WO2013106960A1 - 一种穿芯式高精度开环型霍尔电流传感器用电子线路 - Google Patents

一种穿芯式高精度开环型霍尔电流传感器用电子线路 Download PDF

Info

Publication number
WO2013106960A1
WO2013106960A1 PCT/CN2012/000156 CN2012000156W WO2013106960A1 WO 2013106960 A1 WO2013106960 A1 WO 2013106960A1 CN 2012000156 W CN2012000156 W CN 2012000156W WO 2013106960 A1 WO2013106960 A1 WO 2013106960A1
Authority
WO
WIPO (PCT)
Prior art keywords
hall
hall elements
current sensor
temperature
voltage
Prior art date
Application number
PCT/CN2012/000156
Other languages
English (en)
French (fr)
Inventor
邹高芝
Original Assignee
Zou Gaozhi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zou Gaozhi filed Critical Zou Gaozhi
Priority to CN201280056645.6A priority Critical patent/CN104520720B/zh
Publication of WO2013106960A1 publication Critical patent/WO2013106960A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • the present invention relates to the field of electronic circuits for Hall current sensors, and more particularly to an electronic circuit for a core-type high-precision open-loop Hall current sensor. . Background technique
  • the current sensor is a widely used electronic component, and it is widely used in a variety of variable current technologies, AC numerical control devices, and the like in the field of self-control with current as a control object.
  • Hall current sensors are industrialized due to their excellent cost performance. Hall current sensors usually have open-loop and closed-loop modes of operation, and open 3 ⁇ 4! 3 ⁇ 4 current.
  • the sensor is composed of a toroidal core with an air gap made of soft magnetic material, a Hall element and a suitable amplifying circuit.
  • the Hall element directly detects the magnetic induction intensity of the current to be measured in the air gap of the magnetic core, and the sensitivity is moderate. Temperature stability is the most important factor.
  • Ion implantation type or molecular beam epitaxial Hall element made of GaAs material is generally selected, and ion implantation type Hall element is prone to unevenness and stacking fault due to its ion implantation and annealing processes. Or defects such as dislocations; molecular beam epitaxial Hall elements because the process of molecular beam epitaxy is a physical process, the probability of producing defects such as unevenness, stacking faults or dislocations is much smaller, so we choose molecular beam epitaxy
  • the Hall element, its related characteristics are shown in Figure 1.
  • the offset voltage of the Hall element increases linearly with increasing operating current, indicating that the cause of the offset voltage is resistive.
  • the equivalent diagram is shown in Figure 3. From Figure 1, the output of the Hall element is known. The voltage decreases almost linearly with increasing operating temperature, and can be linear temperature compensation.
  • the object of the present invention is to provide an electronic circuit for a high-precision open-loop Hall current sensor which is simple in structure, low in cost, and more accurate in measurement.
  • the complete technical solution of the present invention is an electron beam for a core-type high-precision open-loop Hall current sensor, including an instrumentation amplifier and 2n Hall elements, and 2n Hall elements respectively adopting n degrees of intensity
  • the positive and negative mirror constant current source group of the temperature drift linear temperature compensation circuit is driven, and a voltage is extracted from the input end of the Hall element to perform proportional adjustment and temperature tracking compensation on the current point zero voltage;
  • the differential output terminals of the Hall elements are respectively connected to the non-inverting and inverting terminals of the instrumentation amplifier through the same resistor, and the differential output of the 2n Hall elements is obtained to obtain an arithmetic mean value;
  • the Hall element is binned according to the positive and negative values of its offset voltage, and the opposite polarity of the same gear is matched, and is installed along the same direction of the toroidal core;
  • the resistance of the RC filter is within the negative feedback of the output amplifier.
  • the gears are opposite in polarity - the pairing is mounted along the same direction of the toroidal core driven by a constant current source group of the same supply voltage.
  • the present invention has the following beneficial effects as compared with the prior art:
  • the dual-operation amplifier is used to form the preamplifier and the pre-stage differential amplifier of the instrumentation amplifier.
  • the amplification of the instrumentation amplifier and the amplification factor are mainly performed by the pre-stage, and the amplification factor of the post-stage differential amplifier is 1 to 5 times.
  • the temperature characteristic of the output voltage of the molecular beam epitaxial Hall element is nearly linear negative temperature coefficient, so as shown in Fig. 6, using a linear positive temperature coefficient constant current source or voltage source, diode, resistor Rl, R2 R3 is combined into a constant current source with a variable linear positive temperature coefficient.
