WO2013107109A1 - 一种用于海绵钛生产的反应设备 - Google Patents
一种用于海绵钛生产的反应设备 Download PDFInfo
- Publication number
- WO2013107109A1 WO2013107109A1 PCT/CN2012/073616 CN2012073616W WO2013107109A1 WO 2013107109 A1 WO2013107109 A1 WO 2013107109A1 CN 2012073616 W CN2012073616 W CN 2012073616W WO 2013107109 A1 WO2013107109 A1 WO 2013107109A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reactor
- titanium sponge
- reaction apparatus
- cover
- production according
- Prior art date
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 238000003756 stirring Methods 0.000 claims abstract description 17
- 238000007789 sealing Methods 0.000 claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 230000007246 mechanism Effects 0.000 claims description 3
- 230000009467 reduction Effects 0.000 abstract description 9
- 238000000034 method Methods 0.000 description 22
- 239000010936 titanium Substances 0.000 description 13
- 229910052719 titanium Inorganic materials 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 7
- RXCBCUJUGULOGC-UHFFFAOYSA-H dipotassium;tetrafluorotitanium;difluoride Chemical compound [F-].[F-].[F-].[F-].[F-].[F-].[K+].[K+].[Ti+4] RXCBCUJUGULOGC-UHFFFAOYSA-H 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1263—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
- C22B34/1277—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using other metals, e.g. Al, Si, Mn
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B19/00—Combinations of furnaces of kinds not covered by a single preceding main group
- F27B19/04—Combinations of furnaces of kinds not covered by a single preceding main group arranged for associated working
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D27/00—Stirring devices for molten material
Definitions
- This invention relates to a reaction apparatus for the production of titanium sponge, and more particularly to a reaction apparatus for titanium sponge production which is easy to handle and high in efficiency and which can be continuously operated. Background technique
- the production process of sponge titanium at home and abroad is mainly: metal thermal reduction method, especially the preparation of metal M by the reaction of metal reducing agent (R) with metal oxide or chloride (MX).
- the titanium metallurgical methods that have been industrially produced are the magnesium thermal reduction method (Krol l method) and the sodium thermal reduction method (Hunter method). Because the Hunter method is more expensive to produce than the Krol l method, the only widely used method in the industry is the Krol l method.
- the main process in the Krol l method is: after removing the oxide film and impurities, the magnesium ingot is heated and melted in the reactor, and then titanium tetrachloride (TiCl 4 ) is introduced to form titanium.
- the particles are deposited and the resulting liquid magnesium chloride is discharged through the slag mouth in time.
- the reaction temperature is usually maintained at 800 to 900 ° C and the reaction time is between several hours and several days.
- the residual magnesium metal and magnesium chloride remaining in the final product can be removed by washing with hydrochloric acid, or can be removed by distillation at 900 ° C, and the high purity of titanium is maintained.
- the disadvantages of the Kroll method are higher costs, longer production cycles, and environmental pollution, which limits further application and promotion. At present, there is no fundamental change in the process, it is still intermittent production, the production is not continuous, and there is no corresponding improvement in equipment development, which is not conducive to the further development of sponge titanium manufacturing technology. Summary of the invention
- the present invention provides a method for technologically producing titanium sponge:
- the present invention designs an apparatus for producing titanium sponge, a reactor and a reactor cover with a stirring device, the reactor cover and A sealing raft is disposed between the reactors; a side of the reactor cover is provided with a lifting device for controlling the lifting and lowering of the reactor cover, and an electric resistance furnace is further disposed above the reactor cover, and the electric resistance furnace is disposed under the electric resistance furnace There is a valve; an evacuation tube and an inflation tube are disposed above the reactor cover.
- the invention adopts the above technical solution, and has the advantages that the metal can be added into the resistance furnace, and after melting, the molten metal is dripped into the reactor through the control of the valve, thereby increasing the reaction rate and setting of the lifting device. It is convenient to add raw materials, and the vacuum tube is set to maintain a certain degree of vacuum. The arrangement of the gas tube further satisfies the reaction without contacting with oxygen, so that the aluminum can be completely melted and reacted, thereby improving the efficiency of the reaction.
- the side of the evacuation tube is provided with a vacuum gauge for detecting the degree of vacuum in the reactor.
- the present invention further adopts the above technical features, and has the advantage that the setting of the vacuum pressure gauge enables the vacuum degree in the reactor to be ensured at all times in the reaction. If the degree of vacuum is insufficient, the vacuum can be evacuated in time to improve the efficiency of the reaction.
- the reactor cover is further provided with a locking mechanism for fixing the connection with the reactor and a lock-up gas red.
