WO2014030440A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2014030440A1
WO2014030440A1 PCT/JP2013/068309 JP2013068309W WO2014030440A1 WO 2014030440 A1 WO2014030440 A1 WO 2014030440A1 JP 2013068309 W JP2013068309 W JP 2013068309W WO 2014030440 A1 WO2014030440 A1 WO 2014030440A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
coil
resonators
transmission unit
Prior art date
Application number
PCT/JP2013/068309
Other languages
French (fr)
Japanese (ja)
Inventor
小林 直樹
福田 浩司
義哲 成末
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014531537A priority Critical patent/JPWO2014030440A1/en
Publication of WO2014030440A1 publication Critical patent/WO2014030440A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to a power supply system, and more specifically, to a system that supplies power to a power receiving device without contact with a power transmission line.
  • Patent Document 1 discloses a configuration in which an electromagnetic wave propagates in an electromagnetic wave transmission sheet and an electromagnetic field leaking from the sheet is supplied to the power receiving device.
  • Patent Document 3 discloses a method of transmitting power from a primary coil on the power supply side to a secondary coil on the load side by magnetic coupling.
  • Patent Document 5 discloses a power transmission method using a microwave beam.
  • Non-Patent Document 1 This concept is cited from the disclosure by Non-Patent Document 2.
  • the electronic device here includes, for example, a power transmission sheet, and there is a utilization form in which power is supplied to the small electronic device from the power transmission sheet.
  • a plurality of coils 14 are arranged in a plane and embedded in a wall or floor 13 of room 10. And it utilizes that the coils which adjoin in the direction orthogonal to a central axis also resonate. That is, if power is supplied to one of the coils, the electric power hops to the adjacent coil. Electric power is propagated to adjacent coils, and an electromagnetic field is leaked from the coil 14 into the room 10. Then, power can be supplied to a plurality of electronic devices 11 and a desk-top electronic device 12 arranged in a wide area of the room 10. Thereby, it can be expected that operations such as wiring of the power supply line, charging, battery replacement and the like are unnecessary.
  • JP 2008-66841 A JP 2007-281678 A JP-A-7-322534 US7825543 Specification JP 2008-259392 A
  • An object of the present invention is to provide a power supply system that can supply power efficiently without depending on the position of a power receiving device in wireless power feeding.
  • a plurality of resonators are arranged so as to form a one-dimensional or two-dimensional periodic structure, and power is propagated to an adjacent resonator by a resonance action
  • a power transmission unit that wirelessly transmits power by leaking an electromagnetic field
  • a power supply unit that supplies power to one or a plurality of the resonators of the power transmission unit
  • a power receiving device that receives transmission power from the power transmission unit, Is provided.
  • a capacitive element is loaded on the resonator arranged at the end.
  • FIG. 1 is a perspective view showing two examples of a power supply system to be realized in the present invention.
  • FIG. 2 is a diagram showing an example of a state in which electromagnetic propagation waves are generated in a periodic structure formed by a plurality of resonators arranged one-dimensionally.
  • FIG. 3 is a diagram showing a dispersion curve representing the relationship between the frequency (f) and the wave number (k) of electromagnetic propagation waves that can be generated in a periodic structure with a plurality of resonators.
  • FIG. 4 shows a single coil having an input port.
  • FIG. 5 is an equivalent circuit diagram of the coil of FIG.
  • FIG. 6 is a diagram showing a model in which two coils are arranged.
  • FIG. 7 is an equivalent circuit diagram of a circuit in which a plurality of coils are arranged at a constant pitch.
  • FIG. 8 is an equivalent circuit diagram for one unit (one cycle) of a periodic structure formed by a plurality of coils.
  • FIG. 9 is a diagram for explaining vibration in an example in which nine coils are arranged one-dimensionally.
  • FIG. 10 is a diagram showing a state where all of the plurality of coils arranged one-dimensionally vibrate in the same phase.
  • FIG. 11 is a diagram showing a state in which all of the plurality of coils arranged one-dimensionally vibrate in reverse phase.
  • FIG. 12 is a characteristic diagram showing an example of a dispersion curve.
  • FIG. 13 is a diagram showing the relationship between the frequency and the vibration state of each of the plurality of coils.
  • FIG. 14 is a diagram showing a termination portion of the equivalent circuit diagram of FIG.
  • FIG. 15 is a diagram showing a terminal portion of the equivalent circuit diagram of FIG.
  • FIG. 16 is a diagram showing (a) a capacitive element composed of a capacitance and (b) a capacitive element composed of an impedance inverter and an inductive element as an example of (c) a capacitive element loaded on a coil. is there.
  • FIG. 17 is a view showing a coil loaded with a capacitive element.
  • FIG. 18 is a diagram showing an example in which capacitive elements are loaded on coils at both ends of a one-dimensional coil array.
  • FIG. 19 is a diagram comparing current distributions when a capacitor is loaded on the coils at both ends of the coil arrangement and when a capacitor is not loaded.
  • FIG. 20 is a perspective view showing an embodiment of the present invention.
  • FIG. 21 is a diagram showing two examples of the coil arrangement in one embodiment of the present invention.
  • FIG. 22 is a diagram showing (a) a planar spiral coil and (b) a coil mounted on the back surface of the printed board as examples of the coil used in the embodiment of the present invention.
  • FIG. 23 is a diagram for explaining the concept of the electromagnetic resonance type multi-hop wireless power transmission method according to the related art.
  • FIG. 1A and FIG. 1B show two examples of a power supply system 100 to be realized by the present invention.
  • the power supply system 100 includes a power transmission unit 110, a power reception device 120, and a power supply unit 130.
  • the power receiving device 120 is not in electrical contact with the power transmission unit 110.
  • the power transmission unit 110 includes a plurality of resonators 111, and the plurality of resonators 111 are arranged two-dimensionally (planarly).
  • a conductor coil is typical.
  • the resonator is a helical coil 112.
  • the power transmission unit 110 may be configured by, for example, a room wall or a floor itself. That is, for example, a plurality of resonators 111 (that is, the coils 112) are embedded in one surface of the floor, wall, or ceiling 115 of the room and used as the power transmission unit 110.
  • the material of the floor, wall, or ceiling 115 may be anything as long as it does not impair the function as the power transmission unit.
  • the power feeding unit 130 supplies power to one or more resonators 111. An alternating current may flow from the power supply unit 130 to the resonator 111, or an oscillating magnetic field may be applied to the resonator 111.
  • electromagnetic propagation wave this wave is referred to as “electromagnetic propagation wave”. That is, the present inventors expressed the relationship between the frequency (f) and the wave number (k) of the electromagnetic propagation wave that can occur in the periodic structure of the coil as a dispersion curve as shown in FIG. 2d represents one cycle length of the periodic structure, and is, for example, a center-to-center distance between adjacent coils. Therefore, “wave number (k) ⁇ one cycle length (d)” which is the horizontal axis of the graph of FIG. 3 means a phase change per cycle length. In the dispersion curve of FIG.
  • the coil periodic structure can be treated as a metamaterial at a frequency f between f max and f min .
  • the inventors have come up with a configuration in which an arbitrary electric field distribution is generated in the periodic structure (transmission line).
  • Theory for obtaining the dispersion curve of electromagnetic wave propagation A method of obtaining a dispersion curve of electromagnetic propagation waves generated there by treating a resonator periodic structure in which resonators are periodically arranged as a metamaterial will be described.
  • a spring type coil is taken as an example of the resonator.
  • the resonance frequency fres, inductance L, capacitance C, and resistance R of a single coil are obtained, and further, a coupling constant M when two coils are arranged adjacent to each other is obtained.
  • the characteristics of a single coil can be calculated from the frequency dependence of impedance Z by inserting and connecting the input port 113 in the coil 112 (in the middle of coil wiring) as shown in FIG. That is, the circuit of FIG. 4 is replaced with the equivalent circuit of FIG. 5 in which the capacitance component and the resistance component are extracted. Then, the frequency dependence of the real part Re (Z) and the imaginary part Im (Z) of the impedance Z is obtained by electromagnetic field analysis or actual measurement.
  • the impedance and the parameter of the equivalent circuit have the relationship of the following formula (1).
  • the resonance frequency f res is obtained from the point at which Im (Z) is obtained.
  • An inductance L and a capacitance C are obtained by the following equation (2) using two points in the vicinity of the resonance frequency f res .
  • Two points in the vicinity of the resonance frequency f res are defined as (f 1 , Im (Z 1 )) and (f 2 , Im (Z 2 )).
  • the mutual inductance of the two coils 112 and 112 is obtained.
  • the splitting of the resonance frequency is confirmed using a model in which two coils 112 and 112 are arranged. In FIG.
  • the splitting can be performed by changing the internal resistance of the input port 113 and the output port 114.
  • the resonance frequency f res is split into a frequency f a and a frequency f b .
  • the coupling constant k can be calculated from the two split frequencies f a and f b by the following equation (3).
  • the mutual inductance M is obtained from the coupling constant k and the inductance L by the following relational expression (4).
  • FIG. 7 when a plurality of coils 112 are arranged horizontally at a constant pitch, an equivalent circuit thereof can be drawn as shown in FIG.
  • one coil 112 is depicted as being divided into two coil components 112h and 112h. Therefore, the inductance of one coil component 112h is L / 2. In this case, the resistance R is ignored.
  • one unit (one unit) of this periodic structure can be redrawn in the equivalent circuit of FIG. 8 by taking the mutual inductance M as a non-negative value. Then, one unit (one unit) of the periodic structure can be expressed by the following formula (5) using a T matrix. Let d be the periodic interval (distance between the centers of the coils) of this periodic structure.
  • the wave number in the traveling direction of the electromagnetic propagation wave traveling through the metamaterial is k x .
  • k x ⁇ d represents the phase of the wave for each period, and the following equation (6) is established.
  • the frequency band (f min ⁇ f ⁇ max ) of the electromagnetic field wave generated in the metamaterial is obtained. That is, the dispersion curve of FIG. 3 can be drawn in the frequency band (f min ⁇ f ⁇ f max ).
  • the resonance condition is satisfied, the following expression (7) is established.
  • the phase X is 0 ⁇ X ⁇ ⁇
  • FIG. 9 shows a case where nine coils are arranged in a line at a constant pitch and power is supplied from the power supply unit 130 to the middle coil.
  • the middle fifth coil is a coil that receives power from the power supply unit 130.
  • the frequency of the power supplied from the power supply unit 130 (for example, the frequency of the alternating current) is controlled to be in a resonance state, and a standing wave of electromagnetic propagation waves is generated in the coil periodic structure.
  • the positions of the first, third, fifth, seventh and ninth coils are antinodes of standing waves, and the positions of the second, fourth, sixth and eighth coils are standing waves.
  • m 0 means that all coils are in phase as shown in FIG. In this case, the number of bellies is 1 (the number of nodes is 0).
  • the number of bellies is 9 (the number of nodes is 8).
  • the coil periodic structure is used as the power transmission unit 110, and the number of beams (locations at which the electromagnetic field strength is increased) can be controlled at positions close to the power transmission unit 110.
  • a dispersion curve derived from the equivalent circuit for each period is shown in FIG.
  • the self inductance of the coil is 2.4 ⁇ H
  • the self capacitance is 7.5 pF
  • the mutual inductance is 0.19 ⁇ H.
  • each coil has an internal resistance of 1.8 ⁇ , and the internal resistance of the power feeding port is 50 ⁇ .
  • the horizontal axis represents the coil number, and the vertical axis represents the current value for each coil.
  • relational expression (7) that satisfies the resonance condition described above assumes that both ends of the coil are short-circuited, that is, the current is reflected without phase change.
  • FIG. 7 and FIG. 8 showing the equivalent circuit are viewed by the coil at the end as shown in FIG. 14 and FIG. 15, respectively, the impedance at the circuit end is not an ideal short end but an impedance value corresponding to the mutual inductance value. It can be seen that it is terminated with j ⁇ M (j is a unit imaginary number and ⁇ is an angular frequency).
  • this incomplete short end is a factor that the coil current values at both ends are relatively small with respect to the coil current value near the center as shown in FIG.
  • an element having an impedance value corresponding to ⁇ j ⁇ M may be loaded on the coils at both ends.
  • a capacitance having an appropriate capacitance can be considered.
  • the impedance of a capacitor having a capacitance C is represented by 1 / (j ⁇ C).
  • ⁇ j ⁇ M 1 / (j ⁇ C )
  • a capacitor having a capacitance value very close to the capacitance value shown on the left may be selected from a range where it can be obtained or manufactured.
  • a circuit element in which an impedance inverter is connected to an inductor (inductive element) having an inductance value M as shown in FIG. Conceivable Note that in the circuit diagram of FIG.
  • the impedance inverter requires a DC power supply in addition to the passive circuit components.
  • the impedance value satisfies ⁇ j ⁇ M for each arbitrary frequency ⁇ , an ideal short end at an arbitrary frequency on the dispersion curve diagram.
  • the two-terminal element corresponding to ⁇ j ⁇ M is expressed as shown in FIG. 16C as described above, the two-terminal element (impedance element) 150 is inserted in series in the middle of the wiring of the coil 112 as shown in FIG. It is only necessary to connect and load them and place them at both ends of a normal coil arrangement as shown in FIG.
  • FIG. 19 shows a calculation result when capacitors are loaded in series on the coils 112 at both ends of the coil arrangement in FIG. 12 and 13, the self-inductance, self-capacitance, and mutual inductance are 2.4 ⁇ H, 7.5 pF, and 0.19 ⁇ H, respectively, and each coil has a resistance of 1.8 ⁇ as an internal resistance. Yes.
  • FIG. 19 shows a calculation result when capacitors are loaded in series on the coils 112 at both ends of the coil arrangement in FIG. 12 and 13, the self-inductance, self-capacitance, and mutual inductance are 2.4 ⁇ H, 7.5 pF, and 0.19 ⁇ H, respectively, and each coil has a resistance of 1.8 ⁇ as an internal resistance.
  • FIG. 20 is a conceptual diagram showing the first embodiment of the present invention.
  • the power supply device 200 includes a power transmission unit 210, a power supply unit 220, and a power reception unit (power reception device) 280.
  • the power transmission unit 210 includes a coil as a resonance body, and a plurality of coils 211 are arranged so as to form a periodic structure.
  • a capacitive element 160 is loaded on the resonators (coils) at both ends of the periodic structure.
  • the power transmission unit 210 may be configured by a one-dimensional array of coils, but it is a matter of course that the coils may be arranged in a plane to form a two-dimensional periodic structure, which may be used as a power transmission unit. For example, as shown in FIGS. 21A and 21B, it is assumed that there is an array structure of resonators (coils) 211 having a two-dimensional periodic structure.
  • a resonator surrounded by a dotted line is a capacitive element loaded resonator.
  • capacitive elements may be loaded on a plurality of resonators at both ends in one direction (that is, a plurality of resonators in the rightmost and leftmost columns indicated by broken lines).
  • a capacitive element loaded type resonator may surround the outermost periphery as shown by a broken line with respect to the periodic structure of the two-dimensional resonator.
  • a helical coil is exemplified as the resonator, but a planar spiral coil shown in FIG.
  • the planar spiral coil 201 has an advantage that it can be mounted on a conventional printed circuit board. That is, one spiral coil 201 may be mounted on the front surface or the back surface of the printed board. Alternatively, planar spiral coils may be mounted on both sides of the printed board. For example, the planar spiral coil 201 shown in FIG. 22A is mounted on the front side of the printed board. And the coil 202 of FIG.22 (b) is mounted in the back surface of a printed circuit board.
  • FIG. 22B is a perspective view of the coil 202 mounted on the back surface of the printed board from the front surface side.
  • a continuous spiral shape can be formed as double-sided mounting by electrically connecting the front side coil 201 and the back side coil 202 at the joint point 203. Furthermore, by connecting the front-side coil 201 and the back-side coil 202 with a capacitive element, a capacitive element-loaded resonator for providing at both ends of the resonator array required in the present invention can be configured.
  • the capacitive element may be embedded in the front surface side coil 201 or may be embedded in the back surface side coil 202.
  • various capacitive element loaded spiral conductors can be mounted on the multilayer substrate by the spiral conductors of the respective layers and the capacitive elements connecting the layers.
  • the capacitive element may be embedded in the front side coil or in the back side coil.
  • 22A and 22B illustrate a spiral coil having a rectangular shape and each side of the rectangle being a straight line shape, it goes without saying that it may be a curved spiral.
  • the spiral coil may be mounted on the high dielectric substrate.
  • a spiral coil may be mounted on the magnetic material. Thereby, magnetic flux density can be raised and size reduction of a resonance body (coil) can be achieved.
  • the coil may be a coil having a coil core made of a dielectric or magnetic material.
  • the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.
  • the space between the power transmission unit and the power reception device is generally air, but water, seawater, soil, or a wall may be provided between the power transmission unit and the power reception device. Moreover, there may be water, seawater, soil, and a wall so as to surround the power transmission unit and the power receiving device.
  • the power transmission unit 110 may be an antenna for an RFID (Radio Frequency Identification) reader.
  • the power receiving unit 120 may be an RFID tag.
  • the power receiving device may be built in as a power supply source for a moving object such as a robot, such as a self-propelled floor cleaner, a look around in a room that can freely move on the floor, and a watching robot. .
  • the power receiving device may also be incorporated into an autonomous submarine.
  • the resonance body (coil) of the power transmission unit may be sandwiched between two rigid substrates so that the power transmission unit does not bend.
  • the power transmission unit may be bent flexibly by sandwiching the resonator (coil) of the power transmission unit between two flexible sheets.
  • the term “periodic structure” is used to express that the power transmission unit is composed of a periodic structure including a plurality of resonators.
  • the periodic structure should not be construed to be limited to an array structure with a strictly constant pitch. It does not have to be strictly a constant cycle, and it is allowed that the arrangement pitch of the resonators deviates within a range in which the power transmission unit can be handled as a metamaterial in view of the entire purpose of the present invention. Further, in the case of an actual product, the arrangement pitch of the resonators is designed in consideration of manufacturing restrictions, so that the arrangement period is allowed to deviate depending on the manufacturing conditions.