  • the linear positive temperature coefficient is almost the same as the linear negative temperature coefficient of the output voltage of the Hall element, and the triode Tr l . . . Tr l (2n-l
  • the positive mirror source constant current source group is combined with the triode Tr 2. .. Tr2 (2n) to form a negative mirrored constant current source group, which realizes the temperature drift of 2n Hall elements for full-temperature linear temperature tracking compensation.
  • the differential output terminals of the Hall element are connected to the non-inverting and inverting terminals of the instrumentation amplifier through the same resistor RL, RL>100Ro (the output internal resistance of the Hall element), to realize the differential output of 2n Hall elements.
  • RL > 100R different Hall elements are eliminated due to their internal resistance, especially 2n Hall elements. positive,
  • Figure 5 is a block diagram of the core-type high-precision open-loop Hall current sensor
  • a linear variable temperature coefficient constant current source is composed of a voltage source, a diode, and a resistor.
  • an electronic circuit for a core-type high-precision open-loop Hall current sensor is used.
  • a front and a rear differential amplifier of an instrumentation amplifier are formed by a dual operational amplifier 4580; amplification and amplification of the instrumentation amplifier
  • the adjustment is mainly done by the front stage, and the amplification factor of the differential amplifier of the latter stage is ⁇ 5 times; the voltage is drawn from the input end of the element to adjust the zero voltage of the sensor.
  • Section, the ratio is R5/R8 ⁇ 1/100; as shown in Figure 6, the Hall element HG302A is under the condition of I05mA, t ⁇ the positive and negative values of its offset voltage, and the difference of the same polarity is 0.5mV for each step.
  • the differential outputs of the Hall elements respectively pass the same Resistance RL, RL >10f)R.
  • the output internal resistance of the Hall element is connected to the non-inverting terminal and the inverting terminal of the instrumentation amplifier to realize the arithmetic mean of the differential output of 2n Hall elements.
  • the amplification of the instrumentation amplifier and the amplification factor are mainly completed by the preamplifier, the amplification of the differential amplifier of the classifier It is 15 times, which eliminates the influence of the temperature drift of the Hall element output resistance on the amplification factor.
  • the adjustment ratio is R5/R8 ⁇ 1/100.
  • the values are the same and the opposite polarity - pairing, installed under the same direction of the toroidal core under the mirrored constant current source group of the same supply voltage, so that the offset voltage of the Hall element is reversed due to the opposite polarity - Near ⁇ Xiao.
  • the temperature characteristic of the output voltage of the molecular beam epitaxial Hall element is nearly linear negative temperature coefficient, so as shown in Figure 6, with a linear positive temperature coefficient constant current source LM234, diode, resistor R1 and R2 and R3 combination Constant current source with variable linear positive temperature coefficient, its linear positive temperature coefficient if and Hall
  • the linear negative temperature coefficient of the output voltage of the component is almost the same. It forms a positive mirror source constant current source group with the triode Trl...Trl (2n-l), and forms a negative mirror image with the triode Tr2...Tr2(2n).
  • the combination of the flow source groups realizes the temperature drift of the 2n Hall elements for linear temperature tracking compensation in the full temperature range.
  • Figure 7 shows a linear variable temperature coefficient constant current source composed of a parallel voltage reference AZ432, a triode, a diode, a resistor, and the like.
  • the differential output of the i- Hall element is connected to the non-inverting and inverting terminals of the instrumentation amplifier through the same resistor RL, RL>100Ro (the output internal resistance of the Hall element), respectively, to realize the differential output of 2n Hall elements.
  • the arithmetic mean value is obtained.
  • the offset voltage, temperature drift, and noise voltage of 2n Hall elements are reduced by ⁇ times, so that the temperature characteristics of the sensor are more stable and the lower limit of measurement is lower.
  • RL> lOORo the short circuit effect caused by different Hall elements due to their internal resistance, especially 2n Hall elements under the positive and negative mirror constant current source group power supply components is eliminated.
  • the open-loop current sensor has a current measurement accuracy of 0.2% FS and a zero-temperature drift of 50 ppm/. C ⁇ 0 (S ppm/°C, working temperature range reaches -40 ⁇ 85° C.

