WO2013107287A1 - 连接酶反应介导的扩增方法及用途 - Google Patents

连接酶反应介导的扩增方法及用途 Download PDF

Info

Publication number
WO2013107287A1
WO2013107287A1 PCT/CN2013/000055 CN2013000055W WO2013107287A1 WO 2013107287 A1 WO2013107287 A1 WO 2013107287A1 CN 2013000055 W CN2013000055 W CN 2013000055W WO 2013107287 A1 WO2013107287 A1 WO 2013107287A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
probe
segment
ligation
amplification method
Prior art date
Application number
PCT/CN2013/000055
Other languages
English (en)
French (fr)
Inventor
王小波
Original Assignee
厦门基科生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门基科生物科技有限公司 filed Critical 厦门基科生物科技有限公司
Priority to US14/373,010 priority Critical patent/US9850533B2/en
Publication of WO2013107287A1 publication Critical patent/WO2013107287A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6862Ligase chain reaction [LCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction

Definitions

  • the present invention relates to an amplification method, and more particularly to a ligase reaction-mediated amplification method.
  • Nucleic acid detection technology has been widely used in clinical diagnosis of molecular genetics, immunology, oncology and microbiology. With the rapid development of molecular biology, some new methods for nucleic acid detection are also emerging. Among them, ligase-dependent detection technology is one of them.
  • a ligase is an enzyme that blocks a gap in a DNA or RNA strand. The energy provided by NAD+ or ATP hydrolysis catalyzes the reaction of the 3' terminal hydroxyl group and the 5' terminal phosphate group of two nucleic acid single strands to form a phosphodiester bond. .
  • the ligase-dependent detection technique is primarily achieved by the principle of nucleic acid hybridization and its fidelity at the junction of the gap.
  • Landegren first invented the ELISA for in vitro mutation detection of ligase, and used this technique to identify a mutation between the mutant allele ⁇ s and the wild-type allele 3 A that encodes a P-globulin causing anemia in the Mediterranean sickle cell. Single base difference.
  • Barany extracted thermostable ligase and developed a Ligase detection reaction (LDR) and a Ligase chain reaction (LCR) technique.
  • LDR Ligase detection reaction
  • LCR Ligase chain reaction
  • the proposed two techniques have far-reaching significance for the development and application of ligase-dependent in vitro detection technology, but there are problems such as non-specific signal interference and poor usability. Since then, ligase reaction technology combined with PCR technology has led to a series of new detection techniques.
  • LDR/PCR LDR/PCR
  • MLPA MLPA
  • PLP Pad probe
  • MIP Molecular inversion probe
  • All of these technologies show high detection throughput and can even achieve >10000 genotyping (MIP technology), but all of them have serious interference with non-specific signals and are prone to false positives.
  • the non-specific signals of this type of technology are mainly derived from: 1. Non-specific ligase reactions; 2. Non-specific PCR amplification.
  • LDR/PCR and MLPA techniques are affected by these two non-specific effects, so the sensitivity of detection is limited, and non-specific signals can be detected, and there is a risk of false positives.
  • PLP and MIP techniques use exonuclease digestion of unligated hybridization probes, which eliminates the non-specific amplification of hybridization probes in PCR reactions to some extent, but still suffers when the detection number is high. The impact of specific connections, the appearance of false positives is still inevitable.
  • the technical problem to be solved by the present invention is to provide an amplification method that overcomes the ligase reaction and non-specific signal interference of PCR.
  • the technology achieves the purpose of reducing the reaction background, enhancing the noise-to-noise ratio, and avoiding false positives.
  • the present invention provides a novel ligase reaction-mediated amplification method, which realizes downstream general amplification and detection by a ligase reaction of three linked probes, and is characterized in that: Specific hybridization sequence And the sequence of the tag sequence to be filled in, specifically: the target sequence 7 is divided into A segment, B segment, C segment and D segment from the 3 ' end to the 5 ' end, and the connecting probe a is the reverse complementary sequence of the A segment 2 Add a segment of the upstream primer tag sequence 1, ie 2-1; the link probe b is the reverse complement of the C segment 3 ', plus the reverse of the detection tag sequence 4 and B between the B segment and the C segment Complementary sequence 3 composition, ie 3'-4-3; ligation probe c is a segment of downstream primer binding tag sequence 6 plus D segment reverse complement sequence 5, ie 6-5; said sequence 1, 4, 6 is a sequence that does not hybridize to the target sequence.
  • the design principles of the upstream primer tag sequence 1, the downstream primer binding tag sequence 6 and the detection tag sequence 4 are: GC content is moderate, Tm value is 55-70 ° C, length is 18-35 bp, and target The genome has no high homology. No higher homology here means that the homology is less than 50%.
  • the sequences 2, 3, 3', and 5 have moderate GC content, and the Tm value is 50-7 (TC, specific hybridization with the target sequence.
  • sequences of the ligation probes &, b and c are all specific hybridization sequences except for the sequences 1, 4, and 6. .
  • the present invention also provides a kit comprising the above-described connecting probe a, ! ⁇ and ⁇ and the use of the kit.
  • the present invention also provides a chip comprising the above-described connection probes a, 1) and ⁇ , and the use of the chip.
  • the B, C, and D segments of the target sequence are not spaced apart from each other.
  • the GC content of the target sequence is moderate, and no repeat sequences or sequences with higher homology appear, and it is preferable that the position of the specific hybridization of the ligation probe does not have a SNP or a mutation site, unless it is in a SNP or mutation detection experiment.
  • the SNP or mutation site is located at the 3' end of the ligation probe.
  • the invention also relates to the use of a ligase reaction mediated amplification method.