Abstract

A power transmission unit is configured by arranging a plurality of resonators such that the resonators one-dimensionally or two-dimensionally form a periodic structure, and transmits power by radio by propagating power to adjacent resonators by a resonance action, and leaking an electromagnetic field to the surroundings. A power supply unit supplies power to one or more of the resonators of the power transmission unit. A power reception unit receives the transmitted power from the power transmission unit. Among the resonators which form the one-dimensional or two-dimensional periodic structure of the power transmission unit, resonators at ends are each loaded with a capacitive element.

Description

電力供給装置Power supply
 本発明は、電力供給システムに関し、具体的には、送電線を介さずに非接触で受電装置に電力を供給するシステムに関する。 The present invention relates to a power supply system, and more specifically, to a system that supplies power to a power receiving device without contact with a power transmission line.
 離間した受電装置に対し無線で電力を供給する方法が知られている。例えば、特許文献1には、電磁波伝送シートの中で電磁波を伝搬させ、シートから漏出する電磁界を受電装置に供給するという構成が開示されている。この種の関連技術はまた、特許文献2に開示されている。
 特許文献3には、電源側の一次コイルから負荷側の二次コイルに磁気結合で電力を伝送する方式が開示されている。この種の関連技術はまた、特許文献4に開示されている。この種の技術は、家庭用の小型電子機器、例えば、シェーバーや電動歯ブラシなどの充電によく使用されている。
 特許文献5には、マイクロ波ビームを利用した送電方法が開示されている。この送電方法は、例えば、衛星軌道上で太陽光発電を行い、発電により得られたエネルギーをマイクロ波ビームで地上に送る。そして、地上の受電装置でマイクロ波を電力に再変換する。
 近年では、室内に置かれた様々な電子機器に対して無線で給電する方法も探求されてきており、その一例が非特許文献1に開示されている。
 このコンセプトを非特許文献2による開示から引用する。
 東京大学大学院の浅見教授、川原講師らの研究する「電磁共鳴式マルチホップ無線電力伝送方式の提案と評価」のコンセプトは、図23に示されるように、室内等のある程度の広がりをもったエリアに配置されている複数の電子機器に無線で給電するというものである。
 ここでいう電子機器には、例えば電力伝送シートも含まれ、この電力伝送シートからさらに小型電子機器に給電するといった利用形態もある。
 図23を参照して、部屋10の壁や床13には複数のコイル14が面状に配列されて埋め込まれている。そして、中心軸に対して直交する方向で隣接しているコイル同士でも共振することを利用する。つまり、いずれかのコイルに給電すれば、電力が隣接するコイルにホッピングしてゆく。
 隣接するコイルに電力を伝搬させてゆき、そして、電磁界をコイル14から部屋10のなかに漏洩させる。すると、部屋10という広いエリアに配置されている複数の電子機器11、机上の電子機器12に給電できるというわけである。これにより、電源線の配線、充電、電池交換等の作業が不要になることが期待できる。
A method of supplying power wirelessly to a separated power receiving apparatus is known. For example, Patent Document 1 discloses a configuration in which an electromagnetic wave propagates in an electromagnetic wave transmission sheet and an electromagnetic field leaking from the sheet is supplied to the power receiving device. This type of related technology is also disclosed in US Pat.
Patent Document 3 discloses a method of transmitting power from a primary coil on the power supply side to a secondary coil on the load side by magnetic coupling. This type of related technology is also disclosed in US Pat. This type of technology is often used for charging small household electronic devices such as shavers and electric toothbrushes.
Patent Document 5 discloses a power transmission method using a microwave beam. In this power transmission method, for example, solar power generation is performed on a satellite orbit, and energy obtained by power generation is transmitted to the ground with a microwave beam. Then, the microwave is reconverted into electric power by the ground power receiving device.
In recent years, a method of supplying power wirelessly to various electronic devices placed in a room has been sought, and an example thereof is disclosed in Non-Patent Document 1.
This concept is cited from the disclosure by Non-Patent Document 2.
The concept of “Proposal and Evaluation of Electromagnetic Resonance Multi-Hop Wireless Power Transmission System” studied by Professor Asami and Professor Kawahara of the University of Tokyo Graduate School The power is wirelessly supplied to a plurality of electronic devices arranged in the network.
The electronic device here includes, for example, a power transmission sheet, and there is a utilization form in which power is supplied to the small electronic device from the power transmission sheet.
Referring to FIG. 23, a plurality of coils 14 are arranged in a plane and embedded in a wall or floor 13 of room 10. And it utilizes that the coils which adjoin in the direction orthogonal to a central axis also resonate. That is, if power is supplied to one of the coils, the electric power hops to the adjacent coil.
Electric power is propagated to adjacent coils, and an electromagnetic field is leaked from the coil 14 into the room 10. Then, power can be supplied to a plurality of electronic devices 11 and a desk-top electronic device 12 arranged in a wide area of the room 10. Thereby, it can be expected that operations such as wiring of the power supply line, charging, battery replacement and the like are unnecessary.
特開2008−66841号公報JP 2008-66841 A 特開2007−281678号公報JP 2007-281678 A 特開平7−322534号公報JP-A-7-322534 US7825543号明細書US7825543 Specification 特開2008−259392号公報JP 2008-259392 A
 上記の方法によれば、部屋の中の電子機器に無線で給電できる可能性がある。
 しかしながら、上記方法では、コイル毎の電磁界分布にむらがでないことまでは保証できず、電力伝送効率は受電装置の位置に大きく依存することが予想される。そこで、部屋全体に万遍なく無線で給電(送電)する技術が望まれる。
 本発明の課題は、無線給電において、受電装置の位置に依存せず、効率良く電力を供給できる電力供給システムを提供することにある。
According to the above method, there is a possibility that power can be supplied wirelessly to the electronic device in the room.
However, the above method cannot guarantee that the electromagnetic field distribution for each coil is uniform, and it is expected that the power transmission efficiency greatly depends on the position of the power receiving device. Therefore, a technique for supplying power (transmitting power) wirelessly throughout the room is desired.
An object of the present invention is to provide a power supply system that can supply power efficiently without depending on the position of a power receiving device in wireless power feeding.
 本発明の態様による電力供給システムは、複数の共鳴体が一次元的または二次元的に周期構造をなすように配列され、共振作用によって電力を隣の共鳴体に伝搬させてゆくとともに、周囲に電磁界を漏洩させることによって無線による送電を行う送電部と、前記送電部の一または複数の前記共鳴体に電力を供給する給電部と、前記送電部からの送電電力を受電する受電装置と、を備える。前記一次元的または二次元的に周期構造をなすように配列された複数の共鳴体のうち、最も端に配列された共鳴体には、容量性素子を装荷させている。 In the power supply system according to the aspect of the present invention, a plurality of resonators are arranged so as to form a one-dimensional or two-dimensional periodic structure, and power is propagated to an adjacent resonator by a resonance action, A power transmission unit that wirelessly transmits power by leaking an electromagnetic field, a power supply unit that supplies power to one or a plurality of the resonators of the power transmission unit, and a power receiving device that receives transmission power from the power transmission unit, Is provided. Among the plurality of resonators arranged so as to form a one-dimensional or two-dimensional periodic structure, a capacitive element is loaded on the resonator arranged at the end.
 本発明によれば、受電装置の位置に依存せずに、無線で効率良く電力を供給できる電力供給システムを提供することができる。 According to the present invention, it is possible to provide a power supply system that can efficiently supply power wirelessly without depending on the position of the power receiving apparatus.
 図1は本発明において実現したい電力供給システムを2つの例について示した斜視図である。
 図2は一次元的に配列した複数の共鳴体による周期構造に電磁伝搬波が生じている様子の一例を示した図である。
 図3は複数の共鳴体による周期構造に発生しうる電磁伝搬波の周波数(f)と波数(k)との関係を表す分散曲線を示した図である。
 図4は入力ポートを有する単一のコイルを示した図である。
 図5は図4のコイルの等価回路図である。
 図6は2つのコイルを並べたモデルを示した図である。
 図7は複数のコイルを一定のピッチで配列した回路の等価回路図である。
 図8は複数のコイルによる周期構造の一単位(一周期)分の等価回路図である。
 図9は9個のコイルを一次元的に並べた例の振動について説明するための図である。
 図10は一次元的に並べた複数のコイルのすべてが同相で振動している状態を示した図である。
 図11は一次元的に並べた複数のコイルのすべてが逆相で振動している状態を示した図である。
 図12は分散曲線の一例を示した特性図である。
 図13は周波数と複数の各コイルの振動状態との関係を示した図である。
 図14は図7の等価回路図の終端部を示した図である。
 図15は図8の等価回路図の終端部を示した図である。
 図16は、(a)キャパシタンスから成る容量性素子、及び(b)インピーダンス反転器と誘導性素子から成る容量性素子を、(c)コイルに装荷される容量性素子の例として示した図である。
 図17は容量性素子を装荷したコイルを示した図である。
 図18は一次元的なコイル配列の両端のコイルに、容量性素子が装荷された例を示した図である。
 図19はコイル配列の両端のコイルにキャパシタを装荷している場合と、キャパシタを装荷していない場合の電流分布を比較する図である。
 図20は本発明の一実施形態を示した斜視図である。
 図21は本発明の一実施形態におけるコイル配列を2つの例について示した図である。
 図22は本発明の一実施形態に用いられるコイルの例として、(a)平面スパイラル状のコイル、及び(b)プリント基板の裏面に実装されるコイルを示した図である。
 図23は関連技術による電磁共鳴式マルチホップ無線電力伝送方式の概念を説明するための図である。
FIG. 1 is a perspective view showing two examples of a power supply system to be realized in the present invention.
FIG. 2 is a diagram showing an example of a state in which electromagnetic propagation waves are generated in a periodic structure formed by a plurality of resonators arranged one-dimensionally.
FIG. 3 is a diagram showing a dispersion curve representing the relationship between the frequency (f) and the wave number (k) of electromagnetic propagation waves that can be generated in a periodic structure with a plurality of resonators.
