WO2013108321A1 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
WO2013108321A1
WO2013108321A1 PCT/JP2012/007311 JP2012007311W WO2013108321A1 WO 2013108321 A1 WO2013108321 A1 WO 2013108321A1 JP 2012007311 W JP2012007311 W JP 2012007311W WO 2013108321 A1 WO2013108321 A1 WO 2013108321A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
coil
power supply
unit
supply system
Prior art date
Application number
PCT/JP2012/007311
Other languages
French (fr)
Japanese (ja)
Inventor
小林 直樹
博 鳥屋尾
塚越 常雄
福田 浩司
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013108321A1 publication Critical patent/WO2013108321A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Definitions

  • the present invention relates to a power supply system, and more specifically, to a system that supplies power to a power receiving device without contact with a power transmission line.
  • the present invention relates to a power supply system that can selectively and efficiently supply power to a position of a desired power receiving apparatus in a state where the power transmitting apparatus and the power receiving apparatus are separated by a medium distance that is equal to or less than the wavelength of a transmission power wave.
  • Japanese Patent Laid-Open No. 2008-66841 discloses a configuration in which an electromagnetic wave propagates in an electromagnetic wave transmission sheet and an electromagnetic field leaking from the sheet is supplied to a power receiving device (in addition, Japanese Patent Laid-Open No. 2007-281678). Issue gazette).
  • Japanese Patent Application Laid-Open No. 2008-259392 discloses a power transmission method using a microwave beam. For example, solar power generation is performed on a sanitary orbit, and the energy is transmitted to the ground with a microwave beam. Then, the microwave is reconverted into electric power by the ground power receiving system.
  • Kawahara is arranged in an area with some extent as shown in Fig. 27. Power is supplied to a plurality of electronic devices.
  • the electronic device here includes, for example, a power transmission sheet, and the power transmission sheet can be used to supply power to a small electronic device.
  • a plurality of coils are arranged in a plane on the wall and floor of the room. And it utilizes that the coils which adjoin in the direction orthogonal to a central axis also resonate. In other words, if power is supplied to one of the coils, the electric power hops to the adjacent coil. Electric power is propagated to adjacent coils, and electromagnetic fields are leaked from the coils into the room. Then, power can be supplied to a plurality of electronic devices arranged in a large area called a room. Thereby, it can be expected that operations such as wiring of the power supply line, charging, battery replacement and the like are unnecessary.
  • JP 2008-66841 A JP 2007-281678 Japanese Patent Laid-Open No. 7-322534 US7825543B2 JP 2008-259392 A
  • an object of the present invention is to provide a power supply system capable of selectively and efficiently supplying power to a desired power receiving device position in wireless power feeding.
  • the power supply system of the present invention includes: A plurality of resonators are arranged in a one-dimensional or two-dimensional periodic structure, and power is propagated to the next resonator by resonance action, and electromagnetic fields are leaked to the surrounding area to transmit power wirelessly.
  • a power transmission unit that performs A power supply unit that supplies power to one or a plurality of the resonators of the power transmission unit, The power transmission unit generates a standing wave of electromagnetic propagation whose amplitude gradually attenuates while oscillating with the resonance body located at a position facing the power receiving device to be fed as the center moves away from the center. To do.
  • FIG. 5 is an equivalent circuit diagram of the circuit of FIG.
  • FIG. 6 is an equivalent circuit diagram of a circuit in which a plurality of coils are arranged at a constant pitch.
  • the equivalent circuit diagram of one unit of a periodic structure The figure which shows an example which arranged nine coils. The figure which shows the state which all the coils are vibrating with the same phase. The figure which shows the state which all the coils are vibrating with the reverse phase. The figure which shows a dispersion
  • FIG. 10 is a diagram showing the relationship between the frequency and the vibration state of each coil in the fourth embodiment.
  • FIG. 20 is a diagram showing another example of a vibration pattern in the fifth embodiment.
  • FIG. 20 is a diagram showing another example of a vibration pattern in the fifth embodiment.
  • FIGS. 1A and 1B An example of a power feeding system 100 that the present invention desires to realize is shown in FIGS. 1A and 1B.
  • the power receiving device 120 is separated from the power transmission unit 110 by a certain distance.
  • the separation distance is about several centimeters to several meters. That is, this separation distance is not such a close distance that magnetic coupling can be established between the primary coil and the secondary coil that are closely opposed to each other.
  • the distance is not about a wavelength of an electromagnetic wave that allows the directional antenna to exhibit directivity, or a far away distance.
  • the separation distance assumed by the present invention is a distance shorter than the wavelength of the electromagnetic wave.
  • the power transmission unit 110 includes a plurality of resonators 111, and the plurality of resonators 111 are arranged two-dimensionally (planarly).
  • a conductor coil is typical.
  • the resonator is a spiral coil 112.
  • the resonator 111 may be, for example, a dielectric resonator other than a conductor coil.
  • the type of the dielectric resonator is not limited, and various shapes such as a rectangular shape and a cylindrical shape can be adopted.
  • the power transmission unit 110 may be, for example, a room wall or a floor itself. That is, as an example, a plurality of resonators 111 (coils 112) are embedded in one surface of a floor or wall of a room and used as the power transmission unit 110.
  • the power feeding unit 130 supplies power to one or more resonators 111.
  • the resonator 111 is the coil 112
  • an alternating current may be passed through the coil 112.
  • an oscillating magnetic field may be applied to the coil 112.
  • the electromagnetic field distribution of the leaked electromagnetic wave forms a peak only at a desired position of the power receiving device 120 and the intensity becomes weak at other places.
  • FIG. 1A it is assumed that there are three power receiving apparatuses 120 to which power is supplied. In this case, it is desired that the electromagnetic field intensity peaks at the three power receiving devices 120 and the intensity decreases at other places. Or, in some cases, it is desirable to supply power to only one of the three power receiving devices 120, for example. For example, when it is desired to supply power only to the middle power receiving apparatus 120 as shown in FIG. 1B, the electric field is concentrated only on this one power receiving apparatus, and the electric field strength is weakened at other places.
  • electromagnetic propagation wave As a result, for example, when a coil as a resonator is arranged as shown in FIG. 2, it is possible to determine what mode wave is generated by electromagnetic field hopping.
  • this wave is referred to as “electromagnetic propagation wave”. That is, the present inventors expressed the relationship between the frequency (f) and the wave number (k) of the electromagnetic propagation wave that can occur in the periodic structure of the coil as a dispersion curve as shown in FIG. d represents one cycle length of the periodic structure, and is, for example, a center-to-center distance between adjacent coils. Therefore, “wave number (k) ⁇ one cycle length (d)” on the horizontal axis of the graph of FIG. 3 means a phase change per cycle length.
  • the dispersion curve in FIG. 3 shows that at a frequency f between f max and f min , the coil periodic structure can be treated as an electromagnetic wave propagation region, that is, a transmission line when this structure is regarded as a metamaterial. .
  • the inventors have come up with a configuration in which an arbitrary electric field distribution is generated in the periodic structure (transmission line).
  • Theory for obtaining the dispersion curve of electromagnetic wave propagation A method of obtaining a dispersion curve of electromagnetic propagation waves generated there by treating a resonator periodic structure in which resonators are periodically arranged as a metamaterial will be described.
  • a spring type coil is taken as an example of the resonator.
  • the resonance frequency fres, inductance L, capacitance C, and resistance R of a single coil are obtained, and further, the coupling constant M when two coils are arranged adjacent to each other is obtained.
  • the characteristics of a single coil can be calculated from the frequency dependence of impedance Z by providing an input port 113 in the coil 112 as shown in FIG. That is, the circuit in FIG. 4 is replaced with the equivalent circuit in FIG. 5 in which the capacitance component and the resistance component are extracted. Then, the frequency dependence of Re (Z) and Im (Z) is obtained by electromagnetic field analysis or actual measurement.
  • the resonance frequency f res is obtained from the point where Im (Z). Using two points in the vicinity of the resonance frequency f res, the inductance L and the capacitance C are obtained by the following equations. Two points in the vicinity of the resonance frequency f res are defined as (f 1 , Im (Z 1 )) and (f 2 , Im (Z 2 )).
  • the splitting of the resonance frequency is confirmed using a model in which two coils 112 and 112 are arranged.
  • power is supplied to one coil 112 from the input port 113, and the power is hopped to the other coil 112, and the power of the other coil 112 is obtained from the output port 114.
  • the splitting can be performed by changing the internal resistance of the input / output ports 113 and 114.
  • the resonance frequency f res is split into a frequency f a and a frequency f b .
  • the coupling constant k can be calculated from the two divided frequencies f a and f b by the following equation.
  • the mutual inductance M is obtained from the coupling constant k and the inductance L by the following relational expression.
  • FIG. 7 when a plurality of coils 112 are arranged horizontally at a constant pitch, an equivalent circuit thereof can be drawn as shown in FIG.
  • one coil 112 is depicted as being divided into two coil components 112h and 112h. Therefore, the inductance of one coil component 112h is L / 2. In this case, the resistance R is ignored.
  • one unit (one unit) of this periodic structure can be redrawn in the equivalent circuit of FIG.
  • one unit (one unit) of the periodic structure can be expressed by the T matrix as follows.
  • d be the periodic interval (distance between the centers of the coils) of this periodic structure.
  • the periodic structure is a metamaterial
  • the wave number in the traveling direction of the electromagnetic propagation wave traveling through the metamaterial is k x .
  • k x ⁇ d represents the phase of the wave for each period, and the following equation is established.
  • the frequency band (f min ⁇ f ⁇ f max ) of the wave (electromagnetic field) generated in the metamaterial is obtained. That is, the dispersion curve of FIG. 3 can be drawn in the frequency band (f min ⁇ f ⁇ f max ).
  • the dispersion curve when the coil periodic structure is a metamaterial has been obtained.
  • the electromagnetic field is transmitted by hopping, and the coil periodic structure becomes a transmission line for electromagnetic propagation waves.
  • the transmission line loss is small, the electromagnetic field distribution on the transmission line is a so-called standing wave distribution.
  • a coil periodic structure can be used as a transmission line, and a standing wave can be generated in the transmission line. Furthermore, if a wave that satisfies the resonance condition of the coil periodic structure is generated, the number of antinodes of the standing wave (electromagnetic propagation wave) can be controlled.
  • the number of coils is n
  • the coil interval is d
  • FIG. 9 shows a case where nine coils are arranged in a line at a constant pitch and the middle coil is fed.
  • the middle fifth coil is a coil that receives power from the power feeding section.
  • the number of bellies is 9 (the number of nodes is 8).
  • the coil periodic structure is used as the power transmission unit 110, and the number of beams (locations where the electromagnetic field strength is increased) can be controlled at a position at a short distance from the power transmission unit 110.
  • the number of bellies there are two ways to control the number of bellies.
  • One is a variable frequency system. For example, a pair of a phase and a frequency where a standing wave exists is obtained from the dispersion curve of FIG. 12A, and a frequency at which the antinode is a desired number as shown in FIG.
  • the other is a variable impedance system. That is, the frequency is fixed, the impedance of the coil (resonator) is made variable, and the dispersion curve is shifted as shown in FIG.
  • FIG. 14 shows a power supply system using a variable frequency system.
  • the power supply system 200 includes a power transmission unit 210, a power feeding unit 220, and a power receiving device 280.
  • the power transmission unit 210 is configured by a coil as a resonator, and a plurality of coils 211 are arranged so as to form a periodic structure.
  • the power transmission unit 210 may be configured by a one-dimensional array of coils, but it goes without saying that the coils may be arranged in a plane to form a two-dimensional periodic structure, which may be used as a power transmission unit.
  • the power feeding unit 220 includes a power source 221, a power application unit 222, a frequency control unit 223, and an adjustment unit 224.
  • the power application unit 222 can selectively apply power to one or a plurality of coils 211 of the power transmission unit 210.
  • an input port (not shown) may be provided in the winding of the coil 211, and current may be supplied from the input port (not shown).
  • a switch (not shown) is provided in the wiring for wiring from the power application unit 222 toward each coil 211 and for selecting a coil for supplying power (current).
  • an alternating magnetic field may be applied to the center of the coil by magnetic coupling.
  • the frequency control unit 223 controls the frequency of the current or magnetic field applied to the coil by, for example, switching.
  • Adjustment means 224 is attached to the frequency control unit 223 so that the user can manually adjust the frequency.
  • the adjusting means 224 may be a user interface having input items that allow the user to directly operate the frequency value. Alternatively, the user may select the power receiving device 280 that is desired to be supplied with power.
  • the adjusting unit 224 automatically calculates the frequency of the power to be applied based on the number and position of the selected power receiving devices 280, and outputs the calculated frequency value to the frequency control unit 223. Also good.
  • electric power is applied to the coil 211 at a frequency adjusted so that a number of standing waves corresponding to the number and position of the power receiving devices 280 can be generated. That is, the frequency of the supplied power is controlled by frequency control by the frequency control unit 223.
  • the coil to which power is applied is appropriately selected according to the shape of the standing wave. Again, the frequency is selected from the range of frequencies where the power transmission unit 210 can be handled as a metamaterial, that is, between f max and f min, and further adjusted to a phase X that satisfies the resonance state Is done.
  • an antinode of electromagnetic propagation waves can be made according to the desired position of the power receiving device 280, and the electromagnetic field leaking in other places becomes weak.
  • power can be efficiently supplied to the power receiving device 280.
  • FIG. 15 shows a power supply system using a variable impedance system.
  • the power supply system 300 includes a power transmission unit 310, an impedance control unit 330, a power feeding unit 320, and a power receiving device 280.
  • the power transmission unit 310 includes a coil 311 as a resonator, and a plurality of coils 311 are arranged so as to form a periodic structure.
  • a variable impedance 312 is added to the coil 311.
  • the impedance control unit 330 controls the impedance value of the variable impedance 312 of the coil 311. Specifically, the imaginary impedance part, that is, the reactance value is controlled.