  • the kit, the chip and the ligase reaction-mediated amplification method are used for detecting a gene sequence, a quantitative assay or the like.
  • the present invention detects a known target sequence, and can detect a qualitative and quantitative reaction of a mutation site, a SNP site, and a target gene of each species (such as a target DNA of bacteria and viruses).
  • the present invention provides a novel ligase-dependent amplification method, Omega probe technology, which is: in a ligase reaction, by detecting a tag sequence, an upstream primer tag sequence, and The downstream primer binding tag sequence is filled into three different ligation probes to eliminate the effect of non-specific signal interference.
  • the intermediate connection probe is shaped like " ⁇ ", which we call an omega probe, so the method is called omega probe technology.
  • the key component of the omega probe technology is three ligation probes, each ligation probe consists of a specific hybrid sequence and a tag sequence that is filled in.
  • the tag sequences of the three ligation probes are the upstream primers for ligation of probe a, respectively.
  • the tag sequence, the detection tag sequence connecting probe b, and the downstream primer binding tag sequence of probe c ( Figure 1).
  • the technical scheme of the present invention is to hybridize to a position adjacent to a target sequence by three ligation probes, wherein when the ligation probe b hybridizes to the target gene sequence A vesicular structure (i.e., the inserted detection tag sequence 4) is formed, and specific hybrid sequences flanking the vesicular structure form a "hybrid community".
  • the three ligation probes ultimately form a complete probe strand containing three "tags" under the action of a ligase, which is ultimately amplified by a universal PCR system.
  • the method and the steps of the present invention are: after the genomic DNA template is sufficiently denatured at a high temperature (98 ° C, 5-10 minutes), the three linked probes specifically hybridize with the DNA sequence of the gene to be detected (hybridizes into the DNA sequence) The adjacent position), after hybridization, is ligated by a thermostable ligase (such as Ampligase (Epicentre), Taq DNA ligase (NEB), etc.) to form a complete ligation probe.
  • This step is intended to convert the target DNA into a complete probe after ligation.
  • the second step is to simultaneously amplify these connected intact probes with a pair of universal primers.
  • the unligated probes cannot be amplified normally, linear amplification (linear amplification of the right junction probe) or non-specific Amplification (the left or right probe non-specifically binds to the primer to amplify a non-specific product), and the omega probe that directs the detection reaction has no primer tag sequence and primer-binding tag sequence, and no non-specific expansion occurs. Increased, non-specific signals are not detected in the system, so there is no interference from non-specific signals.
  • the upstream primer tag sequence and the downstream primer binding tag sequence are derived from a universal primer sequence.
  • the upstream universal primer F in one embodiment of the present invention is the sequence: TGGAGCGACGATACGAAGATA (SEQ ID NO: ll); the downstream general primer R is the sequence: GCTCCAAGATCCTATCTAGA (SEQ ID NO: 12).
  • the present invention is a novel ligase reaction-mediated amplification method, which is different from the conventional connection-dependent amplification methods (eg, LDR/PCR, MLPA, PLP, MIP, etc.), and the technique has the following Advantages:
  • Non-specific ligation products in the art are either linearly amplified in PCR or have a small amount of exponential amplification, and none of these products are detected;
  • non-specific amplification will not occur when ligation probe b, and a small amount of non-specific amplification between ligation probes a and c and PCR primers will not be detected;
  • the tag sequences are added to the three ligation probes to achieve efficient amplification and detection of different target sequences under the same amplification system and detection system;
  • the experimental procedure and operation time are short, the detection system is open, and the detection can be realized by real-time PCR system, chip system, etc.;
  • connection probe has a short length (about 35-60 nt), which is easy to design and chemically synthesize.
  • 1 is a detection principle of a novel ligase reaction-mediated amplification method. Among them, 7 is the target sequence, and the target sequence is divided into 3, 5, and 5' segments, which are divided into A, B, C, and D. 1 is the upstream primer tag sequence, 2 is the reverse complement of segment A, 3 is the reverse complement of segment B, 3 ' is the reverse complement of segment C, and 4 is between segment B and segment C. The tag sequence is detected, 5 is the reverse complement of the D segment, and 6 is the downstream primer binding tag sequence.
  • 2A, 2B and 2C are melting curves of common and capsular structure hybrid sequences, wherein 8 is a melting curve of the connecting probe 2, 9 is a melting curve of the connecting probe 1, and 10 is a melting curve of the connecting probe 3. 11 is the melting curve of the connecting probe 4, 12 is the melting curve of the connecting probe 2, 13 is the melting curve of the connecting probe 4, and 14 is the melting curve of the connecting probe 5.
  • 3A is an amplification curve of a gradient-diluted DNA
  • 3B is a standard curve of a gradient-diluted DNA
  • 15 is a gradient dilution template (loading amounts of 1.0 ⁇ 10 7 , 1.0 ⁇ 10 6 , 1.0 ⁇ 10 5 , 1.0 ⁇ 10 , respectively).
  • 4 1.0X10 3 , 1.0X10 2 copies, arranged from left to right) amplification curve
  • 16 is the negative control amplification curve.
  • 4A, 4B, and 4C are SNP genotyping results of three human genomic DNA samples, respectively, wherein 17 is a FAM channel signal, corresponding to genotype A; 18 is a HEX channel signal, corresponding to genotype G.
  • Apparatus used in the examples Real-time fluorescence PCR instrument (Rotor-gene 6000, QIAGEN, Germany), UV-visible spectrophotometer (ND-1000, NanoDrop, USA), bench-top microcentrifuge (Eppendorf, Germany), Ben All sequence synthesis in the technical solution examples was obtained from Bioengineering Engineering (Shanghai) Co., Ltd.
