JP6678157B2 - Method for manufacturing cylindrical target material and method for manufacturing cylindrical sputtering target - Google Patents

Method for manufacturing cylindrical target material and method for manufacturing cylindrical sputtering target Download PDF

Info

Publication number
JP6678157B2
JP6678157B2 JP2017501866A JP2017501866A JP6678157B2 JP 6678157 B2 JP6678157 B2 JP 6678157B2 JP 2017501866 A JP2017501866 A JP 2017501866A JP 2017501866 A JP2017501866 A JP 2017501866A JP 6678157 B2 JP6678157 B2 JP 6678157B2
Authority
JP
Japan
Prior art keywords
molded body
target material
setter
fired
cylindrical target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017501866A
Other languages
Japanese (ja)
Other versions
JPWO2016136088A1 (en
Inventor
石田 新太郎
新太郎 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2016136088A1 publication Critical patent/JPWO2016136088A1/en
Application granted granted Critical
Publication of JP6678157B2 publication Critical patent/JP6678157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

開示の実施形態は、円筒形ターゲット材の製造方法および円筒形スパッタリングターゲットの製造方法に関する。 The disclosed embodiments relates to a method of manufacturing a manufacturing method and a cylindrical sputtering target of the cylindrical target material.

円筒形のターゲット材の内側に磁場発生装置を有し、ターゲット材を内側から冷却しつつ、ターゲット材を回転させながらスパッタリングを行うマグネトロン型回転カソードスパッタリング装置が知られている。このようなスパッタリング装置では、ターゲット材の外周表面の全面がエロージョンとなり均一に削られる。このため、従来の平板型マグネトロンスパッタリング装置ではターゲット材の使用効率が20〜30%であるのに対し、マグネトロン型回転カソードスパッタリング装置では70%以上の格段に高いターゲット材の使用効率が得られる。   2. Description of the Related Art A magnetron-type rotary cathode sputtering apparatus that has a magnetic field generator inside a cylindrical target material and performs sputtering while rotating the target material while cooling the target material from the inside is known. In such a sputtering apparatus, the entire outer peripheral surface of the target material becomes erosion and is uniformly cut. For this reason, the use efficiency of the target material is 20 to 30% in the conventional flat-plate type magnetron sputtering apparatus, while the use efficiency of the target material is remarkably high at 70% or more in the magnetron rotary cathode sputtering apparatus.

また、マグネトロン型回転カソードスパッタリング装置では、円筒形のターゲット材を回転させながらスパッタリングを行うことにより、平板型マグネトロンスパッタリング装置に比べて単位面積当たりに大きなパワーを投入できることから、高い成膜速度が得られ、成膜時の生産効率を向上させることができる。   In addition, a magnetron-type rotary cathode sputtering device can perform a sputtering while rotating a cylindrical target material, so that a larger power can be applied per unit area than a flat-plate type magnetron sputtering device. As a result, the production efficiency during film formation can be improved.

近年、フラットパネルディスプレイや太陽電池で使用されるガラス基板が大型化され、この大型化された基板上に効率よく薄膜を形成するために、たとえば3mを超えるような長尺の円筒形スパッタリングターゲットが必要となっている。それに伴い、円筒形スパッタリングターゲットを構成する円筒形ターゲット材の長さも、さらに長くすることが求められている。   In recent years, glass substrates used in flat panel displays and solar cells have been increased in size. In order to efficiently form a thin film on the enlarged substrate, for example, a long cylindrical sputtering target exceeding 3 m has been used. Is needed. Accordingly, it is required that the length of the cylindrical target material constituting the cylindrical sputtering target be further increased.

セラミックス製の円筒形ターゲット材の長さを長くする方法として、複数の円筒形ターゲット材を積み重ねて使用する方法が知られている(たとえば、特許文献1参照)。しかしながら、円筒形ターゲット材の間にはターゲット材の熱膨張による衝突割れを防ぐため依然として分割部があり、この分割部に起因したアーキングやパーティクルが発生する。こうしたアーキングやパーティクルの発生を抑制するためには、分割部そのものをなくすか、分割部の数を減らすために積み重ねて使用する円筒形ターゲット材の個々の長さを長くすることが必要である。   As a method of increasing the length of a ceramic cylindrical target material, a method of stacking and using a plurality of cylindrical target materials is known (for example, see Patent Document 1). However, there is still a divided portion between the cylindrical target materials to prevent collision cracking due to thermal expansion of the target material, and arcing and particles are generated due to the divided portion. In order to suppress the generation of such arcing and particles, it is necessary to eliminate the divided portions or to increase the length of each of the cylindrical target materials stacked and used to reduce the number of divided portions.

一方、円筒形ターゲット材の長さを長くすると、製造工程における焼成時に歪みが生じやすくなる。大きく歪んだ焼成体から目的の寸法を有する円筒形ターゲット材を得ようとすると、予め目的の寸法よりも肉厚となるように成形した成形体を焼成し、切削等の加工をする必要があるため、コストが高くなる。さらに、焼成によって得られる焼成体が加工可能な限度を超えて歪んでしまうと、肉厚の成形体を用いても後工程では目的の寸法に加工しきれず、ターゲット材として利用できないものとなってしまう。すなわち、特に長い円筒形ターゲット材の製造においては、焼成時に生じる歪みが、加工による原料のロスの増大や、円筒形ターゲット材として使用できない焼成体の作製などにつながり、歩留まりが大きく低下する。   On the other hand, when the length of the cylindrical target material is increased, distortion tends to occur during firing in the manufacturing process. In order to obtain a cylindrical target material having a desired dimension from a greatly warped calcined body, it is necessary to calcine a compact that has been formed to have a thickness greater than the desired dimension in advance, and to perform processing such as cutting. Therefore, the cost increases. Furthermore, if the fired body obtained by firing is distorted beyond the limit that can be processed, even if a thick molded body is used, it cannot be processed to the desired dimensions in the post-process, and cannot be used as a target material. I will. That is, in the production of a particularly long cylindrical target material, the distortion generated during firing leads to an increase in the loss of raw materials due to processing, the production of a fired body that cannot be used as a cylindrical target material, and the yield is greatly reduced.

特許文献2、3には、円筒形のセラミックス成形体を、該成形体と同等の収縮率を有する部材の上で焼成して断面形状の歪みを抑制する方法が記載されている。   Patent Literatures 2 and 3 disclose a method of suppressing a distortion of a cross-sectional shape by firing a cylindrical ceramic molded body on a member having a shrinkage rate equivalent to that of the molded body.

特開2010−100930号公報JP 2010-100930 A 特開平5−70244号公報JP-A-5-70244 特開平6−279092号公報JP-A-6-279092

しかしながら、上記した従来技術では依然として、500mm以上などの長い円筒形ターゲット材を作製する際の焼成時に、歪みの発生が不可避であるため、さらなる改善の余地がある。   However, in the above-described prior art, there is still room for further improvement because distortion is inevitable during firing when producing a long cylindrical target material having a length of 500 mm or more.

実施形態の一態様は、上記に鑑みてなされたものであって、焼成時の歪みの発生を抑制することで使用する原料の歩留まりがよく、安価に作製し得る円筒形ターゲット材の製造方法および円筒形スパッタリングターゲットの製造方法を提供することを目的とする。 One mode of the embodiment is made in view of the above, and has a good yield of raw materials used by suppressing the occurrence of distortion during firing, and a method of manufacturing a cylindrical target material that can be manufactured at low cost. An object of the present invention is to provide a method for manufacturing a cylindrical sputtering target.

実施形態に係る円筒形ターゲット材の製造方法は、成形工程と焼成工程とを含む。成形工程では、筒状に成形されたセラミックス製の成形体を作製する。焼成工程では、前記成形体の外周面が長さ方向に沿ってセッターの受け面に支持され、水平面に対して傾斜する姿勢で前記成形体を焼成する。   The method for manufacturing a cylindrical target material according to the embodiment includes a forming step and a firing step. In the forming step, a ceramic formed body formed into a cylindrical shape is produced. In the firing step, the outer peripheral surface of the formed body is supported on the receiving surface of the setter along the length direction, and the formed body is fired in a posture inclined with respect to a horizontal plane.

実施形態の一態様によれば、焼成時の歪みの発生を抑制することで使用する原料の歩留まりがよく、安価に作製し得る円筒形ターゲット材の製造方法および円筒形スパッタリングターゲットの製造方法を提供することができる。 According to an aspect of the embodiment, provided with a high yield of the raw materials to be used often, a manufacturing method and a cylindrical sputtering target manufacturing method of the cylindrical target material that may be inexpensively produced by suppressing occurrence of distortion during sintering can do.

図1Aは、円筒形スパッタリングターゲットの構成の概要を示す模式図である。FIG. 1A is a schematic diagram illustrating an outline of a configuration of a cylindrical sputtering target. 図1Bは、図1AのA−A’断面図である。FIG. 1B is a sectional view taken along the line A-A ′ of FIG. 1A. 図2Aは、実施形態に係る円筒形ターゲット材の製造方法の概要を示す説明図である。FIG. 2A is an explanatory diagram illustrating an outline of a method for manufacturing a cylindrical target material according to the embodiment. 図2Bは、図2AのB−B’断面図である。FIG. 2B is a sectional view taken along the line B-B ′ of FIG. 2A. 図3Aは、1次焼成体の長さ方向の歪みについて説明するための図である。FIG. 3A is a diagram for explaining the lengthwise distortion of the primary fired body. 図3Bは、1次焼成体の径方向の歪みについて説明するための図である。FIG. 3B is a diagram for explaining radial distortion of the primary fired body. 図4Aは、実施形態に係る円筒形ターゲット材の製造方法の概要を示す説明図である。FIG. 4A is an explanatory diagram illustrating an outline of a method for manufacturing a cylindrical target material according to the embodiment. 図4Bは、実施形態に係る円筒形ターゲット材の製造方法の概要を示す説明図である。FIG. 4B is an explanatory diagram illustrating an outline of a method for manufacturing a cylindrical target material according to the embodiment. 図4Cは、図4BのC−C’断面図である。FIG. 4C is a cross-sectional view taken along line C-C ′ of FIG. 4B. 図5Aは、実施形態に係る円筒形ターゲット材の製造方法の変形例の概要を示す説明図である。FIG. 5A is an explanatory diagram illustrating an outline of a modification of the method for manufacturing a cylindrical target material according to the embodiment. 図5Bは、実施形態に係る円筒形ターゲット材の製造方法の変形例の概要を示す説明図である。FIG. 5B is an explanatory diagram illustrating an outline of a modification of the method for manufacturing a cylindrical target material according to the embodiment. 図6は、実施形態に係る円筒形ターゲット材の製造方法の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of a method for manufacturing a cylindrical target material according to the embodiment.

以下、添付図面を参照して、本願の開示する円筒形ターゲット材の製造方法および円筒形スパッタリングターゲットの製造方法の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, with reference to the accompanying drawings, an embodiment of a manufacturing method and a cylindrical sputtering target manufacturing method of the cylindrical target material disclosed in the present application in detail. The present invention is not limited by the embodiments described below.

まず、実施形態に係る円筒形ターゲット材の製造方法により作製された円筒形ターゲット材を適用し得る円筒形スパッタリングターゲットについて、図1A、図1Bを用いて説明する。   First, a cylindrical sputtering target to which a cylindrical target material manufactured by the method for manufacturing a cylindrical target material according to the embodiment can be applied will be described with reference to FIGS. 1A and 1B.

