形体の割れの評価を表3に記した。

Table 3 shows the relative density of each target material obtained and the evaluation of cracks in the target material and the molded body.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004





 表1~3に示されたとおり、本発明の製造方法を実施した実施例1~44では、ターゲットの作製過程においてターゲット材および成形体の割れが発生せず、500mm以上の長さを有し、95%以上の相対密度を有するITO円筒形スパッタリングターゲット材、AZO円筒形スパッタリングターゲット材またはIGZO円筒形スパッタリングターゲット材、およびこれらから形成されるターゲットが得られた。
Figure JPOXMLDOC01-appb-T000004





As shown in Tables 1 to 3, in Examples 1 to 44 in which the production method of the present invention was performed, the target material and the molded body were not cracked in the target production process, and had a length of 500 mm or more. In addition, an ITO cylindrical sputtering target material, an AZO cylindrical sputtering target material or an IGZO cylindrical sputtering target material having a relative density of 95% or more, and a target formed from these were obtained.
 本発明の製造方法でない製造方法を実施した比較例では、有機添加物の量がセラミックス原料粉末の量に対して1.2質量%より多い場合には、脱脂工程で成形体に割れが発生するか、またはターゲット材の相対密度が95%より低くなり、有機添加物の量がセラミックス原料粉末の量に対して0.1質量%より少ない場合には、成形工程で成形体に割れが発生した。比較例では、500mm以上の長さを有し、95%以上の相対密度を有するセラミックス円筒形スパッタリングターゲット材を製造することはできなかった。 In the comparative example which implemented the manufacturing method which is not the manufacturing method of this invention, when the quantity of an organic additive is more than 1.2 mass% with respect to the quantity of ceramic raw material powder, a crack will generate | occur | produce in a degreasing process. Or when the relative density of the target material is lower than 95% and the amount of the organic additive is less than 0.1% by mass with respect to the amount of the ceramic raw material powder, cracks occurred in the molded body in the molding process. . In the comparative example, a ceramic cylindrical sputtering target material having a length of 500 mm or more and a relative density of 95% or more could not be produced.

Claims (10)