  • the impedance control unit 330 may be configured to individually control the impedance value of each coil, but here, the impedance values of the variable impedances 312 of all the coils 311 are the same at the same time so as to shift the dispersion curve. It shall be changed as follows.
  • Adjustment means 331 is attached to the impedance control unit 330 so that the user can manually control the impedance of the coil 311.
  • the adjusting means 331 may be a user interface having input items that allow the user to directly operate the impedance value.
  • the user may select the power receiving device 280 that is desired to be supplied with power. Then, the adjusting unit 331 may obtain the impedance value of the coil based on the number and position of the selected power receiving devices 280, and output the calculated impedance value to the impedance control unit 330.
  • the power feeding unit 320 includes a power source 321, a power application unit 322, and a frequency control unit 323.
  • the configuration of the power application unit 322 is the same as that of the first embodiment.
  • the frequency control unit 323 is provided to fix the frequency to a predetermined value between f max and f min so that the power transmission unit 310 can be handled as a metamaterial.
  • FIG. 16 shows a power supply system using a variable impedance system.
  • the basic configuration of the third embodiment is the same as that of the second embodiment, but differs from the second embodiment in that the impedance of the coil 411 is changed by controlling the core (coil core) 412. .
  • the winding of the coil 412 is disposed so as to surround the core (coil core) 412.
  • the impedance control unit 430 moves the coil core 412 relative to the coil 411. This changes the magnetic flux or electrical flux through the coil 411, thereby changing the impedance of the coil 411.
  • the configuration of the power feeding unit 320 is the same as that of the second embodiment, and power having a frequency fixed at a predetermined value between f max and f min is applied to the selected coil 411.
  • the electromagnetic propagation wave generated in the power transmission unit is made to be a standing wave, and desired power reception is performed by controlling the number of antinodes of the standing wave. Efficient power can be supplied only to the device.
  • the inventors of the present invention have developed the idea through intensive research, and have searched for a method for concentrating the beam more efficiently on a desired power receiving apparatus.
  • a plane wave source near-field focusing plate
  • an observation plane focal plane
  • Electromagnetic propagation occurs from a plane wave source having such an electric field distribution.
  • a plane wave source is referred to as a near-field focusing wave source.
  • a specific observation plane focal plane
  • an electric field distribution that is remarkably large only near the center as shown in FIG. 19 and rapidly attenuates in other regions is obtained.
  • the observed electric field distribution is expressed as follows.
  • the power supply system described with reference to FIG. 1 can also be realized.
  • the electromagnetic field distribution of the plane wave source is expressed as shown in Equation 7, it is not limited to this shape. If the electromagnetic field distribution gradually attenuates from the center while vibrating, as shown in FIG. It is considered that an electromagnetic field distribution in which energy is concentrated at the center can be obtained.
  • the problem to be solved here is how to realize the plane wave source (near-field focusing wave source). Therefore, the plane wave source (near-field focusing wave source) is realized by using the resonator periodic structure as a metamaterial.
  • the power supply system 500 includes a power transmission unit 510, an impedance control unit 530, a power feeding unit 520, an adjustment unit 540, and a power receiving device 280.
  • the power transmission unit 510 includes a coil 511 serving as a resonance body, and a variable resistor 512 is added to the coil 511. The resistance value of the variable resistor 512 of the coil 511 is individually controlled by the impedance control unit 530.
  • the adjusting means 540 adjusts selection of a coil to be fed, frequency value of the feeding power, and impedance of each coil according to a user operation.
  • the power feeding unit 520 applies a frequency (f max >f> f min ) within a range in which the resonant body periodic structure of the power transmission unit 510 can be handled as a metamaterial.
  • the impedance control unit 530 sets the impedance of each coil so that the amplitude of the standing wave (electromagnetic propagation wave) is attenuated with the coil to which power is supplied as the center of vibration, and away from the center. For example, the transmission loss in the power transmission unit is increased to some extent, for example, the Q value is set to 100 or less.
  • the adjusting means 540 adjusts the frequency and impedance so that the electromagnetic propagation wave becomes a standing wave and is attenuated as it moves away from the center. Then, as compared with the standing wave pattern shown in FIG. 12B, as shown in FIG. 21, a standing wave (electromagnetic hopping wave) whose amplitude attenuates as the distance from the center is obtained. In this way, the near-field focusing wave source can be realized by using the resonator periodic structure. As a result, it is possible to realize a power supply system that efficiently concentrates power feeding only on a desired power receiving device 280.
  • a power supply system 600 includes a power transmission unit 610, an impedance control unit 630, a power feeding unit 620, an adjustment unit 640, a vibration pattern setting unit 650, and a power receiving device 280.
  • the power transmission unit 610 includes a coil 611 serving as a resonance body, and a variable resistor 612 is incorporated in each coil 611.
  • the variable resistor 612 can be switched between three states: open (high impedance), short (low impedance), and ON (intermediate impedance).
  • Vibration pattern setting unit 650 sets an electromagnetic field vibration pattern in power transmission unit 610.
  • the vibration pattern is composed of a repetition of a portion where an electromagnetic field exists and becomes an antinode of vibration, and a portion where no electromagnetic field exists and becomes a node of vibration. That is, the vibration pattern setting unit 650 sets a pattern of which coil 611 is a vibration antinode and which coil 611 is a vibration node.
  • the coil 611 of the power transmission unit 610 is divided into a unit 613A composed of three coils and a single coil portion 613N sandwiched between the units 613A and 613A. Is shown.
  • a unit 613A composed of three coils is used as a vibration antinode, and a coil (613N) between them is used as a vibration node.
  • FIG. 23A and FIG. 23B are other examples of vibration patterns.
  • FIG. 23A shows an example in which the coil 611 of the power transmission unit 610 is divided into a unit 614 composed of five coils and two coils sandwiched between the unit 614 and the unit 614.
  • the unit that becomes the antinode of vibration may be composed of two coils, or may be composed of four or five or more coils. There may be two or more coils serving as vibration nodes.
  • the coil that becomes the antinode of the vibration and the coil that becomes the node of the vibration may be alternately arranged one by one.
  • a coil unit that becomes a vibration antinode is referred to as an abdominal unit
  • a coil unit that becomes a vibration node is referred to as a node unit.
  • the abdominal unit may be composed of one coil
  • the node unit may be composed of one coil.
  • the power application unit 622 of the power supply unit 620 supplies power to the abdominal unit 613A that is the antinode of vibration. At this time, the power application unit 622 does not supply power to the node unit 613N that becomes a node of vibration. Further, power is supplied so that adjacent abdominal units 613A are in opposite phases. Further, the magnitude of power can be controlled for each coil 611 to be fed.
  • the impedance control unit 630 controls the resistance value of the variable resistor 612 of each coil 611.
  • the resistance value of the coil 611 that is included in the same unit 613A as the coil 611 that receives power supply but does not receive power supply is set to low (short).
  • the resistance value of the coil 611 of the node unit 613N, which is a node of vibration is set high (open).
  • the adjusting means 640 adjusts the vibration pattern setting, the selection of the coil to be fed, the frequency value of the feeding power, and the impedance of each coil according to the user's operation.
  • the vibration pattern setting unit 650 divides the coil of the power transmission unit 610 into an abdominal unit 613A and a node unit 613N. At this time, one abdominal unit 613A is placed directly under the power receiving device 280 to be fed. This abdominal unit 613A is the center of the near focusing wave source.
  • the impedance control unit 630 turns on the impedance by using any one of the coils 611 in the abdominal unit 613A, preferably the middle coil 611 as a power feeding coil. Further, the resistance value of the coil 611 on both sides of the coil to be supplied with power is shorted (low). Further, the resistance value of the coil 611 of the node unit 613N is opened (high).
  • the power supply unit 622 supplies power to the power supply coil.
  • the abdomen unit 613A immediately below the power receiving device 280 becomes the center of vibration, and the power supplied to each abdomen unit is adjusted so that the amplitude of vibration decreases as the distance from the center decreases.
  • the frequency of the power to be supplied is adjusted so that a standing wave is generated in one abdominal unit.
  • a standing wave is generated by three coils.
  • the three coils constituting one abdominal unit may be in phase (the number of nodes is zero).
  • the abdominal unit 613A adjacent to each other is set in reverse phase. Thereby, the pattern of the near focusing wave source can be realized.
  • FIG. 24 A sixth embodiment will be described. Although the basic configuration of the sixth embodiment is the same as that of the fifth embodiment, there is a difference in that only the abdominal unit is disposed and no resonator (coil) is disposed in the node portion and a gap is formed. As shown in FIG. 24, in the power supply system 700 of the sixth embodiment, only the coil that becomes the abdominal unit 713A is arranged in the power transmission unit 710, and a predetermined gap is provided between the adjacent abdominal unit. . The gap interval is designed so that electromagnetic hopping does not occur between the coils that sandwich the gap. And this gap becomes a wave node.
  • the part that becomes the antinode and the part that becomes the node of the vibration are defined by the arrangement of the coils. Therefore, the vibration pattern setting unit 650 for setting the vibration pattern one by one is not necessary, and the coil arrangement structure is preset and stored as a vibration pattern in the adjusting means 740. In addition, a coil (power supply coil) to which power is applied by the power application unit 722 is also fixed in advance.
  • an impedance control unit for controlling the impedance of each coil is basically unnecessary.
  • an impedance control unit may be provided.
  • the power supply unit 622 supplies power to the power supply coil.
  • the abdomen unit 713A immediately below the power receiving device 280 becomes the center of vibration, and the power supplied to each abdomen unit is adjusted so that the amplitude of vibration decreases as the distance from the center decreases.
  • electromagnetic hopping does not occur between adjacent abdominal units, and the amplitude and phase can be arbitrarily controlled by the power supplied to each abdominal unit 713A. it can.
  • the dielectric constant or permeability of the coil core may be controlled, or a variable capacitance may be added to the coil to change the capacitance value of the variable capacitance.
  • a spring type coil is exemplified as the resonator.
  • a planar spiral coil shown in FIG. 26A may be used as the resonator.
  • the planar spiral coil 201 has an advantage that it can be mounted on a conventional printed circuit board. That is, one spiral coil 201 may be mounted on the front surface or the back surface of the printed board. Alternatively, planar spiral coils may be mounted on both sides of the printed board.
  • the planar spiral coil 201 of FIG. 26A is mounted on the front side of the printed board.
  • the coil 202 in FIG. 26B is mounted on the back surface of the printed board.
  • 26B is a perspective view of the coil 202 mounted on the back surface of the printed circuit board from the front surface side.
  • a continuous spiral shape can be formed as double-sided mounting by conducting conductor connection between the front side coil 201 and the back side coil 202 at the junction 203.
  • various types of spiral conductors can be mounted on the multilayer substrate by using the spiral conductors of the respective layers and the conductors connecting the layers.
  • FIGS. 26A and 26B a spiral coil having a rectangular shape and each side of the rectangle being linear is illustrated, but it goes without saying that it may be a curved spiral.
  • spiral coil may be mounted on the high dielectric substrate.
  • a spiral coil may be mounted on the magnetic material. Thereby, magnetic flux density can be raised and size reduction of a resonance body (coil) can be achieved.
  • the structure of the resonator is not limited to a coil, and may be, for example, a dielectric resonator, or a dipole antenna structure or a monopole antenna structure.
  • the space between the power transmission unit and the power reception device is generally air, but water, seawater, soil, or a wall may be provided between the power transmission unit and the power reception device.
  • the power transmission unit may be provided with rigidity so that the power transmission unit is not bent by sandwiching the resonance body (coil) of the power transmission unit between two rigid substrates.
  • the power transmission unit may be bent flexibly by sandwiching the resonator (coil) of the power transmission unit between two sheets having flexibility.
  • the vibration center of the near-focusing wave source is expressed as a coil that is located immediately below the power receiving device. This is because the power transmission unit is provided on the ceiling or side wall. In consideration of the case, the coil is located at a position facing the power receiving device to be fed. More precisely, the coil located at the foot of the perpendicular line from the power receiving device to be fed to the power transmission unit is used as the vibration center of the nearby focusing wave source.
  • the term “periodic structure” is used, and the power transmission unit is expressed as a periodic structure including a plurality of resonators.
  • the periodic structure should not be construed to be limited to an array structure with a strictly constant pitch. It does not have to be strictly a constant cycle, and it is allowed that the arrangement pitch of the resonators deviates within a range in which the power transmission unit can be handled as a metamaterial in view of the entire purpose of the present invention. Further, in the case of an actual product, the arrangement pitch of the resonators is designed in consideration of manufacturing restrictions, so that the arrangement period is allowed to deviate depending on the manufacturing conditions.
  • DESCRIPTION OF SYMBOLS 100 ... Feed system, 110 ... Power transmission part, 111 ... Resonator, 112 ... Coil, 112h ... Coil component, 113 ... Input port, 114 ... Output port, 120 ..Power receiving device, 130 ... Power supply unit, 200 ... Power supply system, 201 ... Coil (front side coil), 202 ... Coil (back side coil), 203 ... Junction point, 210 ... Power transmission unit, 211 ... Coil, 220 ... Power feeding unit, 221 ... Power supply, 222 ... Power application unit, 223 ... Frequency control unit, 224 ... Adjustment means, 280 ..Power receiving device, 300 ... Power supply system, 310 ...
  • Power transmission unit 311 ... Coil, 312 ... Variable impedance, 320 ... Power feeding unit, 321 ... Power source, 322 ... Power application unit, 323 ... Frequency control unit, 330 ... Impedance control unit, 331 ... Adjustment means, 410 ... Power transmission unit, 411 ... Coil, 412 ... Coil, 412 ... Coil core, 430 ... Impedance control unit, 500 ... Power supply system, 510 ... Power transmission unit, 511 ... Coil, 512 ... Variable resistance, 520 ... Feeding unit, 530 ..Impedance control unit, 540 ... Adjustment means, 600 ... Power supply system, 610 ... Power transmission unit, 611 ...