図1Aは、実施形態に係る円筒形スパッタリングターゲットの構成の概要を示す模式図であり、図1Bは、図1AのA−A’断面図である。なお、説明を分かりやすくするために、図1Aおよび図1Bには、鉛直上向きを正方向とし、鉛直下向きを負方向とするZ軸を含む3次元の直交座標系を図示している。かかる直交座標系は、後述の説明に用いる他の図面でも示す場合がある。   FIG. 1A is a schematic diagram illustrating an outline of a configuration of a cylindrical sputtering target according to an embodiment, and FIG. 1B is a cross-sectional view along A-A ′ in FIG. 1A. 1A and 1B show a three-dimensional orthogonal coordinate system including a Z-axis in which a vertically upward direction is a positive direction and a vertically downward direction is a negative direction. Such an orthogonal coordinate system may be shown in other drawings used in the following description.

図1Aおよび図1Bに示すように、円筒形スパッタリングターゲット(以下、「円筒形ターゲット」と称する)1は、円筒形ターゲット材2と、バッキングチューブ3とを備える。円筒形ターゲット材2およびバッキングチューブ3は、接合材4により接合される。   As shown in FIGS. 1A and 1B, a cylindrical sputtering target (hereinafter, referred to as a “cylindrical target”) 1 includes a cylindrical target material 2 and a backing tube 3. The cylindrical target material 2 and the backing tube 3 are joined by a joining material 4.

ここで、円筒形ターゲット材2は、略円筒形状に加工されたセラミックス製材料で構成される。以下では、円筒形ターゲット材2の製造方法の一例について説明する。   Here, the cylindrical target material 2 is formed of a ceramic material processed into a substantially cylindrical shape. Hereinafter, an example of a method for manufacturing the cylindrical target material 2 will be described.

円筒形ターゲット材2の製造方法は、セラミックス原料粉末および有機添加物を含有するスラリーを造粒し、顆粒体を作製する造粒工程と、この顆粒体を成形し、筒状の成形体を作製する成形工程とを経て作製される。なお、成形体の作製方法は、上記したものに限定されず、いかなる方法であってもよい。   The method for producing the cylindrical target material 2 includes a granulation step of granulating a slurry containing a ceramic raw material powder and an organic additive to produce granules, and molding the granules to produce a cylindrical molded body. And a molding step. In addition, the manufacturing method of a molded object is not limited to the above-mentioned method, and may be any method.

また、実施形態に係る円筒形ターゲット材2の製造方法は、成形体を焼成する焼成工程をさらに含む。焼成工程において、成形体の外周面が長さ方向に沿ってセッターの受け面に支持され、水平面に対して傾斜する姿勢で成形体を焼成することにより、成形体の焼成時に生じる歪みが低減する。以下では、かかる焼成工程の一例について、図2A、図2Bを用いて説明する。   Further, the method for manufacturing the cylindrical target material 2 according to the embodiment further includes a firing step of firing the molded body. In the firing step, the outer peripheral surface of the molded body is supported on the receiving surface of the setter along the length direction, and by firing the molded body in a posture inclined with respect to a horizontal plane, distortion generated during firing of the molded body is reduced. . Hereinafter, an example of such a firing step will be described with reference to FIGS. 2A and 2B.

図2Aは、実施形態に係る円筒形ターゲット材2の製造方法のうち、特に焼成工程の概要を示す説明図であり、図2Bは、図2AのB−B’断面図である。   FIG. 2A is an explanatory diagram showing an outline of a firing step in the method of manufacturing the cylindrical target material 2 according to the embodiment, and FIG. 2B is a cross-sectional view taken along the line B-B ′ of FIG. 2A.

図2Aに示すように、焼成用治具である略平板状のセッター5は、受け面51側が上になり、水平面7に対して傾斜するようにして配置される。また、成形体12は、受け面51と成形体12の長さ方向とが略平行となるように配置される。これにより、成形体12は、外周面121が成形体12の長さ方向に沿って受け面51に支持され、水平面7に対して角度θ1だけ傾斜する姿勢で焼成されることとなる。なお、角度θ1の詳細については後述する。   As shown in FIG. 2A, the substantially flat setter 5, which is a firing jig, is arranged so that the receiving surface 51 side faces upward and is inclined with respect to the horizontal plane 7. The molded body 12 is arranged so that the receiving surface 51 and the length direction of the molded body 12 are substantially parallel. Thus, the molded body 12 is fired in a posture in which the outer peripheral surface 121 is supported by the receiving surface 51 along the length direction of the molded body 12 and is inclined by the angle θ1 with respect to the horizontal plane 7. The details of the angle θ1 will be described later.

上記した成形体12は、焼成により得られる焼成体よりも密度が低い。このため、成形体12は、円筒形ターゲット材2として予め設計された寸法よりも肉厚に作製され、また長さ方向の寸法は円筒形ターゲット材2の全長よりも長い。なお、成形体12の密度は、焼成体を加工して得られる円筒形ターゲット材2の密度の概ね60〜70%程度であり、焼成時に寸法で20%程度の収縮、すなわち線収縮が起こる。   The above-described molded body 12 has a lower density than a fired body obtained by firing. For this reason, the molded body 12 is made thicker than the dimension designed in advance as the cylindrical target material 2, and the dimension in the length direction is longer than the entire length of the cylindrical target material 2. The density of the molded body 12 is about 60 to 70% of the density of the cylindrical target material 2 obtained by processing the fired body, and shrinkage of about 20% in dimension during firing, that is, linear shrinkage occurs.

焼成工程では通常、成形体12を立てた状態で焼成が行われる。しかしこの場合、たとえば、焼成炉内における成形体12の箇所ごとの成形密度の差や、焼成時の焼成炉内における場所ごとの温度差の他、焼成のために成形体12を載置する焼成治具やセッターならびに炉床の傾きなどに起因する成形体12の傾きなどにより焼成体に長さ方向の歪みが生じやすい。   In the firing step, firing is usually performed in a state where the molded body 12 is upright. However, in this case, for example, there is a difference in molding density between locations of the molded body 12 in the firing furnace, a difference in temperature between locations in the firing furnace during firing, and a firing in which the molded body 12 is placed for firing. Distortion in the longitudinal direction is likely to occur in the fired body due to the inclination of the molded body 12 caused by the inclination of the jig, the setter, the hearth, and the like.

また、成形体12の長さ方向が略水平となるように成形体12を横に寝かせて焼成すると、上記したような成形体12の長さ方向への歪みは低減するものの、軟化した成形体12の自重により径方向の歪みが生じやすい。このため、成形体12を横に寝かせて焼成することで得られる焼成体には、箇所ごとの外径および/または内径の寸法が相違するなどの歪みが生じやすい。ここで、1次焼成体の「長さ方向の歪み」および「径方向の歪み」について、図3A、図3Bを用いてそれぞれ説明する。   Further, when the compact 12 is laid on its side so that the length direction of the compact 12 is substantially horizontal and fired, the above-described distortion in the longitudinal direction of the compact 12 is reduced, but the softened compact 12 is reduced. Twelve weights tend to cause radial distortion. For this reason, in the fired body obtained by sintering the molded body 12 sideways, distortion such as a difference in the outer diameter and / or inner diameter of each portion is likely to occur. Here, the “strain in the length direction” and the “strain in the radial direction” of the primary fired body will be described with reference to FIGS. 3A and 3B, respectively.

まず、1次焼成体の「長さ方向の歪み」について説明する。図3Aは、1次焼成体の長さ方向の歪みについて説明するための図である。図3Aに示すように、円筒形状として仮想された、歪みのない理想的な形状である1次焼成体を、両端面をXZ平面に、長さ方向をY軸に、それぞれ平行となるように3次元の直交座標系上に配置する。このとき、仮想した1次焼成体をX軸方向から見た矩形の外観形状Lにおいて、1次焼成体の長さ方向に延びる長辺のうち少なくとも一部が、Y軸に平行な状態からX軸側および/またはZ軸側に反る、あるいは折れ曲がるように外観形状Lが変形することを「長さ方向に歪む」といい、その変形の程度を「長さ方向の歪み」という。なお、外観形状Ldは、1次焼成体の長さ方向がZ軸方向に歪んだ様子を例示したものである。   First, the "strain in the length direction" of the primary fired body will be described. FIG. 3A is a diagram for explaining the lengthwise distortion of the primary fired body. As shown in FIG. 3A, a primary fired body having an ideal shape without distortion imagined as a cylindrical shape is formed so that both end faces are parallel to the XZ plane, and the length direction is parallel to the Y axis. It is arranged on a three-dimensional rectangular coordinate system. At this time, in the rectangular external shape L of the imaginary primary fired body viewed from the X-axis direction, at least a part of the long side extending in the length direction of the primary fired body is shifted from the state parallel to the Y-axis by X Deformation of the external shape L so as to warp or bend toward the axis side and / or Z-axis side is referred to as “distortion in the length direction”, and the degree of the deformation is referred to as “distortion in the length direction”. The appearance shape Ld is an example in which the length direction of the primary fired body is distorted in the Z-axis direction.

次に、1次焼成体の「径方向の歪み」について説明する。図3Bは、1次焼成体の径方向の歪みについて説明するための図である。図3Bに示すように、円筒形状として仮想された、歪みのない理想的な形状である1次焼成体を、図3Aと同様に3次元の直交座標系上に配置する。このとき、仮想した1次焼成体をY軸方向から見た環状の外観形状Rにおいて、外径および/または内径のうち、少なくとも一部が、X軸側および/またはZ軸側に外力を受けて変形することを「径方向に歪む」といい、その変形の程度を「径方向の歪み」という。また、「径方向の歪み」のうち、外径が径方向に歪むことを「外径歪み」と規定し、内径が径方向に歪むことを「内径歪み」として区別してもよい。なお、外観形状Rdは、1次焼成体の一端面または断面形状がZ軸方向に圧縮されたように外径および内径が歪んだ様子を例示したものである。   Next, "radial distortion" of the primary fired body will be described. FIG. 3B is a diagram for explaining radial distortion of the primary fired body. As shown in FIG. 3B, a primary fired body having an ideal shape without distortion, which is imagined as a cylindrical shape, is arranged on a three-dimensional orthogonal coordinate system as in FIG. 3A. At this time, in the annular appearance shape R of the virtual primary fired body viewed from the Y-axis direction, at least a part of the outer diameter and / or inner diameter receives an external force on the X-axis side and / or the Z-axis side. Deformation is referred to as “radial distortion”, and the degree of the deformation is referred to as “radial distortion”. Further, among the “radial distortions”, the distortion of the outer diameter in the radial direction may be defined as “outer diameter distortion”, and the distortion of the inner diameter in the radial direction may be distinguished as “inner diameter distortion”. The external shape Rd is an example in which the outer diameter and the inner diameter are distorted such that the one end face or the cross-sectional shape of the primary fired body is compressed in the Z-axis direction.

これに対し、実施形態に係る円筒形ターゲット材2の製造方法では、成形体12は水平面7に対して傾斜した状態で焼成される。成形体12を水平面7に対して傾斜させることにより、成形体12の鉛直方向の幅、すなわち図2Aに示すZ軸方向に延在する成形体12の寸法が成形体12を横に寝かせた場合と比較して大きくなる。このため、実施形態に係る円筒形ターゲット材2の製造方法によれば、成形体12の鉛直方向の変形が抑制された焼成体が得られる。   On the other hand, in the method for manufacturing the cylindrical target material 2 according to the embodiment, the molded body 12 is fired in a state inclined with respect to the horizontal plane 7. When the compact 12 is inclined with respect to the horizontal plane 7 so that the width of the compact 12 in the vertical direction, that is, the dimension of the compact 12 extending in the Z-axis direction shown in FIG. It is larger than. Therefore, according to the method for manufacturing the cylindrical target material 2 according to the embodiment, a fired body in which the deformation of the molded body 12 in the vertical direction is suppressed can be obtained.