  • the ligase was Ampligase DNA Ligase Kit (5 U/ ⁇ L, 1000 U, Epicentre).
  • the genomic DNA samples used were derived from normal human peripheral blood, using Qiagen's DN eaS yTMBl 0 od Kit and following its instructions. Extraction method is obtained by extraction. Peripheral blood samples were provided by the Xiamen Maternal and Child Health Hospital. The use of specimens is subject to the permission of the parties or their guardians.
  • Example 1 Comparison of melting curves of multiple connected probes:
  • Link probe 1 (fully complementary to the target sequence):
  • GCAAGATCCAATCTAGACATTTCCCTGCAG SEQ ID NO: 2
  • Link probe 2 hybrid with the target sequence to form a vesicular structure with the vesicular structure in the middle and the base in the dotted line constitute the vesicular structure
  • Link probe 3 hybridization hybrid with the target sequence to form a vesicular structure, base at the position of the dotted line constitutes a saclike structure: GCAAGATCCAATCTAGACATTTGGAATCTGGATTCAAAATCTTCCCTGCAG (SEQ ID NO: 4)
  • Linker probe 4 hybridization hybridization with the target sequence to form a vesicular structure, base at the dotted line constitutes a vesicular structure: GCAAGATCCAATCTAGACAGGAATCTGGATTCAAAATCTTTTTCCCTGCAG
  • Link probe 5 GCAAGATCCAATCTAGACA ( SEQ ID NO: 6 )
  • the 25 ⁇ L melting system is: 75 mmol/L Tris-HCl pH 9.0, 20 mmol/L (NH 4 ) 2 S0 4 , 0.01 % Tween 20, 50 mmol/L KC1, 4 mmol/L Mg 2+ , 0.4 ⁇ mol/L ligation probe.
  • 0.2 ⁇ mol/L target sequence 0.2 PL Sybrgreen fluorescent dye.
  • the melting analysis procedure is: 95 ° C for 1 minute; 40 ° C for 1 minute; 40 ° C to 90 ° C, the entire temperature rise process to collect the corresponding fluorescent signal.
  • a synthetic DNA sequence was selected as the object of investigation, and three ligation probes were designed to hybridize to the adjacent positions of the target sequence, and the specific sequences are as follows:
  • ATGTTGAGGAATATGA SEQ ID NO: 7
  • Link probe b PQ4-TATACTGCTTAAATTTAACTTCGGTCCTTCATCGCTGGTAGCATCATATTGC
  • the upstream primer tag sequence linking probe a is a universal primer F sequence
  • the downstream primer binding tag sequence linking probe c is the reverse complement of universal primer R:
  • the detection tag sequence of the intermediate junction probe is a FAM-tagged Taqman probe sequence (FAM-
  • AACTTCGGTCCTTCATCGCT-BHQ the sequence portion is SEQ ID NO: 13
  • three ligation probes are hybridized to adjacent positions of the target sequence, and the ligase reaction is followed by PCR amplification to achieve quantitative detection.
  • the target sequence is subjected to a 10-fold gradient dilution to obtain DNAs of 1.0 '10 7 , 1.0' 10 6 , 1.0' 10 5 , 1.0' 10 4 , 1.0' 10 3 , ⁇ . ⁇ ' ⁇ 2 copies, respectively.
  • Gradient DNA is a quantitative detection template.
  • PCR reaction 25 reaction system containing 2 p L of the first ligation product, 75 mmol / L Tris-HCl pH 9.0, 20 mmol/L (NH 4 ) 2 S0 4 , 0.01 % Tween 20, 50 mmol/L KCl, 1 U 3 ⁇ 4r enzyme, 3 mmol/L Mg 2+ , 0.2 ⁇ mol/L Taqman probe, 0.4 ⁇ mol/L Universal primer F and 0.4 mol/L universal primer R; PCR reaction procedure: 95 ° C for 3 minutes; 95 ° C for 15 seconds, 58 ⁇ 30 seconds for 50 cycles; 58 ⁇ annealing extension phase to collect FAM fluorescence signal.
  • the amplification curve of the gradient dilution template is: the amplification signal appears in the FAM channel and the amplification curve exhibits a gradient, and the Ct value of the amplification curve increases with the decrease of the template copy number (the fluorescence signal in the PCR reaction tube reaches the set threshold) The number of corresponding cycles is gradually increased.
  • a negative control (NTC) showed no amplification signal (Fig. 3A).
  • PQ4-CAGCCACATTCTCAGAACTGCTCTAGATAGGATCTTGGAGC (SEQ ID NO: 17) wherein the tag sequence of the ligation probe & c is the same as in the second embodiment, and the detection tag sequence of the ligation probe 1)_1 is a FAM-tagged Taqman probe sequence (FAM-CATCTCTAAGGCAAGGCTC-BHQ, The sequence portion is SEQ ID NO: 18), corresponding to the template with the genotype A, and the detection tag sequence for the ligation probe b-2 is the TET-tagged Taqman probe sequence (TET-ACCTTCCGTGTGTACTCGT-BHQ, the sequence portion is SEQ ID NO: 19), corresponding to a template with a genotype of G.
  • the ligation probes &, c are respectively hybridized to the adjacent two sides of the ligation probe b, and the ligase reaction is carried out by PCR amplification to achieve the purpose of typing detection.
  • genotype of sample A was AA
  • genotype of sample B was GG
  • genotype of sample C was AG.
  • Genomic DNA denaturation Take 5 ⁇ L of genomic DNA (total 50 ng) at a temperature of 98 ° C for 5 minutes, then drop to 25 ° C to save; 2. Connection reaction: IO PL reaction system contains l L hybridization ligation buffer, 25 l of each ligation probe, 1 U of ligase, 5 w L of the first degenerated genomic template; ligation reaction procedure: 95 ° C for 1 min, 60 ⁇ 10 min, 55 V for 10 min, 50V 10 minutes; 3.
  • PCR reaction 25y L reaction system containing 2y L second step connection product, 75 mmol / L Tris-HCl pH 9.0, 20 mmol / L (NH 4 ) 2 S0 4 , 0.01 % Tween 20, 50 mmol/L KC1, 1 U TaqM, 3 mmol/L Mg 2+ , 0.15 ⁇ mol/L each Taqman probe, 0.4 ⁇ mol/L universal primer F and 0.4 ⁇ mol/L universal primer R.
  • the PCR reaction procedure was: 95 ° C for 3 minutes; 95 ° C for 15 seconds, 58 ° C for 30 seconds, 50 cycles; 58 ⁇ annealing extension phase to collect FAM and TET two-color fluorescence signals.
  • FIG. 4A Sample A's amplification curve is: FAM (Green) channel (ie 17) Amplification signal appears, TET (Yellow) channel (ie 18) does not appear expanded Increase the signal, so verify that its corresponding SNP locus is AA type; see B sample SNP genotyping test results
  • Figure 4B Sample B amplification curve is: FAM (Green) channel does not appear amplification signal, TET (Yellow) The channel has an amplification signal, so it is verified that the corresponding SNP site is GG type; see C sample SNP genotyping test result.
  • Figure 4C Sample C amplification curve is as follows: FAM (Green) channel appears amplification signal, TET ( Yellow) The amplification signal is also present in the channel, so it is verified that the corresponding SNP site is AG type.