- the present invention further employs the above technical features, which has the advantage of ensuring that the reactor is carried out under completely sealed conditions, further improving the efficiency of the reaction.
- the stirring device comprises: a stirring motor for supplying power and a stirring rod disposed below the stirring motor.
- the lifting device comprises a vertical lifting structure connected to the reactor cover, and a lifting hydraulic cylinder for providing a working force and a hydraulic steering motor for adjusting the lifting hydraulic cylinder are disposed below the vertical lifting structure.
- the inner wall of the reactor is provided with a metal crucible and an electric furnace wire for heating.
- a thermocouple is further disposed on the reactor.
- the present invention further adopts the above technical features, and has the advantages that the electric furnace wire is used for uniformly heating the reactor, and the raw materials in the reactor are heated and balanced, thereby further improving the efficiency of the reaction. Because ⁇ ⁇ heat insulation, reduce heat loss. The temperature of the melting process of the metal in the reactor is ensured, so that the smelting can proceed smoothly.
- a touch screen and an electric control box for controlling the movement of the lifting device above the lifting hydraulic cylinder Preferably, a slewing bearing is disposed under the electric control box.
- the invention has the beneficial effects that: the invention adopts the above technical solution, and adopts the production setting in the invention, can ensure the normal production of the production, and effectively guarantee the product quality of the sponge titanium.
- the equipment cost is low, the production process is environmentally friendly, and the reduction rate and the yield of the sponge titanium produced by the device are higher, which fundamentally solves the problem of the reaction equipment for producing titanium sponge by a special process. . DRAWINGS
- Fig. 1 is a schematic view showing the structure of a sponge titanium producing apparatus of the present invention.
- a reaction apparatus for the production of titanium sponge comprising: a reactor 10 and a reactor cover 20 with a stirring device 21, and a sealing port 16 is disposed between the reactor cover 20 and the reactor 10.
- the side of the reactor cover 20 is provided with a lifting device 30 for controlling the lifting and lowering of the reactor cover 20, and a sealed resistance furnace 40 is further disposed above the reactor cover 20, and a valve is disposed below the resistance furnace 40. 42.
- An evacuation tube 12 and an inflation tube 13 are disposed above the reactor cover 20.
- a vacuum gauge 11 for detecting the degree of vacuum in the reactor 10 is disposed on the side of the evacuation tube 12.
- the reactor cover 20 is further provided with a locking mechanism 15 and a locking cylinder 14 for fixed connection with the reactor 10.
- the stirring device 21 includes a stirring motor 22 for supplying power and a stirring rod 23 disposed below the stirring motor 22.
- the lifting device 30 includes a vertical lifting structure 31 connected to the reactor cover 20, and a lifting hydraulic cylinder 35 for providing work force and a hydraulic pressure for adjusting the lifting hydraulic cylinder 35 are disposed below the vertical lifting structure 31.
- Steering motor 32 Steering motor
- the inner wall of the reactor 10 is provided with a metal crucible 17 for heating and an electric furnace wire 18.
- a thermocouple 19 is also disposed on the reactor 10.
- lifting hydraulic cylinder 35 Above the lifting hydraulic cylinder 35 is a touch screen 33 and an electric control box 34 for controlling the movement of the lifting device 30.
- a slewing bearing 36 is disposed below the electric control box 34.
- a resistance wire 41 is disposed on the resistance furnace 40.
- Scheme 1 Method for preparing titanium from potassium fluorotitanate by aluminothermic reduction method:
- Step A Place 36 g of aluminum in an electric resistance furnace, evacuate, pass argon, and heat to aluminum;
- Step B Open the reactor lid, add 240 g of potassium fluorotitanate to the reactor, and cover the reactor. After the cover, check for leaks, slowly warm to 150 ° C, vacuum, and then heat to 250 ° C.
- Step C Pass argon gas into the reactor, continue to raise the temperature to 750 ° C, and stir evenly;
- Step D Open the valve, adjust the speed, drip the aluminum liquid, and control the reaction temperature to
- Step E The reactor lid was opened, the stirring device was removed, and the upper layer of KA1F 4 was removed to obtain 50.22 g of titanium sponge; the titanium content in the product was 90.8%, and the reduction rate was 95%.
- Step A Place 40 g of aluminum in an electric resistance furnace, evacuate, pass argon, and heat to aluminum;
- Step B Open the reactor lid, add 240 g of potassium fluorotitanate to the reactor, and cover the reactor. After the cover, check for leaks, slowly warm to 150 ° C, vacuum, and then heat to 250 ° C.
- Step C Pass argon gas into the reactor, continue to raise the temperature to 750 ° C, and stir evenly;
- Step D Open the valve, adjust the speed, drip the aluminum liquid, and control the reaction temperature to
- Step E The reactor lid was opened, the stirring device was removed, and the upper layer of KA1F 4 was removed to obtain 48.39 g of titanium sponge; the content of titanium in the product was 97%, and the reduction rate was 97.8%.