また、実施形態に係る円筒形ターゲット材2の製造方法では、成形体12の外周面121が長さ方向に沿ってセッター5の受け面51に支持されて焼成される。成形体12が長さ方向に沿って受け面51に支持されるため、成形体12の荷重は、長さ方向にわたりほぼ均等にセッター5に預けられることとなる。このため、実施形態に係る円筒形ターゲット材2の製造方法によれば、焼成時に成形体12がセッター5に沿った形状になり、成形体12を立てて焼成した場合と比較して長さ方向の歪みが抑制された焼成体が得られる。なお、円筒形の成形体の性質上、たとえば成形体12の端部が凸状となる等により、成形体12を上記したように載置できない場合が生じうる。この場合、成形体12を図2Aで示すように載置して焼成するために、予め成形体12の端部を切断する等の処理を行ってもよい。   In the method for manufacturing the cylindrical target material 2 according to the embodiment, the outer peripheral surface 121 of the molded body 12 is supported on the receiving surface 51 of the setter 5 along the length direction and fired. Since the molded body 12 is supported on the receiving surface 51 along the length direction, the load of the molded body 12 is substantially uniformly deposited on the setter 5 over the length direction. For this reason, according to the manufacturing method of the cylindrical target material 2 according to the embodiment, the shaped body 12 has a shape along the setter 5 at the time of firing, and the length direction is smaller than the case where the shaped body 12 is erected and fired. A fired body with reduced distortion is obtained. In addition, due to the properties of the cylindrical molded body, for example, when the end of the molded body 12 becomes convex, the molded body 12 may not be placed as described above. In this case, in order to place and fire the formed body 12 as shown in FIG. 2A, a process such as cutting an end of the formed body 12 may be performed in advance.

ここで、角度θ1は水平面7に対する成形体12の傾斜の程度を表し、0°から90°までの値をとるものである。かかる角度θ1(以下、「傾斜角θ1」という)は好ましくは30°以上85°以下であり、より好ましくは40°以上85°以下であり、さらに好ましくは60°以上75°以下である。傾斜角θ1が30°未満だと、たとえば成形体12の長さによっては鉛直方向の変形が十分に抑制されない場合がある。また、傾斜角θ1が85°を超えると、たとえば成形体12を受け面51に十分支持させることができない場合がある。   Here, the angle θ1 indicates the degree of inclination of the molded body 12 with respect to the horizontal plane 7, and takes a value from 0 ° to 90 °. The angle θ1 (hereinafter, referred to as “inclination angle θ1”) is preferably 30 ° or more and 85 ° or less, more preferably 40 ° or more and 85 ° or less, and further preferably 60 ° or more and 75 ° or less. If the inclination angle θ1 is less than 30 °, the deformation in the vertical direction may not be sufficiently suppressed, for example, depending on the length of the molded body 12. If the inclination angle θ1 exceeds 85 °, for example, the molded body 12 may not be able to be sufficiently supported on the receiving surface 51 in some cases.

また、セッター5に立て掛けられた成形体12の両端面のうち、下側に配置されることとなる端面(底面)側には、成形体12の底面を載置させる底板6を配置してもよい。図2Aに示すように、セッター5に対して90°の角度になるように配置した底板6の載置面61に成形体12を載置すると、成形体12の底面123で成形体12を支えることができる。このため、たとえば成形体12の底面123側のうち、一部のみが炉床などの上に接触することで成形体12のごく一部に成形体12の荷重が集中し、割れや変形が生じる不具合を防止または抑制することができる。   In addition, a bottom plate 6 on which the bottom surface of the molded body 12 is placed may be disposed on the end surface (bottom surface) of the molded body 12 leaned against the setter 5 on the side of the lower end surface (bottom surface). Good. As shown in FIG. 2A, when the compact 12 is placed on the mounting surface 61 of the bottom plate 6 disposed at an angle of 90 ° with respect to the setter 5, the compact 12 is supported by the bottom surface 123 of the compact 12. be able to. For this reason, for example, when only a part of the bottom surface 123 side of the molded body 12 comes into contact with the hearth or the like, the load of the molded body 12 is concentrated on a very small part of the molded body 12, and cracks and deformation occur. Failure can be prevented or suppressed.

ここで、セッター5は、好ましくは平板状であるが、少なくとも成形体12の受け面51が略平面となるように形成されていればよく、セッター5の形状に制限はない。また、セッター5の材質としては、アルミナ、マグネシア、ジルコニア等の耐熱性の高いセラミックスが好ましい。また、セッター5の受け面51のうち、成形体12が当接する箇所に高純度アルミナ製の粉末を付着させてもよい。   Here, the setter 5 is preferably flat, but the shape of the setter 5 is not limited as long as at least the receiving surface 51 of the molded body 12 is formed to be substantially flat. As the material of the setter 5, ceramics having high heat resistance such as alumina, magnesia, and zirconia are preferable. Further, a high-purity alumina powder may be attached to a portion of the receiving surface 51 of the setter 5 where the molded body 12 contacts.

また、水平面7に対する成形体12の傾斜角θ1を適切に保持するためにセッター5および/または底板6の傾きを維持する手法には特に制限はない。たとえば、所定の高さとなるように積み上げられた耐火レンガにセッター5および/または底板6を立て掛ける手法などが挙げられるが、これに限定されない。なお、成形体12の傾斜角θ1は、焼成の前後において変化しないか、焼成後の冷却が完了するまで上記した所定の範囲内に収まるように維持されることが好ましい。   Further, there is no particular limitation on the method of maintaining the inclination of the setter 5 and / or the bottom plate 6 in order to appropriately maintain the inclination angle θ1 of the molded body 12 with respect to the horizontal plane 7. For example, there is a method of leaning the setter 5 and / or the bottom plate 6 on the refractory bricks stacked to have a predetermined height, but is not limited thereto. It is preferable that the inclination angle θ1 of the molded body 12 does not change before and after firing, or is maintained within the above-described predetermined range until cooling after firing is completed.

ここで、実施形態に係る円筒形ターゲット材2の製造方法は、成形体12の全長が好ましくは500mm以上、より好ましくは600mm以上、さらに好ましくは750mm以上、最も好ましくは1000mm以上の場合に適用される。成形体12の全長が500mm未満の場合には、本製造方法を適用しなくても成形体12の焼成により生じる歪みは小さい。ただし、全長が500mm未満の成形体12についても反りや歪みが軽減されるため、本製造方法はいかなる全長を有する成形体12に対しても適用可能である。また、成形体12の全長の上限値は特に定めるものではないが、成形体12を焼成して得られる円筒形ターゲット材2はスパッタリング装置の内部に設置するものであることから、通常4000mm以下である。   Here, the manufacturing method of the cylindrical target material 2 according to the embodiment is applied when the entire length of the molded body 12 is preferably 500 mm or more, more preferably 600 mm or more, further preferably 750 mm or more, and most preferably 1000 mm or more. You. When the entire length of the molded body 12 is less than 500 mm, the distortion caused by firing of the molded body 12 is small even if the present manufacturing method is not applied. However, since warpage and distortion are reduced even for a molded body 12 having a total length of less than 500 mm, the present manufacturing method is applicable to a molded body 12 having any total length. The upper limit of the overall length of the molded body 12 is not particularly limited, but the cylindrical target material 2 obtained by sintering the molded body 12 is usually set at 4000 mm or less because the cylindrical target material 2 is installed inside the sputtering apparatus. is there.

また、焼成体の加工により得られる円筒形ターゲット材2としては、たとえば、In、Zn、Al、Ga、Zr、Ti、Sn、MgおよびSiのうち少なくとも1種を含有する酸化物等を挙げることができる。具体的には、Snの含有量がSnO換算で1〜10質量%であるITO(In−SnO)、Alの含有量がAl換算で0.1〜5質量%であるAZO(Al−ZnO)、Inの含有量がIn換算で10〜60質量%、Gaの含有量がGa換算で10〜60質量%、Znの含有量がZnO換算で10〜60質量%であるIGZO(In−Ga−ZnO)およびZnの含有量がZnO換算で1〜15質量%であるIZO(In−ZnO)などの組成を有するものを例示することができるが、これらに限定されない。なお、焼成体の加工については後述する。Examples of the cylindrical target material 2 obtained by processing the fired body include oxides containing at least one of In, Zn, Al, Ga, Zr, Ti, Sn, Mg, and Si. Can be. Specifically, ITO (In 2 O 3 —SnO 2 ) having a Sn content of 1 to 10% by mass in terms of SnO 2 , and an Al content of 0.1 to 5% by mass in terms of Al 2 O 3 AZO (Al 2 O 3 -ZnO) is 10 to 60 wt% in the content of in is in 2 O 3 in terms of 10 to 60 mass% content of Ga is in terms of Ga 2 O 3, the content of Zn Is IGZO (In 2 O 3 —Ga 2 O 3 —ZnO) in terms of ZnO and IZO (In 2 O 3 —ZnO) in which the content of Zn is 1 to 15% by mass in terms of ZnO. Examples of compositions having such a composition can be given, but the present invention is not limited thereto. The processing of the fired body will be described later.

また、作製される円筒形ターゲット材2がITOの場合、成形体12の焼成温度は好ましくは1500℃〜1700℃であり、より好ましくは1500℃〜1650℃であり、さらに好ましくは1500℃〜1600℃である。また、作製される円筒形ターゲット材2がAZOの場合、成形体12の焼成温度は好ましくは1300℃〜1500℃であり、より好ましくは1300℃〜1450℃であり、さらに好ましくは1350℃〜1450℃である。また、作製される円筒形ターゲット材2がIGZOの場合、成形体12の焼成温度は好ましくは1350℃〜1550℃であり、より好ましくは1400℃〜1500℃であり、さらに好ましくは1400℃〜1450℃である。そして、作製されるセラミックス製ターゲット材2がIZOの場合、成形体12の焼成温度は好ましくは1350℃〜1550℃であり、より好ましくは1400℃〜1500℃であり、さらに好ましくは1400℃〜1450℃である。焼成温度が低すぎると、焼成体の密度を十分に上げることができないことがある。一方、焼成温度が高すぎると、成形体12の焼結組織が肥大化して割れやすくなる。   When the cylindrical target material 2 to be manufactured is ITO, the firing temperature of the molded body 12 is preferably 1500 ° C to 1700 ° C, more preferably 1500 ° C to 1650 ° C, and further preferably 1500 ° C to 1600 ° C. ° C. When the cylindrical target material 2 to be manufactured is AZO, the firing temperature of the molded body 12 is preferably 1300 ° C to 1500 ° C, more preferably 1300 ° C to 1450 ° C, and further preferably 1350 ° C to 1450 ° C. ° C. When the cylindrical target material 2 to be manufactured is IGZO, the firing temperature of the molded body 12 is preferably 1350 ° C to 1550 ° C, more preferably 1400 ° C to 1500 ° C, and further preferably 1400 ° C to 1450 ° C. ° C. When the ceramic target material 2 to be manufactured is IZO, the firing temperature of the molded body 12 is preferably 1350 ° C to 1550 ° C, more preferably 1400 ° C to 1500 ° C, and still more preferably 1400 ° C to 1450 ° C. ° C. If the firing temperature is too low, the density of the fired body may not be sufficiently increased. On the other hand, if the sintering temperature is too high, the sintered structure of the molded body 12 is enlarged and easily cracked.

また、成形体12の昇温速度は、好ましくは50℃/h〜500℃/hである。昇温温度が50℃/h未満だと、焼成温度に到達するまでの時間が長くなり、作業時間が長くなる。また、昇温温度が500℃/hを超えると、成形体12の部分ごとの温度差が大きくなり、割れが生じやすくなる。   The rate of temperature rise of the molded body 12 is preferably 50 ° C / h to 500 ° C / h. If the heating temperature is less than 50 ° C./h, the time required to reach the firing temperature becomes longer, and the working time becomes longer. On the other hand, if the temperature rise temperature exceeds 500 ° C./h, the temperature difference between the portions of the molded body 12 increases, and cracks are likely to occur.