Abstract

本发明公开了一种新型连接酶反应介导的扩增方法及用途,通过三条连接探针的连接酶反应实现下游的通用扩增及检测。本发明还公开了包含三条连接探针的试剂盒和芯片及其用途,特别是基因序列分型检测中的用途。

Description

连接酶反应介导的扩增方法及用途 技术领域
[0001] 本发明涉及一种扩增方法, 尤其涉及一种连接酶反应介导的扩增方法。
背景技术
[0002] 核酸检测技术已被广泛应用于分子遗传学、 免疫学、 肿瘤学及微生物学等方面的临 床诊断。 随着分子生物学的飞速发展, 一些新的核酸检测方法也不断涌现, 其中, 连接酶依 赖的检测技术就是其中的一类。 连接酶是一种封闭 DNA或 RNA链上缺口 (Nick)的酶, 借助 NAD+或 ATP水解提供的能量催化 2条核酸单链的 3'端羟基和 5'端磷酸基团反应形成磷酸二 酯键。 连接酶依赖的检测技术主要是通过核酸杂交原理及其在缺口连接处的保真性实现的。 1988年, Landegren首先发明了连接酶体外突变检测技术 OLA, 并利用该技术鉴定了编码导 致地中海镰刀型细胞贫血症的 P球蛋白的突变等位基因 β s和野生型等位基因 3 A之间的单 碱基差异。 1991 年, Barany提取出耐热连接酶并发展了连接酶检测反应 (Ligase detection reaction, LDR)和连接酶链式反应 (Ligase chain reaction, LCR)技术。 这两项技术的提出对连接 酶依赖的体外检测技术的发展及应用具有深远的意义, 但是都存在非特异信号干扰、 易用性 差等问题。 其后, 连接酶反应技术结合 PCR 技术, 衍生出了一系列新的检测技术。 如 LDR/PCR、 MLPA、 PLP(Padlock probe), MIP(Molecular inversion probe)等, 这些技术主要通 过连接酶反应实现目的基因的 "特异转化", 再由 PCR 系统扩增转化后的特异产物实现检 测。 该类技术都表现出较高的检测通量, 甚至能够实现 >10000重的基因分型 (MIP技术), 但是都存在非特异信号的干扰较严重, 容易出现假阳性的问题。 这类技术的非特异信号主要 来源于: 1.非特异连接酶反应; 2.非特异的 PCR扩增。 LDR/PCR、 MLPA技术由于受到这两 种非特异的影响, 故检测的灵敏度有限, 且非特异信号能被检测出, 存在假阳性的风险。 PLP 及 MIP 技术采用了外切酶消化未连接杂交探针的方法, 在一定程度上消除了杂交探针 在 PCR反应中的非特异扩增, 但是当检测重数较高时, 仍然会受到非特异连接的影响, 假 阳性的出现仍不可避免。
发明内容
[0003] 本发明要解决的技术问题是: 提供一种克服连接酶反应及 PCR 的非特异信号干扰的 扩增方法。 该技术实现了降低反应背景、 增强性噪比、 避免假阳性等目的。
[0004] 为解决上述问题, 本发明提供一种新型连接酶反应介导的扩增方法, 通过三条连接 探针的连接酶反应实现下游的通用扩增及检测, 其特征在于: 每条连接探针由特异杂交序列 及填入的标签序列组成, 具体为: 目标序列 7从 3 ' 端到 5' 端分别分为 A段, B段, C段 和 D段, 连接探针 a为 A段的反向互补序列 2加上一段上游引物标签序列 1组成, 即 2— 1; 连接探针 b为 C段的反向互补序列 3 ', 加上 B段和 C段之间的检测标签序列 4和 B段 的反向互补序列 3组成, 即 3' -4-3; 连接探针 c为一段下游引物结合标签序列 6加上 D段 的反向互补序列 5组成, 即 6— 5; 所述的序列 1、 4、 6为不与目标序列杂交的序列。
[0005] 所述的上游引物标签序列 1、 下游引物结合标签序列 6和检测标签序列 4的设计原则 分别为: GC含量适中, Tm值为 55-70°C, 长度为 18-35bp, 与目标基因组无较高同源性。 此处的无较高同源性是指同源性低于 50%。
[0006] 所述的序列 2、 3、 3 '、 5 为 GC 含量适中, Tm 值为 50-7(TC, 与目标序列特异杂 交。
[0007] 所述的连接探针&、 b和 c的序列中除去序列 1、 4、 6外均为特异杂交序列。。
[0008] 本发明还提供一个试剂盒, 包含上述的连接探针 a、 !^和^ 及试剂盒的用途。
[0009] 本发明还提供一种芯片, 包含上述的连接探针 a、 1)和<^, 及芯片的用途。
[0010] 所述目标序列的 、 B、 C和 D段相互之间无间隔。
[0011] 目标序列的 GC含量适中, 无重复序列或同源性较高的序列出现, 连接探针特异杂交 的位置最好不要有 SNP或突变位点的出现, 除非是 SNP或突变检测实验中, SNP或突变位 点最好位于连接探针的 3 ' 端。
[0012] 本发明还涉及一种连接酶反应介导的扩增方法用途。
[0013] 所述试剂盒、 芯片和连接酶反应介导的扩增方法在进行基因序列分型、 定量等检测 中的用途。
[0014] 本发明检测的是已知目标序列, 可检测突变位点、 SNP 位点、 各物种目标基因 (如 细菌及病毒的目标 DNA) 的定性及定量反应等。
[0015] 本发明提供一种新型连接酶依赖的扩增方法一一欧米伽探针技术 (Omega probe technology), 该方法是: 在连接酶反应中, 通过将检测标签序列、 上游引物标签序列和下游 引物结合标签序列分别填入三条不同的连接探针中达到消除非特异信号干扰的效果。 中间连 接探针形似 " Ω ", 我们形象地称之为欧米伽探针, 所以称该方法为欧米伽探针技术。
[0016] 欧米伽探针技术的关键组成是三条连接探针, 每条连接探针由特异杂交序列及填入 的标签序列组成, 三条连接探针的标签序列分别为连接探针 a的上游引物标签序列、 连接探 针 b 的检测标签序列、 连接探针 c的下游引物结合标签序列 (如图 1 )。 本发明技术方案是 通过三条连接探针杂交于目标序列相邻的位置上, 其中, 连接探针 b杂交于目标基因序列时 形成囊状结构 (即为填入的检测标签序列 4), 囊状结构两侧的特异杂交序列形成 "杂交共 同体"。 三条连接探针在连接酶的作用下最终形成一条包含三个 "标签" 序列的完整探针 链, 该完整探针链即连接产物最终由通用 PCR系统实现扩增。
[0017] 本发明的方法和步骤为: 基因组 DNA模板经高温 (98°C, 5-10分钟) 充分变性后, 三条连接探针与待检基因位点 DNA序列进行特异杂交 (杂交于 DNA序列上相邻的位置), 杂交后经耐热连接酶 (如 Ampligase (Epicentre), Taq DNA ligase (NEB)等) 连接反应, 形成 一条完整的连接探针。 该步反应旨在将目标 DNA转化为连接后的完整探针。 第二步是用一 对通用引物同时扩增这些已连接的完整探针, 未连接的探针不能被正常扩增, 会出现线性扩 增 (右侧连接探针出现线性扩增) 或非特异扩增 (左侧或右侧探针与引物非特异结合扩增出 非特异产物), 而引导检测反应的欧米伽探针两端无引物标签序列和引物结合标签序列, 不 会出现非特异扩增, 体系中检测不到非特异信号, 故无非特异信号的干扰。