FIG. 4 shows a single coil having an input port.
FIG. 5 is an equivalent circuit diagram of the coil of FIG.
FIG. 6 is a diagram showing a model in which two coils are arranged.
FIG. 7 is an equivalent circuit diagram of a circuit in which a plurality of coils are arranged at a constant pitch.
FIG. 8 is an equivalent circuit diagram for one unit (one cycle) of a periodic structure formed by a plurality of coils.
FIG. 9 is a diagram for explaining vibration in an example in which nine coils are arranged one-dimensionally.
FIG. 10 is a diagram showing a state where all of the plurality of coils arranged one-dimensionally vibrate in the same phase.
FIG. 11 is a diagram showing a state in which all of the plurality of coils arranged one-dimensionally vibrate in reverse phase.
FIG. 12 is a characteristic diagram showing an example of a dispersion curve.
FIG. 13 is a diagram showing the relationship between the frequency and the vibration state of each of the plurality of coils.
FIG. 14 is a diagram showing a termination portion of the equivalent circuit diagram of FIG.
FIG. 15 is a diagram showing a terminal portion of the equivalent circuit diagram of FIG.
FIG. 16 is a diagram showing (a) a capacitive element composed of a capacitance and (b) a capacitive element composed of an impedance inverter and an inductive element as an example of (c) a capacitive element loaded on a coil. is there.
FIG. 17 is a view showing a coil loaded with a capacitive element.
FIG. 18 is a diagram showing an example in which capacitive elements are loaded on coils at both ends of a one-dimensional coil array.
FIG. 19 is a diagram comparing current distributions when a capacitor is loaded on the coils at both ends of the coil arrangement and when a capacitor is not loaded.
FIG. 20 is a perspective view showing an embodiment of the present invention.
FIG. 21 is a diagram showing two examples of the coil arrangement in one embodiment of the present invention.
FIG. 22 is a diagram showing (a) a planar spiral coil and (b) a coil mounted on the back surface of the printed board as examples of the coil used in the embodiment of the present invention.
FIG. 23 is a diagram for explaining the concept of the electromagnetic resonance type multi-hop wireless power transmission method according to the related art.
(基本コンセプト)
 まず、本発明が実現したい電力供給システム100を2つの例について図1(a)、図1(b)に示す。電力供給システム100は、送電部110、受電装置120、給電部130を含む。
 図1(a)において、受電装置120は、送電部110とは、電気的接触はしていない。
 送電部110は、複数の共鳴体111によって構成されており、複数の共鳴体111は二次元的(平面的)に配列されている。共鳴体111としては、例えば導体コイルが典型的である。図1の(a),(b)では、共鳴体をヘリカル型のコイル112としている。
 送電部110は、例えば部屋の壁や床そのもので構成されてもよい。すなわち、部屋の床や壁あるいは天井115の一面に複数の共鳴体111(つまりコイル112)を埋設して、これを送電部110とすることが例として挙げられる。床や壁あるいは天井115の材料は、送電部としての機能を損なわない材料であれば何でも良い。
 給電部130は、一つまたは複数の共鳴体111に電力を供給する。給電部130から共鳴体111へは交流電流を流しても良いし、あるいは、共鳴体111に振動磁界を与えてもよい。
 この構成において、給電部130から一つまたは複数の共鳴体111に電力を供給したときに、隣接する共鳴体間を電力がホッピングし、電力が送電部110を伝搬してゆく。そして、図1(a)、図1(b)に示すように送電部110から電磁波が漏洩する。
 このとき、漏洩する電磁波の電磁界分布が受電装置120の位置に依存せず、共鳴体毎にほぼ一様になるようにしたい。
 例えば図1(a)においては、給電したい受電装置120が3つあるとする。この場合、この3つの受電装置120のところで電磁界強度が一様となるようにしたい。
 このような給電が可能になる理論的背景及び具体的な構成を以下に説明する。
(着想)
 本発明者らは、鋭意研究の結果、複数の共鳴体を配列して周期構造となし、これを電磁界の伝送線路とみなすことに着想した。
 さらに、この周期構造を特定の周波数帯域で共鳴させたとき、この構造自体がメタマテリアルとして扱えることに着想した。
 そこで、この周期構造(伝送線路)に生じる電磁界分布を解析的に取り扱う方法を追求し、これをなし得た。つまり、共鳴体の周期構造にどのような波の伝搬モードが生じるかを解析的に求める方法を開発した。
 これによって、例えば、図2のように共鳴体であるコイル112を配列した時に、そこに電磁界のホッピングでどのようなモードの波が発生するかを求めることができるようになった。以後、この波を“電磁伝搬波”と称することにする。
 すなわち、本発明者らは、コイルの周期構造に発生しうる電磁伝搬波の周波数(f)と波数(k)との関係を図3のような分散曲線として表した。
 図2のdは、周期構造の一周期長を表し、例えば、隣接するコイル同士の中心間距離である。
 したがって、図3のグラフの横軸である「波数(k)×一周期長(d)」は、一周期長あたりの位相変化を意味する。
 図3の分散曲線において、fmaxとfminとの間の周波数fにおいて、コイル周期構造がメタマテリアルとして扱えることがわかる。そして、この周期構造(伝送線路)に随意の電界分布を生じさせる構成に想到した。
(電磁伝搬波の分散曲線を求める理論)
 共鳴体を周期的に配列した共鳴体周期構造をメタマテリアルとして扱い、そこに生じる電磁伝搬波の分散曲線を求める方法を説明する。ここでは、共鳴体としては、スプリング型コイルを例にする。
 単一のコイルの共鳴周波数fres、インダクタンスL、容量C、及び抵抗Rを求め、さらに、二つのコイルを隣接配置した際の結合定数Mを求める。
 まず、単一のコイルの特性は、図4のようにコイル112内(コイルの配線途中)に入力ポート113を挿入、接続して、インピーダンスZの周波数依存性から算出できる。
 すなわち、図4の回路を、容量成分および抵抗成分を取り出した図5の等価回路に置き換える。そして、電磁界解析もしくは実測によってインピーダンスZの実数部Re(Z)及び虚数部Im(Z)の周波数依存性を得る。ここで、インピーダンスと等価回路のパラメータは、以下の式(1)の関係がある。
Figure JPOXMLDOC01-appb-I000001
 Im(Z)となる点から共鳴周波数fresを求める。
 共鳴周波数fresの極近辺の2点を用い、以下の式(2)によってインダクタンスLと容量Cとを求める。
 共鳴周波数fresの極近辺の2点を(f、Im(Z))、及び(f、Im(Z))とする。
Figure JPOXMLDOC01-appb-I000002
 次に、2つのコイル112、112の相互インダクタンスを求める。
 図6のように二つのコイル112、112を並べたモデルを用いて、共鳴周波数の分裂を確認する。
 図6において、一方のコイル112に入力ポート113から電力を供給し、その電力が他方のコイル112にホッピングし、この他方のコイル112の電力を出力ポート114から得る。
 二つのコイル112、112の結合が弱くて分裂が確認できないときは、入力ポート113、出力ポート114の内部抵抗を変更することによって、分裂させることができる。ここでは、共鳴周波数fresが周波数fと周波数fとに分裂したとする。すると、分裂した二つの周波数f、fから、次の式(3)により結合定数kを算出することができる。
Figure JPOXMLDOC01-appb-I000003
 相互インダクタンスMは、結合定数kとインダクタンスLとから次の関係式(4)によって求まる。
Figure JPOXMLDOC01-appb-I000004
 次に、複数のコイル112を横に一定のピッチで配列した場合、その等価回路を図7のように描くことができる。
 図7では、一つのコイル112を二つのコイル成分112h、112hに分けたように描いている。従って、一方のコイル成分112hのインダクタンスはL/2である。なお、この場合は、抵抗Rは無視している。
 さらに、この周期構造の一単位(一ユニット)は、相互インダクタンスMを非負の値を取ることとして、図8の等価回路に描き直すことができる。
 すると、周期構造の一単位(一ユニット)を、Tマトリクスによって次の式(5)により表すことができる。
Figure JPOXMLDOC01-appb-I000005
 この周期構造の周期間隔(コイルの中心間距離)をdとする。
 また、周期構造をメタマテリアルとしたとき、このメタマテリアルを進行する電磁伝搬波の進行方向の波数をkとする。
 すると、k×dは、一周期ごとの波の位相を表し、次の式(6)が成立する。
Figure JPOXMLDOC01-appb-I000006
 上記の式(6)を用いて、位相(k×d)と周波数f(=ω/2π)との関係をプロットすることにより分散関係が求まる。
 これにより、メタマテリアルに生じる電磁界の波の周波数帯域(fmin<f<max)が求まる。
 すなわち、周波数帯域(fmin<f<fmax)において図3の分散曲線を描くことができる。
 ここまでで、コイル周期構造をメタマテリアルとした場合の分散曲線が求められた。このコイル周期構造に何らかの給電を行った場合、電磁界がホッピングして伝わり、コイル周期構造が電磁伝搬波の伝送線路となる。さらに、伝送線路の損失が小さければ、伝送線路上の電磁界分布は、いわゆる定在波分布となる。
(構成の例示)
 ここまでで、コイル周期構造を伝送線路とし、これに定在波を発生させることができることがわかった。
 さらに、コイル周期構造の共振条件を満たすような波を発生させれば、定在波(電磁伝搬波)の腹の数をコントロールできることになる。
 コイル数をn、コイル間隔をd、隣接コイル間の位相(分散曲線におけるある周波数fに対する位相)をX(=k×d)[rad]とする。
 共振条件を満たすとすると次の式(7)が成立することになる。
Figure JPOXMLDOC01-appb-I000007
 ここで、位相Xは、0≦X≦πであるので、上記式(7)を満たすmは、m=0、1、・・・・n−1のn個である。
 図9のように、コイルの個数が9個である場合(n=9)、m=0、1、・・・8の9個の共振状態を満たす位相Xがあることになる。
 図9では、9つのコイルを一定ピッチで一列に配列し、給電部130から真ん中のコイルに給電した場合を示している。説明のため、図の左から順にコイルの番号を1から9まで付けると、真ん中の5番コイルが給電部130から給電を受けるコイルである。
 この給電部130からの給電電力の周波数(例えば交流電流の周波数)を制御して共振状態とし、コイル周期構造に電磁伝搬波の定在波を発生させる。
 図9では、1番、3番、5番、7番、9番のコイルの位置が定在波の腹となり、2番、4番、6番、8番のコイルの位置が定在波の節となっている。
 なお、m=0とは、図10のように、すべてのコイルが同相であるということである。この場合、腹の数は1(節の数は0)である。
 また、例えば、m=8とは、図11のように、すべてのコイルで逆相になっていることをいう。この場合、腹の数は9(節の数は8)である。
 このような現象を利用することにより、コイル周期構造を送電部110とし、この送電部110から近距離にある位置においてビーム(電磁界強度が強くなる箇所)の個数をコントロールできることになる。
 ここで、図8の等価回路図に基づき、一周期毎の等価回路から導かれた分散曲線を図12に示す。図12の計算においては、コイルの自己インダクタンスを2.4μH、自己キャパシタンスを7.5pF、相互インダクタンスを0.19μHとしてある。
 さらに、図7の等価回路図に基づき、図9に該当するコイルを9個、等間隔に配列して回路解析した結果を、図13に示す。コイルの自己インダクタンス、自己キャパシタンス、相互インダクタンスは、図12と同様、それぞれ2.4μH、7.5pF、0.19μHとしてある。さらに各コイルには内部抵抗として1.8Ωの抵抗を持たせ、さらに給電ポートの内部抵抗は50Ωとした。横軸はコイル番号を表し、縦軸はコイル毎の電流値を表している。
 これまで説明してきたように、図12の分散曲線の定在波が存在する位相と周波数との組は、図13において、ほぼ対応する周波数において所望の腹の数になる電流分布を表していることがわかる。
 ここで、図13の各周波数に対応する電流分布図の、両端に注目する。理論上は、前述した共振条件を満たす関係式(7)は、コイル両端がショート端、すなわち電流が位相変化なく反射することを想定している。一方、等価回路を示す図7、図8を、それぞれ図14、図15のように、終端のコイルで見ると、回路終端では、理想的なショート端ではなく、相互インダクタンス値に相当するインピーダンス値jωM(jは単位虚数、ωは角周波数)で終端されることがわかる。この不完全なショート端が、図13にあるように、両端のコイル電流値が中央付近のコイル電流値に対して比較的小さい値となっていることの要因になっていると解釈できる。ここで、理想的なショート端に近づけるためには、−jωMに相当するインピーダンス値を有する素子を、両端のコイルに装荷すれば良いことになる。
 −jωMに相当するインピーダンスを実現する素子としては、一例として、適当な容量を有するキャパシタンスが考えられる。例えば、図16の(a)に示すように、容量Cを有するキャパシタのインピーダンスは1/(jωC)で表されるから、−jωMに相当するインピーダンスを表すには、−jωM=1/(jωC)を満たすものとして、C=1/(ωM)となるキャパシタが適当である。実際には、左記容量値に極めて近い値(実質上等しい値)の容量値を有するキャパシタを、入手、もしくは製造可能な範囲から選択すればよい。
 −jωMに相当するインピーダンスを実現する素子の別の例としては、図16の(b)に示すように、インダクタンス値Mを有するインダクタ(誘導性素子)に、インピーダンス反転器を接続した回路素子が考えられる。尚、図16(b)の回路図において、オペアンプOPの動作に必要な直流電源の表記は省略している。インピーダンス反転器は、受動回路部品以外に直流電源が必要となるが、インピーダンス値が任意の各周波数ωに対して、−jωMを満たすため、分散曲線図上の任意の周波数で理想的なショート端に近づけられるという利点がある。
 以上のようにして−jωMに相当する2端子素子を図16(c)のように表したとき、この2端子素子(インピーダンス素子)150を図17のようにコイル112の配線途中に直列に挿入接続して装荷し、これを図18のように、通常のコイル配列の両終端に配置すれば良いことになる。
 ここで、図12の分散曲線でほぼfmaxとみなせる41.3MHzで、−jωMで示されるインピーダンス値とほぼ同じになるよう、容量値79.4pFを有するキャパシタをコイル配列の両端のコイルに装荷することを想定し、図9のコイル配列の両終端のコイル112にキャパシタを直列に装荷した場合の計算結果を、図19に示す。尚、図12、図13と同様、自己インダクタンス、自己キャパシタンス、相互インダクタンスはそれぞれ2.4μH、7.5pF、0.19μHとしてあり、各コイルには内部抵抗として1.8Ωの抵抗を持たせている。図19には、41.3MHzにおいてコイル配列の両終端コイルにキャパシタを装荷していない場合の結果を比較例として示してある。
 図19より、キャパシタをコイル配列の両終端コイルに装荷したほうが、装荷していない場合よりも電流分布がより平坦になっていることがわかる。すなわち、コイル配列の両終端コイルに容量性を有する素子を装荷することにより、受電コイル(受電装置)の位置ずれに強い一様な磁界分布を実現できることが示された。