さらに、焼成工程における焼成温度での保持時間は、好ましくは3〜30時間であり、より好ましくは5〜20時間であり、さらに好ましくは8〜16時間である。焼成時間が長いほどターゲット材が高密度化しやすいが、長すぎると焼成体の焼結組織が肥大化して割れやすくなる。   Further, the holding time at the firing temperature in the firing step is preferably 3 to 30 hours, more preferably 5 to 20 hours, and further preferably 8 to 16 hours. As the firing time is longer, the density of the target material is more likely to be increased. However, if the firing time is too long, the sintered structure of the fired body is enlarged and easily cracked.

なお、上記した実施形態では、底板6の載置面61上に成形体12の底面123を直接載置させる例について示したが、底板6の上に成形体12と同程度の収縮率を持つ共素地を配置してもよい。このような共素地を配置することにより、たとえば成形体12の底面123側の形状の歪みをさらに抑制することができる。なお、かかる共素地としては、成形体12と同じ組成を有し、未焼成のシート状または平板状に成形されたものを使用することが好ましい。これにより成形体12および共素地における温度変化に伴う収縮および膨張が同程度となり、成形体12の歪みを抑制することができる。ただし、温度変化に伴う収縮および膨張が成形体12と同程度であれば共素地の組成は上記したものに限定されない。   In the above-described embodiment, an example in which the bottom surface 123 of the molded body 12 is directly mounted on the mounting surface 61 of the bottom plate 6 has been described, but the shrinkage rate is approximately the same as that of the molded body 12 on the bottom plate 6. A common ground may be arranged. By arranging such a co-base, for example, distortion of the shape on the bottom surface 123 side of the molded body 12 can be further suppressed. In addition, it is preferable to use what has the same composition as the molded body 12 and is formed into an unfired sheet or flat plate. Thereby, the shrinkage and expansion accompanying the temperature change in the molded body 12 and the co-base body become almost the same, and the distortion of the molded body 12 can be suppressed. However, the composition of the core material is not limited to the above as long as the shrinkage and expansion due to the temperature change are substantially equal to those of the molded body 12.

次に、実施形態に係る円筒形ターゲット材2の製造方法についてさらに説明する。実施形態に係る円筒形ターゲット材2の製造方法は、焼成体を仕上加工する仕上加工工程をさらに含む。本工程における加工方法は、たとえば、まず円筒研削盤に焼成体をセットし、外周面側の加工を行う。次に、焼成体の外周面を基準にして、内周面側の加工を行う。最後に焼成体の外周面側の加工を再度行い、目標の寸法に研削する。また、長さ方向の加工は、切断および/または研削で行うことができる。かかる仕上加工により、所望の寸法を有する円筒形ターゲット材2が作製される。なお、同様の加工精度を有する円筒形ターゲット材2を製造することが可能であれば上記した加工方法に制限されない。   Next, a method for manufacturing the cylindrical target material 2 according to the embodiment will be further described. The method for manufacturing the cylindrical target material 2 according to the embodiment further includes a finishing step of finishing the fired body. In the processing method in this step, for example, first, a fired body is set on a cylindrical grinder, and the outer peripheral surface side is processed. Next, the inner peripheral surface side is processed with reference to the outer peripheral surface of the fired body. Finally, processing of the outer peripheral surface side of the fired body is performed again to grind to a target dimension. Processing in the length direction can be performed by cutting and / or grinding. By such finishing, a cylindrical target material 2 having a desired dimension is manufactured. The processing method is not limited as long as the cylindrical target material 2 having the same processing accuracy can be manufactured.

次に、実施形態に係る円筒形ターゲット材2の製造方法により得られる円筒形ターゲット材2についてさらに説明する。円筒形ターゲット材2の相対密度は、好ましくは95%以上であり、より好ましくは98%以上であり、さらに好ましくは99%以上である。円筒形ターゲット材2の相対密度が95%以上であると、たとえばスパッタリング時の熱膨張などに起因する円筒形ターゲット材2の割れを防止または抑制することができる。また、スパッタリングによって発生するパーティクルやノジュールおよびアーキングを低減し、良好な膜質を有する薄膜を得ることができる。ここで、円筒形ターゲット材2の相対密度の測定方法について、以下に説明する。   Next, the cylindrical target material 2 obtained by the method for manufacturing the cylindrical target material 2 according to the embodiment will be further described. The relative density of the cylindrical target material 2 is preferably 95% or more, more preferably 98% or more, and further preferably 99% or more. When the relative density of the cylindrical target material 2 is 95% or more, cracking of the cylindrical target material 2 due to, for example, thermal expansion during sputtering can be prevented or suppressed. Further, particles, nodules and arcing generated by sputtering can be reduced, and a thin film having good film quality can be obtained. Here, a method for measuring the relative density of the cylindrical target material 2 will be described below.

円筒形ターゲット材2の相対密度は、アルキメデス法に基づいて測定される。具体的には、円筒形ターゲット材2の空中重量を体積(=円筒形ターゲット材2の水中重量/計測温度における水比重)で除し、下記式(X)に基づく理論密度ρ(g/cm)に対する百分率の値を相対密度(単位:%)とする。The relative density of the cylindrical target material 2 is measured based on the Archimedes method. Specifically, the airborne weight of the cylindrical target material 2 is divided by the volume (= weight of water in the cylindrical target material 2 / water specific gravity at the measurement temperature) to obtain a theoretical density ρ (g / cm) based on the following equation (X). 3 ) The value of percentage relative to the above is defined as a relative density (unit:%).

Figure 0006678157
Figure 0006678157

上記式(X)中、C〜Cはそれぞれ円筒形ターゲット材2を構成する構成物質の含有量(質量%)を示し、ρ〜ρはC〜Cに対応する各構成物質の密度(g/cm)を示す。In the above formula (X), C 1 to C i each indicate the content (% by mass) of the constituent material constituting the cylindrical target material 2, and ρ 1 to ρ i are the respective components corresponding to C 1 to C i Indicates the density of the substance (g / cm 3 ).

次に、図1Aおよび図2Bに戻り、実施形態に係る円筒形ターゲット材2の製造方法により得られる円筒形ターゲット材2を使用した円筒形ターゲット1についてさらに説明する。バッキングチューブ3としては、従来使用されているものを適宜選択して使用することができる。このようなバッキングチューブ3として、たとえば、ステンレス、チタン、チタン合金等を適用することができるが、これらに限定されない。   Next, returning to FIG. 1A and FIG. 2B, the cylindrical target 1 using the cylindrical target material 2 obtained by the method for manufacturing the cylindrical target material 2 according to the embodiment will be further described. As the backing tube 3, a conventionally used one can be appropriately selected and used. As such a backing tube 3, for example, stainless steel, titanium, a titanium alloy, or the like can be used, but the present invention is not limited thereto.

また、接合材4としては、従来使用されているものを適宜選択し、従来と同様の方法により円筒形ターゲット材2およびバッキングチューブ3を接合することができる。このような接合材4として、たとえば、インジウムやインジウム−スズ合金等が挙げられるが、これらに限定されない。   Further, as the joining material 4, a conventionally used material can be appropriately selected, and the cylindrical target material 2 and the backing tube 3 can be joined by the same method as in the related art. Examples of such a bonding material 4 include, but are not limited to, indium and an indium-tin alloy.

なお、図1Aでは、円筒形ターゲット1は、1つのバッキングチューブ3の外側に、1つの円筒形ターゲット材2が接合された例について示したが、これに限定されない。たとえば、1または2以上のバッキングチューブ3の外側に2以上の円筒形ターゲット材2を同一軸線上に並べて接合されたものを円筒形ターゲット1として使用してもよい。複数の円筒形ターゲット材2を並べて接合する場合、隣り合う円筒形ターゲット材2間の隙間、つまり分割部の長さは好ましくは0.05〜0.5mmである。分割部の長さが短いほどスパッタリング時にアーキングが発生しにくいが、分割部の長さが0.05mm未満だと接合工程やスパッタリング中の熱膨張により円筒形ターゲット材2同士がぶつかり、割れることがある。   Although FIG. 1A shows an example in which the cylindrical target 1 has one cylindrical target material 2 bonded to the outside of one backing tube 3, the present invention is not limited to this. For example, one obtained by joining two or more cylindrical target materials 2 on the same axis outside one or two or more backing tubes 3 may be used as the cylindrical target 1. When a plurality of cylindrical target materials 2 are joined side by side, the gap between adjacent cylindrical target materials 2, that is, the length of the divided portion is preferably 0.05 to 0.5 mm. Arcing is less likely to occur during sputtering as the length of the divided portion is shorter, but if the length of the divided portion is less than 0.05 mm, the cylindrical target materials 2 may collide with each other due to thermal expansion during the bonding process or sputtering and may be broken. is there.

上記した実施形態では、焼成工程において成形体12を平板状のセッター5の受け部51に立て掛けて焼成させる例について説明したが、焼成時の歪みの発生を抑制することができるものであれば上記した例に限定されない。以下では、焼成工程の変形例について図4A〜図4Cを参照して説明する。   In the embodiment described above, the example in which the compact 12 is leaned against the receiving portion 51 of the flat-plate setter 5 in the firing step and fired is described. However, the present invention is not limited to this example. Hereinafter, a modification of the firing step will be described with reference to FIGS. 4A to 4C.

図4Aは、実施形態に係る円筒形ターゲット材2の製造方法において、セッター5に代えて適用することができるV字セッター8の構成の概要を示す説明図である。また、図4Bは、実施形態に係る円筒形ターゲット材2の製造方法のうち、特に焼成工程の概要を示す説明図であり、図4Cは、図4BのC−C’断面図である。   FIG. 4A is an explanatory diagram illustrating an outline of a configuration of a V-shaped setter 8 that can be applied instead of the setter 5 in the method of manufacturing the cylindrical target material 2 according to the embodiment. FIG. 4B is an explanatory diagram showing an outline of a firing step in the method of manufacturing the cylindrical target material 2 according to the embodiment, and FIG. 4C is a cross-sectional view taken along line C-C ′ of FIG. 4B.

図4A〜図4Cに示すように、セッター5に代えてV字セッター8を用いて焼成することを除き、焼成条件等を含め、図2A、図2Bを用いて説明した実施形態と同様である。なお、上記した実施形態と同じ部材については同じ符号を付すとともに、その説明を省略するか、簡単な説明にとどめることがある。   As shown in FIGS. 4A to 4C, the embodiment is the same as the embodiment described with reference to FIGS. 2A and 2B, including firing conditions and the like, except that firing is performed using a V-shaped setter 8 instead of the setter 5. . The same members as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof may be omitted or may be limited to a simple description.

焼成用治具の一例であるV字セッター8は、断面V字状に形成された受け面81を含む。受け面81は、所定の角度で向かい合う受け面81a,81bで構成されている。また、V字セッター8は、受け面81a,81bの交線に沿って形成された谷部83と、所定の間隔で谷部83と向かい合うように形成された山部82とを含み、全体にわたりほぼ同じ厚みを有するように形成されている。   A V-shaped setter 8 which is an example of a firing jig includes a receiving surface 81 formed in a V-shaped cross section. The receiving surface 81 includes receiving surfaces 81a and 81b facing each other at a predetermined angle. The V-shaped setter 8 includes a trough 83 formed along the intersection of the receiving surfaces 81a and 81b, and a crest 82 formed to face the trough 83 at a predetermined interval. They are formed to have substantially the same thickness.