  • Coil 612 ... Variable resistance, 613A ... Unit (abdominal unit) , 613N ... Node unit, 614 ... Unit, 620 ... Power feeding unit, 622 ... Power application unit, 630 ... Impedance control unit, 640 ... Adjustment means, 650 ... Vibration Pattern setting section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The problem addressed by the present invention is to provide a power supply system that, during wireless power supply, can efficiently supply power selectively to the position of a desired power reception device. In a power transmission unit (110), a plurality of resonance bodies (111) are arrayed in a manner so as to form a 1D or 2D periodic structure, and power is transmitted wirelessly by means of power being propagated, by means of a sympathetic resonance action, to neighboring resonance bodies (111) and causing the leakage of an electromagnetic field to the surroundings. A power supply unit (130) supplies power to one or more of the resonance bodies of the power transmission unit (110). In the power transmission unit (110), a standing wave of electromagnetic propagation is generated centered on the resonance body (111) at a position facing the power reception body that is the subject of power supply and having an amplitude that, while oscillating, gradually attenuates in accordance with the distance from the center.

Description

電力供給システムPower supply system
 本発明は、電力供給システムに関し、具体的には、送電線を介さずに非接触で受電装置に電力を供給するシステムに関する。特に、伝送電力波の波長以下である中距離程度に送電装置と受電装置とが離間している状態において、所望の受電装置の位置に選択的に効率良く電力を供給できる電力供給システムに関する。 The present invention relates to a power supply system, and more specifically, to a system that supplies power to a power receiving device without contact with a power transmission line. In particular, the present invention relates to a power supply system that can selectively and efficiently supply power to a position of a desired power receiving apparatus in a state where the power transmitting apparatus and the power receiving apparatus are separated by a medium distance that is equal to or less than the wavelength of a transmission power wave.
 離間した受電装置に対し無線で電力を供給する方法が知られている。例えば、特開2008-66841号公報では、電磁波伝送シートのなかを電磁波を伝搬させ、シートから漏出する電磁界を受電装置に供給するという構成が開示されている(他に、特開2007-281678号公報)。 A method of supplying power wirelessly to a remote power receiving device is known. For example, Japanese Patent Laid-Open No. 2008-66841 discloses a configuration in which an electromagnetic wave propagates in an electromagnetic wave transmission sheet and an electromagnetic field leaking from the sheet is supplied to a power receiving device (in addition, Japanese Patent Laid-Open No. 2007-281678). Issue gazette).
 また、例えば、特開平7-322534号公報にあるように、電源側の一次コイルから負荷側の二次コイルに磁気結合で電力を伝送する方式がある(他に、US7825543B2)。これは、家庭用の小型電子機器、例えば、シェーバーや電動歯ブラシなどの充電によく使用されている。 Also, for example, as disclosed in Japanese Patent Laid-Open No. 7-322534, there is a method of transmitting power by magnetic coupling from the primary coil on the power source side to the secondary coil on the load side (US7825543B2). This is often used to charge small household electronic devices such as shavers and electric toothbrushes.
 あるいは、特開2008-259392号公報は、マイクロ波ビームを利用した送電方法が開示されている。これは、例えば、衛生軌道上で太陽光発電を行い、そのエネルギーをマイクロ波ビームで地上に送る。そして、地上の受電システムでマイクロ波を電力に再変換するというものである。 Alternatively, Japanese Patent Application Laid-Open No. 2008-259392 discloses a power transmission method using a microwave beam. For example, solar power generation is performed on a sanitary orbit, and the energy is transmitted to the ground with a microwave beam. Then, the microwave is reconverted into electric power by the ground power receiving system.
 さらに、近年では、室内に置かれた様々な電子機器に対して無線で給電する方法も探求されてきている。
 (例えば、澤上、川原他「電磁共鳴式無線電力伝送のマルチホップ性能評価」、電子情報通信学会総合大会、2010年3月、B-20-38、通信講演論文集2、pp.622)
 このコンセプトを東京大学大学院情報理工学系研究科の浅見教授、川原講師の研究紹介から引用する(http://www.akg.t.u-tokyo.ac.jp/labintro1004.pdf)。
 浅見教授、川原講師らが研究する「電磁共鳴式マルチホップ無線電力伝送方式の提案と評価」のコンセプトは、図27に示すように、室内等のある程度の広がりをもったエリアに配置されている複数の電子機器に電力を給電するというものである。ここでいう電子機器には、例えば電力伝送シートも含まれ、この電力伝送シートからさらに小型電子機器に給電するといった利用もある。
Furthermore, in recent years, a method of supplying power wirelessly to various electronic devices placed in a room has been sought.
(For example, Sawagami, Kawahara et al. "Multi-hop performance evaluation of electromagnetic resonance type wireless power transmission", IEICE General Conference, March 2010, B-20-38, Proceedings of Communication Lecture 2, pp.622)
This concept is quoted from the research introductions of Prof. Asami and Dr. Kawahara at the Graduate School of Information Science and Technology, The University of Tokyo (http://www.akg.tu-tokyo.ac.jp/labintro1004.pdf).
The concept of “Proposal and Evaluation of Electromagnetic Resonance Multi-Hop Wireless Power Transmission System” studied by Prof. Asami and Dr. Kawahara is arranged in an area with some extent as shown in Fig. 27. Power is supplied to a plurality of electronic devices. The electronic device here includes, for example, a power transmission sheet, and the power transmission sheet can be used to supply power to a small electronic device.
 図26において、部屋の壁や床には複数のコイルが面状に配列されている。そして、中心軸に対して直交する方向で隣接しているコイル同士でも共振することを利用する。つまり、いずれかのコイルに給電すれば、電力が隣接するコイルにホッピングしていく。隣接するコイルに電力を伝搬させていき、そして、電磁界をコイルから部屋のなかに漏洩させる。すると、部屋という広いエリアに配置されている複数の電子機器に給電できるというわけである。これにより、電源線の配線、充電、電池交換等の作業が不要になることが期待できる。 In FIG. 26, a plurality of coils are arranged in a plane on the wall and floor of the room. And it utilizes that the coils which adjoin in the direction orthogonal to a central axis also resonate. In other words, if power is supplied to one of the coils, the electric power hops to the adjacent coil. Electric power is propagated to adjacent coils, and electromagnetic fields are leaked from the coils into the room. Then, power can be supplied to a plurality of electronic devices arranged in a large area called a room. Thereby, it can be expected that operations such as wiring of the power supply line, charging, battery replacement and the like are unnecessary.
特開2008-66841号公報JP 2008-66841 A 特開2007-281678号公報JP 2007-281678 特開平7-322534号公報Japanese Patent Laid-Open No. 7-322534 US7825543B2US7825543B2 特開2008-259392号公報JP 2008-259392 A
 上記の方法によれば、部屋のなかの電子機器に無線給電できる可能性がある。
 しかしながら、ある特定の位置にある電子機器だけに向けて伝送電力を絞る技術が現在のところ無いという問題がある。
 部屋全体に満遍なく給電(送電)し続けることは明らかにエネルギーの無駄である。
 また、電子機器に対して不要な電磁界を照射すると、電磁ノイズとなり、誤作動等を招く不都合も考えられる。
According to the above method, there is a possibility that wireless power can be supplied to the electronic device in the room.
However, there is a problem that there is currently no technology for reducing transmission power only to an electronic device at a specific position.
It is clearly a waste of energy to continue to feed (transmit) power throughout the room.
In addition, when an unnecessary electromagnetic field is irradiated to an electronic device, electromagnetic noise is generated, which may cause a malfunction.
 そこで、本発明の目的は、無線給電において、所望の受電装置の位置に選択的に効率良く電力を供給できる電力供給システムを提供することにある。 Therefore, an object of the present invention is to provide a power supply system capable of selectively and efficiently supplying power to a desired power receiving device position in wireless power feeding.
 本発明の電力供給システムは、
 複数の共鳴体が一次元的または二次元的に周期構造をなすように配列され、共振作用によって電力を隣の共鳴体に伝搬させていくとともに、周囲に電磁界を漏洩させることによって無線による送電を行う送電部と、
 前記送電部の一または複数の前記共鳴体に電力を供給する給電部と、を備え、
 前記送電部には、給電対象となる受電装置に対向する位置にある前記共鳴体を中心として中心から離れるに従って振動しながら振幅が徐々に減衰する電磁伝搬の定在波を発生させる
 ことを特徴とする。
The power supply system of the present invention includes:
A plurality of resonators are arranged in a one-dimensional or two-dimensional periodic structure, and power is propagated to the next resonator by resonance action, and electromagnetic fields are leaked to the surrounding area to transmit power wirelessly. A power transmission unit that performs
A power supply unit that supplies power to one or a plurality of the resonators of the power transmission unit,
The power transmission unit generates a standing wave of electromagnetic propagation whose amplitude gradually attenuates while oscillating with the resonance body located at a position facing the power receiving device to be fed as the center moves away from the center. To do.
本発明が実現したい給電システムの一例を示す図。The figure which shows an example of the electric power feeding system which this invention wants to implement | achieve. 本発明が実現したい給電システムの一例を示す図。The figure which shows an example of the electric power feeding system which this invention wants to implement | achieve. 共鳴体周期構造に電磁伝搬波が生じている様子の一例を示す図。The figure which shows an example of a mode that the electromagnetic propagation wave has arisen in the resonance body periodic structure. 共鳴体周期構造に発生しうる電磁伝搬波の周波数(f)と波数(k)との関係を表す分散曲線を示す図。The figure which shows the dispersion | distribution curve showing the relationship between the frequency (f) and wave number (k) of the electromagnetic propagation wave which can generate | occur | produce in a resonator periodic structure. 入力ポートを有する単一のコイルを示す図。The figure which shows the single coil which has an input port. 図4の回路の等価回路図。FIG. 5 is an equivalent circuit diagram of the circuit of FIG. 二つのコイルを並べたモデルを示す図。The figure which shows the model which arranged two coils. 複数のコイルを一定のピッチで配列した回路の等価回路図。FIG. 6 is an equivalent circuit diagram of a circuit in which a plurality of coils are arranged at a constant pitch. 周期構造の一単位の等価回路図。The equivalent circuit diagram of one unit of a periodic structure. 9個のコイルを並べた一例を示す図。The figure which shows an example which arranged nine coils. すべてのコイルが同相で振動している状態を示す図。The figure which shows the state which all the coils are vibrating with the same phase. すべてのコイルが逆相で振動している状態を示す図。The figure which shows the state which all the coils are vibrating with the reverse phase. 分散曲線を示す図。The figure which shows a dispersion | distribution curve. 周波数と各コイルの振動状態との関係を示す図。The figure which shows the relationship between a frequency and the vibration state of each coil. コイル(共鳴体)のインピーダンスを可変として分散曲線をシフトさせる様子を示す図。The figure which shows a mode that a dispersion | distribution curve is shifted by making the impedance of a coil (resonator) variable. 第1実施形態として、周波数可変方式による電力供給システムを示す図。The figure which shows the electric power supply system by a frequency variable system as 1st Embodiment. 第2実施形態として、インピーダンス可変方式による電力供給システムを示す図。The figure which shows the electric power supply system by an impedance variable system as 2nd Embodiment. 第3実施形態として、インピーダンス可変方式による電力供給システムを示す図。The figure which shows the electric power supply system by an impedance variable system as 3rd Embodiment. 平面波源(near-field focusing plate)と観測面(focal plane)とを示す図。The figure which shows a plane wave source (near-field-focusing-plate) and an observation surface (focal-plane). 平面波源として、振動しながら中心から徐々に減衰する電磁界分布を示す図。The figure which shows the electromagnetic field distribution which attenuate | damps gradually from a center as a plane wave source while vibrating. 観測面で観測される中心付近にのみ著しく大きくその他の領域では急速に減衰する電界分布の一例を示す図。The figure which shows an example of the electric field distribution which is remarkably large only in the vicinity of the center observed on the observation surface and rapidly attenuates in other regions. 第4実施形態を示す図。The figure which shows 4th Embodiment. 第4実施形態において、周波数と各コイルの振動状態との関係を示す図。FIG. 10 is a diagram showing the relationship between the frequency and the vibration state of each coil in the fourth embodiment. 第5実施形態を示す図。The figure which shows 5th Embodiment. 第5実施形態において、振動パターンの他の例を示す図。FIG. 20 is a diagram showing another example of a vibration pattern in the fifth embodiment. 第5実施形態において、振動パターンの他の例を示す図。FIG. 20 is a diagram showing another example of a vibration pattern in the fifth embodiment. 第5実施形態を示す図。The figure which shows 5th Embodiment. 変形例として、一つの送電部に複数の波を発生させた様子を示す図。The figure which shows a mode that the some wave was generated in one power transmission part as a modification. 平面スパイラル状のコイルの一例を示す図。The figure which shows an example of a planar spiral coil. プリント基板の裏面に実装されるコイルの一例を示す図。The figure which shows an example of the coil mounted in the back surface of a printed circuit board. 背景技術としての電磁共鳴式マルチホップ無線電力伝送方式の概念を示す図。The figure which shows the concept of the electromagnetic resonance type multihop wireless power transmission system as background art.
 本発明を順を追って説明していく。
 (基本コンセプト)
 まず、本発明が実現したい給電システム100の例を図1A、図1Bに示す。
The present invention will be explained step by step.
(Basic concept)
First, an example of a power feeding system 100 that the present invention desires to realize is shown in FIGS. 1A and 1B.
 図1Aにおいて、受電装置120は、送電部110からある程度の距離をもって離間している。
 離間距離としては、数cmから数m程度とする。すなわち、この離間距離は、近接対向する一次コイルと二次コイルとで磁気結合できるような密接した距離ではない。
 また、指向性アンテナが指向性を発揮できるような電磁波の波長程度、もしくはそれ以上の遠く離れた離間距離でもない。
 本発明が想定する離間距離は、電磁波の波長よりも短い距離である。
In FIG. 1A, the power receiving device 120 is separated from the power transmission unit 110 by a certain distance.
