WO2013106961A1 - 穿芯式高精度闭环型霍尔电流传感器用单电源电子线路 - Google Patents

穿芯式高精度闭环型霍尔电流传感器用单电源电子线路 Download PDF

Info

Publication number
WO2013106961A1
WO2013106961A1 PCT/CN2012/000157 CN2012000157W WO2013106961A1 WO 2013106961 A1 WO2013106961 A1 WO 2013106961A1 CN 2012000157 W CN2012000157 W CN 2012000157W WO 2013106961 A1 WO2013106961 A1 WO 2013106961A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
rail
current
voltage
hall
Prior art date
Application number
PCT/CN2012/000157
Other languages
English (en)
French (fr)
Inventor
邹高芝
Original Assignee
Zou Gaozhi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zou Gaozhi filed Critical Zou Gaozhi
Priority to CN201280056670.4A priority Critical patent/CN104520722A/zh
Publication of WO2013106961A1 publication Critical patent/WO2013106961A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/003Measuring mean values of current or voltage during a given time interval

Definitions

  • the invention relates to the field of electronic circuits for Hall current sensors, and more particularly to a single-supply electronic circuit for a core-type high-precision closed-loop Hall current sensor. . Background art
  • the current sensor is a widely used electronic component, and it is widely used in various fields of variable current technology, AC numerical control devices, and the like, in which the current is controlled.
  • Hall current sensors are industrialized because of their excellent price/performance ratio. Hall current sensors usually have open-loop and closed-loop working modules.
  • the closed-loop Hall current sensor consists of a toroidal core made of soft magnetic material, a Hall element, a secondary coil, and a suitable power amplifying circuit.
  • the Hall element functions as a zero, so its sensitivity
  • the high-sensitivity Hall element made of InSb material is generally selected, and its related characteristics are shown in Figure 1 and Figure 2.
  • the dedicated integrated circuit must use a silicon single crystal to make a Hall element, and the silicon Hall element has low sensitivity and large temperature drift, so the current sensor made by it has large error in current measurement and narrow operating temperature range. , limits the range of application of the current sensor.
  • the dedicated integrated circuit has poor applicability and is only suitable for smaller current measurement applications within 25A.
  • the dedicated integrated circuit At larger currents (50A or more), give
  • This kind of circuit is generally applied in a single-supply, full-PCB-mounted closed-loop Hall current sensor. It is difficult to achieve high-precision measurement of current through a single power supply.
  • an object of the present invention is to provide a single-supply electronic circuit for a core-through high-precision closed-loop Hall current sensor having a larger measurement range and higher accuracy.
  • the complete technical solution of the present invention is a single-supply electronic circuit for a core-type high-precision closed-loop Hall current sensor:
  • a dual operational amplifier that outputs a high current output and a rail-to-rail output for a current of more than 50A, one of which amplifies the output voltage of the Hall element and another amplifier to form an H-bridge driven secondary coil; After the current sampling, the differential amplifier output is output by a dual-op amp to ra il input/output amplifier; the amplifier and the Hall element are biased by a variable voltage reference; External control changes; multiple Hall elements use a constant voltage mode of operation to average the output voltage of their output voltage.
  • the reference voltage section biases the output amplifier with a 1.25V or 2. 5V variable voltage reference as a reference voltage, and biases the Hall element with a 1.25V variable voltage reference.
  • the sampling resistor is a precision chip resistor using a 0603 package, 0.1% 25ppm/° C.
  • the portion of the reference voltage terminal that can be outputted and externally controlled to change is provided with an adjustment resistor, and the adjustment resistor is 200-680 ohms.
  • the present invention has the following beneficial effects as compared with the prior art: 1.
  • the sensor's circuit structure is very simple and the output voltage range is rail-to-rail, with a current measurement range of more than 3 times the rated current ( Figure 3).
  • the sampling resistor is made of 0603 package and 0.1% 25ppm/°C precision chip resistor, so that the temperature drift of the current sensor's output voltage is also 25ppm/°C.
  • the 1.25V variable voltage reference is used as the Hall element for biasing, so that the Hall element is in constant voltage operation mode.