[0018] 上游引物标签序列和下游引物结合标签序列来源于通用引物序列。 本发明一个实施 例中的上游通用引物 F是序列: TGGAGCGACGATACGAAGATA ( SEQ ID NO:ll ); 下游通 用引物 R是序列: GCTCCAAGATCCTATCTAGA ( SEQ ID NO: 12 )。
[0019] 本发明是一种新型的连接酶反应介导的扩增方法, 不同于传统的依赖连接反应的扩 增方法 (如: LDR/PCR、 MLPA、 PLP及 MIP等), 该技术具有如下优点:
1.针对一个待检测的基因序列设计三条连接探针, 保证检测反应极高的特异性。 尤其适用于 同源性较高序列的分辨检测;
2.消除非特异连接信号的干扰: 本技术中的非特异连接产物在 PCR 中要么是线性扩增、 要 么存在少量的指数扩增, 而这些产物均不会被检测出;
3.避免非特异扩增信号的干扰: 连接探针 b不会出现非特异性扩增, 而连接探针 a和 c与 PCR引物间的少量非特异扩增则不会被检测出;
4.三条连接探针中均加入标签序列, 可在相同的扩增体系和检测体系下实现不同目标序列的 高效扩增和检测;
5.实验流程及操作时间短, 检测系统开放, 可通过实时 PCR系统、 芯片系统等实现检测;
6.连接探针的长度较短 (约 35-60nt), 易于设计和化学合成。
附图说明
[0020] 附图 1 为本新型连接酶反应介导的扩增方法的检测原理。 其中 7 为目标序列, 目标 序列从 3 ' 段到 5' 段, 依次分为 A、 B、 C、 D。 1 为上游引物标签序列, 2 为 A段的反向 互补序列, 3 为 B段的反向互补序列, 3 ' 为 C段的反向互补序列, 4为 B段和 C段之间的 检测标签序列, 5为 D段的反向互补序列, 6为下游引物结合标签序列。
[0021] 附图 2A、 2B和 2C均为普通及囊状结构杂交序列熔解曲线图, 其中 8 为连接探针 2 熔解曲线, 9 为连接探针 1熔解曲线, 10为连接探针 3熔解曲线, 11为连接探针 4熔解曲 线, 12为连接探针 2熔解曲线, 13为连接探针 4熔解曲线, 14为连接探针 5熔解曲线。
[0022] 附图 3A为梯度稀释 DNA的扩增曲线, 3B为梯度稀释 DNA的标准曲线; 其中 15为 梯度稀释模板 (加样量分别为 1.0X107、 1.0X106、 1.0X105、 1.0X104、 1.0X103、 1.0X102拷 贝, 从左至右依次排列) 扩增曲线, 16为阴性对照扩增曲线。
[0023] 附图 4A、 4B、 4C分别为三份人基因组 DNA样本 SNP基因分型检测结果, 其中 17 为 FAM通道信号, 对应基因型 A; 18 为 HEX通道信号, 对应基因型 G。
具体实施方式
[0024] 下面将结合实施例对本发明的实施方案进行详细描述, 但是本领域技术人员将会理 解, 下列实施例仅用于说明本发明, 而不应视为限定本发明的范围。 实施例中未注明具体技 术或条件者, 按照本领域内的文献所描述的技术或条件 (例如参考 J.萨姆布鲁克等著, 黄培 堂等译的 《分子克隆实验指南》, 第三版, 科学出版社) 或者按照产品说明书进行。 所用试 剂或仪器未注明生产厂商者, 均为可以通过市购获得的常规产品。
[0025] 实施例中使用仪器: 实时荧光 PCR仪 (Rotor-gene 6000, 德国 QIAGEN公司), 紫外 可见分光光度计 (ND-1000, 美国 NanoDrop 公司), 台式微量离心机 (德国 Eppendorf 公 司), 本技术方案实施例中所有序列合成均来自生工生物工程 (上海) 有限公司。 连接酶为 AmpligaseDNA Ligase Kit (5U/ μ L, 1000U, Epicentre), 所使用的基因组 DNA样本来源于正常 人的外周血提取, 均采用 Qiagen公司的 DNeaSy™Bl0od Kit并遵照其说明书的提取方式提取 获得。 外周血样品由厦门市妇幼保健院提供。 标本的使用均获得当事人或其监护人的许可。
[0026] 实施例 1 : 多条连接探针的熔解曲线比较:
目标序列: CTGCAGGGAAATGTCTAGATTGGATCTTGC ( SEQ ID NO: 1 )
连接探针 1 (与目标序列完全互补杂交) :
GCAAGATCCAATCTAGACATTTCCCTGCAG ( SEQ ID NO:2 )
连接探针 2 (与目标序列杂交形成囊状结构的杂交共同体, 囊状结构位于其正中间, 虚线位 置的碱基组成囊状结构) :
( SEQ ID NO:3 )
连接探针 3 (与目标序列杂交形成囊状结构的杂交共同体, 虚线位置的碱基组成囊状结构) : GCAAGATCCAATCTAGACATTTGGAATCTGGATTCAAAATCTTCCCTGCAG ( SEQ ID NO:4)
连接探针 4 (与目标序列杂交形成囊状结构的杂交共同体, 虚线位置的碱基组成囊状结构) : GCAAGATCCAATCTAGACAGGAATCTGGATTCAAAATCTTTTTCCCTGCAG
( SEQ ID NO:5)
连接探针 5: GCAAGATCCAATCTAGACA ( SEQ ID NO:6 )
通过 Sybrgreen染料考察以上连接探针与目标序列的熔解过程。
[0027] 25 μ L熔解体系为: 75 mmol/L Tris-HCl pH 9.0, 20 mmol/L (NH4) 2S04 , 0.01 % Tween 20, 50 mmol/L KC1,4 mmol/L Mg2+, 0.4 μ mol/L连接探针。 0.2 μ mol/L目标序列, 0.2 P L Sybrgreen荧光染料。 熔解分析程序为: 95°C 1分钟; 40°C 1分钟; 40°C升温至 90°C, 整个升温过程采集相应的荧光信号。
[0028] 结果显示: 1、 见普通及囊状结构杂交序列熔解曲线图 2A, 其中 8 为连接探针 1熔 解曲线, 9 为连接探针 1熔解曲线, 连接探针 1、 2与目标序列杂交后的熔解曲线图显示: 囊状结构探针的熔解与普通探针的熔解一样, 是一个独立的熔解过程, 而不是囊状结构两侧 分别熔解的过程, 其熔解峰为独立的单峰。 囊状结构探针的 Tm值比相同探针的正常探针的 Tm值低 8°C左右。 2、 见普通及囊状结构探针熔解曲线图 2B, 其中 10为连接探针 3熔解曲 线, 11为连接探针 4熔解曲线, 12为连接探针 2熔解曲线, 连接探针 2、 3、 4与目标序列 杂交后的熔解曲线图显示: 囊状结构在探针中的位置影响杂交 Tm值, 其位于探针的中间位 置时对应的 "杂交共同体" 的 Tm值最小。 3、 见普通及囊状结构探针熔解曲线图 2C, 其中 13为连接探针 4熔解曲线, 14为连接探针 5熔解曲线, 连接探针 4、 5与目标序列杂交后的 熔解曲线图显示囊状结构的杂交 Tm值大于单独一侧的 Tm值, 进一步说明囊状结构探针的 整体熔解现象。