The separation distance is about several centimeters to several meters. That is, this separation distance is not such a close distance that magnetic coupling can be established between the primary coil and the secondary coil that are closely opposed to each other.
In addition, the distance is not about a wavelength of an electromagnetic wave that allows the directional antenna to exhibit directivity, or a far away distance.
The separation distance assumed by the present invention is a distance shorter than the wavelength of the electromagnetic wave.
 送電部110は、複数の共鳴体111によって構成されており、複数の共鳴体111は二次元的(平面的)に配列されている。
 共鳴体111としては、例えば導体コイルが典型的である。図1A、図1Bでは、共鳴体をスパイラル型のコイル112としている。
 共鳴体111としては、導体コイルの他、例えば、誘電体共振器としてもよい。
 誘電体共振器の型も限定されず、矩形や円柱形など種々様々な形状を採用できる。
 送電部110は、例えば部屋の壁や床そのものであってもよい。すなわち、部屋の床や壁の一面に複数の共鳴体111(コイル112)を埋設して、これを送電部110とすることが例として挙げられる。
The power transmission unit 110 includes a plurality of resonators 111, and the plurality of resonators 111 are arranged two-dimensionally (planarly).
As the resonator 111, for example, a conductor coil is typical. In FIG. 1A and FIG. 1B, the resonator is a spiral coil 112.
The resonator 111 may be, for example, a dielectric resonator other than a conductor coil.
The type of the dielectric resonator is not limited, and various shapes such as a rectangular shape and a cylindrical shape can be adopted.
The power transmission unit 110 may be, for example, a room wall or a floor itself. That is, as an example, a plurality of resonators 111 (coils 112) are embedded in one surface of a floor or wall of a room and used as the power transmission unit 110.
 給電部130は、一つまたは複数の共鳴体111に電力を供給する。
 共鳴体111がコイル112である場合には、コイル112に交流電流を流してもよい。あるいは、コイル112に振動磁界を与えてもよい。
The power feeding unit 130 supplies power to one or more resonators 111.
When the resonator 111 is the coil 112, an alternating current may be passed through the coil 112. Alternatively, an oscillating magnetic field may be applied to the coil 112.
 この構成において、給電部130から一つまたは複数の共鳴体111に電力を供給したときに、隣接する共鳴体間を電力がホッピングし、電力が送電部110を伝搬していく。そして、図1A、図1Bに示すように送電部110から電磁波が漏洩する。 In this configuration, when power is supplied from the power supply unit 130 to one or more resonators 111, the power hops between adjacent resonators, and the power propagates through the power transmission unit 110. Then, as shown in FIGS. 1A and 1B, electromagnetic waves leak from the power transmission unit 110.
 このとき、漏洩する電磁波の電磁界分布が所望の受電装置120の位置のみでピークを形成し、かつ、その他の場所では強度が弱くなる、というようにしたい。
 例えば図1Aにおいては、給電したい受電装置120が3つあるとする。
 この場合、この3つの受電装置120のところで電磁界強度がピークになり、その他の場所では強度が弱くなる、というようにしたい。または、三つの受電装置120のすべてに電力供給するのではなく、例えば、そのうちの一つだけに電力を供給したい場合もある。
 例えば、図1Bのように真ん中の受電装置120にだけ電力を供給したい場合には、この一つの受電装置だけに電界を集中させ、その他の場所では電界強度が弱くなる、というようにしたい。
At this time, it is desired that the electromagnetic field distribution of the leaked electromagnetic wave forms a peak only at a desired position of the power receiving device 120 and the intensity becomes weak at other places.
For example, in FIG. 1A, it is assumed that there are three power receiving apparatuses 120 to which power is supplied.
In this case, it is desired that the electromagnetic field intensity peaks at the three power receiving devices 120 and the intensity decreases at other places. Or, in some cases, it is desirable to supply power to only one of the three power receiving devices 120, for example.
For example, when it is desired to supply power only to the middle power receiving apparatus 120 as shown in FIG. 1B, the electric field is concentrated only on this one power receiving apparatus, and the electric field strength is weakened at other places.
 このような給電が可能になる理論的背景、および、具体的な構成を以下に説明する。 The theoretical background that enables such power supply and the specific configuration will be described below.
 (着想)
 本発明者らは、鋭意研究の末、複数の共鳴体を配列して周期構造となし、これを電磁界の伝送線路とみなすことに着想した。
 さらに、この周期構造を特定の周波数帯域で共鳴させたとき、この構造自体がメタマテリアルとして扱えることに着想した。
 そこで、この周期構造(伝送線路)に生じる電磁界分布を解析的に取り扱う方法を追求し、これをなし得た。
 つまり、共鳴体の周期構造にどのような波の伝搬モードが生じるかを解析的に求める方法を開発した。
(idea)
As a result of diligent research, the present inventors have conceived that a plurality of resonators are arranged to form a periodic structure, which is regarded as an electromagnetic field transmission line.
Furthermore, when this periodic structure was resonated in a specific frequency band, the idea was that this structure itself could be treated as a metamaterial.
Therefore, a method for analytically handling the electromagnetic field distribution generated in the periodic structure (transmission line) was pursued, and this could be achieved.
In other words, a method has been developed to analytically determine what wave propagation modes occur in the periodic structure of the resonator.
 これによって、例えば、図2のように共鳴体であるコイルを配列した時に、そこに電磁界のホッピングでどのようなモードの波が発生するかを求めることができるようになった。
 以後、この波を"電磁伝搬波"と称することにする。
 すなわち、本発明者らは、コイルの周期構造に発生しうる電磁伝搬波の周波数(f)と波数(k)との関係を図3のような分散曲線として表した。
 dは、周期構造の一周期長を表し、例えば、隣接するコイル同士の中心間距離である。
 したがって、図3のグラフの横軸である「波数(k)×一周期長(d)」は、一周期長あたりの位相変化を意味する。
As a result, for example, when a coil as a resonator is arranged as shown in FIG. 2, it is possible to determine what mode wave is generated by electromagnetic field hopping.
Hereinafter, this wave is referred to as “electromagnetic propagation wave”.
That is, the present inventors expressed the relationship between the frequency (f) and the wave number (k) of the electromagnetic propagation wave that can occur in the periodic structure of the coil as a dispersion curve as shown in FIG.
d represents one cycle length of the periodic structure, and is, for example, a center-to-center distance between adjacent coils.
Therefore, “wave number (k) × one cycle length (d)” on the horizontal axis of the graph of FIG. 3 means a phase change per cycle length.
 図3の分散曲線で、fmaxとfminとの間の周波数fにおいて、コイル周期構造は、この構造をメタマテリアルとみたてた場合の電磁波の伝播領域、すなわち伝送線路として扱えるということがわかる。
 そして、この周期構造(伝送線路)に随意の電界分布を生じさせる構成に想到した。
The dispersion curve in FIG. 3 shows that at a frequency f between f max and f min , the coil periodic structure can be treated as an electromagnetic wave propagation region, that is, a transmission line when this structure is regarded as a metamaterial. .
The inventors have come up with a configuration in which an arbitrary electric field distribution is generated in the periodic structure (transmission line).
 (電磁伝搬波の分散曲線を求める理論)
 共鳴体を周期的に配列した共鳴体周期構造をメタマテリアルとして扱い、そこに生じる電磁伝搬波の分散曲線を求める方法を説明する。
 ここでは、共鳴体としては、スプリング型コイルを例にする。
 単一のコイルの共鳴周波数fres、インダクタンスL、容量C、および、抵抗Rを求め、さらに、二つのコイルを隣接配置した際の結合定数Mを求める。
(Theory for obtaining the dispersion curve of electromagnetic wave propagation)
A method of obtaining a dispersion curve of electromagnetic propagation waves generated there by treating a resonator periodic structure in which resonators are periodically arranged as a metamaterial will be described.
Here, a spring type coil is taken as an example of the resonator.
The resonance frequency fres, inductance L, capacitance C, and resistance R of a single coil are obtained, and further, the coupling constant M when two coils are arranged adjacent to each other is obtained.
 まず、単一のコイルの特性は、図4のようにコイル112内に入力ポート113を設けて、インピーダンスZの周波数依存性から算出できる。すなわち、図4の回路を、容量成分および抵抗成分を取り出した図5の等価回路に置き換える。そして、電磁界解析もしくは実測によってRe(Z)およびIm(Z)の周波数依存性を得る。 First, the characteristics of a single coil can be calculated from the frequency dependence of impedance Z by providing an input port 113 in the coil 112 as shown in FIG. That is, the circuit in FIG. 4 is replaced with the equivalent circuit in FIG. 5 in which the capacitance component and the resistance component are extracted. Then, the frequency dependence of Re (Z) and Im (Z) is obtained by electromagnetic field analysis or actual measurement.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 Im(Z)となる点から共鳴周波数fresを求める。
 共鳴周波数fresの極近辺の2点を用い、以下の式によってインダクタンスLと容量Cとを求める。
 共鳴周波数fresの極近辺の2点を(f1、Im(Z1))と(f2、Im(Z2))とする。
The resonance frequency f res is obtained from the point where Im (Z).
Using two points in the vicinity of the resonance frequency f res, the inductance L and the capacitance C are obtained by the following equations.
Two points in the vicinity of the resonance frequency f res are defined as (f 1 , Im (Z 1 )) and (f 2 , Im (Z 2 )).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 さて次に、2つのコイル112、112の相互インダクタンスを求める。
 図6のように二つのコイル112、112を並べたモデルを用いて、共鳴周波数の分裂を確認する。
 図6において、一方のコイル112に入力ポート113から電力を供給し、その電力が他方のコイル112にホッピングし、この他方のコイル112の電力を出力ポート114から得る。
 二つのコイル112、112の結合が弱くて分裂が確認できないときは、入出力ポート113、114の内部抵抗を変更することによって、分裂させることができる。
 ここでは、共鳴周波数fresが周波数faと周波数fbとに分裂したとする。すると、分裂した二つの周波数fa、fbから、次の式により結合定数kを算出することができる。
Next, the mutual inductance of the two coils 112 and 112 is obtained.
As shown in FIG. 6, the splitting of the resonance frequency is confirmed using a model in which two coils 112 and 112 are arranged.
In FIG. 6, power is supplied to one coil 112 from the input port 113, and the power is hopped to the other coil 112, and the power of the other coil 112 is obtained from the output port 114.
When the coupling between the two coils 112 and 112 is weak and the splitting cannot be confirmed, the splitting can be performed by changing the internal resistance of the input / output ports 113 and 114.
Here, it is assumed that the resonance frequency f res is split into a frequency f a and a frequency f b . Then, the coupling constant k can be calculated from the two divided frequencies f a and f b by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 相互インダクタンスMは、結合定数kとインダクタンスLとから次の関係式によって求まる。 The mutual inductance M is obtained from the coupling constant k and the inductance L by the following relational expression.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 次に、複数のコイル112を横に一定のピッチで配列した場合、その等価回路を図7のように描くことができる。
 図7では、一つのコイル112を二つのコイル成分112h、112hに分けたように描いている。
 従って、一方のコイル成分112hのインダクタンスはL/2である。
 なお、この場合は、抵抗Rは無視している。
Next, when a plurality of coils 112 are arranged horizontally at a constant pitch, an equivalent circuit thereof can be drawn as shown in FIG.
In FIG. 7, one coil 112 is depicted as being divided into two coil components 112h and 112h.
Therefore, the inductance of one coil component 112h is L / 2.
In this case, the resistance R is ignored.
 さらに、この周期構造の一単位(一ユニット)は、図8の等価回路に描き直すことができる。 Furthermore, one unit (one unit) of this periodic structure can be redrawn in the equivalent circuit of FIG.
 すると、周期構造の一単位(一ユニット)を、Tマトリクスによって次のように表すことができる。 Then, one unit (one unit) of the periodic structure can be expressed by the T matrix as follows.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 この周期構造の周期間隔(コイルの中心間距離)をdとする。
 また、周期構造をメタマテリアルとしたとき、このメタマテリアルを進行する電磁伝搬波の進行方向の波数をkxとする。すると、kx×dは、一周期ごとの波の位相を表し、次の式が成立する。
Let d be the periodic interval (distance between the centers of the coils) of this periodic structure.
When the periodic structure is a metamaterial, the wave number in the traveling direction of the electromagnetic propagation wave traveling through the metamaterial is k x . Then, k x × d represents the phase of the wave for each period, and the following equation is established.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記の式を用いて、位相(kx×d)と周波数f(=ω/2π)との関係をプロットすることにより分散関係が求まる。
 これにより、メタマテリアルに生じる(電磁界の)波の周波数帯域(fmin<f<fmax)が求まる。
 すなわち、周波数帯域(fmin<f<fmax)において図3の分散曲線を描くことができる。
Using the above equation, the dispersion relationship is obtained by plotting the relationship between the phase (k x × d) and the frequency f (= ω / 2π).
As a result, the frequency band (f min <f <f max ) of the wave (electromagnetic field) generated in the metamaterial is obtained.
That is, the dispersion curve of FIG. 3 can be drawn in the frequency band (f min <f <f max ).
 ここまででコイル周期構造をメタマテリアルとした場合の分散曲線が求められた。
 このコイル周期構造になんらかの給電を行った場合、電磁界がホッピングして伝わり、コイル周期構造が電磁伝搬波の伝送線路となる。
 さらに、伝送線路の損失が小さければ、伝送線路上の電磁界分布は、いわゆる定在波分布となる。
So far, the dispersion curve when the coil periodic structure is a metamaterial has been obtained.
When any power is supplied to this coil periodic structure, the electromagnetic field is transmitted by hopping, and the coil periodic structure becomes a transmission line for electromagnetic propagation waves.
Furthermore, if the transmission line loss is small, the electromagnetic field distribution on the transmission line is a so-called standing wave distribution.