(本発明の第1の実施形態)
 図20は、本発明の第1の実施形態を表す概念図である。図20において、電力供給装置200は、送電部210と、給電部220と、受電部(受電装置)280とを備えている。
 送電部210は、これまで説明してきたように、共鳴体としてのコイルによって構成され、複数のコイル211が周期構造をなすように配列されている。そして上記周期構造の両端の共鳴体(コイル)には、容量性素子160が装荷されている。送電部210はコイルの一次元的配列で構成されていてもよいが、コイルを面状に並べて二次元的な周期構造とし、これを送電部としても良いことは勿論である。
 例えば、図21の(a),(b)のように、二次元的な周期構造の共鳴体(コイル)211の配列構造があるとする。ここでは、点線で囲まれた共鳴体を容量素子装荷型の共鳴体とする。図21(a)のように、一方向の両端の複数の共鳴体(すなわち、破線で示した最右端及び最左端の列の複数の共鳴体)に容量性素子を装荷してもよい。また、図21(b)のように、二次元的な共鳴体の周期構造に対して、破線で示すように容量素子装荷型の共鳴体が最外周を取り囲んでいてもよい。
 尚、上記実施形態においては、共鳴体としてヘリカル型のコイルを例示したが、共鳴体としては、例えば、図22(a)に示す平面スパイラル状のコイルを用いてもよい。平面スパイラル状のコイル201は、従来のプリント回路基板に実装できるという利点がある。すなわち、プリント基板の表面または裏面にスパイラルコイル201を一つ実装しておいても良い。
 または、平面スパイラル状のコイルをプリント基板の両面に実装してもよい。例えば、図22(a)の平面スパイラル状のコイル201をプリント基板の表側に実装する。そして、図22(b)のコイル202をプリント基板の裏面に実装する。
 図22(b)は、プリント基板の裏面に実装されるコイル202を表面側から透視したものである。
 このとき、接合点203で表面側コイル201と裏面側コイル202とを導体接続することにより、両面実装として一続きのスパイラル形状を構成することができる。
 さらに、表面側コイル201と裏面側コイル202を容量性素子で接続することにより、本発明で必要となる共鳴体配列の両端に備えるための容量素子装荷型共鳴体を構成することができる。
 尚、容量性素子は、表面側コイル201の中に埋め込まれても良いし、裏面側コイル202の中に埋め込まれても良い。
 ここでは表面実装と両面実装との場合を説明したが、多層基板においても各々の層のスパイラル導体と層間を接続する導体とにより、多層基板上で様々なスパイラル導体実装が可能となる。
 さらに、多層基板においても各々の層のスパイラル導体と層間を接続する容量性素子とにより、多層基板上で様々な容量性素子装荷型スパイラル導体実装が可能となる。この場合、容量性素子は、表面側コイルの中に埋め込まれても良いし、裏面側コイルの中に埋め込まれても良い。
 また、図22(a)、図22(b)では、矩形であって矩形の各辺が直線形状であるスパイラルコイルを例示したが、曲線のスパイラルであっても良いことは言うまでもない。
 また、スパイラル状コイルが高誘電体基板に実装されていてもよい。
 または、スパイラル状コイルが磁性体上に実装されていてもよい。
 これにより、磁束密度を高め、共鳴体(コイル)の小型化を図ることができる。
 コイルは、誘電体または磁性体からなるコイルコアを有するコイルであっても良い。
 なお、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更することができる。
 送電部と受電装置との間は一般的には空気であるが、送電部と受電装置との間に、水、海水、土、壁があってもよい。また、送電部と受電装置を取り囲むように、水、海水、土、壁があってもよい。
 例えば、送電部110はRFID(Radio Frequency Identification)リーダー用のアンテナであってもよい。受電部120はRFIDのタグであってもよい。
 例えば、受電装置はロボット等の動くもの、例えば自走型の床掃除機のようなもの、床上を自由に動き回ることができる部屋内の見回り、見守りロボット等の電力供給源とし内部に組み込んでもよい。受電装置はまた、自律型の潜水艦に組み込んでもよい。
 送電部の共鳴体(コイル)を、剛性を有する二枚の基板で挟んで、送電部が曲がらないように剛性を持たせてもよい。
 または、送電部の共鳴体(コイル)を、柔軟性を有する二枚のシートで挟んで、送電部が柔軟に曲がるようにしておいてもよい。
 本明細書において“周期構造”の用語を用い、送電部が複数の共鳴体による周期構造で構成されている、と表現した。
 ここで、周期構造とは、厳密な一定ピッチの配列構造だけに限定解釈されるべきではない。厳密に一定周期でなくてもよく、本発明の全趣旨からみて送電部をメタマテリアルとして扱える範囲で共鳴体の配列ピッチがずれることは許容される。
 また、実際の製品とする場合にあっては、製造上の制約も考慮したうえで共鳴体の配列ピッチが設計されるので、製造条件に応じて配列周期がずれることは許容される。
 この出願は、2012年8月24日に出願された日本出願特願第2012−184787号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
(Basic concept)
First, FIG. 1A and FIG. 1B show two examples of a power supply system 100 to be realized by the present invention. The power supply system 100 includes a power transmission unit 110, a power reception device 120, and a power supply unit 130.
In FIG. 1A, the power receiving device 120 is not in electrical contact with the power transmission unit 110.
The power transmission unit 110 includes a plurality of resonators 111, and the plurality of resonators 111 are arranged two-dimensionally (planarly). As the resonator 111, for example, a conductor coil is typical. In FIGS. 1A and 1B, the resonator is a helical coil 112.
The power transmission unit 110 may be configured by, for example, a room wall or a floor itself. That is, for example, a plurality of resonators 111 (that is, the coils 112) are embedded in one surface of the floor, wall, or ceiling 115 of the room and used as the power transmission unit 110. The material of the floor, wall, or ceiling 115 may be anything as long as it does not impair the function as the power transmission unit.
The power feeding unit 130 supplies power to one or more resonators 111. An alternating current may flow from the power supply unit 130 to the resonator 111, or an oscillating magnetic field may be applied to the resonator 111.
In this configuration, when power is supplied from the power supply unit 130 to one or more resonators 111, the power hops between adjacent resonators, and the power propagates through the power transmission unit 110. And electromagnetic waves leak from the power transmission part 110 as shown to Fig.1 (a) and FIG.1 (b).
At this time, it is desired that the electromagnetic field distribution of the leaked electromagnetic wave is substantially uniform for each resonator without depending on the position of the power receiving device 120.
For example, in FIG. 1A, it is assumed that there are three power receiving apparatuses 120 to which power is supplied. In this case, it is desired to make the electromagnetic field intensity uniform at the three power receiving devices 120.
The theoretical background and specific configuration that enable such power supply will be described below.
(idea)
As a result of diligent research, the present inventors have conceived that a plurality of resonators are arranged to form a periodic structure, which is regarded as an electromagnetic field transmission line.
Furthermore, when this periodic structure was resonated in a specific frequency band, the idea was that this structure itself could be treated as a metamaterial.
Therefore, a method for analytically handling the electromagnetic field distribution generated in the periodic structure (transmission line) was pursued, and this could be achieved. In other words, a method has been developed to analytically determine what wave propagation modes occur in the periodic structure of the resonator.
As a result, for example, when the coils 112 that are the resonators are arranged as shown in FIG. 2, it is possible to determine what mode wave is generated by the electromagnetic field hopping. Hereinafter, this wave is referred to as “electromagnetic propagation wave”.
That is, the present inventors expressed the relationship between the frequency (f) and the wave number (k) of the electromagnetic propagation wave that can occur in the periodic structure of the coil as a dispersion curve as shown in FIG.
2d represents one cycle length of the periodic structure, and is, for example, a center-to-center distance between adjacent coils.
Therefore, “wave number (k) × one cycle length (d)” which is the horizontal axis of the graph of FIG. 3 means a phase change per cycle length.
In the dispersion curve of FIG. 3, it can be seen that the coil periodic structure can be treated as a metamaterial at a frequency f between f max and f min . The inventors have come up with a configuration in which an arbitrary electric field distribution is generated in the periodic structure (transmission line).
(Theory for obtaining the dispersion curve of electromagnetic wave propagation)
A method of obtaining a dispersion curve of electromagnetic propagation waves generated there by treating a resonator periodic structure in which resonators are periodically arranged as a metamaterial will be described. Here, a spring type coil is taken as an example of the resonator.
The resonance frequency fres, inductance L, capacitance C, and resistance R of a single coil are obtained, and further, a coupling constant M when two coils are arranged adjacent to each other is obtained.
First, the characteristics of a single coil can be calculated from the frequency dependence of impedance Z by inserting and connecting the input port 113 in the coil 112 (in the middle of coil wiring) as shown in FIG.
That is, the circuit of FIG. 4 is replaced with the equivalent circuit of FIG. 5 in which the capacitance component and the resistance component are extracted. Then, the frequency dependence of the real part Re (Z) and the imaginary part Im (Z) of the impedance Z is obtained by electromagnetic field analysis or actual measurement. Here, the impedance and the parameter of the equivalent circuit have the relationship of the following formula (1).
Figure JPOXMLDOC01-appb-I000001
The resonance frequency f res is obtained from the point at which Im (Z) is obtained.
An inductance L and a capacitance C are obtained by the following equation (2) using two points in the vicinity of the resonance frequency f res .
Two points in the vicinity of the resonance frequency f res are defined as (f 1 , Im (Z 1 )) and (f 2 , Im (Z 2 )).
Figure JPOXMLDOC01-appb-I000002
Next, the mutual inductance of the two coils 112 and 112 is obtained.
As shown in FIG. 6, the splitting of the resonance frequency is confirmed using a model in which two coils 112 and 112 are arranged.
In FIG. 6, power is supplied to one coil 112 from the input port 113, and the power is hopped to the other coil 112, and the power of the other coil 112 is obtained from the output port 114.