図4B、図4Cに示すように、V字セッター8は、山部82側が下、すなわち、受け面81側が上になり、山部82および谷部83が水平面7に対して傾斜角θ1だけ傾斜するように配置される。また、成形体12は、受け面81a,81bの傾斜方向と成形体12の長さ方向とが略垂直となるように配置される。これにより、成形体12は、外周面121が成形体12の長さ方向に沿って受け面81a,81bに支持され、水平面7に対して傾斜角θ1だけ傾斜する姿勢で焼成されることとなる。   As shown in FIG. 4B and FIG. 4C, the V-shaped setter 8 has the crest 82 side down, that is, the receiving surface 81 side up, and the crest 82 and the valley 83 are inclined by the inclination angle θ1 with respect to the horizontal plane 7. It is arranged to be. The molded body 12 is arranged such that the inclination direction of the receiving surfaces 81a and 81b is substantially perpendicular to the length direction of the molded body 12. Accordingly, the molded body 12 is fired in a posture in which the outer peripheral surface 121 is supported by the receiving surfaces 81a and 81b along the length direction of the molded body 12, and is inclined by the inclination angle θ1 with respect to the horizontal plane 7. .

ここで、図2Bおよび図4Cを比較すると、図2Bでは、成形体12の外周面121がセッター5の受け面51に対して1か所で当接している。これに対し、図4Cでは、成形体12の外周面121がV字セッター8の受け面81a,81bに対してそれぞれ1か所、すなわち受け面81全体としては2か所で当接することになる。このため、焼成治具としてV字セッター8を適用した本実施形態によれば、セッター5を適用した場合と比較して成形体12がV字セッター8に与える荷重が分散され、焼成時における成形体12の割れの発生がさらに低減される。また、成形体12と当接する箇所が2か所になることにより、成形体12が焼成時に収縮しても成形体12の長さ方向は常に谷部83に沿う方向とほぼ平行のまま維持することができるため、得られた焼成体における歪みの発生はさらに低減される。   Here, comparing FIG. 2B and FIG. 4C, in FIG. 2B, the outer peripheral surface 121 of the molded body 12 is in contact with the receiving surface 51 of the setter 5 at one place. On the other hand, in FIG. 4C, the outer peripheral surface 121 of the molded body 12 comes into contact with the receiving surfaces 81a and 81b of the V-shaped setter 8 at one position, that is, at two positions as the entire receiving surface 81. . For this reason, according to the present embodiment in which the V-shaped setter 8 is applied as the firing jig, the load applied by the compact 12 to the V-shaped setter 8 is dispersed as compared with the case where the setter 5 is applied, and the molding during firing is performed. The occurrence of cracks in the body 12 is further reduced. In addition, since the molded body 12 is in contact with the molded body 12 at two locations, the length direction of the molded body 12 is always maintained substantially parallel to the direction along the valley 83 even if the molded body 12 shrinks during firing. Therefore, the occurrence of distortion in the obtained fired body is further reduced.

ここで、V字セッター8は、セッター5と同様に、材質としてはアルミナ、マグネシア、ジルコニア等の耐熱性の高いセラミックスが好ましい。また、V字セッター8のうち、成形体12が当接する箇所に高純度アルミナ製の粉末を付着させてもよい。また、受け面81a,81bのなす角度θ2は、成形体12の外径寸法や質量、さらに焼成温度や焼成時間などに応じて変更することができる。この角度θ2は、好ましくは25°以上80°以下であり、より好ましくは45°以上70°以下である。θ2が25°未満、または80°を超えると、成形体12に径方向の歪みが生じやすくなる。なお、図4A〜図4Cを用いて説明した実施形態では、V字セッター8の厚みは全体にわたりほぼ同じであるとして説明したが、成形体12が当接する受け面81の形状がほぼ同じであれば成形体12が当接しない山部82および谷部83の形状は上記したものに限定されない。   Here, similarly to the setter 5, the V-shaped setter 8 is preferably made of a highly heat-resistant ceramic such as alumina, magnesia, and zirconia. In addition, a powder made of high-purity alumina may be attached to a portion of the V-shaped setter 8 where the molded body 12 contacts. The angle θ2 formed between the receiving surfaces 81a and 81b can be changed according to the outer diameter and mass of the molded body 12, the firing temperature, the firing time, and the like. This angle θ2 is preferably from 25 ° to 80 °, more preferably from 45 ° to 70 °. If θ2 is less than 25 ° or more than 80 °, radial distortion of the molded body 12 is likely to occur. In the embodiment described with reference to FIGS. 4A to 4C, the thickness of the V-shaped setter 8 has been described as being substantially the same throughout, but the shape of the receiving surface 81 with which the molded body 12 abuts is substantially the same. For example, the shapes of the peaks 82 and the valleys 83 where the molded body 12 does not contact are not limited to those described above.

たとえば、図5Aに示すように受け面10a,10bからなる受け面101および受け面10a,10bの交線を含むように形成された谷部103を有するが、山部82に相当する形状を有しないセッター10を、V字セッター8に代わる焼成治具として適用することができる。   For example, as shown in FIG. 5A, it has a receiving surface 101 composed of receiving surfaces 10 a and 10 b and a valley 103 formed to include the intersection of the receiving surfaces 10 a and 10 b, but has a shape corresponding to the peak 82. The setter 10 not used can be applied as a firing jig instead of the V-shaped setter 8.

また、図5Bに示すように受け面11a,11bからなる受け面111を有するが、谷部113が断面弧状のセッター11もまた、V字セッター8に代わる焼成治具として適用することができる。   Further, as shown in FIG. 5B, the setter 11 having the receiving surface 111 composed of the receiving surfaces 11 a and 11 b and having the arc-shaped valley 113 in cross section can also be applied as a firing jig instead of the V-shaped setter 8.

次に、実施形態に係る円筒形ターゲット材2の製造方法について、図6を用いて説明する。図6は、実施形態に係る円筒形ターゲット材2を作製する処理手順の一例を示すフローチャートである。   Next, a method for manufacturing the cylindrical target material 2 according to the embodiment will be described with reference to FIG. FIG. 6 is a flowchart illustrating an example of a processing procedure for manufacturing the cylindrical target material 2 according to the embodiment.

図6に示すように、まず、筒状に成形された成形体12を作製する(ステップS11)。次いで、成形体12の外周面121が長さ方向に沿ってセッター5またはV字セッター8の受け面51または81に支持され、水平面7に対して傾斜する姿勢で成形体12を焼成し、歪みを低減した焼成体を生成する(ステップS12)。   As shown in FIG. 6, first, a molded body 12 formed into a cylindrical shape is manufactured (Step S11). Next, the outer peripheral surface 121 of the molded body 12 is supported by the receiving surface 51 or 81 of the setter 5 or the V-shaped setter 8 along the length direction, and the molded body 12 is baked in a posture inclined with respect to the horizontal plane 7 and deformed. Is generated (Step S12).

続いて、焼成体の外周面および内周面を研削するとともに両端面を切断および/または研削する(ステップS13)。以上の各工程により、所望の寸法を有する円筒形ターゲット材2が作製される。   Subsequently, the outer peripheral surface and the inner peripheral surface of the fired body are ground and both end surfaces are cut and / or ground (step S13). Through the above steps, a cylindrical target material 2 having desired dimensions is manufactured.

[実施例1]
BET(Brunauer−Emmett−Teller)法により測定された比表面積(BET比表面積)が5m/gであるSnO粉末10質量%と、BET比表面積が5m/gのIn粉末90質量%とを配合し、ポット中でジルコニアボールによりボールミル混合して、原料粉末を調製した。なお、上記したBET比表面積は、ユアサアイオニクス(株)製のモノソーブ(商品名)を用い、BET1点法(He/N混合ガス)に従って測定したものである。本実施例においては、測定対象である粉末の量を0.3gとし、予備脱気を大気圧下、105℃で10分間実施した後に測定を行った。
[Example 1]
10 mass% of SnO 2 powder having a specific surface area (BET specific surface area) of 5 m 2 / g measured by the BET (Brunauer-Emmett-Teller) method, and In 2 O 3 powder 90 having a BET specific surface area of 5 m 2 / g % By mass and mixed in a ball mill with zirconia balls in a pot to prepare a raw material powder. The BET specific surface area was measured using Monosorb (trade name) manufactured by Yuasa Ionics Co., Ltd. according to the BET one-point method (He / N 2 mixed gas). In this example, the measurement was performed after the amount of the powder to be measured was 0.3 g and preliminary deaeration was performed at 105 ° C. for 10 minutes under atmospheric pressure.

このポットに、原料粉末100質量%に対して0.3質量%のポリビニルアルコールと、0.2質量%のポリカルボン酸アンモニウムと、0.5質量%のポリエチレングリコールと、50質量%の水とをそれぞれ加え、ボールミル混合してスラリーを調製した。次に、このスラリーをスプレードライ装置に供給し、アトマイザ回転数14,000rpm、入口温度200℃、出口温度80℃の条件でスプレードライを行い、顆粒体を調製した。   In this pot, 0.3% by mass of polyvinyl alcohol, 0.2% by mass of ammonium polycarboxylate, 0.5% by mass of polyethylene glycol, and 50% by mass of water were added to 100% by mass of the raw material powder. Was added, and the mixture was mixed with a ball mill to prepare a slurry. Next, this slurry was supplied to a spray-drying apparatus, and spray-dried under the conditions of an atomizer rotation speed of 14,000 rpm, an inlet temperature of 200 ° C, and an outlet temperature of 80 ° C to prepare granules.

この顆粒体を、外径157mmの円柱状の中子(心棒)を有する内径220mm(肉厚10mm)、長さ630mmの円筒形状のウレタンゴム型にタッピングさせながら充填し、ゴム型を密閉後、800kgf/cm(約78.5MPa)の圧力でCIP(Cold Isostatic Pressing)成形して、略円筒形の成形体12を作製した。この成形体12を600℃で10時間加熱して有機成分を除去した。昇温速度は50℃/hとした。This granule is filled while tapping into a cylindrical urethane rubber mold having an inner diameter of 220 mm (wall thickness: 10 mm) and a length of 630 mm having a cylindrical core (mandrel) having an outer diameter of 157 mm, and after sealing the rubber mold, CIP (Cold Isostatic Pressing) molding was performed under a pressure of 800 kgf / cm 2 (about 78.5 MPa) to produce a substantially cylindrical molded body 12. The molded body 12 was heated at 600 ° C. for 10 hours to remove organic components. The heating rate was 50 ° C./h.

さらに、有機成分を除去した成形体12を焼成して、焼成体を作製した。焼成は、酸素雰囲気中で、成形体12の外周面121が成形体12の長さ方向に沿って受け面81a,81bに支持され、水平面7に対して傾斜する姿勢となるようにアルミナ製のV字セッター8(θ2=60°)を配置させて行った。また、V字セッター8に対して90°の角度となるように、平板状に形成されたアルミナ製の底板6を設け、底板6の上面61に成形体12の底面123を載置させた。なお、受け面81および上面61のうち、成形体12と接触する箇所には予め高純度アルミナ製の粉末を付着させた。水平面7に対する成形体12の傾斜角θ1は75°であった。また、常温からの昇温速度を300℃/hとし、焼成温度1550℃まで加熱し12時間保持するとともに、降温速度は1550℃から800℃までを50℃/h、800℃から常温までを30℃/hとする焼成条件とした。   Further, the molded body 12 from which the organic component was removed was fired to produce a fired body. The firing is performed in an oxygen atmosphere so that the outer peripheral surface 121 of the molded body 12 is supported by the receiving surfaces 81a and 81b along the length direction of the molded body 12 and is inclined with respect to the horizontal plane 7 in an oxygen atmosphere. The test was performed by disposing a V-shaped setter 8 (θ2 = 60 °). Further, a flat bottom plate 6 made of alumina was provided at an angle of 90 ° with respect to the V-shaped setter 8, and the bottom surface 123 of the molded body 12 was placed on the top surface 61 of the bottom plate 6. In addition, high-purity alumina powder was previously adhered to portions of the receiving surface 81 and the upper surface 61 that come into contact with the molded body 12. The inclination angle θ1 of the molded body 12 with respect to the horizontal plane 7 was 75 °. Further, the heating rate from normal temperature is set to 300 ° C./h, and the sintering temperature is heated to 1550 ° C. and held for 12 hours, and the cooling rate is 50 ° C./h from 1550 ° C. to 800 ° C. The firing conditions were set to ° C / h.