 (構成の例示)
 ここまでで、コイル周期構造を伝送線路とし、これに定在波を発生させることができることがわかった。
 さらに、コイル周期構造の共振条件を満たすような波を発生させれば、定在波(電磁伝搬波)の腹の数をコントロールできることになる。
 コイル数をn、コイル間隔をd、隣接コイル間の位相(分散曲線におけるある周波数fに対する位相)をX(=kx×d)[radian]とする。
 共振条件を満たすとすると次の式が成立することになる。
(Example of configuration)
Up to this point, it was found that a coil periodic structure can be used as a transmission line, and a standing wave can be generated in the transmission line.
Furthermore, if a wave that satisfies the resonance condition of the coil periodic structure is generated, the number of antinodes of the standing wave (electromagnetic propagation wave) can be controlled.
The number of coils is n, the coil interval is d, and the phase between adjacent coils (phase with respect to a certain frequency f in the dispersion curve) is X (= k x × d) [radian].
If the resonance condition is satisfied, the following equation is established.
 (n-1)X=mπ (mは整数) (N-1) X = mπ (m is an integer)
 ここで、位相Xは、0≦X≦πであるので、上記式を満たすmは、m=0、1、・・・・n-1、のn個である。
 図9のように、コイルの個数が9個である場合(n=9)、m=0、1、・・・8、の9個の共振状態を満たす位相Xがあることになる。
 図9では、9つのコイルを一定ピッチで一列に配列し、真ん中のコイルに給電した場合を示している。
 説明のため、左から順にコイルの番号を1から9までつけると、真ん中の5番コイルが給電部からの給電を受けるコイルである。
 この給電部からの給電電力の周波数(例えば交流電流の周波数)を制御して共振状態とし、コイル周期構造に電磁伝搬波の定在波を発生させる。
 図9では、1番、3番、5番、7番、9番のコイルの位置が定在波の腹となり、2番、4番、6番、8番のコイルの位置が定在波の節となっている。
Here, since the phase X is 0 ≦ X ≦ π, m satisfying the above equation is n, m = 0, 1,... N−1.
As shown in FIG. 9, when the number of coils is nine (n = 9), there are phases X that satisfy nine resonance states of m = 0, 1,.
FIG. 9 shows a case where nine coils are arranged in a line at a constant pitch and the middle coil is fed.
For explanation, when the coil numbers from 1 to 9 are assigned in order from the left, the middle fifth coil is a coil that receives power from the power feeding section.
By controlling the frequency (for example, the frequency of the alternating current) of the power supplied from the power supply unit, a resonance state is established, and a standing wave of electromagnetic propagation waves is generated in the coil periodic structure.
In FIG. 9, the positions of the first, third, fifth, seventh and ninth coils are antinodes of standing waves, and the positions of the second, fourth, sixth and eighth coils are standing waves. It is a clause.
 なお、m=0とは、図10のように、すべてのコイルが同相であるということである。
 この場合、腹の数は1(節の数は0)である。
Note that m = 0 means that all coils are in phase as shown in FIG.
In this case, the number of bellies is 1 (the number of nodes is 0).
 また、例えば、m=8とは、図11のように、すべてのコイルで逆相になっていることをいう。
 この場合、腹の数は9(節の数は8)である。
For example, m = 8 means that all the coils are in reverse phase as shown in FIG.
In this case, the number of bellies is 9 (the number of nodes is 8).
 このような現象を利用することにより、コイル周期構造を送電部110とし、この送電部110から近距離にある位置においてビーム(電磁界強度が強くなる箇所)の個数をコントロールできることになる。
 ここで、腹の数をコントロールにあたっては、二通りの方法がある。
 一つは、周波数可変方式である。
 例えば、図12Aの分散曲線から定在波が存在する位相と周波数との組を求め、そして、図12Bのように腹が所望の数になる周波数を選択すればよい。
 もう一つは、インピーダンス可変方式である。
 すなわち、周波数を固定しておいて、コイル(共鳴体)のインピーダンスを可変とし、図13のように分散曲線をシフトさせる方法である。
By utilizing such a phenomenon, the coil periodic structure is used as the power transmission unit 110, and the number of beams (locations where the electromagnetic field strength is increased) can be controlled at a position at a short distance from the power transmission unit 110.
Here, there are two ways to control the number of bellies.
One is a variable frequency system.
For example, a pair of a phase and a frequency where a standing wave exists is obtained from the dispersion curve of FIG. 12A, and a frequency at which the antinode is a desired number as shown in FIG.
The other is a variable impedance system.
That is, the frequency is fixed, the impedance of the coil (resonator) is made variable, and the dispersion curve is shifted as shown in FIG.
 (第1実施形態)
 図14は、周波数可変方式による電力供給システムである。
 図14において、電力供給システム200は、送電部210と、給電部220と、受電装置280と、を備えている。
 送電部210は、これまで説明してきたように、共鳴体としてのコイルによって構成され、複数のコイル211が周期構造をなすように配列されている。送電部210がコイルの一次元的配列で構成されていてもよいが、コイルを面状に並べて二次元的な周期構造とし、これを送電部としてもよいことはもちろんである。
(First embodiment)
FIG. 14 shows a power supply system using a variable frequency system.
14, the power supply system 200 includes a power transmission unit 210, a power feeding unit 220, and a power receiving device 280.
As described above, the power transmission unit 210 is configured by a coil as a resonator, and a plurality of coils 211 are arranged so as to form a periodic structure. The power transmission unit 210 may be configured by a one-dimensional array of coils, but it goes without saying that the coils may be arranged in a plane to form a two-dimensional periodic structure, which may be used as a power transmission unit.
 給電部220は、電源221と、電力印加部222と、周波数制御部223と、調整手段224と、を備える。
 電力印加部222は、送電部210の一つまたは複数のコイル211に選択的に電力を印加できるようになっている。
 コイル211に電力を印加するにあたっては、コイル211の巻線に入力ポート(不図示)を設けて、入力ポート(不図示)から電流を供給するようにしてもよい。
 この場合、電力印加部222から各コイル211に向けて配線し、かつ、電力(電流)を供給するコイルを選択するスイッチ(不図示)を前記配線中に設けておく。
 あるいは、磁気カップリングによってコイルの中心に交流磁界を与えてもよい。
The power feeding unit 220 includes a power source 221, a power application unit 222, a frequency control unit 223, and an adjustment unit 224.
The power application unit 222 can selectively apply power to one or a plurality of coils 211 of the power transmission unit 210.
When applying power to the coil 211, an input port (not shown) may be provided in the winding of the coil 211, and current may be supplied from the input port (not shown).
In this case, a switch (not shown) is provided in the wiring for wiring from the power application unit 222 toward each coil 211 and for selecting a coil for supplying power (current).
Alternatively, an alternating magnetic field may be applied to the center of the coil by magnetic coupling.
 周波数制御部223は、コイルに印加する電流または磁界の周波数を例えばスイッチングなどによって制御する。
 周波数制御部223には調整手段224が付設され、ユーザが手動で周波数を調整できるようになっている。
 調整手段224は、ユーザが周波数値を直接操作できるような入力項目を有するユーザインターフェースであってもよい。あるいは、ユーザが給電対象としたい受電装置280を選択できるようにしてもよい。そして、調整手段224は選択された受電装置280の数や位置に基づいて印加すべき電力の周波数を自動的に算出し、算出された周波数値を周波数制御部223に出力するようになっていてもよい。
The frequency control unit 223 controls the frequency of the current or magnetic field applied to the coil by, for example, switching.
Adjustment means 224 is attached to the frequency control unit 223 so that the user can manually adjust the frequency.
The adjusting means 224 may be a user interface having input items that allow the user to directly operate the frequency value. Alternatively, the user may select the power receiving device 280 that is desired to be supplied with power. The adjusting unit 224 automatically calculates the frequency of the power to be applied based on the number and position of the selected power receiving devices 280, and outputs the calculated frequency value to the frequency control unit 223. Also good.
 このような構成において、受電装置280の個数および位置に応じた腹の数の定在波ができるように調整された周波数で電力をコイル211に印加する。
 すなわち、周波数制御部223による周波数制御によって供給電力の周波数を制御する。
 電力を印加するコイルは、定在波の形に応じて適宜選択される。
 繰り返しになるが、周波数は、送電部210をメタマテリアルとして扱える周波数の範囲、すなわち、fmaxとfminとの間から選択されるのであり、さらに、共振状態を満たす位相Xになるように調整される。
In such a configuration, electric power is applied to the coil 211 at a frequency adjusted so that a number of standing waves corresponding to the number and position of the power receiving devices 280 can be generated.
That is, the frequency of the supplied power is controlled by frequency control by the frequency control unit 223.
The coil to which power is applied is appropriately selected according to the shape of the standing wave.
Again, the frequency is selected from the range of frequencies where the power transmission unit 210 can be handled as a metamaterial, that is, between f max and f min, and further adjusted to a phase X that satisfies the resonance state Is done.
 このように周波数制御によって共振状態を作り出すことにより、所望の受電装置280の位置に応じて電磁伝搬波の腹ができ、その他の場所で漏洩する電磁界は弱くなる。これにより、受電装置280に効率的に電力を供給できる。 Thus, by creating a resonance state by frequency control, an antinode of electromagnetic propagation waves can be made according to the desired position of the power receiving device 280, and the electromagnetic field leaking in other places becomes weak. Thus, power can be efficiently supplied to the power receiving device 280.
 (第2実施形態)
 図15は、インピーダンス可変方式による電力供給システムである。
 図15において、電力供給システム300は、送電部310と、インピーダンス制御部330と、給電部320と、受電装置280と、を備えている。
 送電部310は、共鳴体としてのコイル311によって構成され、複数のコイル311が周期構造をなすように配列されている。
 ここで、コイル311には可変インピーダンス312が付加されている。
(Second embodiment)
FIG. 15 shows a power supply system using a variable impedance system.
In FIG. 15, the power supply system 300 includes a power transmission unit 310, an impedance control unit 330, a power feeding unit 320, and a power receiving device 280.
The power transmission unit 310 includes a coil 311 as a resonator, and a plurality of coils 311 are arranged so as to form a periodic structure.
Here, a variable impedance 312 is added to the coil 311.
 そして、インピーダンス制御部330は、コイル311の可変インピーダンス312のインピーダンス値を制御する。具体的には、インピーダンス虚部、すなわち、リアクタンスの値を制御する。
 インピーダンス制御部330は、各コイルのインピーダンス値を個別に制御できるようになっていてもよいが、ここでは、分散曲線をシフトさせるようにすべてのコイル311の可変インピーダンス312のインピーダンス値を一斉に同じように変化させるものとする。
 インピーダンス制御部330には調整手段331が付設され、ユーザが手動でコイル311のインピーダンスを制御するようになっている。
 調整手段331は、ユーザがインピーダンス値を直接操作できるような入力項目を有するユーザインターフェースであってもよい。あるいは、ユーザが給電対象としたい受電装置280を選択できるようにしてもよい。そして、調整手段331は選択された受電装置280の数や位置に基づいてコイルのインピーダンス値を求め、算出されたインピーダンス値をインピーダンス制御部330に出力するようになっていてもよい。
The impedance control unit 330 controls the impedance value of the variable impedance 312 of the coil 311. Specifically, the imaginary impedance part, that is, the reactance value is controlled.
The impedance control unit 330 may be configured to individually control the impedance value of each coil, but here, the impedance values of the variable impedances 312 of all the coils 311 are the same at the same time so as to shift the dispersion curve. It shall be changed as follows.
Adjustment means 331 is attached to the impedance control unit 330 so that the user can manually control the impedance of the coil 311.
The adjusting means 331 may be a user interface having input items that allow the user to directly operate the impedance value. Alternatively, the user may select the power receiving device 280 that is desired to be supplied with power. Then, the adjusting unit 331 may obtain the impedance value of the coil based on the number and position of the selected power receiving devices 280, and output the calculated impedance value to the impedance control unit 330.
 給電部320は、電源321と、電力印加部322と、周波数制御部323と、を備える。
 電力印加部322の構成は、第1実施形態と同じである。
 周波数制御部323は、送電部310をメタマテリアルとして扱えるように、周波数をfmaxとfminとの間の所定値に固定するために設けられているものである。
The power feeding unit 320 includes a power source 321, a power application unit 322, and a frequency control unit 323.
The configuration of the power application unit 322 is the same as that of the first embodiment.
The frequency control unit 323 is provided to fix the frequency to a predetermined value between f max and f min so that the power transmission unit 310 can be handled as a metamaterial.
 このような構成において、fmaxとfminとの間の所定周波数の電力を選択されたコイル311に印加する。そして、インピーダンス制御部330によりコイル311のインピーダンス312を変化させる。すると、分散曲線がシフトして、前記所定周波数で所望の共振状態になるようにできる。
 これにより、所望の受電装置280の位置に電磁伝搬波の腹ができ、その他の場所で漏洩する電磁界は弱くなる。その結果、受電装置280に効率的に電力を供給できる。
In such a configuration, power having a predetermined frequency between f max and f min is applied to the selected coil 311. Then, the impedance control unit 330 changes the impedance 312 of the coil 311. Then, the dispersion curve is shifted, and a desired resonance state can be obtained at the predetermined frequency.
Thereby, the antinode of the electromagnetic propagation wave is generated at the position of the desired power receiving device 280, and the electromagnetic field leaking at other places is weakened. As a result, power can be efficiently supplied to the power receiving device 280.
 (第3実施形態)
 図16は、インピーダンス可変方式による電力供給システムである。
 第3実施形態の基本的構成は第2実施形態と同様であるが、芯(コイルコア)412を制御することによってコイル411のインピーダンスを変化させるようにしている点が第2実施形態と異なっている。
 送電部410において、コイル412の巻線は、芯(コイルコア)412を取り囲むように配設されている。そして、インピーダンス制御部430は、コイルコア412をコイル411に対して相対的に移動させる。
 これによって、コイル411を通る磁束または電束を変化させ、これによってコイル411のインピーダンスを変化させる。
(Third embodiment)
FIG. 16 shows a power supply system using a variable impedance system.