When the coupling between the two coils 112 and 112 is weak and the splitting cannot be confirmed, the splitting can be performed by changing the internal resistance of the input port 113 and the output port 114. Here, it is assumed that the resonance frequency f res is split into a frequency f a and a frequency f b . Then, the coupling constant k can be calculated from the two split frequencies f a and f b by the following equation (3).
Figure JPOXMLDOC01-appb-I000003
The mutual inductance M is obtained from the coupling constant k and the inductance L by the following relational expression (4).
Figure JPOXMLDOC01-appb-I000004
Next, when a plurality of coils 112 are arranged horizontally at a constant pitch, an equivalent circuit thereof can be drawn as shown in FIG.
In FIG. 7, one coil 112 is depicted as being divided into two coil components 112h and 112h. Therefore, the inductance of one coil component 112h is L / 2. In this case, the resistance R is ignored.
Furthermore, one unit (one unit) of this periodic structure can be redrawn in the equivalent circuit of FIG. 8 by taking the mutual inductance M as a non-negative value.
Then, one unit (one unit) of the periodic structure can be expressed by the following formula (5) using a T matrix.
Figure JPOXMLDOC01-appb-I000005
Let d be the periodic interval (distance between the centers of the coils) of this periodic structure.
Further, when the periodic structure is a metamaterial, the wave number in the traveling direction of the electromagnetic propagation wave traveling through the metamaterial is k x .
Then, k x × d represents the phase of the wave for each period, and the following equation (6) is established.
Figure JPOXMLDOC01-appb-I000006
The dispersion relation is obtained by plotting the relation between the phase (k x × d) and the frequency f (= ω / 2π) using the above formula (6).
Thereby, the frequency band (f min <f < max ) of the electromagnetic field wave generated in the metamaterial is obtained.
That is, the dispersion curve of FIG. 3 can be drawn in the frequency band (f min <f <f max ).
Up to this point, a dispersion curve was obtained when the coil periodic structure was a metamaterial. When any power is supplied to the coil periodic structure, the electromagnetic field is transmitted by hopping, and the coil periodic structure becomes a transmission line for electromagnetic propagation waves. Furthermore, if the transmission line loss is small, the electromagnetic field distribution on the transmission line is a so-called standing wave distribution.
(Example of configuration)
Up to this point, it was found that a coil periodic structure can be used as a transmission line, and a standing wave can be generated in the transmission line.
Furthermore, if a wave that satisfies the resonance condition of the coil periodic structure is generated, the number of antinodes of the standing wave (electromagnetic propagation wave) can be controlled.
The number of coils is n, the coil interval is d, and the phase between adjacent coils (the phase with respect to a certain frequency f in the dispersion curve) is X (= k x × d) [rad].
When the resonance condition is satisfied, the following expression (7) is established.
Figure JPOXMLDOC01-appb-I000007
Here, since the phase X is 0 ≦ X ≦ π, m satisfying the above equation (7) is n in m = 0, 1,... N−1.
As shown in FIG. 9, when the number of coils is nine (n = 9), there are phases X that satisfy nine resonance states of m = 0, 1,.
FIG. 9 shows a case where nine coils are arranged in a line at a constant pitch and power is supplied from the power supply unit 130 to the middle coil. For explanation, when the coil numbers 1 to 9 are assigned in order from the left in the figure, the middle fifth coil is a coil that receives power from the power supply unit 130.
The frequency of the power supplied from the power supply unit 130 (for example, the frequency of the alternating current) is controlled to be in a resonance state, and a standing wave of electromagnetic propagation waves is generated in the coil periodic structure.
In FIG. 9, the positions of the first, third, fifth, seventh and ninth coils are antinodes of standing waves, and the positions of the second, fourth, sixth and eighth coils are standing waves. It is a clause.
Note that m = 0 means that all coils are in phase as shown in FIG. In this case, the number of bellies is 1 (the number of nodes is 0).
For example, m = 8 means that all the coils are out of phase as shown in FIG. In this case, the number of bellies is 9 (the number of nodes is 8).
By utilizing such a phenomenon, the coil periodic structure is used as the power transmission unit 110, and the number of beams (locations at which the electromagnetic field strength is increased) can be controlled at positions close to the power transmission unit 110.
Here, based on the equivalent circuit diagram of FIG. 8, a dispersion curve derived from the equivalent circuit for each period is shown in FIG. In the calculation of FIG. 12, the self inductance of the coil is 2.4 μH, the self capacitance is 7.5 pF, and the mutual inductance is 0.19 μH.
Furthermore, FIG. 13 shows a result of circuit analysis in which nine coils corresponding to FIG. 9 are arranged at equal intervals based on the equivalent circuit diagram of FIG. The self-inductance, self-capacitance, and mutual inductance of the coil are 2.4 μH, 7.5 pF, and 0.19 μH, respectively, as in FIG. Further, each coil has an internal resistance of 1.8Ω, and the internal resistance of the power feeding port is 50Ω. The horizontal axis represents the coil number, and the vertical axis represents the current value for each coil.
As described so far, the combination of the phase and the frequency where the standing wave of the dispersion curve in FIG. 12 exists represents the current distribution having the desired number of antinodes at the corresponding frequency in FIG. I understand that.
Here, attention is paid to both ends of the current distribution diagram corresponding to each frequency in FIG. Theoretically, relational expression (7) that satisfies the resonance condition described above assumes that both ends of the coil are short-circuited, that is, the current is reflected without phase change. On the other hand, when FIG. 7 and FIG. 8 showing the equivalent circuit are viewed by the coil at the end as shown in FIG. 14 and FIG. 15, respectively, the impedance at the circuit end is not an ideal short end but an impedance value corresponding to the mutual inductance value. It can be seen that it is terminated with jωM (j is a unit imaginary number and ω is an angular frequency). It can be interpreted that this incomplete short end is a factor that the coil current values at both ends are relatively small with respect to the coil current value near the center as shown in FIG. Here, in order to approach the ideal short end, an element having an impedance value corresponding to −jωM may be loaded on the coils at both ends.
As an example of an element that realizes an impedance corresponding to −jωM, a capacitance having an appropriate capacitance can be considered. For example, as shown in FIG. 16A, the impedance of a capacitor having a capacitance C is represented by 1 / (jωC). Therefore, in order to represent the impedance corresponding to −jωM, −jωM = 1 / (jωC ), A capacitor satisfying C = 1 / (ω 2 M) is suitable. In practice, a capacitor having a capacitance value very close to the capacitance value shown on the left (substantially equal value) may be selected from a range where it can be obtained or manufactured.
As another example of an element that realizes an impedance corresponding to −jωM, a circuit element in which an impedance inverter is connected to an inductor (inductive element) having an inductance value M as shown in FIG. Conceivable. Note that in the circuit diagram of FIG. 16B, the notation of the DC power supply necessary for the operation of the operational amplifier OP is omitted. The impedance inverter requires a DC power supply in addition to the passive circuit components. However, since the impedance value satisfies −jωM for each arbitrary frequency ω, an ideal short end at an arbitrary frequency on the dispersion curve diagram. There is an advantage that can be brought close to.