[実施例2]
BET比表面積が4m/gのZnO粉末25.9質量%と、BET比表面積が7m/gのIn粉末44.2質量%と、BET比表面積が10m/gのGa粉末29.9質量%とを配合し、ポット中でジルコニアボールによりボールミル混合して、原料粉末を調製した。
[Example 2]
And 25.9 wt% ZnO powder having a BET specific surface area of 4m 2 / g, and In 2 O 3 powder 44.2 wt% of the BET specific surface area of 7m 2 / g, a BET specific surface area of 10m 2 / g Ga 2 O 3 blended powder 29.9 wt%, and mixed in a ball mill with zirconia balls in a pot, to prepare a raw material powder.

このポットに、上記原料粉末100質量%に対し、0.3質量%のポリビニルアルコールと、0.4質量%のポリカルボン酸アンモニウムと、1.0質量%のポリエチレングリコールと、50質量%の水とをそれぞれ加え、ボールミル混合してスラリーを調製した。   In this pot, with respect to 100% by mass of the raw material powder, 0.3% by mass of polyvinyl alcohol, 0.4% by mass of ammonium polycarboxylate, 1.0% by mass of polyethylene glycol, and 50% by mass of water Were added and mixed by a ball mill to prepare a slurry.

次いで、実施例1と同様の方法で顆粒体の調製、成形体12の作製および成形体12からの有機成分の除去を行った。   Next, in the same manner as in Example 1, the preparation of the granules, the production of the molded body 12, and the removal of the organic components from the molded body 12 were performed.

さらに、有機成分を除去した成形体12を焼成して焼成体を作製した。焼成は、酸素雰囲気中で、成形体12の外周面121が成形体12の長さ方向に沿って受け面81a,81bに支持され、水平面7に対して傾斜する姿勢となるようにアルミナ製のV字セッター8(θ2=45°)を配置させて行った。また、V字セッター8に対して90°の角度となるように、平板状に形成されたアルミナ製の底板6を設け、底板6の上面61に成形体12の底面123を載置させた。なお、受け面81および上面61のうち、成形体12と接触する箇所には予め高純度アルミナ製の粉末を付着させた。水平面7に対する成形体12の傾斜角θ1は75°であった。また、常温からの昇温速度を300℃/hとし、焼成温度1400℃まで加熱し10時間保持するとともに、降温速度は1400℃から800℃までを50℃/h、800℃から常温までを30℃/hとする焼成条件とした。   Further, the molded body 12 from which the organic component was removed was fired to produce a fired body. The firing is performed in an oxygen atmosphere so that the outer peripheral surface 121 of the molded body 12 is supported by the receiving surfaces 81a and 81b along the length direction of the molded body 12 and is inclined with respect to the horizontal plane 7 in an oxygen atmosphere. The test was performed by disposing a V-shaped setter 8 (θ2 = 45 °). Further, a flat bottom plate 6 made of alumina was provided at an angle of 90 ° with respect to the V-shaped setter 8, and the bottom surface 123 of the molded body 12 was placed on the top surface 61 of the bottom plate 6. In addition, high-purity alumina powder was previously adhered to portions of the receiving surface 81 and the upper surface 61 that come into contact with the molded body 12. The inclination angle θ1 of the molded body 12 with respect to the horizontal plane 7 was 75 °. The heating rate from normal temperature is 300 ° C./h, the heating temperature is 1400 ° C. and the temperature is maintained for 10 hours, and the cooling rate is 50 ° C./h from 1400 ° C. to 800 ° C. and 30 ° C. from 800 ° C. to normal temperature. The firing conditions were set to ° C / h.

[実施例3]
BET比表面積が4m/gのZnO粉末95質量%と、BET比表面積が5m/gのAl粉末5質量%とを配合し、ポット中でジルコニアボールによりボールミル混合して原料粉末を調製した。
[Example 3]
95 mass% of ZnO powder having a BET specific surface area of 4 m 2 / g and 5 mass% of Al 2 O 3 powder having a BET specific surface area of 5 m 2 / g are mixed with a zirconia ball in a pot and ball milled to obtain a raw material powder. Was prepared.

このポットに、上記原料粉末100質量%に対し、0.3質量%のポリビニルアルコールと、0.4質量%のポリカルボン酸アンモニウムと、1.0質量%のポリエチレングリコールと、50質量%の水とをそれぞれ加え、ボールミル混合してスラリーを調製した。   In this pot, with respect to 100% by mass of the raw material powder, 0.3% by mass of polyvinyl alcohol, 0.4% by mass of ammonium polycarboxylate, 1.0% by mass of polyethylene glycol, and 50% by mass of water Were added and mixed by a ball mill to prepare a slurry.

次いで、実施例1と同様の方法で顆粒体の調製、成形体12の作製および成形体12からの有機成分の除去を行った。   Next, in the same manner as in Example 1, the preparation of the granules, the production of the molded body 12, and the removal of the organic components from the molded body 12 were performed.

さらに、有機成分を除去した成形体12を焼成して焼成体を作製した。焼成は、酸素雰囲気中で、成形体12の外周面121が成形体12の長さ方向に沿って受け面81a,81bに支持され、水平面7に対して傾斜する姿勢となるようにアルミナ製のV字セッター8(θ2=70°)を配置させて行った。また、V字セッター8に対して90°の角度となるように、平板状に形成されたアルミナ製の底板6を設け、底板6の上面61に成形体12の底面123を載置させた。なお、受け面81および上面61のうち、成形体12と接触する箇所には予め高純度アルミナ製の粉末を付着させた。水平面7に対する成形体12の傾斜角θ1は75°であった。また、常温からの昇温速度を300℃/hとし、焼成温度1400℃まで加熱し10時間保持するとともに、降温速度は1400℃から800℃までを50℃/h、800℃から常温までを30℃/hとする焼成条件とした。   Further, the molded body 12 from which the organic component was removed was fired to produce a fired body. The firing is performed in an oxygen atmosphere so that the outer peripheral surface 121 of the molded body 12 is supported by the receiving surfaces 81a and 81b along the length direction of the molded body 12 and is inclined with respect to the horizontal plane 7 in an oxygen atmosphere. The test was performed by disposing a V-shaped setter 8 (θ2 = 70 °). Further, a flat bottom plate 6 made of alumina was provided at an angle of 90 ° with respect to the V-shaped setter 8, and the bottom surface 123 of the molded body 12 was placed on the top surface 61 of the bottom plate 6. In addition, high-purity alumina powder was previously adhered to portions of the receiving surface 81 and the upper surface 61 that come into contact with the molded body 12. The inclination angle θ1 of the molded body 12 with respect to the horizontal plane 7 was 75 °. The heating rate from normal temperature is 300 ° C./h, the heating temperature is 1400 ° C. and the temperature is maintained for 10 hours, and the cooling rate is 50 ° C./h from 1400 ° C. to 800 ° C. and 30 ° C. from 800 ° C. to normal temperature. The firing conditions were set to ° C / h.

[実施例4]
BET比表面積が4m/gのZnO粉末10.7質量%と、BET比表面積が7m/gのIn粉末89.3質量%とを配合し、ポット中でジルコニアボールによりボールミル混合して、原料粉末を調製した。
[Example 4]
10.7% by mass of ZnO powder having a BET specific surface area of 4 m 2 / g and 89.3% by mass of In 2 O 3 powder having a BET specific surface area of 7 m 2 / g were mixed with a ball mill in a pot with zirconia balls. Thus, a raw material powder was prepared.

このポットに、上記原料粉末100質量%に対し、0.3質量%のポリビニルアルコールと、0.4質量%のポリカルボン酸アンモニウムと、1.0質量%のポリエチレングリコールと、50質量%の水とをそれぞれ加え、ボールミル混合してスラリーを調製した。   In this pot, with respect to 100% by mass of the raw material powder, 0.3% by mass of polyvinyl alcohol, 0.4% by mass of ammonium polycarboxylate, 1.0% by mass of polyethylene glycol, and 50% by mass of water Were added and mixed by a ball mill to prepare a slurry.

次いで、実施例1と同様の方法で顆粒体の調製、成形体12の作製および成形体12からの有機成分の除去を行った。   Next, in the same manner as in Example 1, the preparation of the granules, the production of the molded body 12, and the removal of the organic components from the molded body 12 were performed.

さらに、有機成分を除去した成形体12を焼成して焼成体を作製した。焼成は、酸素雰囲気中で、成形体12の外周面121が成形体12の長さ方向に沿って受け面81a,81bに支持され、水平面7に対して傾斜する姿勢となるようにアルミナ製のV字セッター8(θ2=80°)を配置させて行った。また、V字セッター8に対して90°の角度となるように、平板状に形成されたアルミナ製の底板6を設け、底板6の上面61に成形体12の底面123を載置させた。なお、受け面81および上面61のうち、成形体12と接触する箇所には予め高純度アルミナ製の粉末を付着させた。水平面7に対する成形体12の傾斜角θ1は75°であった。また、常温からの昇温速度を300℃/hとし、焼成温度1400℃まで加熱し10時間保持するとともに、降温速度は1400℃から800℃までを50℃/h、800℃から常温までを30℃/hとする焼成条件とした。   Further, the molded body 12 from which the organic component was removed was fired to produce a fired body. The firing is performed in an oxygen atmosphere so that the outer peripheral surface 121 of the molded body 12 is supported by the receiving surfaces 81a and 81b along the length direction of the molded body 12 and is inclined with respect to the horizontal plane 7 in an oxygen atmosphere. The test was performed by disposing a V-shaped setter 8 (θ2 = 80 °). Further, a flat bottom plate 6 made of alumina was provided at an angle of 90 ° with respect to the V-shaped setter 8, and the bottom surface 123 of the molded body 12 was placed on the top surface 61 of the bottom plate 6. In addition, high-purity alumina powder was previously adhered to portions of the receiving surface 81 and the upper surface 61 that come into contact with the molded body 12. The inclination angle θ1 of the molded body 12 with respect to the horizontal plane 7 was 75 °. The heating rate from normal temperature is 300 ° C./h, the heating temperature is 1400 ° C. and the temperature is maintained for 10 hours, and the cooling rate is 50 ° C./h from 1400 ° C. to 800 ° C. and 30 ° C. from 800 ° C. to normal temperature. The firing conditions were set to ° C / h.

[実施例5]
θ1=60°となるようにV字セッター8の配置を変更したことを除き、実施例1と同様にして成形体12を焼成した。
[Example 5]
The molded body 12 was fired in the same manner as in Example 1 except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 60 °.

[実施例6]
θ1=60°となるようにV字セッター8の配置を変更したことを除き、実施例2と同様にして成形体12を焼成した。
[Example 6]
The molded body 12 was fired in the same manner as in Example 2 except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 60 °.

[実施例7]
θ1=60°となるようにV字セッター8の配置を変更したことを除き、実施例3と同様にして成形体12を焼成した。
[Example 7]
The molded body 12 was fired in the same manner as in Example 3 except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 60 °.