Abstract

一种穿芯式高精度开环型霍尔电流传感器用电子线路,包括一个仪表放大器和2n个霍尔元件(Η1-Η2n),2n个霍尔元件分别用n个带灵敏度温漂线性温度补偿电路的正、负镜像恒流源组驱动,从霍尔元件的输入端上引出一个电压对电流传感器零点电压进行比例调节和温度跟踪补偿;霍尔元件的差分输出端分别通过相同的电阻连接到仪表放大器的同相端、反相端,实现2n个霍尔元件的差分输出求算术平均值;对霍尔元件根据其失调电压的正、负值大小分档,失调电压为同一档而极性相反的霍尔元件一一配对,且沿着环形磁芯同一朝向安装;RC滤波器的电阻位于输出放大器负反馈之内。其提供一种结构简单、低成本而测量更加精确的穿芯式高精度开环型霍尔电流传感器用电子线路,属于霍尔电流传感器用电子线路领域。

Description

一种穿芯式高精度开环型霍尔电流传感器用电子线路 技术领域 本发明涉及霍尔电流传感器用电子线路领域, 尤其涉及一种穿芯式高精 度开环型霍尔电流传感器用电子线路。 背景技术
电流传感器是一种应用十分广泛的电子组件,它被广泛应用于各种变流技 术、 交流数控装置等以电流作为控制对象的自控领域中。
对电流的非接触测量和监控方法很多,霍尔电流传感器因其优异的性价比 被广泛应用而形成产业化; 霍尔电流传感器通常有开环、 闭环两种工作模式, 开坏 ¾! ¾尔电流传感器由用软磁材料制成带气隙的环形磁芯、 霍尔元件及适 当的放大电路组成, 在这里霍尔元件直接检测待测电流在磁芯气隙中的磁感 应强度, 其灵敏度适中, 温度稳定性是最重要因素, 一般选 GaAs材料制作的 离子注入型或分子束外延型霍尔元件, 而离子注入型霍尔元件因其离子注入、 退火等工艺过程中易出现不均匀、 层错或位错等缺陷; 分子束外延型霍尔元 件因其分子束外延的工艺过程是物理过程, 产生不均匀、 层错或位错等缺陷 的几率要小得多, 因此我们选择分子束外延型霍尔元件, 其相关特性如图一 所示。
从图一可知, 霍尔元件的失调电压随着工作电流递增而线性递增, 说明 产生失调电压成因是电阻性的, 其等效图如图三所示; 从图一可知, 霍尔元 件的输出电压随着工作温度递增几近线性递减, 可以用线性温度补偿方式进
I !!
行补偿。
国内外开环型霍尔电流传感器电子线路图如图四, 这种电路存在以下问 题:
1、 从差分放大器输入看, 霍尔元件的输出电阻 Ro成为放大器输入阻抗的 一部分,
Figure imgf000003_0001
)=R7/ (R5+RO) 且 RG随着温度升高而递增,而 AV是非线性递减, 无法进行完全温度跟踪补偿。
2、 利用 Trl、 Tr2的 PN结电压的温度特性对霍尔元件的灵敏度温漂进行跟 踪补偿; 而电流传感器的输出幅度调节是通过调节霍尔元件的工作电流完成, 因此不可能在输出幅度和霍尔元件的灵敏度温漂进行跟踪补偿之间二者兼 顾。
3、 从霍尔元件的输入端引出电压对传感器的零点电压进行比例调节, 因 此不可能在零点电压进行比例调节和霍尔元件的失调电压温漂进行跟踪补偿 之间二者兼顾。
4、 放大器的输出端 T型网络在驱动较大负载时, 传感器的输出电压会因 T 型网络中电阻上的压降而引起衰减。
发明内容
了解决上述技术问题, 本发明的目的在于提供一种结构简单、 低成本 而测量更加精确的高精度开环型霍尔电流传感器用电子线路。 本发明的完整技术方案是, 一种穿芯式高精度开环型霍尔电流传感器用 电子线各, 包括一个仪表放大器和 2n个霍尔元件, 2n个霍尔元件分别用 n个 带灵 度温漂线性温度补偿电路的正、 负镜像恒流源组驱动, 从霍尔元件的 输入端上引出一个电压对电流传感器零点电压进行比例调节和温度跟踪补 偿;