When the two-terminal element corresponding to −jωM is expressed as shown in FIG. 16C as described above, the two-terminal element (impedance element) 150 is inserted in series in the middle of the wiring of the coil 112 as shown in FIG. It is only necessary to connect and load them and place them at both ends of a normal coil arrangement as shown in FIG.
Here, a capacitor having a capacitance value of 79.4 pF is loaded on the coils at both ends of the coil array so that the impedance value is substantially the same as the impedance value indicated by −jωM at 41.3 MHz, which can be regarded as approximately f max in the dispersion curve of FIG. FIG. 19 shows a calculation result when capacitors are loaded in series on the coils 112 at both ends of the coil arrangement in FIG. 12 and 13, the self-inductance, self-capacitance, and mutual inductance are 2.4 μH, 7.5 pF, and 0.19 μH, respectively, and each coil has a resistance of 1.8Ω as an internal resistance. Yes. FIG. 19 shows a result when a capacitor is not loaded on both terminal coils of the coil arrangement at 41.3 MHz as a comparative example.
From FIG. 19, it can be seen that the current distribution is flatter when the capacitor is loaded on both end coils of the coil arrangement than when the capacitor is not loaded. That is, it was shown that a uniform magnetic field distribution that is resistant to displacement of the power receiving coil (power receiving device) can be realized by loading capacitive elements on both terminal coils of the coil array.
(First embodiment of the present invention)
FIG. 20 is a conceptual diagram showing the first embodiment of the present invention. In FIG. 20, the power supply device 200 includes a power transmission unit 210, a power supply unit 220, and a power reception unit (power reception device) 280.
As described above, the power transmission unit 210 includes a coil as a resonance body, and a plurality of coils 211 are arranged so as to form a periodic structure. A capacitive element 160 is loaded on the resonators (coils) at both ends of the periodic structure. The power transmission unit 210 may be configured by a one-dimensional array of coils, but it is a matter of course that the coils may be arranged in a plane to form a two-dimensional periodic structure, which may be used as a power transmission unit.
For example, as shown in FIGS. 21A and 21B, it is assumed that there is an array structure of resonators (coils) 211 having a two-dimensional periodic structure. Here, a resonator surrounded by a dotted line is a capacitive element loaded resonator. As shown in FIG. 21A, capacitive elements may be loaded on a plurality of resonators at both ends in one direction (that is, a plurality of resonators in the rightmost and leftmost columns indicated by broken lines). Further, as shown in FIG. 21B, a capacitive element loaded type resonator may surround the outermost periphery as shown by a broken line with respect to the periodic structure of the two-dimensional resonator.
In the above-described embodiment, a helical coil is exemplified as the resonator, but a planar spiral coil shown in FIG. 22A may be used as the resonator, for example. The planar spiral coil 201 has an advantage that it can be mounted on a conventional printed circuit board. That is, one spiral coil 201 may be mounted on the front surface or the back surface of the printed board.
Alternatively, planar spiral coils may be mounted on both sides of the printed board. For example, the planar spiral coil 201 shown in FIG. 22A is mounted on the front side of the printed board. And the coil 202 of FIG.22 (b) is mounted in the back surface of a printed circuit board.
FIG. 22B is a perspective view of the coil 202 mounted on the back surface of the printed board from the front surface side.
At this time, a continuous spiral shape can be formed as double-sided mounting by electrically connecting the front side coil 201 and the back side coil 202 at the joint point 203.
Furthermore, by connecting the front-side coil 201 and the back-side coil 202 with a capacitive element, a capacitive element-loaded resonator for providing at both ends of the resonator array required in the present invention can be configured.
The capacitive element may be embedded in the front surface side coil 201 or may be embedded in the back surface side coil 202.
Although the case of surface mounting and double-side mounting has been described here, various spiral conductors can be mounted on a multilayer board by the spiral conductors of each layer and the conductors connecting the layers even in the multilayer board.
Further, in the multilayer substrate, various capacitive element loaded spiral conductors can be mounted on the multilayer substrate by the spiral conductors of the respective layers and the capacitive elements connecting the layers. In this case, the capacitive element may be embedded in the front side coil or in the back side coil.
22A and 22B illustrate a spiral coil having a rectangular shape and each side of the rectangle being a straight line shape, it goes without saying that it may be a curved spiral.
Moreover, the spiral coil may be mounted on the high dielectric substrate.
Alternatively, a spiral coil may be mounted on the magnetic material.
Thereby, magnetic flux density can be raised and size reduction of a resonance body (coil) can be achieved.
The coil may be a coil having a coil core made of a dielectric or magnetic material.
The present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.
The space between the power transmission unit and the power reception device is generally air, but water, seawater, soil, or a wall may be provided between the power transmission unit and the power reception device. Moreover, there may be water, seawater, soil, and a wall so as to surround the power transmission unit and the power receiving device.
For example, the power transmission unit 110 may be an antenna for an RFID (Radio Frequency Identification) reader. The power receiving unit 120 may be an RFID tag.
For example, the power receiving device may be built in as a power supply source for a moving object such as a robot, such as a self-propelled floor cleaner, a look around in a room that can freely move on the floor, and a watching robot. . The power receiving device may also be incorporated into an autonomous submarine.
The resonance body (coil) of the power transmission unit may be sandwiched between two rigid substrates so that the power transmission unit does not bend.
Alternatively, the power transmission unit may be bent flexibly by sandwiching the resonator (coil) of the power transmission unit between two flexible sheets.
In this specification, the term “periodic structure” is used to express that the power transmission unit is composed of a periodic structure including a plurality of resonators.
Here, the periodic structure should not be construed to be limited to an array structure with a strictly constant pitch. It does not have to be strictly a constant cycle, and it is allowed that the arrangement pitch of the resonators deviates within a range in which the power transmission unit can be handled as a metamaterial in view of the entire purpose of the present invention.
Further, in the case of an actual product, the arrangement pitch of the resonators is designed in consideration of manufacturing restrictions, so that the arrangement period is allowed to deviate depending on the manufacturing conditions.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2012-184787 for which it applied on August 24, 2012, and takes in those the indications of all here.
 100  給電システム
 110  送電部
 111  共鳴体
 112  コイル
 112h  コイル成分
 113  入力ポート
 114  出力ポート
 120  受電装置
 130  給電部
 200  電力供給システム
 201  コイル(表面側コイル)
 202  コイル(裏面側コイル)
 203  接合点
DESCRIPTION OF SYMBOLS 100 Power supply system 110 Power transmission part 111 Resonator 112 Coil 112h Coil component 113 Input port 114 Output port 120 Power receiving apparatus 130 Power supply part 200 Power supply system 201 Coil (surface side coil)
202 coil (coil on the back side)
203 Junction