[実施例8]
θ1=60°となるようにV字セッター8の配置を変更したことを除き、実施例4と同様にして成形体12を焼成した。
Example 8
The molded body 12 was fired in the same manner as in Example 4 except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 60 °.

[実施例9]
θ1=85°となるようにV字セッター8の配置を変更したことを除き、実施例1と同様にして成形体12を焼成した。
[Example 9]
The molded body 12 was fired in the same manner as in Example 1 except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 85 °.

[実施例10]
θ1=85°となるようにV字セッター8の配置を変更したことを除き、実施例2と同様にして成形体12を焼成した。
[Example 10]
The molded body 12 was fired in the same manner as in Example 2, except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 85 °.

[実施例11]
θ1=85°となるようにV字セッター8の配置を変更したことを除き、実施例3と同様にして成形体12を焼成した。
[Example 11]
The molded body 12 was fired in the same manner as in Example 3 except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 85 °.

[実施例12]
θ1=85°となるようにV字セッター8の配置を変更したことを除き、実施例4と同様にして成形体12を焼成した。
[Example 12]
The molded body 12 was fired in the same manner as in Example 4, except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 85 °.

[実施例13]
平板状の底板6を設けなかったことを除き、実施例1と同様にして成形体12を焼成した。
Example 13
The molded body 12 was fired in the same manner as in Example 1 except that the flat bottom plate 6 was not provided.

[実施例14]
平板状の底板6を設けなかったことを除き、実施例2と同様にして成形体12を焼成した。
[Example 14]
The molded body 12 was fired in the same manner as in Example 2 except that the flat bottom plate 6 was not provided.

[実施例15]
平板状の底板6を設けなかったことを除き、実施例3と同様にして成形体12を焼成した。
[Example 15]
The molded body 12 was fired in the same manner as in Example 3 except that the flat bottom plate 6 was not provided.

[実施例16]
平板状の底板6を設けなかったことを除き、実施例4と同様にして成形体12を焼成した。
[Example 16]
The molded body 12 was fired in the same manner as in Example 4 except that the flat bottom plate 6 was not provided.

[実施例17]
θ1=40°となるようにV字セッター8の配置を変更したことを除き、実施例1と同様にして成形体12を焼成した。
[Example 17]
The molded body 12 was fired in the same manner as in Example 1 except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 40 °.

[実施例18]
θ1=40°となるようにV字セッター8の配置を変更したことを除き、実施例2と同様にして成形体12を焼成した。
[Example 18]
The molded body 12 was fired in the same manner as in Example 2, except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 40 °.

[実施例19]
θ1=40°となるようにV字セッター8の配置を変更したことを除き、実施例3と同様にして成形体12を焼成した。
[Example 19]
The molded body 12 was fired in the same manner as in Example 3 except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 40 °.

[実施例20]
θ1=40°となるようにV字セッター8の配置を変更したことを除き、実施例4と同様にして成形体12を焼成した。
[Example 20]
The molded body 12 was fired in the same manner as in Example 4, except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 40 °.

[実施例21]
実施例1と同様の方法により成形体12の作製および成形体12からの有機成分の除去を行った。さらに、有機成分を除去した成形体12を焼成して焼成体を作製した。焼成は、酸素雰囲気中で、成形体12の外周面121が成形体12の長さ方向に沿って受け面51に支持され、水平面7に対する成形体12の傾斜角θ1が75°となるようにアルミナ製のセッター5を配置させて行った。また、セッター5に対して90°の角度となるように、平板状に形成されたアルミナ製の底板6を設け、底板6の上面61に成形体12の底面123を載置させた。なお、受け面51および上面61のうち、成形体12と接触する箇所には予め高純度アルミナ製の粉末を付着させた。焼成条件は実施例1と同様にした。
[Example 21]
Production of the molded body 12 and removal of the organic component from the molded body 12 were performed in the same manner as in Example 1. Further, the molded body 12 from which the organic component was removed was fired to produce a fired body. The firing is performed in an oxygen atmosphere such that the outer peripheral surface 121 of the molded body 12 is supported on the receiving surface 51 along the length direction of the molded body 12 and the inclination angle θ1 of the molded body 12 with respect to the horizontal plane 7 is 75 °. The test was performed by disposing a setter 5 made of alumina. Further, a flat bottom plate 6 made of alumina was provided at an angle of 90 ° with respect to the setter 5, and the bottom surface 123 of the molded body 12 was placed on the top surface 61 of the bottom plate 6. In addition, high-purity alumina powder was previously adhered to portions of the receiving surface 51 and the upper surface 61 that are in contact with the molded body 12. The firing conditions were the same as in Example 1.

[実施例22]
実施例2と同様の方法により成形体12の作製および成形体12からの有機成分の除去を行った。さらに、有機成分を除去した成形体12を焼成して焼成体を作製した。焼成は、酸素雰囲気中で、成形体12の外周面121が成形体12の長さ方向に沿って受け面51に支持され、水平面7に対する成形体12の傾斜角θ1が75°となるようにアルミナ製のセッター5を配置させて行った。また、セッター5に対して90°の角度となるように、平板状に形成されたアルミナ製の底板6を設け、底板6の上面61に成形体12の底面123を載置させた。なお、受け面51および上面61のうち、成形体12と接触する箇所には予め高純度アルミナ製の粉末を付着させた。焼成条件は実施例2と同様にした。
[Example 22]
Production of the molded body 12 and removal of the organic components from the molded body 12 were performed in the same manner as in Example 2. Further, the molded body 12 from which the organic component was removed was fired to produce a fired body. The firing is performed in an oxygen atmosphere such that the outer peripheral surface 121 of the molded body 12 is supported on the receiving surface 51 along the length direction of the molded body 12 and the inclination angle θ1 of the molded body 12 with respect to the horizontal plane 7 is 75 °. The test was performed by disposing a setter 5 made of alumina. Further, a flat bottom plate 6 made of alumina was provided at an angle of 90 ° with respect to the setter 5, and the bottom surface 123 of the molded body 12 was placed on the top surface 61 of the bottom plate 6. In addition, high-purity alumina powder was previously adhered to portions of the receiving surface 51 and the upper surface 61 that are in contact with the molded body 12. The firing conditions were the same as in Example 2.

[実施例23]
実施例3と同様の方法により成形体12の作製および成形体12からの有機成分の除去を行った。さらに、有機成分を除去した成形体12を焼成して焼成体を作製した。焼成は、酸素雰囲気中で、成形体12の外周面121が成形体12の長さ方向に沿って受け面51に支持され、水平面7に対する成形体12の傾斜角θ1が75°となるようにアルミナ製のセッター5を配置させて行った。また、セッター5に対して90°の角度となるように、平板状に形成されたアルミナ製の底板6を設け、底板6の上面61に成形体12の底面123を載置させた。なお、受け面51および上面61のうち、成形体12と接触する箇所には予め高純度アルミナ製の粉末を付着させた。焼成条件は実施例3と同様にした。
[Example 23]
Production of the molded body 12 and removal of organic components from the molded body 12 were performed in the same manner as in Example 3. Further, the molded body 12 from which the organic component was removed was fired to produce a fired body. The firing is performed in an oxygen atmosphere such that the outer peripheral surface 121 of the molded body 12 is supported on the receiving surface 51 along the length direction of the molded body 12 and the inclination angle θ1 of the molded body 12 with respect to the horizontal plane 7 is 75 °. The test was performed by disposing a setter 5 made of alumina. Further, a flat bottom plate 6 made of alumina was provided at an angle of 90 ° with respect to the setter 5, and the bottom surface 123 of the molded body 12 was placed on the top surface 61 of the bottom plate 6. In addition, high-purity alumina powder was previously adhered to portions of the receiving surface 51 and the upper surface 61 that are in contact with the molded body 12. The firing conditions were the same as in Example 3.

[実施例24]
実施例4と同様の方法により成形体12の作製および成形体12からの有機成分の除去を行った。さらに、有機成分を除去した成形体12を焼成して焼成体を作製した。焼成は、酸素雰囲気中で、成形体12の外周面121が成形体12の長さ方向に沿って受け面51に支持され、水平面7に対する成形体12の傾斜角θ1が75°となるようにアルミナ製のセッター5を配置させて行った。また、セッター5に対して90°の角度となるように、平板状に形成されたアルミナ製の底板6を設け、底板6の上面61に成形体12の底面123を載置させた。なお、受け面51および上面61のうち、成形体12と接触する箇所には予め高純度アルミナ製の粉末を付着させた。焼成条件は実施例4と同様にした。
[Example 24]
Production of the molded body 12 and removal of the organic component from the molded body 12 were performed in the same manner as in Example 4. Further, the molded body 12 from which the organic component was removed was fired to produce a fired body. The firing is performed in an oxygen atmosphere such that the outer peripheral surface 121 of the molded body 12 is supported on the receiving surface 51 along the length direction of the molded body 12 and the inclination angle θ1 of the molded body 12 with respect to the horizontal plane 7 is 75 °. The test was performed by disposing a setter 5 made of alumina. Further, a flat bottom plate 6 made of alumina was provided at an angle of 90 ° with respect to the setter 5, and the bottom surface 123 of the molded body 12 was placed on the top surface 61 of the bottom plate 6. In addition, high-purity alumina powder was previously adhered to portions of the receiving surface 51 and the upper surface 61 that are in contact with the molded body 12. The firing conditions were the same as in Example 4.

[比較例1]
V字セッター8を使用せず、θ1=90°となるように成形体12を立てて焼成したことを除き、実施例1と同様に行い、焼成体を作製した。
[Comparative Example 1]
A fired body was produced in the same manner as in Example 1 except that the formed body 12 was erected and fired so that θ1 = 90 ° without using the V-shaped setter 8.

[比較例2]
V字セッター8を使用せず、θ1=90°となるように成形体12を立てて焼成したことを除き、実施例2と同様に行い、焼成体を作製した。
[Comparative Example 2]
A fired body was produced in the same manner as in Example 2 except that the molded body 12 was erected and fired so that θ1 = 90 ° without using the V-shaped setter 8.

[比較例3]
V字セッター8を使用せず、θ1=90°となるように成形体12を立てて焼成したことを除き、実施例3と同様に行い、焼成体を作製した。
[Comparative Example 3]
A fired body was produced in the same manner as in Example 3, except that the formed body 12 was erected and fired so that θ1 = 90 ° without using the V-shaped setter 8.

[比較例4]
V字セッター8を使用せず、θ1=90°となるように成形体12を立てて焼成したことを除き、実施例4と同様に行い、焼成体を作製した。
[Comparative Example 4]
A fired body was produced in the same manner as in Example 4 except that the molded body 12 was erected and fired so that θ1 = 90 ° without using the V-shaped setter 8.

[比較例5]
θ1=0°となるようにV字セッター8の配置を変更したことを除き、実施例1と同様に行い、焼成体を作製した。
[Comparative Example 5]
A fired body was produced in the same manner as in Example 1, except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 0 °.

[比較例6]
θ1=0°となるようにV字セッター8の配置を変更したことを除き、実施例2と同様に行い、焼成体を作製した。
[Comparative Example 6]
A fired body was produced in the same manner as in Example 2, except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 0 °.

[比較例7]
θ1=0°となるようにV字セッター8の配置を変更したことを除き、実施例3と同様に行い、焼成体を作製した。
[Comparative Example 7]
A fired body was produced in the same manner as in Example 3, except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 0 °.

[比較例8]
θ1=0°となるようにV字セッター8の配置を変更したことを除き、実施例4と同様に行い、焼成体を作製した。
[Comparative Example 8]
A fired body was produced in the same manner as in Example 4, except that the arrangement of the V-shaped setter 8 was changed so that θ1 = 0 °.