  1.  長さが500mm以上かつ相対密度が95%以上であり、一体品であることを特徴とするセラミックス円筒形スパッタリングターゲット材。 A ceramic cylindrical sputtering target material having a length of 500 mm or more and a relative density of 95% or more, which is an integral product.
  2.  長さが750mm以上であることを特徴とする、請求項1に記載のセラミックス円筒形スパッタリングターゲット材。 The ceramic cylindrical sputtering target material according to claim 1, wherein the length is 750 mm or more.
  3.  長さが1000mm以上であることを特徴とする、請求項1に記載のセラミックス円筒形スパッタリングターゲット材。 The ceramic cylindrical sputtering target material according to claim 1, wherein the length is 1000 mm or more.
  4.  長さが1500mm以上であることを特徴とする、請求項1に記載のセラミックス円筒形スパッタリングターゲット材。 The ceramic cylindrical sputtering target material according to claim 1, wherein the length is 1500 mm or more.
  5.  Snの含有量がSnO2量換算で1~10質量%であるITO製であることを特徴とする、請求項1~4のいずれかに記載のセラミックス円筒形スパッタリングターゲット材。 5. The ceramic cylindrical sputtering target material according to claim 1, wherein the ceramic cylindrical sputtering target material is made of ITO having a Sn content of 1 to 10% by mass in terms of SnO 2 .
  6.  Alの含有量がAl23量換算で0.1~5質量%であるAZO製であることを特徴とする、請求項1~4のいずれかに記載のセラミックス円筒形スパッタリングターゲット材。 The ceramic cylindrical sputtering target material according to any one of claims 1 to 4, wherein the ceramic cylindrical sputtering target material is made of AZO having an Al content of 0.1 to 5% by mass in terms of Al 2 O 3 content.
  7.  Inの含有量がIn23量換算で40~60質量%、Gaの含有量がGa23量換算で20~40質量%、Znの含有量がZnO量換算で10~30質量%あるIGZO製であることを特徴とする、請求項1~4のいずれかに記載のセラミックス円筒形スパッタリングターゲット材。 The In content is 40 to 60 mass% in terms of In 2 O 3 , the Ga content is 20 to 40 mass% in terms of Ga 2 O 3 , and the Zn content is 10 to 30 mass% in terms of ZnO. The ceramic cylindrical sputtering target material according to any one of claims 1 to 4, wherein the ceramic cylindrical sputtering target material is made of a certain IGZO.
  8.  請求項1~7のいずれかに記載のセラミックス円筒形スパッタリングターゲット材をバッキングチューブにボンディング材によって接合してなることを特徴とするセラミックス円筒形スパッタリングターゲット。 A ceramic cylindrical sputtering target obtained by bonding the ceramic cylindrical sputtering target material according to any one of claims 1 to 7 to a backing tube with a bonding material.
  9.  セラミックス原料粉末および有機添加物を含有するスラリーから顆粒を調製する工程1、
     前記顆粒をCIP成形して円筒形の成形体を作製する工程2、
     前記成形体を脱脂する工程3、および
     前記脱脂された成形体を焼成する工程4
     を含むセラミックス円筒形スパッタリングターゲット材の製造方法であって、
     前記工程1において、前記有機添加物の量が前記セラミックス原料粉末の量に対して0.1~1.2質量%であることを特徴とするセラミックス円筒形スパッタリングターゲット材の製造方法。
    Step 1 for preparing granules from a slurry containing ceramic raw material powder and an organic additive,
    Step 2 for producing a cylindrical shaped body by CIP molding the granules,
    Step 3 for degreasing the molded body, and Step 4 for firing the degreased molded body.
    A method for producing a ceramic cylindrical sputtering target material comprising:
    In the step 1, the method for producing a ceramic cylindrical sputtering target material, wherein the amount of the organic additive is 0.1 to 1.2% by mass with respect to the amount of the ceramic raw material powder.
  10.  前記有機添加物がバインダを含み、該バインダが、重合度が200~400かつ鹸化度が60~80mol%であるポリビニルアルコールであることを特徴とする、請求項9に記載のセラミックス円筒形スパッタリングターゲット材の製造方法。 The ceramic cylindrical sputtering target according to claim 9, wherein the organic additive includes a binder, and the binder is polyvinyl alcohol having a polymerization degree of 200 to 400 and a saponification degree of 60 to 80 mol%. A method of manufacturing the material.
PCT/JP2013/050400 2012-01-18 2013-01-11 Ceramic cylindrical sputtering target and method for producing same WO2013108715A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167022127A KR20160101206A (en) 2012-01-18 2013-01-11 Ceramic cylindrical sputtering target and method for producing same
KR1020147009792A KR20140069146A (en) 2012-01-18 2013-01-11 Ceramic cylindrical sputtering target and method for producing same
CN201380006061.2A CN104066700B (en) 2012-01-18 2013-01-11 Ceramic cylindrical sputtering target material and its manufacture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012007975A JP5750060B2 (en) 2012-01-18 2012-01-18 Ceramic cylindrical sputtering target material and manufacturing method thereof
JP2012-007975 2012-01-18

Publications (1)

Publication Number Publication Date
WO2013108715A1 true WO2013108715A1 (en) 2013-07-25

Family

ID=48799141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050400 WO2013108715A1 (en) 2012-01-18 2013-01-11 Ceramic cylindrical sputtering target and method for producing same

Country Status (5)