霍尔元件的差分输出端分别通过相同的电阻连接到仪表放大器的同相 端、 反相端, 实现 2η个霍尔元件的差分输出求算术平均值;
霍尔元件根据其失调电压的正、 负值分档, 同一档而极性相反的——配 对, 沿着环形磁芯同一朝向安装;
RC滤波器的电阻位于输出放大器负反馈之内。
用线性正温度系数恒流源或电压源、 二极管、 电阻 Rl、 R2、 R3组合成可 变线性正溫度系数的恒流源, 其线性正温度系数如果与霍尔元件的输出电压 的线 负温度系数几近相同, 在与三极管 Trl ...Trl (2n-l)组成正向镜像恒流 源组, 与三极管 Tr2...Tr2 (2n)组成负向镜像恒流源组组合, 实现了对 2n个霍 尔元件的灵敏度温漂进行全温区线性温度跟踪补偿。
霍尔元件在 IC=5mA的条件下, 根据其失调电压的正、 负值, 同一极性每 相差 0. 5mV为一档进行分档; 对于 2n个霍尔元件, 根据其失调电压值为同一 档而极性相反的——配对, 在同一电源电压的 4 像恒流源组驱动下沿着环形 磁芯同一朝向安装。
由上可见, 本发明与现在技术相比有如下有益效果:
I如图五, 用双运算放大器组成仪表放大器的前级和后级差分放大器, 仪表放大器的放大倍数及放大倍数的调节主要由前级完成, 后级差分放大器 的放大倍数为 1 ~ 5倍, 消除了霍尔元件输出电阻的温漂对放大倍数的影响; 当从霍尔元件的输入端引出电压对传感器的零点电压进行比例调节, 调节比 例为 R5 /R8 < 1 / 100时, 几近实现了对霍尔元件的失调电压温漂的全温区温度 跟踪补偿; RC滤波器的电阻位于输出放大器负反馈之内, 消除了在驱动较大 负载时 R C滤波器电阻上的电压降对输出幅度的影响。
2、 霍尔元件在 IC=5mA 的条件下, 才艮据其失调电压的正、 负值, 同一极 性每相差 ϋ. 5mV为一档进行分档; 对于 2n个霍尔元件, 才艮据其失调电压值为 同一档而极性相反的——配对, 在同一电源电压的镜像恒流源组下沿着环形 磁芯司一朝向安装, 使霍尔元件的失调电压因极性相反的——配对而几近消 除。
3、 如图一, 分子束外延型霍尔元件的输出电压的温度特性几近线性负温 度系数, 因而如图六, 用线性正温度系数恒流源或电压源、 二极管、 电阻 Rl、 R2、 R3组合成可变线性正温度系数的恒流源, 其线性正温度系数如果与霍尔 元件的输出电压的线性负温度系数几近相同, 在与三极管 Tr l . ..Tr l (2n-l 成正向镜像恒流源组, 与三极管 Tr 2. ..Tr2 (2n)组成负向镜像恒流源组组合, 实现了对 2n个霍尔元件的灵敏度温漂进行全温区线性温度跟踪补偿。
、 霍尔元件的差分输出端分别通过相同的电阻 RL, RL〉100Ro (霍尔元 件的输出内阻), 连接到仪表放大器的同相端、 反相端, 实现 2n个霍尔元件 的差分输出求算术平均值, 此时 2n个霍尔元件的失调电压及温度漂移、 噪声 电压等均按 ]. / 2"倍下降, 使传感器的温度特性更稳定、 测量下限更低。 同 时因 RL > 100R,消除了不同霍尔元件因其内阻不同特别是 2n个霍尔元件在正、
Figure imgf000006_0001
5、 采用发明人申请的另一专利一穿芯式高精度霍尔开环型霍尔电流传感 器用同轴双环路磁芯结构组件与图六所示的电路配合, 穿芯式高精度霍尔开 环型 尔电流传感器的电流测量精度达到 0. 2%FS以内,零点温漂达到 50 ppm/ ° C ~ 2Ό0 ppm/° C, 工作温区达到 -40 ~ 85。 C。
附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 并不构成对本发明的不当限定, 在附图中:
图 1 、 分子束外延型霍尔元件的输出电压特性及失调电压特性; 图 2 、 霍尔元件;
图 3 、 霍尔元件的等效图;
图 4 、 国外开环型霍尔电流传感器电子线路图;
图 5 、 穿芯式高精度开环型霍尔电流传感器用电路框图;
图 6 、 穿芯式高精度开环型霍尔电流传感器用电路图;
. ¾ 用电压源、 二极管、 电阻组成线性可变温度系数恒流源。
真体实施方式
下面将结合附图以及具体实施例来详细说明本发明, 在此本发明的示意 性实施例以及说明用来解释本发明, 但并不作为对本发明的限定。 实施例:
本实施例一种穿芯式高精度开环型霍尔电流传感器用电子线路, 如图五, 用双运算放大器 4580组成仪表放大器的前级和后级差分放大器; 仪表放大 器的放大倍数及放大倍数的调节主要由前级完成, 后级差分放大器的放大倍 数为 ~ 5倍; 从裳尔元件的输入端引出电压对传感器的零点电压进行比例调 节, 调 比例为 R5/R8<1/100; 如图六, 霍尔元件 HG302A在 I05mA的条件 下, t ^其失调电压的正、 负值, 同一极性每相差 0.5mV 为一档进行分档; 对于 2n个霍尔元件, 根据其失调电压值为同一档而极性相反的——配对, 在 同一电源电压的镜像恒流源组驱动下沿着环形磁芯同一朝向安装; 如图六, 用线性正温度系数恒流源 LM234、 二极管、 电阻 R1及 R2和 R3组合成可变温 度系数的恒流源, 与三极管 Trl...Trl(2n- 1)组成正向镜像恒流源组, 与三极 管 Tr2...Tr2 (2n)组成负向镜像恒流源组,对 2n个霍尔元件的灵敏度温漂进行 线性温度补偿; 如图六, 霍尔元件的差分输出端分别通过相同的电阻 RL, RL >10f)R。(霍尔元件的输出内阻), 连接到仪表放大器的同相端、 反相端, 实现 2n个霍尔元件的差分输出求算术平均值。
由上可见, 1、 如图五, 用双运算放大器 BA4580组成仪表放大器的前级 和后及差分放大器, 仪表放大器的放大倍数及放大倍数的调节主要由前级完 成, ^级差分放大器的放大倍数为 1 5倍, 消除了霍尔元件输出电阻的温漂 对放大倍数的影响; 当从霍尔元件的输入端引出电压对传感器的零点电压进 行比例调节, 调节比例为 R5/R8<1/100时, 几近实现了对霍尔元件的失调电 压温漂的全温区温度跟踪补偿; RC滤波器的电阻位于输出放大器负反馈之内, 消除了在驱动较大负载时 RC滤波器电阻上的电压降对输出幅度的影响。
1、 霍尔元件 HG302A在 IC=5mA的条件下, 根据其失调电压的正、 负值, 同一极性每相差 0.5niV为一档进行分档; 对于 2n个霍尔元件, ^据其失调电 压值为同一档而极性相反的——配对, 在同一电源电压的镜像恒流源组下沿 着环形磁芯同一朝向安装, 使霍尔元件的失调电压因极性相反的——配对而 几近 ^肖除。
3, 如图一, 分子束外延型霍尔元件的输出电压的温度特性几近线性负温 度系数, 因而如图六, 用线性正温度系数恒流源 LM234、 二极管、 电阻 R1及 R2和 R3组合成可变线性正温度系数的恒流源,其线性正温度系数如果与霍尔 元件的输出电压的线性负温度系数几近相同, 在与三极管 Trl...Trl (2n-l)组 成正向镜像恒流源组, 与三极管 Tr2...Tr2(2n)组成负向镜像恒流源组组合, 实现 对 2n个霍尔元件的灵敏度温漂进行全温区线性温度跟踪补偿。
图 7为用并联型电压基准 AZ432、 三极管、 二极管、 电阻等组成线性可变 温度系数恒流源。