[0029] 实施例 2: 定量检测目标序列
选择一段人工合成的 DNA序列为考察对象, 针对该序列设计三条连接探针分别杂交于目标 序列相邻的位置上, 具体序列如下:
目标序列:
ATGTTGAGGAATATGA ( SEQ ID NO:7 )
连接探针 a:
TGGAGCGACGATACGAAGATATCATATTCCTCAACATGTCTGC ( SEQ ID NO:8 ) 连接探针 b: PQ4-TATACTGCTTAAATTTAACTTCGGTCCTTCATCGCTGGTAGCATCATATTGC
( SEQ ID NO:9 )
连接探针 c:
P04-CCAGGTACAGGAGACTGTGTAGTCTAGATAGGATCTTGGAGC
( SEQ ID NO:10)
其中, 连接探针 a的上游引物标签序列为通用引物 F序列, 连接探针 c的下游引物结合标签 序列为通用引物 R的反向互补序列:
通用引物 F: TGGAGCGACGATACGAAGATA ( SEQ ID NO: 11 )
通用引物 R: GCTCCAAGATCCTATCTAGA ( SEQ ID NO: 12 )
中 间连接探针的检测标签序列为 FAM 标记的 Taqman 探针序列 ( FAM-
AACTTCGGTCCTTCATCGCT-BHQ , 序列部分为 SEQ ID NO: 13 ), 三条连接探针杂交于目 标序列相邻位置上, 连接酶反应后经 PCR扩增实现定量检测的目的。
[0030] 目标序列十倍梯度稀释获取浓度分别为 1.0 ' 107、 1.0' 106、 1.0' 105、 1.0' 104、 1.0' 103、 Ι.Ο' ΙΟ2拷贝的 DNA, 选择此梯度 DNA为定量检测模板。
[0031] 实验体系: 1.连接反应: lO L反应体系中含 l y L杂交连接缓冲液、 25finol的每条 连接探针、 1U的连接酶, 5 y L的 DNA模板; 连接反应程序为: 95Γ 1分钟, 6(TC 10分 钟, 55°C 10分钟, 50°C 10分钟; 2.PCR反应: 25 反应体系内含 2 p L第一步连接产 物, 75 mmol/L Tris-HCl pH 9.0, 20 mmol/L (NH4) 2S04 , 0.01 % Tween 20, 50 mmol/L KCl, 1 U ¾r酶, 3 mmol/L Mg2+, 0.2 μ mol/L Taqman探针, 0.4 μ mol/L通用引物 F和 0.4 mol/L通用引物 R; PCR 反应程序为: 95°C 3 分钟; 95°C 15 秒, 58Ό 30 秒 50个循 环; 58Ό退火延伸阶段采集 FAM荧光信号。
[0032] 梯度稀释模板的扩增曲线为: FAM 通道均出现扩增信号且扩增曲线呈现梯度, 随模 板拷贝数的降低, 扩增曲线 Ct值 (PCR反应管内的荧光信号达到设定的阈值时对应的循环 数) 逐渐增加。 阴性对照 (NTC) 无扩增信号出现 (图 3A)。 梯度稀释模板标准曲线为: 其 Ct值与起始 DNA拷贝数线的对数呈良好的线性关系 (R2=0.99), 体现该方法较佳的定量能 力 (图 3B)。
[0033] 实施例 3 : 三份人基因组 DNA样本 SNP基因分型检测
选择 SNP位点 (rs740598 ) 为研究对象, 设计四条连接探针如下:
连接探针 a:
TGGAGCGACGATACGAAGATACCAAATATTTTTCGTAAGTATTTCAAAT
( SEQ ID NO: 14 ) 连接探针1)_1:
PQ4-AGCAATGGCTCGTCCATCTCTAAGGCAAGGCTCTATGGTTAGTCTCA
(SEQIDNO:15)
连接探针 b— 2:
PQ4-AGCAATGGCTCGTCACCTTCCGTCTGTACTCGTTATGGTTAGTCTCG
(SEQ ID NO:16)
连接探针 c:
PQ4-CAGCCACATTCTCAGAACTGCTCTAGATAGGATCTTGGAGC ( SEQ ID NO: 17 ) 其中, 连接探针 &、 c的标签序列同实施例二, 连接探针1)_1 的检测标签序列为 FAM标记 Taqman探针序列 (FAM-CATCTCTAAGGCAAGGCTC-BHQ,序列部分为 SEQ ID NO:18), 对应杂交于基因型为 A的模板, 连接探针 b— 2的检测标签序列为 TET标记的 Taqman探针 序列 (TET-ACCTTCCGTCTGTACTCGT-BHQ, 序列部分为 SEQ ID NO:19), 对应杂交于基 因型为 G的模板。 连接探针 &、 c分别杂交于连接探针 b的相邻两侧位置, 连接酶反应后经 PCR扩增实现分型检测的目的。
[0034] 选择三份已知基因型的人基因组样本 (浓度均为 lOng/y L) 为验证对象, 样本 A 的 基因型为 AA, 样本 B的基因型为 GG, 样本 C的基因型为 AG。
[0035] 实验体系: 1.基因组 DNA变性: 取基因组 DNA各 5y L (总量 50ng) 于 98°C温浴 5 分钟, 随即降至 25°C保存; 2.连接反应: IO P L 反应体系中含 l L 杂交连接缓冲液、 25finol 的每条连接探针、 1U 的连接酶, 5w L第一步己变性的基因组模板; 连接反应程序 为: 95°C 1 分钟, 60Ό 10分钟, 55V 10分钟, 50V 10分钟; 3.PCR反应: 25y L反应 体系内含 2y L第二步连接产物, 75 mmol/L Tris-HCl pH 9.0, 20 mmol/L (NH4) 2S04 , 0.01 % Tween 20, 50 mmol/L KC1, 1 U TaqM, 3 mmol/L Mg2+, 0.15 μ mol/L各 Taqman探 针, 0.4 μ mol/L通用引物 F和 0.4 μ mol/L通用引物 R。 PCR反应程序为: 95°C 3分钟; 95 °C 15秒, 58°C 30秒 50个循环; 58Ό退火延伸阶段采集 FAM和 TET双色荧光信号。
[0036] 见 A 样本 SNP 基因分型检测结果图 4A: 样本 A 的扩增曲线情况为: FAM (Green) 通道 (即 17) 出现扩增信号, TET (Yellow) 通道 (即 18) 未出现扩增信号, 故 验证其对应 SNP位点为 AA型; 见 B样本 SNP基因分型检测结果图 4B: 样本 B的扩增曲 线情况为: FAM (Green) 通道未出现扩增信号, TET (Yellow) 通道出现扩增信号, 故验 证其对应 SNP位点为 GG型; 见 C样本 SNP基因分型检测结果图 4C: 样本 C的扩增曲线 情况为: FAM (Green) 通道出现扩增信号, TET (Yellow) 通道也出现扩增信号, 故验证 其对应 SNP位点为 AG型。