Country Link
JP (1) JP5750060B2 (en)
KR (2) KR20140069146A (en)
CN (2) CN107419226B (en)
TW (2) TWI600632B (en)
WO (1) WO2013108715A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089181A (en) * 2014-10-29 2016-05-23 住友金属鉱山株式会社 Cylindrical target material and method for manufacturing the same, and cylindrical sputtering target and method for manufacturing the same
JP2018511701A (en) * 2015-03-18 2018-04-26 ユミコア Lithium-containing transition metal oxide target
TWI635194B (en) * 2016-03-28 2018-09-11 Jx金屬股份有限公司 Cylindrical sputtering target and manufacturing method thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5887391B1 (en) * 2014-08-22 2016-03-16 三井金属鉱業株式会社 Method for producing target material for sputtering target and claw member
KR20160074577A (en) * 2014-08-22 2016-06-28 미쓰이금속광업주식회사 Method for manufacturing target material for cylindrical sputtering target and cylindrical sputtering target
JP6439383B2 (en) * 2014-10-29 2018-12-19 住友金属鉱山株式会社 Cylindrical mold and method for producing cylindrical ceramic molded body using the same
CN107109631A (en) * 2015-02-25 2017-08-29 三井金属矿业株式会社 Manufacture method, cylindrical shape sputter target and the firing assisted tool of cylindrical shape target
WO2016140021A1 (en) * 2015-03-05 2016-09-09 三井金属鉱業株式会社 Hollow cylindrical ceramic target material, and hollow cylindrical sputtering target
JP5887625B1 (en) * 2015-03-27 2016-03-16 Jx金属株式会社 Cylindrical sputtering target, cylindrical sintered body, cylindrical molded body, and manufacturing method thereof
JP2016014191A (en) * 2015-07-21 2016-01-28 三井金属鉱業株式会社 Ceramic cylindrical type sputtering target material, and method of manufacturing the same
JP5969146B1 (en) * 2016-01-13 2016-08-17 Jx金属株式会社 Manufacturing method of cylindrical sputtering target and manufacturing method of cylindrical molded body
CN108431293A (en) * 2016-01-28 2018-08-21 Jx金属株式会社 Cylinder-shaped ceramic sputtering target material and the cylinder-shaped ceramic sputtering target that one or more cylinder-shaped ceramic sputtering target materials compositions are engaged on backing pipe
JP6259847B2 (en) * 2016-02-05 2018-01-10 住友化学株式会社 Manufacturing method of cylindrical target
KR20170113075A (en) * 2016-03-28 2017-10-12 제이엑스금속주식회사 Cylindrical sputtering target and manufacturing method of cylindrical sputtering target
JP6894886B2 (en) * 2016-03-28 2021-06-30 三井金属鉱業株式会社 Sputtering target material and its manufacturing method, and sputtering target
TWI607107B (en) * 2016-09-20 2017-12-01 Linco Technology Co Ltd Reinforced magnetic field generator for sputter target and its cylindrical sputtering target device
US10507444B2 (en) * 2016-11-28 2019-12-17 Richard Chi-Hsueh Method and device for producing honeycomb particle capable of absorbing harmful molecular element
WO2018143280A1 (en) * 2017-02-01 2018-08-09 出光興産株式会社 Amorphous oxide semiconductor film, oxide sintered body, and thin film transistor
JP6557696B2 (en) 2017-03-31 2019-08-07 Jx金属株式会社 Cylindrical sputtering target and manufacturing method thereof
JP2018178251A (en) * 2017-04-07 2018-11-15 三菱マテリアル株式会社 Cylindrical sputtering target and manufacturing method of the same
CN108623298A (en) * 2018-07-04 2018-10-09 郑州大学 A kind of degreasing sintered integral preparation method of high density tin indium oxide tubular target
BE1028481B1 (en) * 2020-07-14 2022-02-14 Soleras Advanced Coatings Bv High Density Sputtering Target
BE1028482B1 (en) * 2020-07-14 2022-02-14 Soleras Advanced Coatings Bv Manufacture and refill of sputtering targets

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153868A (en) * 1989-11-10 1991-07-01 Tosoh Corp Production of ito target having cylindrical shape
JP2001146484A (en) * 1999-11-18 2001-05-29 Kuraray Co Ltd Binder for molding ceramic
JP2001199772A (en) * 1999-11-11 2001-07-24 Kuraray Co Ltd Binder for molding ceramic
JP2005324987A (en) * 2004-05-14 2005-11-24 Sumitomo Metal Mining Co Ltd Ito molded product, ito sputtering target using the same and its manufacturing method
WO2011152482A1 (en) * 2010-06-03 2011-12-08 株式会社アルバック Sputter deposition device
JP2011252223A (en) * 2010-06-04 2011-12-15 Mitsui Mining & Smelting Co Ltd Ito sputtering target and its manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068072A (en) 1996-08-26 1998-03-10 Japan Energy Corp Ito cylindrical target and its production
JP4961672B2 (en) 2004-03-05 2012-06-27 東ソー株式会社 Cylindrical sputtering target, ceramic sintered body, and manufacturing method thereof
KR20060043427A (en) * 2004-03-05 2006-05-15 토소가부시키가이샤 Cylindrical sputtering target, ceramic sintered body, and process for producing sintered body
KR101137906B1 (en) * 2006-08-03 2012-05-03 삼성코닝정밀소재 주식회사 Rotatable target assembly
JP5194460B2 (en) * 2007-01-26 2013-05-08 東ソー株式会社 Cylindrical sputtering target and manufacturing method thereof
JP5467735B2 (en) * 2007-07-02 2014-04-09 東ソー株式会社 Cylindrical sputtering target
WO2009028087A1 (en) * 2007-08-31 2009-03-05 Kuraray Luminas Co., Ltd. High-density group ii-vi compound semiconductor molding and process for producing the same
JP5387118B2 (en) * 2008-06-10 2014-01-15 東ソー株式会社 Cylindrical sputtering target and manufacturing method thereof
JP5482020B2 (en) 2008-09-25 2014-04-23 東ソー株式会社 Cylindrical sputtering target and manufacturing method thereof
WO2011045304A1 (en) * 2009-10-12 2011-04-21 Gradel S.À.R.L. Method and apparatus for production of rotatable sputtering targets