. i霍尔元件的差分输出端分别通过相同的电阻 RL, RL〉100Ro (霍尔元 件的输出内阻), 连接到仪表放大器的同相端、 反相端, 实现 2n个霍尔元件 的差分输出求算术平均值, 此时 2n个霍尔元件的失调电压及温度漂移、 噪声 电压等均按^ ^倍下降, 使传感器的温度特性更稳定、 测量下限更低。 同 时因 RL> lOORo, 消除了不同霍尔元件因其内阻不同特别是 2n个霍尔元件在 正、 负向镜像恒流源组供电奈件下而产生的短路效应。
5、 采用发明人申请的另一专利一穿芯式高精度霍尔开环型霍尔电流传感 器用同轴双环路磁芯结构组件与图六所示的电路配合, 穿芯式高精度霍尔开 环型 尔电流传感器的电流测量精度达到 0.2%FS以内 ,零点温漂达到 50 ppm/ 。C~^0(S ppm/°C, 工作温区达到 -40 ~ 85° C。
以上对本发明实施例所提供的技术方案进行了详细介绍, 本文中应用了 明只适用于帮助理解本发明实施例的原理; 同时, 对于本领域的一般技术人 员, 依据本发明实施例, 在具体实施方式以及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求 书
1、 一种穿芯式高精度开环型霍尔电流传感器用电子线路, 其特征在于, 包括一个仪表放大器和 2n个霍尔元件, 2n个霍尔元件分別用 n个带灵敏度温 漂线性温度补偿电路的正、 负镜像恒流源组驱动, 从霍尔元件的输入端上引 出一个电压对电流传感器零点电压进行比例调节和温度跟踪补偿;
jf 元件的差分输出端分别通过相同的电阻连接到仪表放大器的同相 端、 反相端, 实现 2n个霍尔元件的差分输出求算术平均值;
所述霍尔元件根据其失调电压的正、 负值分档, 同一档而极性相反的一 一配对, 沿着环形磁芯同一朝向安装;
R C滤波器的电阻位于输出放大器负反馈之内。
2、 根据权利要求 1所述的一种穿芯式高精度开环型霍尔电流传感器用电 子线路, 其特征在于, 用线性正温度系数恒流源或电压源、 二极管、 电阻 Rl、 R2、 R3组合成可变线性正温度系数的恒流源, 其线性正温度系数如果与霍尔 元件的输出电压的线性负温度系数几近相同, 在与三极管 Trl , ..Trl (2n-l)组 成正向镜像恒流源组, 与三极管 Tr2...Tr2 (2n)组成负向镜像恒流源组组合, 实现了对 2n个霍尔元件的灵敏度温漂进行全温区线性温度跟踪补偿。
3、 i根据权利要求 1所述的一种穿芯式高精度开环型霍尔电流传感器用电 子线路, 其特征在于, 霍尔元件在 IC=5mA的条件下, 才艮据其失调电压的正、 负值, 同一极性每相差 0. 5mV为一档进行分档; 对于 2n个霍尔元件, 根据其 失调电压值为同一档而极性相反的——配对, 在同一电源电压的镜像恒流源 组驱动下沿着环形磁芯同一朝向安装。
PCT/CN2012/000156 2012-01-19 2012-02-09 一种穿芯式高精度开环型霍尔电流传感器用电子线路 WO2013106960A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280056645.6A CN104520720B (zh) 2012-01-19 2012-02-09 一种穿芯式高精度开环型霍尔电流传感器用电子线路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201220025798 CN202433443U (zh) 2012-01-19 2012-01-19 一种穿芯式高精度开环型霍尔电流传感器用电子线路
CN201220025798.1 2012-01-19