Claims (10)

  1.  複数の共鳴体が一次元的または二次元的に周期構造をなすように配列され、共振作用によって電力を隣の共鳴体に伝搬させてゆくとともに、周囲に電磁界を漏洩させることによって無線による送電を行う送電部と、
     前記送電部の一または複数の前記共鳴体に電力を供給する給電部と、
     前記送電部からの送電電力を受電する受電装置と、を備え、
     前記一次元または二次元的に周期構造をなすように配列された共鳴体のうち、端に配置された共鳴体、もしくは外周に配置された共鳴体に容量性素子が装荷されていることを特徴とする電力供給装置。
    A plurality of resonators are arranged in a one-dimensional or two-dimensional periodic structure, and power is propagated to the next resonator by resonance action, and electromagnetic fields are leaked to the surrounding area to transmit power wirelessly. A power transmission unit that performs
    A power supply unit that supplies power to one or more of the resonators of the power transmission unit;
    A power receiving device for receiving the transmitted power from the power transmission unit,
    Among the resonators arranged so as to form a one-dimensional or two-dimensional periodic structure, a capacitive element is loaded on a resonator disposed at an end or a resonator disposed on the outer periphery. A power supply device.
  2.  請求項1に記載の電力供給装置において、前記端に配列された共鳴体に装荷される容量性素子のインピーダンス値の絶対値が、共鳴体間の相互インダクタンスに相当するインピーダンス値の絶対値に実質上等しいことを特徴とする電力供給装置。 2. The power supply device according to claim 1, wherein an absolute value of an impedance value of a capacitive element loaded on a resonator arranged at the end is substantially equal to an absolute value of an impedance value corresponding to a mutual inductance between the resonators. A power supply device characterized by being equal to each other.
  3.  請求項1または2に記載の電力供給装置において、前記端に配列された共鳴体に装荷される容量性素子が、キャパシタであることを特徴とする電力供給装置。 3. The power supply apparatus according to claim 1, wherein the capacitive element loaded on the resonator arranged at the end is a capacitor.
  4.  請求項1または2に記載の電力供給装置において、前記端に配列された共鳴体に装荷される容量性素子が、インピーダンス反転器と誘導性素子から構成されることを特徴とする電力供給装置。 3. The power supply apparatus according to claim 1, wherein the capacitive element loaded on the resonator arranged at the end includes an impedance inverter and an inductive element.
  5.  請求項1から4のいずれか1項に記載の電力供給装置において、前記共鳴体は、誘電体または磁性体からなるコイルコアを有するコイルであることを特徴とする電力供給装置。 5. The power supply apparatus according to claim 1, wherein the resonance body is a coil having a coil core made of a dielectric material or a magnetic material.
  6.  請求項1から5のいずれか1項に記載の電力供給装置において、前記共鳴体が、ヘリカルコイルであることを特徴とする電力供給装置。 6. The power supply apparatus according to claim 1, wherein the resonance body is a helical coil.
  7.  請求項1から5のいずれか1項に記載の電力供給装置において、前記共鳴体が、スパイラルコイルであることを特徴とする電力供給装置。 6. The power supply apparatus according to claim 1, wherein the resonance body is a spiral coil.
  8.  請求項1から7のいずれか1項に記載の電力供給装置において、前記受電装置がRFIDタグであることを特徴とする電力供給装置。 The power supply apparatus according to any one of claims 1 to 7, wherein the power reception apparatus is an RFID tag.
  9.  請求項1から8のいずれか1項に記載の電力供給装置において、前記送電部がRFIDリーダーであることを特徴とする電力供給装置。 9. The power supply apparatus according to claim 1, wherein the power transmission unit is an RFID reader.
  10.  請求項1から7のいずれか1項に記載の電力供給装置において、前記受電装置が前記給電部のある床上を自由に動き回ることができるロボット内部に組み込まれたことを特徴とする電力供給装置。 The power supply device according to any one of claims 1 to 7, wherein the power reception device is incorporated in a robot that can freely move around on a floor where the power feeding unit is provided.
PCT/JP2013/068309 2012-08-24 2013-06-27 Power supply device WO2014030440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014531537A JPWO2014030440A1 (en) 2012-08-24 2013-06-27 Power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012184787 2012-08-24
JP2012-184787 2012-08-24