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153868A (en) * 1989-11-10 1991-07-01 Tosoh Corp Production of ito target having cylindrical shape
JP2001199772A (en) * 1999-11-11 2001-07-24 Kuraray Co Ltd Binder for molding ceramic
JP2001146484A (en) * 1999-11-18 2001-05-29 Kuraray Co Ltd Binder for molding ceramic
JP2005324987A (en) * 2004-05-14 2005-11-24 Sumitomo Metal Mining Co Ltd Ito molded product, ito sputtering target using the same and its manufacturing method
WO2011152482A1 (en) * 2010-06-03 2011-12-08 株式会社アルバック Sputter deposition device
JP2011252223A (en) * 2010-06-04 2011-12-15 Mitsui Mining & Smelting Co Ltd Ito sputtering target and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE: "The 166th Committee on Photonic and Electronic Oxide", TECHNOLOGY OF TRANSPARENT CONDUCTIVE OXIDE THIN-FILMS, 20 December 2006 (2006-12-20) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089181A (en) * 2014-10-29 2016-05-23 住友金属鉱山株式会社 Cylindrical target material and method for manufacturing the same, and cylindrical sputtering target and method for manufacturing the same
JP2018511701A (en) * 2015-03-18 2018-04-26 ユミコア Lithium-containing transition metal oxide target
US10822690B2 (en) 2015-03-18 2020-11-03 Umicore Lithium-containing transition metal oxide target
TWI635194B (en) * 2016-03-28 2018-09-11 Jx金屬股份有限公司 Cylindrical sputtering target and manufacturing method thereof
TWI698542B (en) * 2016-03-28 2020-07-11 日商Jx金屬股份有限公司 Cylindrical sputtering target and its manufacturing method
TWI699444B (en) * 2016-03-28 2020-07-21 日商Jx金屬股份有限公司 Cylindrical sputtering target and manufacturing method thereof

Also Published As

Publication number Publication date
CN107419226B (en) 2019-11-29
JP5750060B2 (en) 2015-07-15
TWI600632B (en) 2017-10-01
JP2013147368A (en) 2013-08-01
CN104066700A (en) 2014-09-24
KR20140069146A (en) 2014-06-09
TW201627254A (en) 2016-08-01
TW201350459A (en) 2013-12-16
KR20160101206A (en) 2016-08-24
TWI540114B (en) 2016-07-01
CN104066700B (en) 2017-03-29
CN107419226A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
JP5750060B2 (en) Ceramic cylindrical sputtering target material and manufacturing method thereof
JP6264846B2 (en) Oxide sintered body, sputtering target and manufacturing method thereof
KR102493208B1 (en) Cylindrical sputtering target, cylindrical compact, manufacturing method of cylindrical sputtering target, manufacturing method of cylindrical sintered compact and manufacturing method of cylindrical compact
JP5887819B2 (en) Zinc oxide sintered body, sputtering target comprising the same, and zinc oxide thin film
JP2013507526A (en) Tin oxide ceramic sputtering target and method for producing the same
KR101729054B1 (en) Alumina graula by spray-drying and manufacturing method thereof
KR102030892B1 (en) Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film
TWI522332B (en) Ito sputtering target material and method of manufacturing the same
JP5784849B2 (en) Ceramic cylindrical sputtering target material and manufacturing method thereof
KR20180129769A (en) Sputtering target material, production method thereof, and sputtering target
JP2014125422A (en) Oxide sintered body, oxide sintered body sputtering target and its manufacturing method
JP2016014191A (en) Ceramic cylindrical type sputtering target material, and method of manufacturing the same
CN106458763B (en) Oxide sintered body, method for producing same, and sputtering target
JP2005324987A (en) Ito molded product, ito sputtering target using the same and its manufacturing method
JP2003055759A (en) METHOD FOR MANUFACTURING Mg-CONTAINING ITO SPUTTERING TARGET
JP5809542B2 (en) Sputtering target material and manufacturing method thereof
JP7203088B2 (en) Oxide sintered body, sputtering target and transparent conductive film
JP6883431B2 (en) LiCoO2 sintered body and its manufacturing method
JP4483470B2 (en) Method for producing sputtering target containing indium oxide
TW202323220A (en) Oxide sintered body, production method for same, and sputtering target material
JP2006027984A (en) Sintering tool made of ceramic and its manufacturing method
JP2014125413A (en) Ceramic granule and ceramic sintered body and passage member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147009792

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738843

Country of ref document: EP

Kind code of ref document: A1