Claims

WO 2013/107287 权 利 要 求 书 PCT/CN2013/000055
1. 一种连接酶反应介导的扩增方法, 采用连接探针 a、 b、 c介导扩增, 其特征在于: 每条连 接探针由特异杂交序列及填入的标签序列组成, 具体为: 目标序列 7从 3 ' 端到 5, 端分别 分为 A段, B段, C段和 D段, 连接探针 a为 A段的反向互补序列 2加上一段上游引物标 签序列 1组成, 即 2— 1 ; 连接探针 b为 C段的反向互补序列 3 ', 加上 B段和 C段之间的 检测标签序列 4和 B段的反向互补序列 3组成, 即 3 ' -4-3; 连接探针 c为一段下游引物结 合标签序列 6加上 D段的反向互补序列 5组成, 即 6— 5; 所述的序列 1、 4、 6为不与目标 序列杂交的序列。
2.权利要求 1的连接酶反应介导的扩增方法, 其特征在于: 所述的上游引物标签序列 1、 下 游引物结合标签序列 6和检测标签序列 4的设计原则分别为: GC含量适中, Tm值为 55-70 V , 长度为 18-35nt, 与目标基因组无较高同源性。
3. 权利要求 1的连接酶反应介导的扩增方法, 其特征在于: 所述的序列 2、 3、 3 '、 5为 GC 含量适中, Tm值为 50-7CTC , 与目标序列特异杂交。
4. 权利要求 1的连接酶反应介导的扩增方法, 其特征在于: 所述的连接探针 a、 b和 c的序 列中除去序列 1、 4、 6外均为特异杂交序列。
5. 一个试剂盒, 包含权利要求 1一 4中任一项所述的连接探针 a、 15和^
6. —种芯片, 包含权利要求 1一 4中任一项所述的连接探针 a、 !?和^
7.权利要求 1 的连接酶反应介导的扩增方法及权利要求 5的试剂盒和权利要求 6的芯片的 用途。
8.权利要求 7的用途是指在进行基因序列分型、 定量等检测中的用途。
9.一种连接酶反应介导的扩增方法所用连接探针 a、 b和 c的制备方法, 其步骤为, 选定模 板的目标序列 7, 将其从 3 ' 端到 5 ' 端分别分为相互不间隔的 A、 B、 C、 D段, A的反向 互补序列为序列 2, B的反向互补序列为序列 3, C的反向互补序列为序列 3 ', D的反向互 补序列为序列 5, 其中连接探针 a即为序列 2加上序列 1, 连接探针 b为序列 3加上序列 4 加上序列 3 ', 连接探针 c为序列 6加上序列 5, 其中序列 1、 4、 6为 GC含量适中, Tm值 为 55-7(TC, 长度为 18-35bp, 与目标基因组无较高同源性的序列; 其中的序列 2、 3、 3 '、 5 的 GC含量适中, Tm值为 50-70°C, 按照连接探针 a、 b、 c的序列, 化学合成即可。
PCT/CN2013/000055 2012-01-18 2013-01-18 连接酶反应介导的扩增方法及用途 WO2013107287A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/373,010 US9850533B2 (en) 2012-01-18 2013-01-18 Ligase reaction mediated amplification method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210015431.6A CN102559661B (zh) 2012-01-18 2012-01-18 一种新型连接酶反应介导的扩增方法及用途
CN201210015431.6 2012-01-18