  • the output unbalance voltage, temperature drift, and noise voltage of the N Hall elements are reduced by ⁇ times, so that the lower limit of the measurement of the sensor is lower. Its zero temperature drift is 100 ppm/. Within C, the working temperature zone reaches - 40 ⁇ 85 °C.
  • Figure 1 shows the temperature characteristics of the unbalanced voltage of the InSb Hall element
  • Figure 1 shows the temperature characteristics of the output voltage of the InSb Hall element
  • Figure 3 is a single-supply circuit diagram of a core-type high-precision closed-loop Hall current sensor of 50 ⁇ or less;
  • Figure 4 is a block diagram of a single-supply circuit for a 50A or higher core-through high-precision closed-loop Hall current sensor;
  • Figure 5 is a single-supply circuit diagram for a 50A or higher core-through high-precision closed-loop Hall current sensor.
  • a single-supply electronic circuit for a core-type high-precision closed-loop Hall current sensor uses a high current output and a rail-to-rail input/output double operation for a current to be measured below 5 OA.
  • the amplifier TS922 drives the secondary coil and implements I/V conversion, and biases the amplifier and the Hall element with a variable voltage reference; the reference voltage terminal can output and externally control the change; and the plurality of Hall elements adopt the constant voltage operation mode. Calculate the arithmetic mean of its output voltage.
  • the reference voltage part adopts AZ431-2. 5V voltage reference as reference voltage, and the Hall element is biased by AZ432-1.
  • the Hall element is in constant voltage operation mode, and the sampling resistance is 0603 package, 0. 1% 25ppm / ° C precision chip resistor, the reference voltage terminal can be output and external control changes, the reference voltage part is set with an adjustment resistor, the adjustment resistance is 200-680 ohms.
  • a single-supply electronic circuit for a core-type high-precision closed-loop Hall current sensor uses a dual current operational amplifier GM8923 with a high current output and a rail-to-rail output for a current to be measured above 5 OA.
  • the dual-operation amplifier TS922 which forms the H-bridge drive secondary coil and the rail-to-rail input/output, performs differential amplification output, and biases the amplifier and the Hall element with a variable voltage reference; Output and external control changes; multiple Hall elements use a constant voltage mode of operation to average the output voltage of their output voltage.
  • the reference voltage part adopts AZ431-2. 5V voltage reference as reference voltage.
  • the Hall element is biased by AZ432- 1.
  • the sampling resistance is 0603 package, 0. 1% 25 P pm / ° C precision chip resistor, the reference voltage terminal can be output and external control changes, the reference voltage part is set with an adjustment resistor, the adjustment resistance is 200-680 ohms.
  • the high-current output, rail-to-rail input/output dual operational amplifier TS922 drives the secondary coil and implements I/V conversion for the current to be measured below 50 ⁇ , making the current sensor circuit structure very simple and output
  • the voltage range is rail to rail, and its current measurement range is more than 3 times the rated current.
  • the high-current output, rail-to-rail output dual operational amplifier GM8923 is used to form the H-bridge drive secondary coil; the secondary current is sampled with the sampling resistor and the TS922 rail-to-rail is used. (rail to rail)
  • the input/output dual op amps are differentially amplified to achieve a rail-to-rail output voltage range.
  • the measured current is in the same core structure. The same coil wire diameter and number of turns are at least doubled, so the current measurement range is at least doubled.
  • the sampling resistor is made of 0603 package and 0.1% 25pptn/°C precision chip resistor, so that the output voltage of the current sensor is also 25ppm/°.
  • AZ431-2.5V voltage reference as the reference voltage, adjust the resistance to take 200-680 ohms, the reference voltage terminal can output and can be changed externally, so that the current sensor can be applied wider.
  • the core-type high-precision Hall closed-loop Hall current sensor uses a coaxial double-loop magnetic core coil assembly to cooperate with the above two circuits, so that the single power supply is realized. Side current through core high-precision measurement, measurement accuracy of up to 0.2% FS.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种穿芯式高精度闭环型霍尔电流传感器用单电源电子线路,属于霍尔电流传感器用电子线路领域。对50A以下待测电流用大电流输出、轨至轨输入/输出的双运算放大器(1/2A1),其一将霍尔元件(H1,H2)的输出电压放大驱动次级线圈(NS),另外一个放大器用作I/V变换器;对50A以上待测电流用大电流输出、轨至轨输出的双运算放大器(1/2A1),其一将霍尔元件(H1,H2)的输出电压放大与另外一个放大器组成H桥驱动次级线圈(NS);对次级电流(IS)取样后用轨至轨输入/输出的双运算放大器(1/2A2)进行差分放大输出;用可变电压基准(VZ1,VZ2)对放大器、霍尔元件进行偏置;参考电压端(VR)即可输出又可外控变化;多个霍尔元件采用恒压工作模式而对其输出电压求算术平均值。该霍尔电流传感器测量范围大、精度更高。