- Step A Place 44 g of aluminum in an electric resistance furnace, evacuate, pass argon gas, and heat to aluminum liquid.
- Step B Open the reactor lid, add 240 g of potassium fluorotitanate to the reactor, and cover the reactor. After the cover, check for leaks, slowly warm to 150 ° C, vacuum, and then heat to 250 ° C.
- Step C Pass argon gas into the reactor, continue to raise the temperature to 750 ° C, and stir evenly;
- Step D Open the valve, adjust the speed, drip the aluminum liquid, and control the reaction temperature to
- Step E Open the reactor lid, remove the stirring device, remove the upper layer of KA1F 4 , and obtain a sponge.
- Table 1 Reaction test data: Titanium content of the product: 98. 6%, the reduction rate of 99. 2%
- Step A Place 48 g of magnesium in an electric resistance furnace, evacuate, pass argon gas, and heat to magnesium solution.
- Step B Open the reactor lid, add 240 g of potassium fluorotitanate to the reactor, and cover the reactor. After the cover, check the leak, slowly heat up to 150 °C, vacuum, then heat to 250 °C
- Step C argon gas was introduced into the reactor, and the temperature was further raised to 750 ° C;
- Step D Open the valve, adjust the speed, drip the magnesium solution, and control the reaction temperature to 750-850 °C.
- Step E opening the reactor cover, removing the stirring device, remove the upper KF and MgF 2, to give 47.56 g of titanium sponge; product content of titanium was 99.2%, the reduction rate is 98.3%
- Step A Place 36 g of aluminum and 36 g of magnesium in an electric resistance furnace, evacuate, pass argon, and heat to a mixture.
- Step B Open the reactor lid, add 240 g of potassium fluorotitanate to the reactor, cover the reactor lid, check for leaks, slowly warm to 150 ° C, vacuum, and then heat to 250 ° C.
- Step C argon gas is introduced into the reactor, and the temperature is further raised to 750 ° C;
- Step D Open the valve, adjust the speed, drip the mixture, and control the reaction temperature to 750-850 °C.
- Step E The reactor lid was opened, the stirring device was removed, and the upper layers of KA1F 4 , KF and MgF 2 were removed to obtain 45.12 g of titanium sponge; the titanium content in the product was 96.5%, and the reduction rate was 90.7%.
- Step A 36 g of aluminum and 18 g of magnesium are placed in an electric resistance furnace, evacuated, argon gas is passed, and heated to form a mixed liquid;
- Step B Open the reactor lid, add 240 g of potassium fluorotitanate to the reactor, cover the reactor lid, check for leaks, slowly warm to 150 ° C, vacuum, and then heat to 250 ° C.
- Step C argon gas is introduced into the reactor, and the temperature is further raised to 750 ° C;
- Step D Open the valve, adjust the speed, drip the mixture, and control the reaction temperature to 750-850 °C.
- Step E The reactor lid was opened, the stirring device was removed, and the upper layers of KA1F 4 , KF and MgF 2 were removed to obtain 45.45 g of titanium sponge; the content of titanium in the product was 98%, and the reduction rate was 92.8%.
- Step A 36 g of aluminum and 9 g of magnesium are placed in an electric resistance furnace, evacuated, argon gas is passed, and heated to form a mixed liquid;
- Step B Open the reactor lid, add 240 g of potassium fluorotitanate to the reactor, cover the reactor lid, check for leaks, slowly warm to 150 ° C, vacuum, and then heat to 250 ° C.
- Step C argon gas is introduced into the reactor, and the temperature is further raised to 750 ° C;
- Step D Open the valve, adjust the speed, drip the mixture, and control the reaction temperature to 750-850 °C.
- Step E The reactor lid was opened, the stirring device was removed, the upper layer of KA1F 4 , KF and MgF 2 was removed to obtain a titanium sponge 47.9 g; the product contained a titanium content of 99.5%, a reduction rate of 99.3%.
- Step A 36 g of aluminum and 2 g of magnesium are placed in an electric resistance furnace, evacuated, argon gas is passed, and heated to form a mixed liquid;
- Step B Open the reactor lid, add 240 g of potassium fluorotitanate to the reactor, cover the reactor lid, check for leaks, slowly heat up to 150 °C, vacuum, and then heat to 250 °C.