The basic configuration of the third embodiment is the same as that of the second embodiment, but differs from the second embodiment in that the impedance of the coil 411 is changed by controlling the core (coil core) 412. .
In the power transmission unit 410, the winding of the coil 412 is disposed so as to surround the core (coil core) 412. Then, the impedance control unit 430 moves the coil core 412 relative to the coil 411.
This changes the magnetic flux or electrical flux through the coil 411, thereby changing the impedance of the coil 411.
 給電部320の構成は第2実施形態と同様であり、fmaxとfminとの間の所定値で固定された周波数の電力を選択されたコイル411に印加するようになっている。 The configuration of the power feeding unit 320 is the same as that of the second embodiment, and power having a frequency fixed at a predetermined value between f max and f min is applied to the selected coil 411.
 このような構成において、インピーダンス制御部430によりコイルコアを変位させてコイルのインピーダンスを変化させると、それに合わせて分散曲線がシフトし、所定周波数で所望の共振状態になる。
 これにより、所望の受電装置280に効率よく電力を供給できる。
In such a configuration, when the impedance control unit 430 displaces the coil core to change the impedance of the coil, the dispersion curve shifts accordingly, and a desired resonance state is obtained at a predetermined frequency.
Thereby, power can be efficiently supplied to the desired power receiving apparatus 280.
 (さらなるビーム集中の実現)
 上記第1実施形態、第2実施形態、第3実施形態においては、送電部に生じる電磁伝搬波を定在波になるようにし、この定在波の腹の数をコントロールすることによって所望の受電装置にのみ効率よく給電できるようにした。
 本発明者らは、鋭意研究によりアイデアを進展させ、所望の受電装置にさらに効率よくビームを集中させる方法を探求し、これを成した。
(Realization of further beam concentration)
In the first embodiment, the second embodiment, and the third embodiment, the electromagnetic propagation wave generated in the power transmission unit is made to be a standing wave, and desired power reception is performed by controlling the number of antinodes of the standing wave. Efficient power can be supplied only to the device.
The inventors of the present invention have developed the idea through intensive research, and have searched for a method for concentrating the beam more efficiently on a desired power receiving apparatus.
 (理論的背景)
 本発明者らは、もっとも参考になる直近の知見として、Anthony Grbicらの研究に着目した。
 (A. Grbic, et. al., Near-Field Beam Focusing Plates and Their Designs," IEEE Trans.on AP. Vol.56, No.10, pp.3158-3165, Oct. 2008)
(Theoretical background)
The present inventors paid attention to the research of Anthony Grbic et al.
(A. Grbic, et. Al., Near-Field Beam Focusing Plates and Their Designs, "IEEE Trans.on AP. Vol.56, No.10, pp.3158-3165, Oct. 2008)
 この文献の概要を簡単に説明する。
 図17に示すように、xy面に平面波源(near-field focusing plate)を設定し、前記平面波源から距離Lだけ離れたところに観測面(focal plane)を設定する。そして、平面波源に、図18のように、振動しながら中心から徐々に減衰する電磁界分布を作ったとする。すなわち、電磁界分布を次の近似式で表されるようにする。
 ここで、q0は波数であって、自由空間における波数k0よりも十分に大きい値であるとする。
 q0>>k0。
An outline of this document will be briefly described.
As shown in FIG. 17, a plane wave source (near-field focusing plate) is set on the xy plane, and an observation plane (focal plane) is set at a distance L from the plane wave source. Then, it is assumed that an electromagnetic field distribution that gradually attenuates from the center while vibrating is created in the plane wave source as shown in FIG. That is, the electromagnetic field distribution is expressed by the following approximate expression.
Here, q 0 is a wave number, which is sufficiently larger than the wave number k 0 in free space.
q0 >> k0.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 このような電界分布を持つ平面波源から電磁伝搬が生じる。
 このような平面波源を、近傍場フォーカシング波源と称することにする。すると、特定の観測面(focal plane)において、図19のように中心付近にのみ著しく大きく、その他の領域では急速に減衰するような電界分布が得られる。
 観測される電界分布を式で表すと、次のようになる。
Electromagnetic propagation occurs from a plane wave source having such an electric field distribution.
Such a plane wave source is referred to as a near-field focusing wave source. Then, in a specific observation plane (focal plane), an electric field distribution that is remarkably large only near the center as shown in FIG. 19 and rapidly attenuates in other regions is obtained.
The observed electric field distribution is expressed as follows.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 したがって、もし前記の平面波源を実現させることができれば、図1で説明した給電システムも実現できる。
 なお、平面波源の電磁界分布を数7の様に表したが、この形状にのみ限定されるものではなく、振動しながら中心から徐々に減衰する電磁界分布であれば、図19のように中心にエネルギーが集中する電磁界分布が得られると考えられる。
Therefore, if the plane wave source can be realized, the power supply system described with reference to FIG. 1 can also be realized.
Although the electromagnetic field distribution of the plane wave source is expressed as shown in Equation 7, it is not limited to this shape. If the electromagnetic field distribution gradually attenuates from the center while vibrating, as shown in FIG. It is considered that an electromagnetic field distribution in which energy is concentrated at the center can be obtained.
 ここで解決すべき課題となるのは、前記の平面波源(近傍場フォーカシング波源)をどのように実現するかである。
 そこで、共鳴体周期構造をメタマテリアルとして利用することにより、前記平面波源(近傍場フォーカシング波源)を実現する。
The problem to be solved here is how to realize the plane wave source (near-field focusing wave source).
Therefore, the plane wave source (near-field focusing wave source) is realized by using the resonator periodic structure as a metamaterial.
 (第4実施形態)
 第4実施形態を図20に示す。
 図20の構成自体は、第2実施形態の図15と同じである。すなわち、電力供給システム500は、送電部510と、インピーダンス制御部530と、給電部520と、調整手段540と、受電装置280と、を備えている。そして、送電部510は共鳴体としてのコイル511によって構成され、コイル511には可変抵抗512が付加されている。
 コイル511の可変抵抗512は、インピーダンス制御部530によってその抵抗値が個別に制御されるようになっている。
(Fourth embodiment)
A fourth embodiment is shown in FIG.
The configuration itself of FIG. 20 is the same as FIG. 15 of the second embodiment. That is, the power supply system 500 includes a power transmission unit 510, an impedance control unit 530, a power feeding unit 520, an adjustment unit 540, and a power receiving device 280. The power transmission unit 510 includes a coil 511 serving as a resonance body, and a variable resistor 512 is added to the coil 511.
The resistance value of the variable resistor 512 of the coil 511 is individually controlled by the impedance control unit 530.
 調整手段540は、ユーザの操作に応じて、給電するコイルの選定、給電電力の周波数値、および、各コイルのインピーダンス、を調整する。 The adjusting means 540 adjusts selection of a coil to be fed, frequency value of the feeding power, and impedance of each coil according to a user operation.
 この構成において、例えば、図20のように三つある受電装置280のうちの真ん中にだけ給電したいとする。
 ユーザが調整手段540にて給電対象の受電装置280を選択する。そして、給電部520から送電部510のコイル511に給電を行うのであるが、このとき、給電部520は、給電対象である受電装置280の直下に位置するコイル511に給電する。
 また、給電部520は、送電部510の共鳴体周期構造をメタマテリアルとして扱える範囲の周波数(fmax>f>fmin)を印加する。
 そして、インピーダンス制御部530は、給電を受けるコイルを振動の中心として、中心から離れるに従って定在波(電磁伝搬波)の振幅が減衰するように各コイルのインピーダンスを設定する。
 例えば、送電部での伝送損失をある程度大きく、例えば、Q値が100以下になるようにする。
 さらに、調整手段540により、電磁伝搬波が、定在波となり、かつ、中心から離れるに従って減衰するように、周波数およびインピーダンスを調整する。
 すると、図12Bに示した定在波のパターンに比べ、図21に示すように、中心から離れるに従って振幅が減衰する定在波(電磁ホッピング波)が得られる。
 このようにして共鳴体周期構造を用いて、前記近傍場フォーカシング波源を実現することができる。
 これにより、所望の受電装置280にだけ効率よく給電を集中させる電力供給システムを実現することができる。
In this configuration, for example, assume that power is supplied only to the middle of three power receiving devices 280 as shown in FIG.
The user selects the power receiving device 280 to be supplied with the adjusting unit 540. Then, power is supplied from the power supply unit 520 to the coil 511 of the power transmission unit 510. At this time, the power supply unit 520 supplies power to the coil 511 positioned immediately below the power receiving device 280 that is the power supply target.
In addition, the power feeding unit 520 applies a frequency (f max >f> f min ) within a range in which the resonant body periodic structure of the power transmission unit 510 can be handled as a metamaterial.
Then, the impedance control unit 530 sets the impedance of each coil so that the amplitude of the standing wave (electromagnetic propagation wave) is attenuated with the coil to which power is supplied as the center of vibration, and away from the center.
For example, the transmission loss in the power transmission unit is increased to some extent, for example, the Q value is set to 100 or less.
Further, the adjusting means 540 adjusts the frequency and impedance so that the electromagnetic propagation wave becomes a standing wave and is attenuated as it moves away from the center.
Then, as compared with the standing wave pattern shown in FIG. 12B, as shown in FIG. 21, a standing wave (electromagnetic hopping wave) whose amplitude attenuates as the distance from the center is obtained.
In this way, the near-field focusing wave source can be realized by using the resonator periodic structure.
As a result, it is possible to realize a power supply system that efficiently concentrates power feeding only on a desired power receiving device 280.
 (第5実施形態)
 次に、本発明の第5実施形態を説明する。
 第5実施形態の基本コンセプトは第4実施形態と同じであるが、近傍場フォーカシング波源を実現させるための構成に違いがある。
 第5実施形態を図22に示す。
 図22において、電力供給システム600は、送電部610と、インピーダンス制御部630と、給電部620と、調整手段640と、振動パターン設定部650と、受電装置280と、を備える。
 送電部610は、共鳴体としてのコイル611によって構成されており、各コイル611には可変抵抗612が組み込まれている。
 この可変抵抗612は、オープン(ハイインピーダンス)と、ショート(ローインピーダンス)と、ON(中間インピーダンス)と、の3状態を切り換えできるようになっている。
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described.
The basic concept of the fifth embodiment is the same as that of the fourth embodiment, but there is a difference in the configuration for realizing the near-field focusing wave source.
A fifth embodiment is shown in FIG.
In FIG. 22, a power supply system 600 includes a power transmission unit 610, an impedance control unit 630, a power feeding unit 620, an adjustment unit 640, a vibration pattern setting unit 650, and a power receiving device 280.
The power transmission unit 610 includes a coil 611 serving as a resonance body, and a variable resistor 612 is incorporated in each coil 611.
The variable resistor 612 can be switched between three states: open (high impedance), short (low impedance), and ON (intermediate impedance).
 振動パターン設定部650は、送電部610における電磁界の振動パターンを設定する。
 ここで、振動パターンは、電磁界が存在して振動の腹となる部分と、電磁界が存在せず振動の節となる部分と、の繰り返しで構成される。
 すなわち、振動パターン設定部650は、どのコイル611が振動の腹となり、どのコイル611が振動の節となるか、のパターンを設定する。
 例えば、図22では、送電部610のコイル611を、三つずつのコイルで構成されるユニット613Aと、ユニット613Aとユニット613Aとの間に挟まれる一つのコイルの部分613Nと、に分けた例を示している。そして、三つのコイルからなるユニット613Aを振動の腹とし、その間のコイル(613N)を振動の節とする。
Vibration pattern setting unit 650 sets an electromagnetic field vibration pattern in power transmission unit 610.
Here, the vibration pattern is composed of a repetition of a portion where an electromagnetic field exists and becomes an antinode of vibration, and a portion where no electromagnetic field exists and becomes a node of vibration.
That is, the vibration pattern setting unit 650 sets a pattern of which coil 611 is a vibration antinode and which coil 611 is a vibration node.
For example, in FIG. 22, the coil 611 of the power transmission unit 610 is divided into a unit 613A composed of three coils and a single coil portion 613N sandwiched between the units 613A and 613A. Is shown. A unit 613A composed of three coils is used as a vibration antinode, and a coil (613N) between them is used as a vibration node.
 図23Aおよび図23Bは、振動パターンの他の例である。
 図23Aでは、送電部610のコイル611を、5つずつのコイルで構成されるユニット614と、ユニット614とユニット614との間に挟まれる二つのコイルと、に分けた例である。
 なお、振動の腹となるユニットが二つのコイルで構成されてもよく、あるいは4つや5つ以上のコイルで構成されてもよい。
 振動の節となるコイルが二つ以上であってもよい。
 または、図23Bのように、振動の腹となるコイルと、振動の節となるコイルと、が一つずつ交互になるようにしてもよい。
 以後、振動の腹となるコイルのユニットを腹部ユニットとし、振動の節となるコイルのユニットを節部ユニットとする。
 繰り返しになるが、腹部ユニットが一つのコイルで構成されてもよく、また、節部ユニットが一つのコイルで構成されてもよい。
FIG. 23A and FIG. 23B are other examples of vibration patterns.
FIG. 23A shows an example in which the coil 611 of the power transmission unit 610 is divided into a unit 614 composed of five coils and two coils sandwiched between the unit 614 and the unit 614.
The unit that becomes the antinode of vibration may be composed of two coils, or may be composed of four or five or more coils.
There may be two or more coils serving as vibration nodes.
Alternatively, as shown in FIG. 23B, the coil that becomes the antinode of the vibration and the coil that becomes the node of the vibration may be alternately arranged one by one.
Hereinafter, a coil unit that becomes a vibration antinode is referred to as an abdominal unit, and a coil unit that becomes a vibration node is referred to as a node unit.
Again, the abdominal unit may be composed of one coil, and the node unit may be composed of one coil.