Description

穿芯式高精度闭环型霍尔电流传感器用单电源电子线路 技术领域 本发明涉及霍尔电流传感器用电子线路领域, 尤其涉及一种穿芯式高精 度闭环型霍尔电流传感器用单电源电子线路。 背景技术 说
电流传感器是一种应用十分广泛的电子组件,它被广泛应用于各种变流技 术,交流数控装置等以电流作为控制对象的自控领域中。
对电流的非接触测量和监控方法很多,霍尔电流传感器因其优异的性价 比被广泛应用而形成产业化; 霍尔电流传感器通常有开环、 闭环两种工作模 书
式,闭环型霍尔电流传感器由用软磁材料制成的环形磁芯、 霍尔元件、 次级线 圈及适当的功率放大电路组成, 在这里霍尔元件起指零器的作用, 因此其灵 敏度越高越好, 一般选 InSb材料制作的高灵敏度霍尔元件, 其相关特性如图 一、 图二所示。
近年来, 随着电力电子技术的高速发展, 各种变流技术、 交流数控装置 等以电流作为控制对象的自控领域中各种新技术、 新产品日新月异, 其核心 部件 MCU或 DSP的集成度越来越大, 体积越来越小, 为降低功耗, 其工作电源 电压越来越低, 而单电源闭环型霍尔电流传感器因其电源、 输出电压幅度与 其核心部件 MCU或 DSP的要求相匹配,不再需要其他接口电路, 因此倍受青睐。 国外单电源闭环型霍尔电流传感器一般采用专用全集成电路(ASIC ) , 使传 感器的电子元器件数量少,便于批量生产,这种电子线路结构存在以下问题:
1、 专用全集成电路(ASIC )必须采用硅单晶制作霍尔元件, 而硅霍尔元 件的灵敏度低、 温漂大, 因而用它制作的电流传感器对电流测量的误差大、 工作温度范围窄, 限制了电流传感器的适用范围。
2、 对于不同的测量范围的电流测量量程, 专用全集成电路(ASIC )适用 性差, 只适用 25A以内较小电流测量应用。 在较大的电流(50A以上) 时, 给
1
确认本 定的结构尺寸的限制, 次级线圈绕制尺寸一定, 线圈匝数及线径大小亦受到 限制, 线圏匝数多, 则线圈的线径小、 内阻大, 因而在单电源工作条件下无 法实现较大电流的测量。
3、 这种电路一般在单电源全 PCB安装式闭环型霍尔电流传感器中应用, 难以实现在单电源工作条件下电流的穿芯式高精度测量。
发明内容
为了解决上述技术问题, 本发明的目的在于提供一种测量范围更大、 精 度更高的穿芯式高精度闭环型霍尔电流传感器用单电源电子线路。 本发明的完整技术方案是, 一种穿芯式高精度闭环型霍尔电流传感器用单 电源电子线路:
对 5 OA 以下待测电流用大电流输出、 轨至轨 ( ra i l to ra i l )输入 /输出 的双运算放大器其一将霍尔元件的输出电压放大驱动次级线圈, 另外一个放 大器用作 I /V 变换器; 用可变电压基准对放大器、 霍尔元件进行偏置; 参考 电压端即可输出又外控变化; 多个霍尔元件采用恒压工作模式而对其输出电 压求算术平均值。
对 50A以上待测电流用大电流输出、 轨至轨(ra i l to ra i l )输出的双运 算放大器其一将霍尔元件的输出电压放大与另外一个放大器组成 H桥驱动次 级线圈; 对次级电流取样后用轨至轨(ra i l to ra i l )输入 /输出的双运算放 大器进行差分放大输出; 用可变电压基准对放大器、 霍尔元件进行偏置; 参 考电压端即可输出又可外控变化; 多个霍尔元件采用恒压工作模式而对其输 出电压求算术平均值。