Publications (1)

Publication Number Publication Date
WO2013106960A1 true WO2013106960A1 (zh) 2013-07-25

Family

ID=46782882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000156 WO2013106960A1 (zh) 2012-01-19 2012-02-09 一种穿芯式高精度开环型霍尔电流传感器用电子线路

Country Status (2)

Country Link
CN (2) CN202433443U (zh)
WO (1) WO2013106960A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117075673A (zh) * 2023-10-16 2023-11-17 深圳前海深蕾半导体有限公司 一种嵌套环路低压差线性稳压器
CN117233453A (zh) * 2023-11-08 2023-12-15 武汉神动汽车电子电器股份有限公司 一种开环霍尔电流传感器提高检测精度的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106556730A (zh) * 2015-09-27 2017-04-05 北京嘉岳同乐极电子有限公司 电流传感器及包含该电流传感器的测量装置
CN105954560B (zh) * 2016-05-23 2019-02-05 宁波锦澄电子科技股份有限公司 小信号高精度开环霍尔电流传感器
CN106443134B (zh) * 2016-10-26 2023-11-03 深圳青铜剑技术有限公司 一种开环型霍尔电流传感器及电路
CN106706990B (zh) * 2017-02-28 2023-07-25 南京普肯传感科技有限公司 一种穿芯式霍尔电流传感器用磁芯气隙固定结构组件
CN108151919B (zh) * 2017-11-17 2020-11-10 中国电子科技集团公司第四十八研究所 一种压力传感器温漂补偿电路及补偿方法
CN108459194A (zh) * 2018-04-28 2018-08-28 南京林业大学 一种两线制霍尔式电流变送器
CN109143122A (zh) * 2018-09-20 2019-01-04 上海岱梭动力科技有限公司 霍尔传感器
CN109150124A (zh) * 2018-10-17 2019-01-04 湖南科技学院 一种四霍尔元件位移测量差分放大电路
CN109631954B (zh) * 2019-01-28 2021-05-11 绍兴光大芯业微电子有限公司 实现片上温度补偿功能的可编程线性霍尔传感器芯片结构
CN112858752B (zh) * 2021-01-06 2023-02-21 四川众航电子科技有限公司 一种带电源隔离的霍尔传感器装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305888A1 (de) * 1983-02-19 1984-08-23 Erich Dr.-Ing. 5300 Bonn Steingroever Geraet mit sonde fuer die messung von magnetischen potentialen
US20050156587A1 (en) * 2004-01-16 2005-07-21 Fieldmetrics Inc. Current sensor
CN1243247C (zh) * 2003-11-29 2006-02-22 华中科技大学 一种电流传感器
US20100090684A1 (en) * 2008-10-13 2010-04-15 National Taiwan University Of Science And Technology Method and apparatus for current measurement using hall sensors without iron cores