 給電部620の電力印加部622は、振動の腹となる腹部ユニット613Aに給電する。
 このとき、電力印加部622は、振動の節となる節部ユニット613Nには給電しない。
 また、隣り合う腹部ユニット613A同士は逆相になるように給電する。
 また、給電するコイル611ごとに電力の大小を制御できるようになっている。
The power application unit 622 of the power supply unit 620 supplies power to the abdominal unit 613A that is the antinode of vibration.
At this time, the power application unit 622 does not supply power to the node unit 613N that becomes a node of vibration.
Further, power is supplied so that adjacent abdominal units 613A are in opposite phases.
Further, the magnitude of power can be controlled for each coil 611 to be fed.
 インピーダンス制御部630は、各コイル611の可変抵抗612の抵抗値を制御する。
 ここで、給電を受けるコイル611と同じユニット613Aに含まれるが給電を受けないコイル611については、その抵抗値をロー(ショート)にする。
 また、振動の節となる節部ユニット613Nのコイル611については、その抵抗値をハイ(オープン)にする。
The impedance control unit 630 controls the resistance value of the variable resistor 612 of each coil 611.
Here, the resistance value of the coil 611 that is included in the same unit 613A as the coil 611 that receives power supply but does not receive power supply is set to low (short).
Further, the resistance value of the coil 611 of the node unit 613N, which is a node of vibration, is set high (open).
 調整手段640は、ユーザの操作に応じて、振動パターンの設定、給電するコイルの選定、給電電力の周波数値、および、各コイルのインピーダンス、を調整する。 The adjusting means 640 adjusts the vibration pattern setting, the selection of the coil to be fed, the frequency value of the feeding power, and the impedance of each coil according to the user's operation.
 このような構成において、所望の受電装置280に給電する場合について説明する。
 ユーザが調整手段640にて給電対象の受電装置280を選択する。
 まず、振動パターン設定部650が送電部610のコイルを腹部ユニット613Aと節部ユニット613Nとに分ける。
 このとき、給電対象である受電装置280の直下に一つの腹部ユニット613Aがくるようにする。
 この腹部ユニット613Aが近傍focusing波源の中心になる。
A case where power is supplied to a desired power receiving device 280 in such a configuration will be described.
The user selects the power receiving device 280 to be supplied with the adjusting unit 640.
First, the vibration pattern setting unit 650 divides the coil of the power transmission unit 610 into an abdominal unit 613A and a node unit 613N.
At this time, one abdominal unit 613A is placed directly under the power receiving device 280 to be fed.
This abdominal unit 613A is the center of the near focusing wave source.
 そして、インピーダンス制御部630が、腹部ユニット613Aのうちのいずれかのコイル611、好ましくは真ん中のコイル611を給電用のコイルとしてインピーダンスをONにする。
 さらに、給電を受けるコイルの両隣のコイル611の抵抗値をショート(ロー)にする。
 さらに、節部ユニット613Nのコイル611の抵抗値をオープン(ハイ)にする。
Then, the impedance control unit 630 turns on the impedance by using any one of the coils 611 in the abdominal unit 613A, preferably the middle coil 611 as a power feeding coil.
Further, the resistance value of the coil 611 on both sides of the coil to be supplied with power is shorted (low).
Further, the resistance value of the coil 611 of the node unit 613N is opened (high).
 そして、電力印加部622から給電用のコイルに給電する。
 このとき、受電装置280の直下の腹部ユニット613Aが振動の中心になり、この中心から離れるに従って振動の振幅が減衰するように腹部ユニットごとの供給電力を調整する。
 さらに、供給する電力の周波数としては、一つの腹部ユニットで定在波が生じるように調整する。
 図22では三つのコイルで定在波が生じるようにする。
 ここで、一つの腹部ユニットを構成する三つのコイルが同相になる(節の数がゼロ)ようにしてもよい。
 そしてさらに、隣同士の腹部ユニット613Aで逆相になるようにする。
 これにより、近傍focusing波源のパターンが実現できる。
The power supply unit 622 supplies power to the power supply coil.
At this time, the abdomen unit 613A immediately below the power receiving device 280 becomes the center of vibration, and the power supplied to each abdomen unit is adjusted so that the amplitude of vibration decreases as the distance from the center decreases.
Furthermore, the frequency of the power to be supplied is adjusted so that a standing wave is generated in one abdominal unit.
In FIG. 22, a standing wave is generated by three coils.
Here, the three coils constituting one abdominal unit may be in phase (the number of nodes is zero).
Further, the abdominal unit 613A adjacent to each other is set in reverse phase.
Thereby, the pattern of the near focusing wave source can be realized.
 このとき、隣り合う腹部ユニット613Aの間には節部ユニット613Nとしてオープンにされたコイル611が存在する。
 したがって、隣り合う腹部ユニット間で電磁ホッピングが生じず、腹部ユニット613Aごとに給電の電力によって振幅および位相を随意にコントロールすることができる。
At this time, the coil 611 opened as the node unit 613N exists between the adjacent abdominal units 613A.
Therefore, electromagnetic hopping does not occur between adjacent abdominal units, and the amplitude and phase can be arbitrarily controlled by the power supplied to each abdominal unit 613A.
 ここで、例えば第4実施形態(図20)のように、中央のコイルに給電することと、各コイルの損失(インピーダンス)を制御することと、によって中心から離れるに従って振幅が減衰する波を実現したいとしても、コイル間距離が近いとコイル間結合が強すぎて波の形を制御することが存外に難しくなってくる。
 この点、本第5実施形態においては、腹部ユニット613A同士の間に節部ユニット613Nとしてオープン(インピーダンス大)のコイルが存在するようにする。
 これにより、腹部ユニット613A間のコイル間結合を切り、腹部ユニット613Aごとに振幅の大きさおよび位相を意のままにコントロールすることができる。
Here, for example, as in the fourth embodiment (FIG. 20), by supplying power to the central coil and controlling the loss (impedance) of each coil, a wave whose amplitude is attenuated as it moves away from the center is realized. However, if the distance between the coils is short, the coupling between the coils is too strong, and it becomes extremely difficult to control the wave shape.
In this regard, in the fifth embodiment, an open (high impedance) coil exists as the node unit 613N between the abdominal units 613A.
Thereby, the coupling between the coils between the abdominal units 613A can be cut, and the amplitude and phase of each abdominal unit 613A can be controlled at will.
 (第6実施形態)
 第6実施形態を説明する。
 第6実施形態の基本的構成は第5実施形態と同じであるが、腹部ユニットだけが配置され、節部には共鳴体(コイル)が配置されず隙間になっている点に違いがある。
 図24に示すように、第6実施形態の電力供給システム700においては、送電部710に腹部ユニット713Aとなるコイルだけが配置され、隣の腹部ユニットとの間に所定の隙間が設けられている。
 この隙間を挟むコイル同士で電磁ホッピングが生じない程度に隙間の間隔は設計されている。そして、この隙間が波の節になる。
 このように第6実施形態では、振動の腹になる部分と節になる部分とがコイルの配置によって規定されている。
 したがって、逐一振動パターンを設定するための振動パターン設定部650は必要がなく、調整手段740の中にコイルの配置構造が振動パターンとして予め設定記憶されている。
 また、電力印加部722が電力を供給するコイル(電力供給用コイル)も予め固定的に決まっている。
(Sixth embodiment)
A sixth embodiment will be described.
Although the basic configuration of the sixth embodiment is the same as that of the fifth embodiment, there is a difference in that only the abdominal unit is disposed and no resonator (coil) is disposed in the node portion and a gap is formed.
As shown in FIG. 24, in the power supply system 700 of the sixth embodiment, only the coil that becomes the abdominal unit 713A is arranged in the power transmission unit 710, and a predetermined gap is provided between the adjacent abdominal unit. .
The gap interval is designed so that electromagnetic hopping does not occur between the coils that sandwich the gap. And this gap becomes a wave node.
As described above, in the sixth embodiment, the part that becomes the antinode and the part that becomes the node of the vibration are defined by the arrangement of the coils.
Therefore, the vibration pattern setting unit 650 for setting the vibration pattern one by one is not necessary, and the coil arrangement structure is preset and stored as a vibration pattern in the adjusting means 740.
In addition, a coil (power supply coil) to which power is applied by the power application unit 722 is also fixed in advance.
 また、各腹部ユニットでの振動の大きさは給電する電力(電流)の大きさでコントロールするので、各コイルのインピーダンスを制御するインピーダンス制御部は基本的には必要ない。
 なお、コイルのインピーダンスも使って振動の大きさも制御したい場合にはもちろんインピーダンス制御部があってもよい。
Further, since the magnitude of vibration in each abdominal unit is controlled by the magnitude of electric power (current) to be fed, an impedance control unit for controlling the impedance of each coil is basically unnecessary.
Of course, if it is desired to control the magnitude of vibration using the impedance of the coil, an impedance control unit may be provided.
 このような構成において、所望の受電装置280に給電する場合、ユーザが調整手段740にて給電対象の受電装置280を選択する。
 すると、給電対象である受電装置280の直下にある一つの腹部ユニット713Aを近傍focusing波源の中心に設定する。
In such a configuration, when power is supplied to a desired power receiving device 280, the user selects the power receiving device 280 to be supplied by the adjusting unit 740.
Then, one abdominal unit 713A immediately below the power receiving device 280 to be fed is set at the center of the near focusing wave source.
 そして、電力印加部622から給電用のコイルに給電する。
 このとき、受電装置280の直下の腹部ユニット713Aが振動の中心になり、この中心から離れるに従って振動の振幅が減衰するように腹部ユニットごとの供給電力を調整する。
 ここで、隣り合う腹部ユニット713Aの間には隙間714が存在するので、隣り合う腹部ユニット間で電磁ホッピングが生じず、腹部ユニット713Aごとに給電の電力によって振幅および位相を随意にコントロールすることができる。
The power supply unit 622 supplies power to the power supply coil.
At this time, the abdomen unit 713A immediately below the power receiving device 280 becomes the center of vibration, and the power supplied to each abdomen unit is adjusted so that the amplitude of vibration decreases as the distance from the center decreases.
Here, since there is a gap 714 between adjacent abdominal units 713A, electromagnetic hopping does not occur between adjacent abdominal units, and the amplitude and phase can be arbitrarily controlled by the power supplied to each abdominal unit 713A. it can.
 (変形例)
 上記実施形態においては、主として、送電部に一つの定在波を発生させる場合を示した。
 (第5実施形態における波の数の数え方は、いろいろ考えられるところであるが、本明細書では、腹部ユニットごとに一つ、二つと数えるのではなく、中心から端に向けて減衰する一連の波を一つと数えた。)
 ここで、送電部を構成する各コイルに付加した可変抵抗や可変容量、あるいはスイッチを制御して、どのコイルに電磁ホッピングを生じさせるかを選択できる。
 したがって、どのコイルからどのコイルまでに一つ定在波を生じさせるかは任意に選択できるし、送電部を伝わる電力の方向もルーティングできる。
 例えば、図25に示すように、一つの送電部に、複数の定在波を様々な方向に同時に発生させることもできるのであり、所望の位置、所望の個数の受電装置に対して的確に効率よく給電を行うことができる。
(Modification)
In the said embodiment, the case where one standing wave was mainly generated in the power transmission part was shown.
(There are various ways to count the number of waves in the fifth embodiment, but in this specification, instead of counting one or two for each abdominal unit, a series of attenuation from the center to the end is performed. Counted one wave.)
Here, it is possible to select which coil causes electromagnetic hopping by controlling a variable resistor, a variable capacitor, or a switch added to each coil constituting the power transmission unit.
Therefore, it can be arbitrarily selected from which coil to which coil one standing wave is generated, and the direction of power transmitted through the power transmission unit can also be routed.
For example, as shown in FIG. 25, it is possible to simultaneously generate a plurality of standing waves in various directions in a single power transmission unit, and it is possible to accurately and efficiently achieve a desired position and a desired number of power receiving devices. Power can be supplied well.
 コイルのインピーダンスを制御するにあたっては、コイルコアの誘電率または透磁率を制御してもよく、コイルに可変容量を付加して可変容量の容量値を変化させてもよい。 In controlling the impedance of the coil, the dielectric constant or permeability of the coil core may be controlled, or a variable capacitance may be added to the coil to change the capacitance value of the variable capacitance.
 上記実施形態においては、共鳴体としてスプリング型のコイルを例示した。
 共鳴体としては、例えば、図26Aに示す平面スパイラル状のコイルを用いてもよい。
 平面スパイラル状のコイル201は、従来のプリント回路基板に実装できるという利点がある。
 すなわち、プリント基板のおもて面または裏面にスパイラルコイル201を一つ実装しておいてもよい。
 または、平面スパイラル状のコイルをプリント基板の両面に実装してもよい。例えば、図26Aの平面スパイラル状のコイル201をプリント基板の表側に実装する。そして、図26Bのコイル202をプリント基板の裏面に実装する。
 図26Bは、プリント基板の裏面に実装されるコイル202を表面側から透視したものである。
 このとき、接合点203で表面側コイル201と裏面側コイル202とを導体接続することにより、両面実装として一続きのスパイラル形状を構成することができる。
 ここでは表面実装と両面実装との場合を説明したが、多層基板においても各々の層のスパイラル導体と層間を接続する導体とにより、多層基板上で様々なスパイラル導体実装が可能となる。
 また、図26A、図26Bでは、矩形であって矩形の各辺が直線的形状であるスパイラルコイルを例示したが、曲線のスパイラルであっても良いことは言うまでもない。
In the above embodiment, a spring type coil is exemplified as the resonator.
As the resonator, for example, a planar spiral coil shown in FIG. 26A may be used.
The planar spiral coil 201 has an advantage that it can be mounted on a conventional printed circuit board.
That is, one spiral coil 201 may be mounted on the front surface or the back surface of the printed board.
Alternatively, planar spiral coils may be mounted on both sides of the printed board. For example, the planar spiral coil 201 of FIG. 26A is mounted on the front side of the printed board. Then, the coil 202 in FIG. 26B is mounted on the back surface of the printed board.