所述基准电压部分采用 1. 25V 或 2. 5V可变电压基准作参考电压对输出放 大器进行偏置, 采用 1. 25V可变电压基准对霍尔元件进行偏置。
所述取样电阻为采用 0603封装、 0. 1% 25ppm/° C的精密贴片电阻。
所述参考电压端即可输出又可外控变化的部分设置有一个调整电阻, 所 述调整电阻为 200-680欧姆。
由上可见, 本发明与现在技术相比有如下有益效果: 1、 对 5 OA以下待测电流采用大电流输出、 轨至轨(rail to rail )输入 /输出的双运算放大器将霍尔元件的输出电压放大驱动次级线圈和实现 I/V变 换, 使电流传感器的电路结构非常简单且输出电压范围达到轨至轨(rail to rail ), 其电流测量范围达到 3倍额定电流以上(图 3)。
2、 对 50Λ以上待测电流采用大电流输出、 轨至轨 ( rail to rail )输出 的双运算放大器将霍尔元件的输出电压放大和组成 H桥驱动次级线圈; 用取 样电阻对次级电流取样后用轨至轨 ( rail to rail )输入 /输出的双运算放大 器进行差分放大输出, 使电流传感器的输出电压范围达到轨至轨(rail to rail ), 与图三相比其测量的额定电流在同一磁芯结构、 相同的线圈线径和匝 数条件下至少增加了一倍, 因而其电流测量范围亦至少增加了一倍以上。
3、 取样电阻采用 0603封装、 0.1% 25ppm/°C的精密贴片电阻, 使电流 传感器的输出电压的温漂亦达到 25ppm/°C。
4、 采用 1.25V 或 2.5V可变电压基准作参考电压, 调整电阻取 200-680 欧姆, 参考电压端即可输出又可外控变化的、 使电流传感器适用范围更宽。
5、 采用 1.25V可变电压基准作霍尔元件进行偏置, 使霍尔元件处于恒压 工作模式。 以上两种电路中, 霍尔元件的输出端求算术平均值后, N个霍尔元 件的输出不平衡电压及温度漂移、 噪声电压等均按^ ^倍下降, 使传感器的 测量下限更低。 其零点温漂为 100 ppm/。C以内, 工作温区达到 - 40~85°C。
6、 采用发明人申请的另一专利一穿芯式高精度霍尔闭环型霍尔电流传感 器用同轴双环路磁芯线圈组件与以上两种电路配合, 使单电源工作条件下实 现了待侧电流穿芯式高精度测量, 测量精度达到 0.2%FS以内。
附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 并不构成对本发明的不当限定, 在附图中:
图 1为 InSb霍尔元件的不平衡电压的温度特性;
图 1为 InSb霍尔元件的输出电压的温度特性;
图 3为 50Λ以下穿芯式高精度闭环型霍尔电流传感器用单电源电路图; 图 4为 50A以上穿芯式高精度闭环型霍尔电流传感器单电源电路框图; 图 5为 50A以上穿芯式高精度闭环型霍尔电流传感器用单电源电路图。 具体实施方式
下面将结合附图以及具体实施例来详细说明本发明, 在此本发明的示意 性实施例以及说明用来解释本发明, 但并不作为对本发明的限定。 实施例 1:
本实施例一种穿芯式高精度闭环型霍尔电流传感器用单电源电子线路, 对 5 OA 以下待测电流采用大电流输出、 轨至轨 ( ra i l to ra i l )输入 /输出的双 运算放大器 TS922驱动次级线圈和实现 I/V变换,用可变电压基准对放大器、 霍尔元件进行偏置; 参考电压端即可输出又外控变化; 多个霍尔元件采用恒 压工作模式而对其输出电压求算术平均值。 基准电压部分采用 AZ431-2. 5V电 压基准作参考电压, 采用 AZ432-1. 25V 电压基准对霍尔元件进行偏置, 使霍 尔元件处于恒压工作模式, 取样电阻为采用 0603封装、 0. 1% 25ppm/° C的精 密贴片电阻, 基准电压端即可输出又外控变化, 基准电压部分设置有一个调 整电阻, 调整电阻为 200- 680欧姆。
实施例 2:
本实施例一种穿芯式高精度闭环型霍尔电流传感器用单电源电子线路, 对 5 OA 以上待测电流采用大电流输出、 轨至轨 ( ra i l to ra i l )输出的双运 算放大器 GM8923组成 H桥驱动次级线圈以及轨至轨( ra i l to ra i l )输入 / 输出的双运算放大器 TS922 进行差分放大输出, 用可变电压基准对放大器、 霍尔元件进行偏置; 参考电压端即可输出又外控变化; 多个霍尔元件采用恒 压工作模式而对其输出电压求算术平均值。 基准电压部分采用 AZ431-2. 5V电 压基准作参考电压, 采用 AZ432- 1. 25V 电压基准对霍尔元件进行偏置, 使霍 尔元件处于恒压工作模式, 取样电阻为采用 0603封装、 0. 1% 25Ppm/° C的精 密贴片电阻, 基准电压端即可输出又外控变化, 基准电压部分设置有一个调 整电阻, 调整电阻为 200-680欧姆。 由上可见,
1、 对 50Λ以下待测电流采用大电流输出、 轨至轨 ( rail to rail )输入 /输出的双运算放大器 TS922驱动次级线圈和实现 I/V变换, 使电流传感器的 电路结构非常简单且输出电压范围达到轨至轨(rail to rail ), 其电流测量 范围达到 3倍额定电流以上。
2、 对 5 OA以上待测电流采用大电流输出、 轨至轨(rail to rail )输出 的双运算放大器 GM8923组成 H桥驱动次级线圈; 用取样电阻对次级电流取样 后用 TS922轨至轨(rail to rail )输入 /输出的双运算放大器进行差分放大 输出, 使电流传感器的输出电压范围达到轨至轨(rail to rail ), 与图三相 比其测量的额定电流在同一磁芯结构、 相同的线圈线径和匝数条件下至少增 加了一倍, 因而其电流测量范围亦至少增加了一倍以上。
3、 取样电阻采用 0603封装、 0.1% 25pptn/°C的精密贴片电阻, 使电流 传感器的输出电压的温漂亦达到 25ppm/° (。
4、 釆用 AZ431-2.5V电压基准作参考电压, 调整电阻取 200-680欧姆, 参考电压端即可输出又可外控变化的、 使电流传感器适用范围更宽。
5、 采用 AZ432-1.25V电压基准作霍尔元件进行偏置, 使霍尔元件处于恒 压工作模式。 以上两种电路中, 霍尔元件的输出端求算术平均值后, N个霍尔 元件的输出不平衡电压及温度漂移、 噪声电压等均按^ ^倍下降, 使传感器 的测量下限更低。 其零点温漂为 100ppm/°C以内, 工作温区达到 -40 - 85° (:。