Publications (1)

Publication Number Publication Date
WO2014030440A1 true WO2014030440A1 (en) 2014-02-27

Family

ID=50149755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068309 WO2014030440A1 (en) 2012-08-24 2013-06-27 Power supply device

Country Status (2)

Country Link
JP (1) JPWO2014030440A1 (en)
WO (1) WO2014030440A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10819007B2 (en) 2015-05-21 2020-10-27 Sharp Kabushiki Kaisha Display device
CN114099035A (en) * 2021-12-30 2022-03-01 东莞市力博得电子科技有限公司 Electric toothbrush control method, electric toothbrush and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012075304A (en) * 2010-08-30 2012-04-12 Univ Of Tokyo Wireless power transmission device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012075304A (en) * 2010-08-30 2012-04-12 Univ Of Tokyo Wireless power transmission device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIKI SAWAKAMI ET AL.: "Performance Evaluation of Multihop Wireless Power Transfer using Electromagnetic Resonance", PROCEEDINGS OF THE 2010 IEICE GENERAL CONFERENCE TSUSHIN 2, 2010, pages 622 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10819007B2 (en) 2015-05-21 2020-10-27 Sharp Kabushiki Kaisha Display device
CN114099035A (en) * 2021-12-30 2022-03-01 东莞市力博得电子科技有限公司 Electric toothbrush control method, electric toothbrush and storage medium
CN114099035B (en) * 2021-12-30 2023-10-24 东莞市力博得电子科技有限公司 Electric toothbrush control method, electric toothbrush and storage medium

Also Published As

Publication number Publication date
JPWO2014030440A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
KR102121919B1 (en) Apparatus for transferring power
US10957480B2 (en) Large area power transmitter for wireless power transfer
KR101118471B1 (en) Spiral Antenna and wireless power transmission device using spiral antenna
CN102484307B (en) Wireless power transmission system and the resonator for this system
WO2014006895A1 (en) Wireless power transmission device, wireless power sending device and power receiving device
US20140028112A1 (en) Apparatus and method for wireless power transfer
US20120112554A1 (en) Wireless power transmission system, and method of controlling transmission and reception of resonance power
Çelik et al. A novel meander line integrated E‐shaped rectenna for energy harvesting applications
KR20110121453A (en) Apparatus for transmitting and receiving wireless energy using meta material structure having zero refractive index
JP2012182981A (en) Wireless energy exchange system and method
JP5981202B2 (en) Power transmission system
KR20120019578A (en) Wireless power transmission apparatus and method that transmit resonance power by multi-band
JP6270219B2 (en) Power supply
WO2014034491A1 (en) Electric power transmission device and electric power transmission method
US20130193772A1 (en) Surface communication device
KR20170041706A (en) Wireless electric field power transmission system, transmitter and receiver therefor and method of wirelessly transferring power
JP2007150652A (en) Interface device for signaling device
JP5952662B2 (en) Wireless power transmission device
WO2014030440A1 (en) Power supply device
JP6156872B2 (en) Wireless power transmission system
JP2010136135A (en) Method for transmission and reception between electromagnetic wave interface device, and sheet-like two-dimensional electromagnetic wave transmitting medium and sheet-like electromagnetic wave transmitting medium
JP2013099090A (en) Electromagnetic wave propagation device and power transmission system
WO2013108325A1 (en) Power supply system
KR102109104B1 (en) Apparatus for transferring power
JP2016059146A (en) Under seawater power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531537

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830774

Country of ref document: EP

Kind code of ref document: A1