Publications (1)

Publication Number Publication Date
WO2013107287A1 true WO2013107287A1 (zh) 2013-07-25

Family

ID=46406268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000055 WO2013107287A1 (zh) 2012-01-18 2013-01-18 连接酶反应介导的扩增方法及用途

Country Status (3)

Country Link
US (1) US9850533B2 (zh)
CN (1) CN102559661B (zh)
WO (1) WO2013107287A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559661B (zh) 2012-01-18 2014-06-04 厦门基科生物科技有限公司 一种新型连接酶反应介导的扩增方法及用途
CN111100912B (zh) * 2013-11-26 2023-06-30 杭州联川基因诊断技术有限公司 测定使用的杂交结构
CN104032031A (zh) * 2014-07-04 2014-09-10 华东理工大学 一种rna聚合酶和连接酶偶联反应介导的定量检测核酸的pcr分析方法
CN104263827A (zh) * 2014-09-23 2015-01-07 宁波有成生物医药科技有限公司 一种用于连接酶反应的新型探针设计方法
CN110964791B (zh) * 2019-12-26 2023-08-15 贵州中医药大学第二附属医院 一种单核苷酸多态性的检测方法及相应的试剂盒
CN113077845A (zh) * 2021-04-13 2021-07-06 中国科学院大气物理研究所 一种大气气溶胶微生物群落组成的分析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024053A1 (en) * 2003-09-04 2005-03-17 Human Genetic Signatures Pty Ltd Nucleic acid detection assay
CN1824786A (zh) * 2005-12-23 2006-08-30 上海生物芯片有限公司 基于连接的选择性扩增方法
CN102559661A (zh) * 2012-01-18 2012-07-11 厦门基科生物科技有限公司 一种新型连接酶反应介导的扩增方法及用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2239683A1 (en) * 1995-12-22 1997-07-03 Dade Behring Marburg Gmbh Homogeneous amplification and detection of nucleic acids
AU2002360474A1 (en) * 2001-12-03 2003-06-17 Illumina, Inc. Multiplexed methylation detection methods
US8679788B2 (en) * 2004-03-22 2014-03-25 The Johns Hopkins University Methods for the detection of nucleic acid differences
PL1856257T3 (pl) * 2005-03-05 2012-03-30 Seegene Inc Procesy wykorzystujące oligonukleotyd o podwójnej specyficzności oraz oligonukleotyd o podwójnej specyficzności
GB0703996D0 (en) * 2007-03-01 2007-04-11 Oxitec Ltd Nucleic acid detection
GB201116131D0 (en) * 2011-09-19 2011-11-02 Epistem Ltd Probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024053A1 (en) * 2003-09-04 2005-03-17 Human Genetic Signatures Pty Ltd Nucleic acid detection assay
CN1824786A (zh) * 2005-12-23 2006-08-30 上海生物芯片有限公司 基于连接的选择性扩增方法
CN102559661A (zh) * 2012-01-18 2012-07-11 厦门基科生物科技有限公司 一种新型连接酶反应介导的扩增方法及用途

Also Published As

Publication number Publication date
US9850533B2 (en) 2017-12-26
CN102559661A (zh) 2012-07-11
US20150004606A1 (en) 2015-01-01
CN102559661B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
EP1969137B1 (en) Multiplex nucleic acid detection
US20210230670A1 (en) Solid phase nucleic acid target capture and replication using strand displacing polymerases
US20100311058A1 (en) Method for detecting nucleic acids by simultaneous isothermal amplification of nucleic acids and signal probe
KR101589483B1 (ko) 핵산과 신호 프로브의 비대칭 등온증폭을 이용한 핵산의 검출방법
WO2013107287A1 (zh) 连接酶反应介导的扩增方法及用途
US20090130677A1 (en) Method for isothermal amplification of nucleic acids and method for detecting nucleic acids using simultaneous isothermal amplification of nucleic acids and signal probe
CN107532213B (zh) 用于同时检测样品中多个核酸序列的方法
EP4365305A2 (en) Method of detecting an analyte
WO2012118802A9 (en) Kit and method for sequencing a target dna in a mixed population
WO2010108325A1 (zh) 一种用于核酸扩增的环形引物及其应用
CN108300772B (zh) 用于靶核酸序列检测的多重淬灭荧光探针及方法
Hanami et al. Eprobe mediated real-time PCR monitoring and melting curve analysis
EP3565906B1 (en) Quantifying dna sequences
CN108048533B (zh) 基于三通连接-核酸分子线路换能器的分子检测方法
CN104263827A (zh) 一种用于连接酶反应的新型探针设计方法
JP2007275067A (ja) 核酸のハイブリダイゼーション方法、及び標的核酸の増幅方法
JP4491276B2 (ja) 標的dna配列において一塩基変異多型の存在を検出する方法及びキット
JP2023518217A (ja) 標的核酸を検出するためのループプライマー及びループ・デ・ループ方法
KR102180462B1 (ko) 삼중접합구조 기반 등온 핵산 증폭 기술을 이용한 표적핵산 검출 방법
KR101289310B1 (ko) Mrsa 검출 방법 및 이를 이용한 키트
US20150079587A1 (en) Method for detecting nucleic acids by simultaneous isothermal amplification of nucleic acids and signal probe
KR101513276B1 (ko) 변형 mlpa 를 이용한 카피 수 다형성의 다중 분석 방법
JP5017947B2 (ja) 複数の塩基多型の同定方法
JP2008228589A (ja) 核酸の分析方法
JP2006280333A (ja) 遺伝子組み込み部位の解析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738326

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14373010

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/01/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13738326

Country of ref document: EP

Kind code of ref document: A1