6、 采用发明人申请的另一专利一穿芯式高精度霍尔闭环型霍尔电流传感 器用同轴双环路磁芯线圈组件与以上两种电路配合, 使单电源工作奈件下实 现了待侧电流穿芯式高精度测量, 测量精度达到 0.2%FS以内。
以上对本发明实施例所提供的技术方案进行了详细介绍, 本文中应用了 明只适用于帮助理解本发明实施例的原理; 同时, 对于本领域的一般技术人 员, 依据本发明实施例, 在具体实施方式以及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求 书
1、 一种穿芯式高精度闭环型霍尔电流传感器用单电源电子线路, 其特征 在于:
对 5 OA 以下待测电流用大电流输出、 轨至轨 ( ra i l to ra i l )输入 /输出 的双运算放大器其一将霍尔元件的输出电压放大驱动次级线圈, 另外一个放 大器用作 I /V 变换器; 用可变电压基准对放大器、 霍尔元件进行偏置; 参考 电压端即可输出又外控变化; 多个霍尔元件采用恒压工作模式而对其输出电 压求算术平均值。
对 5 OA以上待测电流用大电流输出、 轨至轨( ra i 1 10 r a i 1 )输出的双运 算放大器其一将霍尔元件的输出电压放大与另外一个放大器组成 H桥驱动次 级线圏; 对次级电流取样后用轨至轨(ra i l to ra i l )输入 /输出的双运算放 大器进行差分放大输出; 用可变电压基准对放大器、 霍尔元件进行偏置; 参 考电压端即可输出又可外控变化; 多个霍尔元件采用恒压工作模式而对其输 出电压求算术平均值。
2、 根据权利要求 1所述的一种穿芯式高精度闭环型霍尔电流传感器用单 电源电子线路, 其特征在于, 所述基准电压部分采用 1. 25V或 2. 5V可变电压 基准作参考电压对输出放大器进行偏置,, 采用 1. 25V可变电压基准对霍尔元 件进行偏置。
3、 根据权利要求 1所述的一种穿芯式高精度闭环型霍尔电流传感器用单 电源电子线路, 其特征在于, 所述取样电阻为采用 0603封装、 0. 1°/» 25ppm/° C的精密贴片电阻。
4、 根据权利要求 1所述的一种穿芯式高精度闭环型霍尔电流传感器用单 电源电子线路, 其特征在于, 所述参考电压端即可输出又可外控变化的部分 设置有一个调整电阻, 所述调整电阻为 200-680欧姆。
PCT/CN2012/000157 2012-01-19 2012-02-09 穿芯式高精度闭环型霍尔电流传感器用单电源电子线路 WO2013106961A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280056670.4A CN104520722A (zh) 2012-01-19 2012-02-09 穿芯式高精度闭环型霍尔电流传感器用单电源电子线路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201220026042.9 2012-01-19
CN 201220026042 CN202583289U (zh) 2012-01-19 2012-01-19 穿芯式高精度闭环型霍尔电流传感器用单电源电子线路