- Step C argon gas was introduced into the reactor, and the temperature was further raised to 750 ° C;
- Step D Open the valve, adjust the speed, drip the mixture, and control the reaction temperature to 750-850 °C;
- Step E opening the reactor cover, removing the stirring device, remove the upper KA1F 4 KF and MgF 2, to give 48.29 g of titanium sponge; product content of titanium was 98.9%, the reduction rate is 99.5%
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
一种用于海绵钛生产的反应设备,包括:反应器(10)和带有搅拌装置(21)的反应器盖(20),所述反应器盖(20)与所述反应器(10)之间设置有密封圈(16);所述反应器盖(20)的侧面设置有用于控制所述反应器盖(20)升降的升降装置(30),所述反应器盖(20)上方还设置有电阻炉(40),所述电阻炉(40)下方设置有阀门(42);所述反应器盖(20)上方设置有抽真空管(12)和充气管(13)。该反应设备,成本低、环保无害,采用该设备所生产的海绵钛的还原率和产率更高。
Description
一种用于海绵钛生产的反应设备
技术领域
本发明涉及一种用于海绵钛生产的反应设备, 尤其涉及一种易操作高 效率可连续化作业的用于海绵钛生产的反应设备。 背景技术
国内外的海绵钛生产工艺主要是: 金属热还原法, 尤其是指利用金属 还原剂(R)与金属氧化物或氯化物(MX)的反应制备金属 M。 已经实现工业化 生产的钛冶金方法为镁热还原法(Krol l法)和钠热还原法(Hunter法)。 因 为 Hunter法比 Krol l法生产成本高,所以目前在工业中广泛应用的方法只 有 Krol l法。在克罗尔(Krol l)法中的主要工艺过程为:镁锭经除氧化膜与 杂质之后, 置于反应器中加热熔化, 再通入四氯化钛(TiCl4) , 反应生成的 钛颗粒沉积, 生成的液态氯化镁通过渣口及时排出。 反应温度通常保持在 800 ~ 900 °C , 反应时间在几小时至几天之间。 最终产物中残留的金属镁与 氯化镁可用盐酸清洗除去, 也可在 900 °C下空蒸馏除去, 并保持钛的高纯 度。 克罗尔法的缺点是成本较高, 生产周期较长, 并且污染环境, 限制了 进一步的应用和推广。 目前, 该工艺并没有根本的改变, 仍然是间歇式生 产, 未能实现生产的连续化, 并且也没有相应的改进设备研发, 不利于海 绵钛制造技术的进一步发展。 发明内容
为了解决现有技术中成本高、 污染严重、 生产周期长的缺点, 本发明 提供了一种工艺化生产海绵钛的方法:
方案 1 : 氟钛酸钾用铝热还原法制备钛的方法:
所涉及到的方程式: 3K2TiF6+4Al = 3Ti+6KF+4AlF3
方案 2: 氟钛酸钾用镁热还原方法制备海绵钛:
所涉及到的方程式: K2TiF6+2Mg=Ti+2MgF2+2KF
方案 3: 氟钛酸钾用铝 -镁热还原制备方法
所涉及到的化学方程式:
3K2TiF6+4Al = 3Ti+6KF+4AlF3
K2TiF6+2Mg=Ti+2MgF2+2KF
由于原料中, 氟钛酸钾、 铝、 镁都为固体, 因此, 本发明设计了一种用 于生产海绵钛的设备, 反应器和带有搅拌装置的反应器盖, 所述反应器盖 与所述反应器之间设置有密封圏; 所述反应器盖的侧面设置有用于控制所 述反应器盖升降的升降装置, 所述反应器盖上方还设置有电阻炉, 所述电 阻炉下方设置有阀门; 所述反应器盖上方设置有抽真空管和充气管。
本发明采用以上技术方案, 其优点在于, 电阻炉中可加入金属,使其熔 融后, 通过阀门的控制, 使熔融后的金属滴入反应器中, 提高了反应的速 率, 升降装置的设置, 使加原料时方便, 抽真空管的设置使反应保持一定 的真空度, 充气管的设置更进一步满足反应时不与氧气接触, 使铝能完全 融化而进行反应, 提高了反应的效率。