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283643A (en) * 1979-05-25 1981-08-11 Electric Power Research Institute, Inc. Hall sensing apparatus
CN1082185C (zh) * 1998-07-23 2002-04-03 北京有色金属研究总院 电池用氢氧化镍中硫酸根的分离及测定方法
JP4258430B2 (ja) * 2003-06-27 2009-04-30 日本ビクター株式会社 電流センサ
JP2013148567A (ja) * 2012-01-23 2013-08-01 Kohshin Electric Corp 電流センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305888A1 (de) * 1983-02-19 1984-08-23 Erich Dr.-Ing. 5300 Bonn Steingroever Geraet mit sonde fuer die messung von magnetischen potentialen
CN1243247C (zh) * 2003-11-29 2006-02-22 华中科技大学 一种电流传感器
US20050156587A1 (en) * 2004-01-16 2005-07-21 Fieldmetrics Inc. Current sensor
US20100090684A1 (en) * 2008-10-13 2010-04-15 National Taiwan University Of Science And Technology Method and apparatus for current measurement using hall sensors without iron cores

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117075673A (zh) * 2023-10-16 2023-11-17 深圳前海深蕾半导体有限公司 一种嵌套环路低压差线性稳压器
CN117075673B (zh) * 2023-10-16 2024-01-05 深圳前海深蕾半导体有限公司 一种嵌套环路低压差线性稳压器
CN117233453A (zh) * 2023-11-08 2023-12-15 武汉神动汽车电子电器股份有限公司 一种开环霍尔电流传感器提高检测精度的方法
CN117233453B (zh) * 2023-11-08 2024-02-06 武汉神动汽车电子电器股份有限公司 一种开环霍尔电流传感器提高检测精度的方法

Also Published As

Publication number Publication date
CN104520720A (zh) 2015-04-15
CN104520720B (zh) 2016-11-16
CN202433443U (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
WO2013106960A1 (zh) 一种穿芯式高精度开环型霍尔电流传感器用电子线路
KR20100054101A (ko) 센서 회로
KR101352308B1 (ko) 센서 회로
CN106443134B (zh) 一种开环型霍尔电流传感器及电路
WO2014203525A1 (ja) 増幅回路及び増幅回路icチップ
JP2010181211A (ja) 電流センサ及びそれに用いられる磁気検出素子の温度特性補償方法
CN208621082U (zh) 基于惠斯通电桥的传感器信号放大及处理电路
WO2014208105A1 (ja) 温度補償付磁気センサ素子とそれを用いた磁気センサおよび電力測定装置
JP5055367B2 (ja) ブリッジ回路出力電圧のオフセット調整回路
CN109932670B (zh) 基于上电置位的闭环tmr磁场测量装置
CN102288815A (zh) 一种用于巨磁电阻效应电流传感器的温度补偿器
CN117200713A (zh) 仪表放大器
CN216718524U (zh) 一种高精度低温漂开环式霍尔电流传感器
JP5126536B2 (ja) 磁気比例式電流センサのゲイン調整方法
CN115327202B (zh) 一种tmr电流传感器
WO2013105451A1 (ja) 電流センサ
CN215340049U (zh) 一种开环型单电源电流输出霍尔电流传感器用电子线路
CN110672904A (zh) 一种测量微弱信号的电阻传感器测量电路
CN102353496B (zh) 一种压力变送器
CN102042828A (zh) 一种石英音叉陀螺中的耦合信号抑制电路
WO2013106961A1 (zh) 穿芯式高精度闭环型霍尔电流传感器用单电源电子线路
CN212364401U (zh) 一种测量微弱信号的电阻传感器测量电路
CN214845478U (zh) 一种低电源电压开环型霍尔电流传感器用电子线路
WO2024090239A1 (ja) 差動入力差動出力型の反転増幅回路および測定装置
CN117519397B (zh) 一种基于磁平衡电流传感器的零点偏置可调电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865605

Country of ref document: EP

Kind code of ref document: A1