Publications (1)

Publication Number Publication Date
WO2013106961A1 true WO2013106961A1 (zh) 2013-07-25

Family

ID=47252690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000157 WO2013106961A1 (zh) 2012-01-19 2012-02-09 穿芯式高精度闭环型霍尔电流传感器用单电源电子线路

Country Status (2)

Country Link
CN (2) CN202583289U (zh)
WO (1) WO2013106961A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202583289U (zh) * 2012-01-19 2012-12-05 邹高芝 穿芯式高精度闭环型霍尔电流传感器用单电源电子线路
CN112834800A (zh) * 2021-01-07 2021-05-25 四川众航电子科技有限公司 一种单电源霍尔传感器装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886813A (ja) * 1994-09-19 1996-04-02 Yazaki Corp 非接触型センサの検出回路
CN2689241Y (zh) * 2004-04-26 2005-03-30 邹高芝 电流、电压传感器用单电源电路
JP2006038834A (ja) * 2004-06-21 2006-02-09 Tdk Corp 電流センサ
CN101876671A (zh) * 2009-12-12 2010-11-03 杭州日鼎控制技术有限公司 用于伺服系统中的高精度电流采样电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2099979U (zh) * 1991-07-17 1992-03-25 机械电子工业部第五八研究所 光电耦合式微型电量传感器
JP2544265B2 (ja) * 1991-10-24 1996-10-16 株式会社トーキン 電流検出器
JP5004368B2 (ja) * 2010-06-24 2012-08-22 スミダコーポレーション株式会社 電流センサ
CN102279305A (zh) * 2011-04-13 2011-12-14 大连丰和电力科技有限公司 闭环磁平衡式霍尔电流式传感器
CN202583289U (zh) * 2012-01-19 2012-12-05 邹高芝 穿芯式高精度闭环型霍尔电流传感器用单电源电子线路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886813A (ja) * 1994-09-19 1996-04-02 Yazaki Corp 非接触型センサの検出回路
CN2689241Y (zh) * 2004-04-26 2005-03-30 邹高芝 电流、电压传感器用单电源电路
JP2006038834A (ja) * 2004-06-21 2006-02-09 Tdk Corp 電流センサ
CN101876671A (zh) * 2009-12-12 2010-11-03 杭州日鼎控制技术有限公司 用于伺服系统中的高精度电流采样电路

Also Published As

Publication number Publication date
CN202583289U (zh) 2012-12-05
CN104520722A (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
CN102305885B (zh) 隔离式电压传感器
WO2013106960A1 (zh) 一种穿芯式高精度开环型霍尔电流传感器用电子线路
CN102176188A (zh) 带隙基准电压产生电路
CN105548654A (zh) 一种微弱电流检测电路及方法
CN103616549A (zh) 一种基于隔离式pcb型罗氏线圈的宽频小电流测量装置
JP6143752B2 (ja) 電流センサの製造方法及び電流センサ
Xu et al. Investigation of the thermal drift of open-loop Hall Effect current sensor and its improvement
CN102401855A (zh) 采用罗氏线圈电流互感器的电力数字仪表
CN102680009A (zh) 线性薄膜磁阻传感器
CN103151993A (zh) 精密交流电流放大器
WO2013106961A1 (zh) 穿芯式高精度闭环型霍尔电流传感器用单电源电子线路
CN103414438A (zh) 一种误差放大器电路
CN203132562U (zh) 线性薄膜磁阻传感器、线性薄膜磁阻传感器电路及闭环电流传感器与开环电流传感器
WO2013106962A1 (zh) 一种高精度闭环型霍尔电流传感器用电子线路
CN102692242A (zh) 具有聚磁层的线性薄膜磁阻传感器
CN104040362B (zh) 电流传感器
CN115469251A (zh) 一种全集成闭环霍尔传感器装置
CN216144871U (zh) 一种温度补偿电流传感器
CN102324940B (zh) 可校正有限增益误差的乘法型数模转换器
CN212364401U (zh) 一种测量微弱信号的电阻传感器测量电路
CN104410374A (zh) 一种精密交流电压放大器
Liu Overview of hall current sensor optimal design
CN202994176U (zh) 具有聚磁层的线性薄膜磁阻传感器及线性薄膜磁阻传感器电路
CN105606877B (zh) 一种闭环tmr电流传感器
CN204649327U (zh) 一种热电阻信号转换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866175

Country of ref document: EP

Kind code of ref document: A1