优选的,所述抽真空管侧面设置有用于检测所述反应器内的真空度的真 空压力表。
本发明进一步采用以上技术特征, 其优点在于, 真空压力表的设置使 在反应中能时刻确保反应器中的真空度, 如果真空度不够, 可以及时抽真 空, 提高了反应的效率。
优选的,所述反应器盖上还设置有用于与所述反应器固定连接的紧锁机 构和紧锁气紅。
本发明进一步采用以上技术特征, 其优点在于, 保证反应器在完全密 封的条件下进行, 进一步提高了反应的效率。
优选的,所述搅拌装置包括: 用于提供动力的搅拌电机和设置在所述搅 拌电机下方的搅拌杆。
优选的,所述升降装置包括与所述反应器盖相连的垂直升降结构,所述 垂直升降结构下方设置有用于提供功力的升降液压缸, 和用于调节所述升 降液压缸的液压转向马达。
优选的, 所述反应器的内壁设置有用于加热的金属坩埚和电炉丝。 优选的, 所述反应器上还设置有热电偶。
本发明进一步采用以上技术特征,其优点在于, 电炉丝用于给反应器均 匀加热, 应器内的原料加热平衡, 进一步提高了反应的效率。 由于坩 埚对热能起保温隔热作用, 减少热量的散失。 使反应器内金属的熔化过程 的温度得以保证, 使冶炼能够顺利进行。
优选的,所述升降液压缸上方用于控制所述升降装置运动的触摸屏和电 控箱
优选的, 所述电控箱下方设置有回转支承。
本发明的有益效果是: 本发明采用以上技术方案,采用本发明中的生产 设置, 能够保证生产的正常进行, 有效保证海绵钛的产品品质。 与现有技 术相比, 设备成本低、 生产过程中环保无害, 采用该设备所生产的海绵钛 的还原率和产率更高, 从根本上解决了用特殊工艺生产海绵钛的反应设备 问题。 附图说明
图 1为本发明中生产海绵钛设备的结构示意图。
具体实施方式
下面对本发明的较优的实施例作进一步的详细说明:
图 1为一种用于海绵钛生产的反应设备, 包括: 反应器 10和带有搅拌 装置 21的反应器盖 20 , 所述反应器盖 20与所述反应器 10之间设置有密 封圏 16 ;所述反应器盖 20的侧面设置有用于控制所述反应器盖 20升降的 升降装置 30 , 所述反应器盖 20上方还设置有密封的电阻炉 40 , 所述电阻 炉 40下方设置有阀门 42 , 所述反应器盖 20上方设置有抽真空管 12和充 气管 1 3。
所述抽真空管 12侧面设置有用于检测所述反应器 1 0内的真空度的真空 压力表 11。
所述反应器盖 20上还设置有用于与所述反应器 1 0固定连接的紧锁机构 15和紧锁气缸 14。
所述搅拌装置 21包括:用于提供动力的搅拌电机 22和设置在所述搅拌 电机 22下方的搅拌杆 23。
所述升降装置 30包括与所述反应器盖 20相连的垂直升降结构 31 , 所 述垂直升降结构 31下方设置有用于提供功力的升降液压缸 35 , 和用于调 节所述升降液压缸 35的液压转向马达 32。
所述反应器 10的内壁设置有用于加热的金属坩埚 17和电炉丝 18。 所述反应器 10上还设置有热电偶 19。
所述升降液压缸 35上方用于控制所述升降装置 30运动的触摸屏 33和 电控箱 34。
所述电控箱 34下方设置有回转支承 36。
所述电阻炉 40上设置有电阻丝 41。 方案 1: 氟钛酸钾用铝热还原法制备钛的方法:
所涉及到的方程式: 3K2TiF6+4Al = 3Ti+6KF+4AlF3
实施例 1:
步骤 A: 将 36克铝放置在电阻炉中, 抽真空, 通氩气, 加热成铝液; 步骤 B: 打开反应器盖, 加入 240克的氟钛酸钾于反应器中, 盖上反应 器盖后, 检漏, 緩慢升温至 150°C后, 抽真空, 再加热至 250°C。
步骤 C: 向反应器中通入氩气, 继续升温至 750°C, 搅拌均匀; 步骤 D: 开启阀门, 调节速度, 滴入铝液, 并控制反应的温度为
750- 850°C.
步骤 E: 打开反应器盖, 移出搅拌装置, 清除上层的 KA1F4, 得到海绵 钛 50.22克; 产物中含钛量为 90.8%, 还原率为 95%。
实施例 2:
步骤 A: 将 40克铝放置在电阻炉中, 抽真空, 通氩气, 加热成铝液; 步骤 B: 打开反应器盖, 加入 240克的氟钛酸钾于反应器中, 盖上反应 器盖后, 检漏, 緩慢升温至 150°C后, 抽真空, 再加热至 250°C。
步骤 C: 向反应器中通入氩气, 继续升温至 750°C, 搅拌均匀; 步骤 D: 开启阀门, 调节速度, 滴入铝液, 并控制反应的温度为
750- 850°C.
步骤 E: 打开反应器盖, 移出搅拌装置, 清除上层的 KA1F4, 得到海绵 钛 48.39克; 产物中含钛量为 97%, 还原率为 97.8%。
实施例 3:
步骤 A: 将 44克铝放置在电阻炉中, 抽真空, 通氩气, 加热成铝液; 步骤 B: 打开反应器盖, 加入 240克的氟钛酸钾于反应器中, 盖上反应 器盖后, 检漏, 緩慢升温至 150°C后, 抽真空, 再加热至 250°C。
步骤 C: 向反应器中通入氩气, 继续升温至 750°C, 搅拌均匀; 步骤 D: 开启阀门, 调节速度, 滴入铝液, 并控制反应的温度为
750- 850°C.
步骤 E: 打开反应器盖, 移出搅拌装置, 清除上层的 KA1F4, 得到海绵
钛 48. 29克; 产物中含钛量为 98. 6%, 还原率为 99. 2% 表 1 : 反应试验数据
还原率(% ) = (实得海绵钛产物 X产物含 Ti量) /理论 Ti量 方案 2: 氟钛酸钾用镁热还原方法制备海绵钛:
所涉及到的方程式:
K2TiF6+2Mg=Ti+2MgF2+2KF
实施例 4:
步骤 A: 将 48克镁放置在电阻炉中, 抽真空, 通氩气, 加热成镁液; 步骤 B: 打开反应器盖, 加入 240克的氟钛酸钾于反应器中, 盖上反应 器盖后, 检漏, 緩慢升温至 150 °C后, 抽真空, 再加热至 250 °C
步骤 C: 向反应器中通入氩气, 继续升温至 750 °C ;
步骤 D : 开启阀门, 调节速度, 滴入镁液, 并控制反应的温度为 750- 850 °C .
步骤 E: 打开反应器盖, 移出搅拌装置, 清除上层的 KF和 MgF2, 得到 海绵钛 47. 56克; 产物中含钛量为 99. 2%, 还原率为 98. 3%
表 2: 反应试验数据
所涉及到的化学方程式:
3K2TiF6+4Al = 3Ti+6KF+4AlF3
K2TiF6+2Mg=Ti+2MgF2+2KF
实施例 5:
步骤 A: 将 36克铝和 36克镁放置在电阻炉中, 抽真空, 通氩气, 加热 至生成混合液
步骤 B: 打开反应器盖, 加入 240克的氟钛酸钾于反应器中, 盖上反应 器盖后, 检漏, 緩慢升温至 150°C后, 抽真空, 再加热至 250°C。
步骤 C: 向反应器中通入氩气, 继续升温至 750°C;
步骤 D: 开启阀门, 调节速度, 滴入混合液, 并控制反应的温度为 750- 850°C.
步骤 E:打开反应器盖,移出搅拌装置,清除上层的 KA1F4、 KF和 MgF2, 得到海绵钛 45.12克; 产物中含钛量为 96.5%, 还原率为 90.7%。
实施例 6:
步骤 A: 将 36克铝和 18克镁放置在电阻炉中, 抽真空, 通氩气, 加热 至生成混合液;
步骤 B: 打开反应器盖, 加入 240克的氟钛酸钾于反应器中, 盖上反应 器盖后, 检漏, 緩慢升温至 150°C后, 抽真空, 再加热至 250°C。
步骤 C: 向反应器中通入氩气, 继续升温至 750°C;
步骤 D: 开启阀门, 调节速度, 滴入混合液, 并控制反应的温度为 750- 850°C.
步骤 E:打开反应器盖,移出搅拌装置,清除上层的 KA1F4、 KF和 MgF2, 得到海绵钛 45.45克; 产物中含钛量为 98%, 还原率为 92.8%。
实施例 7:
步骤 A: 将 36克铝和 9克镁放置在电阻炉中, 抽真空, 通氩气, 加热 至生成混合液;
步骤 B: 打开反应器盖, 加入 240克的氟钛酸钾于反应器中, 盖上反应 器盖后, 检漏, 緩慢升温至 150°C后, 抽真空, 再加热至 250°C。
步骤 C: 向反应器中通入氩气, 继续升温至 750°C;
步骤 D: 开启阀门, 调节速度, 滴入混合液, 并控制反应的温度为 750- 850°C.
步骤 E:打开反应器盖,移出搅拌装置,清除上层的 KA1F4、 KF和 MgF2, 得到海绵钛 47.9克; 产物中含钛量为 99.5%, 还原率为 99. 3%。
步骤 A: 将 36克铝和 2克镁放置在电阻炉中, 抽真空, 通氩气, 加热 至生成混合液;
步骤 B: 打开反应器盖, 加入 240克的氟钛酸钾于反应器中, 盖上反应 器盖后, 检漏, 緩慢升温至 150 °C后, 抽真空, 再加热至 250 °C
步骤 C: 向反应器中通入氩气, 继续升温至 750 °C ;
步骤 D : 开启阀门, 调节速度, 滴入混合液, 并控制反应的温度为 750-850 °C ;
步骤 E: 打开反应器盖,移出搅拌装置, 清除上层的 KA1F4 KF和 MgF2, 得到海绵钛 48. 29克; 产物中含钛量为 98. 9%, 还原率为 99. 5%
表 3: 反应试验数据
Claims
1.一种用于海绵钛生产的反应设备, 其特征在于, 包括: 反应器和带有 搅拌装置的反应器盖, 所述反应器盖与所述反应器之间设置有密封圏; 所 述反应器盖的侧面设置有用于控制所述反应器盖升降的升降装置, 所述反 应器盖上方还设置有电阻炉, 所述电阻炉下方设置有阀门; 所述反应器盖 上方设置有抽真空管和充气管。 温度控制
2.如权利要求 1所述的用于海绵钛生产的反应设备,其特征在于,所述 抽真空管侧面设置有用于检测所述反应器内的真空度的真空压力表。
3.如权利要求 1所述的用于海绵钛生产的反应设备,其特征在于,所述 反应器盖上还设置有用于与所述反应器固定连接的紧锁机构和紧锁气缸。
4.如权利要求 1所述的用于海绵钛生产的反应设备,其特征在于,所述 搅拌装置包括: 用于提供动力的搅拌电机和设置在所述搅拌电机下方的搅 拌杆。
5.如权利要求 1所述的用于海绵钛生产的反应设备,其特征在于,所述 升降装置包括与所述反应器盖相连的垂直升降结构, 所述垂直升降结构下 方设置有用于提供功力的升降液压缸, 和用于调节所述升降液压缸的液压 转向马达。
6.如权利要求 1所述的用于海绵钛生产的反应设备,其特征在于,所述 反应器的内壁设置有金属坩埚和电炉丝。
7.如权利要求 6所述的用于海绵钛生产的反应设备,其特征在于,所述 反应器上还设置有热电偶。
8.如权利要求 5所述的用于海绵钛生产的反应设备,其特征在于,所述 升降液压缸上方用于控制所述升降装置运动的触摸屏和电控箱。
9.如权利要求 8所述的用于海绵钛生产的反应设备,其特征在于,所述 电控箱下方设置有回转支承。
10.如权利要求 1所述的用于海绵钛生产的反应设备, 其特征在于, 所 述电阻炉上设置有电阻丝。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210014898.9A CN102560152B (zh) | 2012-01-18 | 2012-01-18 | 一种用于海绵钛生产的反应设备 |
CN201210014898.9 | 2012-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013107109A1 true WO2013107109A1 (zh) | 2013-07-25 |
Family
ID=46406750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/073616 WO2013107109A1 (zh) | 2012-01-18 | 2012-04-07 | 一种用于海绵钛生产的反应设备 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9051628B2 (zh) |
EP (1) | EP2618088B1 (zh) |
CN (1) | CN102560152B (zh) |
ES (1) | ES2564106T3 (zh) |
GB (1) | GB2498608B (zh) |
WO (1) | WO2013107109A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102978420A (zh) * | 2012-12-25 | 2013-03-20 | 遵义钛业股份有限公司 | 一种生产海绵钛用的还原装置 |
CN103215461B (zh) * | 2013-05-22 | 2014-11-26 | 朝阳金达钛业股份有限公司 | 一种用于生产海绵钛的15吨倒u型联合装置及生产工艺 |
CN104251621B (zh) * | 2013-06-27 | 2016-01-06 | 沈阳铝镁设计研究院有限公司 | 一种用于海绵钛生产的反应罐翻转架 |
CN104596245B (zh) * | 2015-02-02 | 2016-08-17 | 苏州化联高新陶瓷材料有限公司 | 一种超高温气雾化陶瓷材料的专用环缝喷嘴 |
CN108311705A (zh) * | 2018-02-07 | 2018-07-24 | 海宁瑞兴材料科技有限公司 | 一种制取钛粉的生产设备 |
CN111997948B (zh) * | 2019-05-27 | 2022-10-11 | 国家能源投资集团有限责任公司 | 液压密封单元和油路、反应器系统和脱硝催化剂评价系统 |
CN114136066B (zh) * | 2021-12-13 | 2023-04-07 | 安徽天邦生物技术有限公司 | 一种仔猪养殖用发酵饲料干化装置及其实施方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3773730B2 (ja) * | 1999-12-17 | 2006-05-10 | 東邦チタニウム株式会社 | スポンジチタンの製造装置 |
CN201080492Y (zh) * | 2007-09-13 | 2008-07-02 | 贵阳铝镁设计研究院 | 海绵钛的还原蒸馏u型联合装置 |
CN201614395U (zh) * | 2009-10-26 | 2010-10-27 | 遵义钛业股份有限公司 | 一种镁法生产海绵钛的还原装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3158671A (en) * | 1954-08-12 | 1964-11-24 | Montedison Spa | Apparatus for producing titanium sponge |
US2847205A (en) * | 1954-10-13 | 1958-08-12 | Nat Res Corp | Production of metals |
BE563819A (zh) * | 1955-09-21 | |||
US3226102A (en) * | 1963-01-18 | 1965-12-28 | Light Metals Res Lab Inc | Continuous vacuum and inert gas apparatus for treating and processing titanium and other metals |
CA1179144A (en) * | 1981-04-04 | 1984-12-11 | Hiroshi Ishizuka | Method and an apparatus for producing titanium metal from titanium tetrachloride |
US4447045A (en) * | 1982-07-21 | 1984-05-08 | Mitsubishi Kinzoku Kabushiki Kaisha | Apparatus for preparing high-melting-point high-toughness metals |
JP3430478B2 (ja) * | 1994-03-31 | 2003-07-28 | 東邦チタニウム株式会社 | ハロゲン化金属の還元反応装置 |
JP2003129268A (ja) * | 2001-10-17 | 2003-05-08 | Katsutoshi Ono | 金属チタンの精錬方法及び精錬装置 |
LV13528B (en) * | 2006-09-25 | 2007-03-20 | Ervins Blumbergs | Method and apparatus for continuous producing of metallic tifanium and titanium-bases alloys |
US10035078B2 (en) * | 2010-05-04 | 2018-07-31 | Commonwealth Scientific And Industrial Research Organisation | Separation method |
CN102534260B (zh) * | 2012-01-18 | 2012-12-26 | 深圳市新星轻合金材料股份有限公司 | 一种以氟钛酸钠为原料制备海绵钛的工艺方法 |
-
2012
- 2012-01-18 CN CN201210014898.9A patent/CN102560152B/zh active Active
- 2012-04-07 WO PCT/CN2012/073616 patent/WO2013107109A1/zh active Application Filing
- 2012-08-14 US US13/585,770 patent/US9051628B2/en not_active Expired - Fee Related
- 2012-09-24 EP EP12185751.0A patent/EP2618088B1/en not_active Not-in-force
- 2012-09-24 ES ES12185751.0T patent/ES2564106T3/es active Active
- 2012-10-05 GB GB1217839.8A patent/GB2498608B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3773730B2 (ja) * | 1999-12-17 | 2006-05-10 | 東邦チタニウム株式会社 | スポンジチタンの製造装置 |
CN201080492Y (zh) * | 2007-09-13 | 2008-07-02 | 贵阳铝镁设计研究院 | 海绵钛的还原蒸馏u型联合装置 |
CN201614395U (zh) * | 2009-10-26 | 2010-10-27 | 遵义钛业股份有限公司 | 一种镁法生产海绵钛的还原装置 |
Non-Patent Citations (1)
Title |
---|
WANG: "Wuyu Fuyan Lvre Huanyuanfa Zhiqu Haimiantai De Yanjiu", CHINESE JOURNAL OF RARE METALS, vol. 20, no. 3, May 1996 (1996-05-01) * |
Also Published As
Publication number | Publication date |
---|---|
EP2618088B1 (en) | 2015-12-16 |
CN102560152A (zh) | 2012-07-11 |
GB201217839D0 (en) | 2012-11-14 |
CN102560152B (zh) | 2014-03-26 |
GB2498608A (en) | 2013-07-24 |
US20120306129A1 (en) | 2012-12-06 |
ES2564106T3 (es) | 2016-03-17 |
EP2618088A1 (en) | 2013-07-24 |
US9051628B2 (en) | 2015-06-09 |
GB2498608B (en) | 2015-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013107109A1 (zh) | 一种用于海绵钛生产的反应设备 | |
US9068248B2 (en) | Distillation equipment for producing sponge titanium | |
WO2013107107A1 (zh) | 一种制备海绵钛的工艺方法 | |
WO2013107110A1 (zh) | 一种以氟钛酸钠为原料制备海绵钛的工艺方法 | |
EP2631310B1 (en) | Method for cyclically preparing titanium sponge and coproducing potassium cryolite using potassium fluotitanate as intermediate material | |
EP2631309B1 (en) | Method for cyclically preparing titanium sponge and coproducing sodium cryolite using sodium fluotitanate as intermediate material | |
US9765887B2 (en) | Sealing ring and preparation method thereof | |
CN118531241A (zh) | 一种生产钛铝合金的方法及装备 | |
CN107058737A (zh) | 一种海绵钛的制作工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12865993 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12865993 Country of ref document: EP Kind code of ref document: A1 |