各実施例および比較例において、同様にして作製した合計10本の焼成体について、歪みの評価を行った。具体的には、焼成体の外周面に、焼成体の長さ方向に沿うようにストレートエッジを当てて、焼成体の外周面とストレートエッジの隙間を測定した値のうち、一番大きい値を焼成体の長さ方向における歪みとした。また、焼成体の両端面の内径をそれぞれ円周方向に対して等間隔に8か所、ノギスを用いて測定し、各端面で測定された内径の最大値と最小値との差を求めた。焼成体の両端面で求めた内径の最大値と最小値との差のうち、大きい方の値を内径歪みと規定し、焼成体の径方向の歪みの指標とした。   In each of the examples and comparative examples, distortion was evaluated for a total of 10 fired bodies produced similarly. Specifically, a straight edge is applied to the outer peripheral surface of the fired body along the length direction of the fired body, and the largest value among the measured values of the gap between the outer peripheral surface of the fired body and the straight edge is defined as the largest value. The strain was set in the length direction of the fired body. In addition, the inner diameters of both end surfaces of the fired body were measured at eight positions at equal intervals in the circumferential direction using calipers, and the difference between the maximum value and the minimum value of the inner diameter measured at each end surface was determined. . Of the differences between the maximum value and the minimum value of the inner diameter obtained at both end surfaces of the fired body, the larger value was defined as the inner diameter strain, and was used as an index of the radial distortion of the fired body.

また、各実施例および比較例において作製した合計10本の焼成体を仕上加工し、外径153mm、内径135mm、長さ500mmの円筒形ターゲット材2を製造した。得られた焼成体の相対密度の平均値、および得られた焼成体から円筒形ターゲット材2を製造することができた本数(加工可能本数)について、歪みの評価とともに表1に示す。なお、表1に示す歪みの評価は、作製した10本の焼成体においてそれぞれ測定した値のうち、最大となる値を代表値としたものである。   In addition, a total of 10 fired bodies produced in each of the examples and comparative examples were finish-processed to produce a cylindrical target material 2 having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 500 mm. Table 1 shows the average value of the relative densities of the obtained fired bodies, and the number of the cylindrical target materials 2 that could be manufactured from the obtained fired bodies (the number of workable pieces), together with the evaluation of distortion, in Table 1. The evaluation of distortion shown in Table 1 is based on the maximum value as a representative value among the values measured for each of the ten fired bodies manufactured.

Figure 0006678157
Figure 0006678157

さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。   Further effects and modifications can be easily derived by those skilled in the art. For this reason, the broader aspects of the present invention are not limited to the specific details and representative embodiments shown and described above. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and equivalents thereof.

1 円筒形スパッタリングターゲット(円筒形ターゲット)
2 円筒形ターゲット材
3 バッキングチューブ
4 接合材
5,10,11 セッター
6 底板
7 水平面
8 V字セッター
12 成形体
51,81,101,111 受け面
1 Cylindrical sputtering target (cylindrical target)
2 cylindrical target material 3 backing tube 4 bonding material 5, 10, 11 setter 6 bottom plate 7 horizontal plane 8 V-shaped setter 12 molded body 51, 81, 101, 111 receiving surface

Claims (9)

筒状に成形されたセラミックス製の成形体を作製する成形工程と、
前記成形体の外周面が長さ方向に沿ってセッターの受け面に支持され、水平面に対して傾斜する姿勢で前記成形体を焼成する焼成工程と、を含む、円筒形ターゲット材の製造方法。
A molding step for producing a ceramic molded body molded into a cylindrical shape,
A firing step of firing the molded body in a posture in which an outer peripheral surface of the molded body is supported on a receiving surface of the setter along a length direction and is inclined with respect to a horizontal plane.
前記水平面に対する前記成形体の傾斜角が30°以上85°以下である、請求項1に記載の円筒形ターゲット材の製造方法。   The method for producing a cylindrical target material according to claim 1, wherein an inclination angle of the molded body with respect to the horizontal plane is 30 ° or more and 85 ° or less. 前記セッターが平板状セッターである、請求項1または2に記載の円筒形ターゲット材の製造方法。   The method for producing a cylindrical target material according to claim 1, wherein the setter is a flat plate setter. 前記セッターがV字セッターである、請求項1または2に記載の円筒形ターゲット材の製造方法。   3. The method for manufacturing a cylindrical target material according to claim 1, wherein the setter is a V-shaped setter. 前記焼成工程では、
前記成形体の端面を載置させる底板を配置して前記成形体を焼成する、請求項1〜4のいずれか1つに記載の円筒形ターゲット材の製造方法。
In the firing step,
The method for producing a cylindrical target material according to any one of claims 1 to 4, wherein a bottom plate on which an end surface of the molded body is placed is disposed and the molded body is fired.
前記焼成工程では、
前記底板の上に共素地を配置して焼成する、請求項5に記載の円筒形ターゲット材の製造方法。
In the firing step,
The method for producing a cylindrical target material according to claim 5, wherein a co-base is disposed on the bottom plate and fired.
前記V字セッターの材質は、アルミナ、マグネシアおよびジルコニアのうちいずれかであり、
前記V字セッターの前記受け面は、25°以上80°以下の角度で向かい合う、請求項4に記載の円筒形ターゲット材の製造方法。
The material of the V-shaped setter is any one of alumina, magnesia and zirconia,
The method for manufacturing a cylindrical target material according to claim 4, wherein the receiving surfaces of the V-shaped setter face each other at an angle of 25 ° or more and 80 ° or less.
前記成形体が、In、Zn、Al、Ga、Zr、Ti、Sn、MgおよびSiのうち1種以上を含有する酸化物であり、
請求項1〜7のいずれか1つに記載の円筒形ターゲット材の製造方法により円筒形ターゲット材を製造する工程
を含む、円筒形スパッタリングターゲットの製造方法
The molded body is an oxide containing at least one of In, Zn, Al, Ga, Zr, Ti, Sn, Mg, and Si,
Any one in comprising the step of producing by Lien cylindrical target materials to the manufacturing method of the cylindrical target material, wherein the cylindrical sputtering target producing process of claims 1-7.
前記円筒形ターゲット材の長さが500mm以上である、請求項8に記載の円筒形スパッタリングターゲットの製造方法The method for manufacturing a cylindrical sputtering target according to claim 8, wherein the length of the cylindrical target material is 500 mm or more.
JP2017501866A 2015-02-25 2015-12-09 Method for manufacturing cylindrical target material and method for manufacturing cylindrical sputtering target Active JP6678157B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015035839 2015-02-25
JP2015035839 2015-02-25
PCT/JP2015/084567 WO2016136088A1 (en) 2015-02-25 2015-12-09 Cylindrical target material manufacturing method, cylindrical sputtering target, and baking jig

Publications (2)

Publication Number Publication Date
JPWO2016136088A1 JPWO2016136088A1 (en) 2017-12-07
JP6678157B2 true JP6678157B2 (en) 2020-04-08

Family

ID=56789359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017501866A Active JP6678157B2 (en) 2015-02-25 2015-12-09 Method for manufacturing cylindrical target material and method for manufacturing cylindrical sputtering target

Country Status (4)

Country Link
JP (1) JP6678157B2 (en)
CN (1) CN107109631A (en)
TW (1) TWI723974B (en)
WO (1) WO2016136088A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114729442A (en) * 2019-11-29 2022-07-08 三井金属矿业株式会社 Method for producing cylindrical sputtering target and firing jig used in the production method
CN113277835B (en) * 2020-02-20 2022-10-11 广州市尤特新材料有限公司 Positioning tool and sintering method of planar target

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575519Y2 (en) * 1976-12-25 1982-02-02
JPS59107953A (en) * 1982-12-08 1984-06-22 東洋ゴム工業株式会社 Method of baking porous ceramic sylindrical body
JPH03103363A (en) * 1989-09-14 1991-04-30 Showa Denko Kk Method for sintering ceramic compact and sintering jig
JP2828750B2 (en) * 1990-08-21 1998-11-25 日本碍子株式会社 Method for firing filter medium for molten metal and firing jig used therefor
JPH10114567A (en) * 1996-10-04 1998-05-06 Ngk Insulators Ltd Supporting base for firing
JP2000086358A (en) * 1998-06-04 2000-03-28 Ngk Spark Plug Co Ltd Production of bottomed cylindrical sintered ceramic material
JP3692907B2 (en) * 2000-06-06 2005-09-07 高浜工業株式会社 Method and apparatus for reversing support plate of firing jig
JP2004250241A (en) * 2003-02-18 2004-09-09 Nec Tokin Corp Setter for firing and method for firing
JP4961672B2 (en) * 2004-03-05 2012-06-27 東ソー株式会社 Cylindrical sputtering target, ceramic sintered body, and manufacturing method thereof
TWI390062B (en) * 2004-03-05 2013-03-21 Tosoh Corp Cylindrical sputtering target, ceramic sintered body, and process for producing sintered body
JP5482020B2 (en) * 2008-09-25 2014-04-23 東ソー株式会社 Cylindrical sputtering target and manufacturing method thereof
JP5750060B2 (en) * 2012-01-18 2015-07-15 三井金属鉱業株式会社 Ceramic cylindrical sputtering target material and manufacturing method thereof

Also Published As

Publication number Publication date
TWI723974B (en) 2021-04-11
JPWO2016136088A1 (en) 2017-12-07
CN107109631A (en) 2017-08-29
TW201702411A (en) 2017-01-16
WO2016136088A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP5750060B2 (en) Ceramic cylindrical sputtering target material and manufacturing method thereof
JP6125689B1 (en) Indium oxide-zinc oxide (IZO) sputtering target
KR101583693B1 (en) Ito sputtering target material and method for producing same
JP6412439B2 (en) Method for manufacturing ceramic target material and method for manufacturing cylindrical sputtering target
JP6678157B2 (en) Method for manufacturing cylindrical target material and method for manufacturing cylindrical sputtering target
KR20210152429A (en) Cylindrical sputtering target, cylindrical compact, manufacturing method of cylindrical sputtering target, manufacturing method of cylindrical sintered compact and manufacturing method of cylindrical compact
JP6496681B2 (en) Target material for cylindrical sputtering target and cylindrical sputtering target
JP5887391B1 (en) Method for producing target material for sputtering target and claw member
TWI491580B (en) Tablet for vapor depositing and method for producing the same
JP6977395B2 (en) Manufacturing method of cesium tungsten oxide sintered body, cesium tungsten oxide sintered body and oxide target
JP5784849B2 (en) Ceramic cylindrical sputtering target material and manufacturing method thereof
JP2014125422A (en) Oxide sintered body, oxide sintered body sputtering target and its manufacturing method
JP6875890B2 (en) Manufacturing method of cylindrical oxide sintered body and floor plate
JP6343695B2 (en) Indium oxide-zinc oxide (IZO) sputtering target and method for producing the same
WO2016140021A1 (en) Hollow cylindrical ceramic target material, and hollow cylindrical sputtering target
JP2003055759A (en) METHOD FOR MANUFACTURING Mg-CONTAINING ITO SPUTTERING TARGET
JP5947413B1 (en) Sputtering target and manufacturing method thereof
JP5809542B2 (en) Sputtering target material and manufacturing method thereof
JP2016014191A (en) Ceramic cylindrical type sputtering target material, and method of manufacturing the same
JP2020142951A (en) Heat treatment setter composed of ceramic sintered body with irregularities processed surface
JP4483470B2 (en) Method for producing sputtering target containing indium oxide
KR20220110478A (en) Manufacturing method of cylindrical sputtering target and firing jig used for the manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6678157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250