FIG. 26B is a perspective view of the coil 202 mounted on the back surface of the printed circuit board from the front surface side.
At this time, a continuous spiral shape can be formed as double-sided mounting by conducting conductor connection between the front side coil 201 and the back side coil 202 at the junction 203.
Although the case of surface mounting and double-sided mounting has been described here, various types of spiral conductors can be mounted on the multilayer substrate by using the spiral conductors of the respective layers and the conductors connecting the layers.
Further, in FIGS. 26A and 26B, a spiral coil having a rectangular shape and each side of the rectangle being linear is illustrated, but it goes without saying that it may be a curved spiral.
 また、スパイラル状コイルが高誘電体基板に実装されていてもよい。または、スパイラル状コイルが磁性体上に実装されていてもよい。これにより、磁束密度を高め、共鳴体(コイル)の小型化を図ることができる。 Further, the spiral coil may be mounted on the high dielectric substrate. Alternatively, a spiral coil may be mounted on the magnetic material. Thereby, magnetic flux density can be raised and size reduction of a resonance body (coil) can be achieved.
 共鳴体の構造は、コイルに限らず、例えば、誘電体共振器であってもよく、あるいは、ダイポールアンテナ構造やモノポールアンテナ構造であってもよい。 The structure of the resonator is not limited to a coil, and may be, for example, a dielectric resonator, or a dipole antenna structure or a monopole antenna structure.
 送電部と受電装置との間は一般的には空気であるが、送電部と受電装置との間に、水、海水、土、壁があってもよい。 The space between the power transmission unit and the power reception device is generally air, but water, seawater, soil, or a wall may be provided between the power transmission unit and the power reception device.
 送電部の共鳴体(コイル)を剛性を有する二枚の基板で挟んで、送電部が曲がらないように剛性を持たせてもよい。
 または、送電部の共鳴体(コイル)を柔軟性を有する二枚のシートで挟んで、送電部が柔軟に曲がるようにしておいてもよい。
The power transmission unit may be provided with rigidity so that the power transmission unit is not bent by sandwiching the resonance body (coil) of the power transmission unit between two rigid substrates.
Alternatively, the power transmission unit may be bent flexibly by sandwiching the resonator (coil) of the power transmission unit between two sheets having flexibility.
 上記第4、第5、第6実施形態において、近傍focusing波源の振動中心は受電装置の直下に位置するコイルである、と表現したが、これは、送電部が天井や側壁に設けられている場合を考慮すると、給電対象となる受電装置に対向する位置にあるコイルのことである。より正確に表現すると、給電対象となる受電装置から送電部に下ろした垂線の足に位置するコイルを近傍focusing波源の振動中心とする、ということである。 In the fourth, fifth, and sixth embodiments, the vibration center of the near-focusing wave source is expressed as a coil that is located immediately below the power receiving device. This is because the power transmission unit is provided on the ceiling or side wall. In consideration of the case, the coil is located at a position facing the power receiving device to be fed. More precisely, the coil located at the foot of the perpendicular line from the power receiving device to be fed to the power transmission unit is used as the vibration center of the nearby focusing wave source.
 本明細書において"周期構造"の用語を用い、送電部が複数の共鳴体による周期構造で構成されている、と表現した。
 ここで、周期構造とは、厳密な一定ピッチの配列構造だけに限定解釈されるべきではない。
 厳密に一定周期でなくてもよく、本発明の全趣旨からみて送電部をメタマテリアルとして扱える範囲で共鳴体の配列ピッチがずれることは許容される。
 また、実際の製品とする場合にあっては、製造上の制約も考慮したうえで共鳴体の配列ピッチが設計されるので、製造条件に応じて配列周期がずれることは許容される。
In this specification, the term “periodic structure” is used, and the power transmission unit is expressed as a periodic structure including a plurality of resonators.
Here, the periodic structure should not be construed to be limited to an array structure with a strictly constant pitch.
It does not have to be strictly a constant cycle, and it is allowed that the arrangement pitch of the resonators deviates within a range in which the power transmission unit can be handled as a metamaterial in view of the entire purpose of the present invention.
Further, in the case of an actual product, the arrangement pitch of the resonators is designed in consideration of manufacturing restrictions, so that the arrangement period is allowed to deviate depending on the manufacturing conditions.
 なお、本発明は上記実施形態に限られるものではなく、趣旨を逸脱しない範囲で適宜変更することができる。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2012年1月17日に出願された日本出願特願2012-6928を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-6928 filed on January 17, 2012, the entire disclosure of which is incorporated herein.
100・・・給電システム、110・・・送電部、111・・・共鳴体、112・・・コイル、112h・・・コイル成分、113・・・入力ポート、114・・・出力ポート、120・・・受電装置、130・・・給電部、200・・・電力供給システム、201・・・コイル(表面側コイル)、202・・・コイル(裏面側コイル)、203・・・接合点、210・・・送電部、211・・・コイル、220・・・給電部、221・・・電源、222・・・電力印加部、223・・・周波数制御部、224・・・調整手段、280・・・受電装置、300・・・電力供給システム、310・・・送電部、311・・・コイル、312・・・可変インピーダンス、320・・・給電部、321・・・電源、322・・・電力印加部、323・・・周波数制御部、330・・・インピーダンス制御部、331・・・調整手段、410・・・送電部、411・・・コイル、412・・・コイル、412・・・コイルコア、430・・・インピーダンス制御部、500・・・電力供給システム、510・・・送電部、511・・・コイル、512・・・可変抵抗、520・・・給電部、530・・・インピーダンス制御部、540・・・調整手段、600・・・電力供給システム、610・・・送電部、611・・・コイル、612・・・可変抵抗、613A・・・ユニット(腹部ユニット)、613N・・・節部ユニット、614・・・ユニット、620・・・給電部、622・・・電力印加部、630・・・インピーダンス制御部、640・・・調整手段、650・・・振動パターン設定部。 DESCRIPTION OF SYMBOLS 100 ... Feed system, 110 ... Power transmission part, 111 ... Resonator, 112 ... Coil, 112h ... Coil component, 113 ... Input port, 114 ... Output port, 120 ..Power receiving device, 130 ... Power supply unit, 200 ... Power supply system, 201 ... Coil (front side coil), 202 ... Coil (back side coil), 203 ... Junction point, 210 ... Power transmission unit, 211 ... Coil, 220 ... Power feeding unit, 221 ... Power supply, 222 ... Power application unit, 223 ... Frequency control unit, 224 ... Adjustment means, 280 ..Power receiving device, 300 ... Power supply system, 310 ... Power transmission unit, 311 ... Coil, 312 ... Variable impedance, 320 ... Power feeding unit, 321 ... Power source, 322 ... Power application unit, 323 ... Frequency control unit, 330 ... Impedance control unit, 331 ... Adjustment means, 410 ... Power transmission unit, 411 ... Coil, 412 ... Coil, 412 ... Coil core, 430 ... Impedance control unit, 500 ... Power supply system, 510 ... Power transmission unit, 511 ... Coil, 512 ... Variable resistance, 520 ... Feeding unit, 530 ..Impedance control unit, 540 ... Adjustment means, 600 ... Power supply system, 610 ... Power transmission unit, 611 ... Coil, 612 ... Variable resistance, 613A ... Unit (abdominal unit) , 613N ... Node unit, 614 ... Unit, 620 ... Power feeding unit, 622 ... Power application unit, 630 ... Impedance control unit, 640 ... Adjustment means, 650 ... Vibration Pattern setting section.

Claims (5)

  1.  複数の共鳴体が一次元的または二次元的に周期構造をなすように配列され、共振作用によって電力を隣の共鳴体に伝搬させていくとともに、周囲に電磁界を漏洩させることによって無線による送電を行う送電手段と、
     前記送電手段の一または複数の前記共鳴体に電力を供給する給電手段と、を備え、
     前記送電手段には、給電対象となる受電装置に対向する位置にある前記共鳴体を中心として中心から離れるに従って振動しながら振幅が徐々に減衰する電磁伝搬の定在波を発生させる
     ことを特徴とする電力供給システム。
    A plurality of resonators are arranged in a one-dimensional or two-dimensional periodic structure, and power is propagated to the next resonator by resonance action, and electromagnetic fields are leaked to the surrounding area to transmit power wirelessly. Power transmission means for performing
    Power supply means for supplying power to one or a plurality of the resonators of the power transmission means,
    The power transmission means generates a standing wave of electromagnetic propagation whose amplitude is gradually attenuated while oscillating with the resonance body located at a position facing the power receiving device to be fed as the center moves away from the center. Power supply system.
  2.  請求項1に記載の電力供給システムにおいて、
     前記共鳴体には可変の損失成分が付加され、
     前記給電手段は、給電対象となる受電装置に対向する位置にある前記共鳴体に対して、前記送電手段に電磁伝搬の定在波が生じる周波数で給電を行い、
     当該電力供給システムは、さらに、前記各共鳴体の前記損失成分を可変制御する損失成分制御手段を備え、
     前記損失成分制御手段は、伝送損失によって、電磁伝搬の定在波の振幅を中心から離れるに従って減衰させる
     ことを特徴とする電力供給システム。
    In the power supply system according to claim 1,
    A variable loss component is added to the resonator,
    The power feeding means performs power feeding at a frequency at which a standing wave of electromagnetic propagation is generated in the power transmission means, with respect to the resonator in a position facing a power receiving device to be power fed,
    The power supply system further includes loss component control means for variably controlling the loss component of each resonator.
    The power supply system according to claim 1, wherein the loss component control means attenuates the amplitude of the standing wave of electromagnetic propagation as the distance from the center increases due to transmission loss.
  3.  請求項2に記載の電力供給システムにおいて、
     前記送電手段のQ値は100以下である
     ことを特徴とする電力供給システム。
    In the power supply system according to claim 2,
    The Q value of the power transmission means is 100 or less.
  4.  請求項2または請求項3に記載の電力供給システムにおいて、
     前記共鳴体は、可変抵抗が付加されたコイルであり、
     前記損失成分制御手段は、前記可変抵抗の抵抗値を可変制御する
     ことを特徴とする電力供給システム。
    In the power supply system according to claim 2 or claim 3,
    The resonator is a coil to which a variable resistance is added,
    The power supply system, wherein the loss component control means variably controls a resistance value of the variable resistor.
  5.  請求項1から請求項4のいずれかに記載の電力供給システムにおいて、
     さらに、前記送電手段からの送電電力を受電する受電装置を備える
     ことを特徴とする電力供給システム。
    In the electric power supply system in any one of Claims 1-4,
    Furthermore, the power supply system characterized by including the power receiving apparatus which receives the transmitted power from the said power transmission means.
PCT/JP2012/007311 2012-01-17 2012-11-14 Power supply system WO2013108321A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-006928 2012-01-17
JP2012006928 2012-01-17

Publications (1)

Publication Number Publication Date
WO2013108321A1 true WO2013108321A1 (en) 2013-07-25

Family

ID=48798779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007311 WO2013108321A1 (en) 2012-01-17 2012-11-14 Power supply system

Country Status (2)

Country Link
JP (1) JPWO2013108321A1 (en)
WO (1) WO2013108321A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089520A (en) * 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd Power supply system
JP2010114961A (en) * 2008-11-04 2010-05-20 Sony Corp Power communication device, power communication system, power communicating method, and program
JP2010200594A (en) * 2009-01-27 2010-09-09 Panasonic Electric Works Co Ltd Noncontact power transmission system
JP2011010546A (en) * 2007-09-25 2011-01-13 Powermat Ltd Centrally controlled inductive power transmission platform
JP2011199975A (en) * 2010-03-18 2011-10-06 Nec Corp Device, system and method for noncontact power transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010546A (en) * 2007-09-25 2011-01-13 Powermat Ltd Centrally controlled inductive power transmission platform
JP2009089520A (en) * 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd Power supply system
JP2010114961A (en) * 2008-11-04 2010-05-20 Sony Corp Power communication device, power communication system, power communicating method, and program
JP2010200594A (en) * 2009-01-27 2010-09-09 Panasonic Electric Works Co Ltd Noncontact power transmission system
JP2011199975A (en) * 2010-03-18 2011-10-06 Nec Corp Device, system and method for noncontact power transmission

Also Published As

Publication number Publication date
JPWO2013108321A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5698626B2 (en) Wireless power receiving device, wireless power feeding device, and wireless power feeding system
KR101167401B1 (en) Apparatus for transmitting and receiving wireless energy using meta material structure having zero refractive index
US10566133B2 (en) Apparatus and method for wireless power transfer
JP5172050B2 (en) Wireless power transmission device
JP2012182981A (en) Wireless energy exchange system and method
JPWO2017188172A1 (en) Wireless communication device and antenna device
CN104488166A (en) Method and apparatus for 3d orientation-free wireless power transfer
JP5667019B2 (en) Wireless power transmission apparatus and method
US9887681B2 (en) Power transmission system, transmission apparatus, receiving apparatus, and power transmission method
US10224750B2 (en) Wireless power transmission apparatus
JP6437954B2 (en) Wireless power supply method
WO2013108325A1 (en) Power supply system
JP6270219B2 (en) Power supply
US20150180241A1 (en) Computer modeling for resonant power transfer systems
JP5952662B2 (en) Wireless power transmission device
WO2013108324A1 (en) Power supply system
JP2013099090A (en) Electromagnetic wave propagation device and power transmission system
WO2013108321A1 (en) Power supply system
CN103703613A (en) Apparatus and methods
WO2014030440A1 (en) Power supply device
KR20220065553A (en) Reduction coil for wireless charging and, electromagnetic wave reduction apparatus including reduction coil
Shi et al. Parallel strips coupled split ring resonators for a desktop wireless charging system overcoming irregular route restrictions
JP2013247718A (en) Wireless power transmission device
Mohamed et al. Design of multi-dimensional wireless power transfer systems
WO2013128518A1 (en) Power transmitting device, power receiving device, power supply system, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554091

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12865836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE