WO2013105550A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2013105550A1
WO2013105550A1 PCT/JP2013/050116 JP2013050116W WO2013105550A1 WO 2013105550 A1 WO2013105550 A1 WO 2013105550A1 JP 2013050116 W JP2013050116 W JP 2013050116W WO 2013105550 A1 WO2013105550 A1 WO 2013105550A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
film
sidewall
sidewall film
metal
Prior art date
Application number
PCT/JP2013/050116
Other languages
French (fr)
Japanese (ja)
Inventor
穣 小田
寿史 入沢
手塚 勉
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2013105550A1 publication Critical patent/WO2013105550A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Definitions

  • the present invention relates to a field effect semiconductor device and a method for manufacturing the same.
  • metal SD is formed in which an extension region is formed by a self-alignment process using a metal silicide such as NiSi (for example, non-patent literature). 1). Even when such a metal SD structure is used or an SD structure using a normal p / n junction, it is necessary to make the gate sidewall as thin as possible in order to sufficiently reduce the parasitic resistance.
  • any of formation of an SD region using a normal p / n junction, formation of an SD region using a metal SD, and formation of an SD region combining a metal SD using a double sidewall and a p / n junction Even in this case, it is desirable to make the side wall in contact with the gate as thin as possible while maintaining insulation. For this reason, it is considered that a process for forming the gate sidewall film with good control is essential.
  • An object of the present invention is to provide a semiconductor device that can form a thin insulating film on a gate side wall with good controllability without causing substrate digging and the like, and can improve element characteristics and reduce variations, and a method for manufacturing the same. There is.
  • a method for manufacturing a semiconductor device includes a step of forming a gate structure portion including a gate insulating film and a gate electrode over a semiconductor layer, and an insulating film including a metal material on a sidewall of the gate structure portion. Forming a gate sidewall film.
  • the sidewall film is formed of a metal material such as TaN or TiN that can be easily oxidized and etched by RIE using a gas such as Cl 2 having a high selectivity between the metal film and the oxide film (gate insulating film). Film and further RIE process. Thereafter, only the metal film is oxidized by irradiating plasma with oxygen supply, and this is used as a gate side wall film.
  • a metal material such as TaN or TiN that can be easily oxidized and etched by RIE using a gas such as Cl 2 having a high selectivity between the metal film and the oxide film (gate insulating film). Film and further RIE process. Thereafter, only the metal film is oxidized by irradiating plasma with oxygen supply, and this is used as a gate side wall film.
  • an easily oxidized electrode material such as TaN or TiN is used for the gate electrode. Then, the electrode surface is oxidized in a state where the electrode surface after the gate structure is exposed, and this is used as an extremely thin sidewall film.
  • a gate sidewall film which is an insulating film containing a metal material
  • a thin insulating film can be formed on the gate sidewall with good controllability without causing substrate digging or the like. Can do. For this reason, it is possible to improve element characteristics and reduce variations.
  • the following points are advantageous as compared with the case of using SiN, SiO 2 of the prior art for the side wall.
  • the RIE selection ratio between the metal film and the oxide film (gate insulating film) is as high as 20 or more for Cl 2 , for example, thereby suppressing the etching of the gate insulating film and substrate digging due to overetching.
  • the process margin is widened.
  • an extension structure is obtained in which the parasitic resistance is small and the short channel effect can be suppressed. Therefore, it is possible to realize a MOS transistor that can obtain a high current with a lower gate overdrive.
  • FIG. 6 is a cross-sectional view showing the second half of the manufacturing process of the semiconductor device according to the first embodiment. It is process sectional drawing which shows the modification of 1st Embodiment. It is sectional drawing which shows the manufacturing process of the semiconductor device in 2nd Embodiment. It is sectional drawing which shows the manufacturing process of the semiconductor device concerning 3rd Embodiment. It is sectional drawing which shows the manufacturing process of the semiconductor device concerning 4th Embodiment. It is process sectional drawing which shows the modification of 4th Embodiment. It is sectional drawing which shows the manufacturing process of the semiconductor device concerning 5th Embodiment.
  • (First embodiment) 1 and 2 are cross-sectional views illustrating the manufacturing steps of the semiconductor device according to the first embodiment.
  • a gate insulating film 11 having a thickness of, for example, 5 nm, a gate electrode 12 having a thickness of, for example, 30 nm, and a gate hard mask 13 are formed in this order on the semiconductor substrate 10. Subsequently, the gate hard mask 13 and the gate electrode 12 are etched by photolithography and RIE (reactive ion etching) processes. As a result, the gate structure 100 is formed.
  • RIE reactive ion etching
  • the semiconductor substrate 10 may be a semiconductor including a high mobility material such as Si, Ge, SiGe, GaAs, GaSb, InP, InGaAs, and InAs.
  • a high mobility material such as Si, Ge, SiGe, GaAs, GaSb, InP, InGaAs, and InAs.
  • the gate insulating film 11 an oxide or nitride of a substance contained in the semiconductor material can be used. Further, as the gate insulating film 11, Al 2 O 3 , HfO 2 , La 2 O 3 , ZrO 2 , LaLuO 3 , LaAlOx, HfAlO, SiO 2 , LaAlSiOx, a formed by ALD, CVD, PVD (sputtering) or the like.
  • the gate electrode 12 is made of TaN, TiN, a-Si, poly-Si, a-Ge, poly-Ge, W, Al, Pd, Ti, Cr, Pt, Ni, Au, NiSi, NiGe, NiSiGe, or the like. It may be included. Further, the gate hard mask 13 may be SiN, SiO 2 , a-Si, or the like.
  • a metal film 14 that is easily oxidized by plasma irradiation in an oxygen atmosphere and RIE using Cl 2 , BCl 3 , CCl 4 , or SiCl 4 gas is formed into a desired film.
  • a film is formed by a thickness (for example, 3 nm).
  • the metal film 14 is formed by a method such as sputtering or CVD. Examples of the material of the metal film 14 include TaN, TiN, AlN, Ta, Ti, Al, Ni, Hf, W, a-Si, poly-Si, a-Ge, and poly-Ge.
  • RIE is performed with a gas such as Cl 2 , BCl 3 , CCl 4 , SiCl 4, etc., so that the metal film 14 is left only on the gate sidewall as shown in FIG.
  • a gas such as Cl 2
  • the selectivity between the metal film and the oxide film is as high as 20 or more.
  • the gate insulating film 11 is hardly etched, and therefore the semiconductor substrate 10 under the gate insulating film 11 is not etched.
  • the gate structure portion 100 including the metal film 14 on the gate side wall formed as described above is oxidized by exposure to oxygen gas, oxygen plasma, atomic oxygen, or the like. Then, as shown in FIG. 1D, the metal film 14 such as TaN becomes an insulating oxide film such as TaNOx or TaOx. As a result, a gate structure 200 in which a very thin (for example, 5 nm) gate sidewall film 16 is formed is obtained.
  • the exposed gate insulating film 11 other than the gate structure 200 is removed.
  • a metal film 17 is deposited to a thickness of 5 nm, for example, in order to form a metal-semiconductor alloy layer to be a metal extension region.
  • the metal film 17 may include, for example, Ni, Co, Ti, Pt, Pd, W, AuGe, Au, or the like.
  • annealing for forming an alloy layer is performed to cause the surface of the substrate 10 to react with the metal film 17 to form a metal-semiconductor alloy layer 18 (for example, a metal silicide) as shown in FIG. Form.
  • a metal-semiconductor alloy layer 18 for example, a metal silicide
  • FIG. 2D the unreacted metal film 17 is removed by wet processing. Thereby, the metal SD structure 18 by the self-alignment process is obtained.
  • SiO 2 or the like is deposited as an interlayer insulating film, and contact holes are formed by lithography, RIE, and wet processing. Further, contact formation that provides electrical contact with the SD region is performed, and wiring formation is performed to complete the MOS device.
  • the gate sidewall film 16 formed on the sidewall of the gate structure portion 100 is formed of an insulating film containing a metal material, so that a thin insulating film is formed on the gate sidewall without causing substrate digging or the like. Can be formed with good controllability. For this reason, it is possible to improve element characteristics and reduce variations.
  • the process until the gate structure 200 is obtained is the same as that of the first embodiment (FIG. 1D).
  • the gate electrode 12 needs to be thicker than the first embodiment (for example, 50 nm or more) in accordance with the ion implantation energy.
  • an impurity region is doped into the semiconductor substrate 10 by an ion implantation method using the gate structure 200 as a mask, thereby forming an SD region 19 composed of a p / n junction. Subsequently, activation annealing is performed.
  • an n-MOSFET an n-type impurity (for example, P or As for a Si or Ge substrate, or Si for a III-V group compound substrate such as InGaAs) may be doped.
  • a p-type impurity for example, B for a Si or Ge substrate or Be for a III-V group compound substrate such as InGaAs
  • ion implantation into the extension region or ion implantation for forming Halo may be performed.
  • a metal film containing Ni, Co, Ti, Pt, Pd, W, AuGe, Au, or the like is formed and salicide is performed.
  • the metal silicide layer 68 is formed, and the contact resistance of the wiring layer can be reduced and the resistance of the deep region of the SD region can be reduced.
  • an extension region 69 by ion implantation is also shown.
  • SiO 2 or the like is deposited as an interlayer insulating film and contact formation is performed.
  • the subsequent steps are the same as those in the first embodiment, and are omitted here.
  • FIG. 4 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the second embodiment. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the first embodiment is performed until the gate structure 300 having the gate insulating film 11, the gate electrode 22, and the gate hard mask 13 is formed on the semiconductor substrate 10.
  • the material of the gate electrode 22 is oxygen such as TaN, TiN, AlN, a-Si, poly-Si, a-Ge, poly-Ge, Pd, Ti, W, Al, Ni, and Hf. It is desirable that the surface is composed of only a metal that easily oxidizes due to plasma treatment or the like.
  • the gate structure 22 is formed using the easily oxidized metal such as TaN or TiN as the gate electrode 22, the side surface of the gate electrode 22 is oxidized by exposure to oxygen gas, oxygen plasma, atomic oxygen, or the like. . Then, as shown in FIG. 4B, for example, an oxide film 26 having a thickness of 5 nm is formed. As a result, the gate structure 400 in which the insulating gate sidewall film 26 is formed is obtained.
  • the metal SD structure 18 can be formed in the same manner as in the first embodiment. Further, the subsequent steps are the same as those in the first embodiment, and are omitted here.
  • the gate electrode 22 is oxidized to form the gate sidewall film 26, so that the substrate digging does not occur when the gate sidewall film 26 is formed. Therefore, the same effect as in the first embodiment can be obtained.
  • the present embodiment has an advantage that the manufacturing process can be simplified because the formation of the metal film 14 and the RIE are not necessary as compared with the first embodiment.
  • the process until the gate structure 400 is obtained is the same as in the second embodiment. However, when the p / n junction is formed by ion implantation, it is necessary to increase the thickness of the gate electrode as described in the modification of the first embodiment.
  • an n-type impurity for example, P or As for a Si or Ge substrate, Si for an III-V group compound substrate such as InGaAs
  • a p-type impurity for example, B for a Si or Ge substrate or Be for a III-V group compound substrate such as InGaAs
  • ion implantation into the extension region or ion implantation for forming Halo may be performed.
  • activation annealing is performed.
  • SiO 2 or the like is deposited as an interlayer insulating film, and contact formation or the like is performed.
  • the subsequent steps are the same as those in the first embodiment, and are omitted here.
  • FIG. 5 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the third embodiment. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the process is the same as that of the first embodiment until a gate structure including a gate sidewall which is an insulating film is formed. That is, it is considered that the gate structure 200 in the first embodiment is formed.
  • the ion implantation process is performed later, so that the gate height needs to be as high as in the modification of the first embodiment.
  • the gate sidewall film 36 (second gate structure) is formed on the gate structure portion (the above-described gate structure portion 200) on which the gate sidewall film 16 (first gate sidewall film) is formed.
  • a gate structure 500 having a gate sidewall film is formed.
  • the gate sidewall film 36 may be an insulating film such as SiO 2 or SiN.
  • the gate sidewall film 36 may be formed by using a so-called sidewall leaving technique in which an insulating film is deposited on the entire surface and then etched back by RIE.
  • the thickness of the gate sidewall film 36 may be about the thickness of the impurity diffusion length in the lateral direction by ion implantation and activation after the sidewall formation, for example, 20 nm.
  • an n-type impurity for example, P or As for a Si or Ge substrate, or Si group for an IIII-V group compound substrate such as InGaAs
  • a p-type impurity for example, B for a Si or Ge substrate or Be for a III-V group compound substrate such as InGaAs
  • an SD region 19 is formed by performing activation annealing.
  • the gate sidewall film 36 is removed by wet processing such as HF. Subsequently, the gate insulating film 11 formed on the SD region 19 is removed by wet processing or the like.
  • a metal SD structure 18 is formed by forming a metal material and performing an annealing process, as in the first embodiment.
  • the metal material for forming the metal-semiconductor alloy layer may be a metal including Ni, Co, Ti, PT, Pd, W, AuGe, and Au.
  • the metal-semiconductor alloy layer 18 is formed by self-alignment. Subsequently, if there is an unreacted metal, it is removed by wet treatment or the like.
  • the extension is converted into metal SD, and the SD region is formed in which the p / n junction is formed in the deep region and low parasitic resistance and low leakage current are realized.
  • the etching selectivity between the first gate sidewall film 16 made of TaNOx or the like and the second gate sidewall film 36 made of SiO 2 or the like can be increased. For this reason, when the gate sidewall film 36 is removed by etching, the gate sidewall film 16 remains almost unetched. Therefore, even in the structure in which the metal SD using the double sidewall and the p / n junction are combined, the same effect as in the first embodiment can be obtained.
  • Modification of the third embodiment As a modification of the third embodiment, an example is shown in which a side surface of a metal gate similar to that of the second embodiment is oxidized to form a gate structure including gate sidewalls that are insulating films.
  • the process is the same as in the second embodiment (FIG. 4B) until the side surface of the metal gate is oxidized to form the side wall made of the oxide film 26. That is, it is considered that the gate structure 400 in the second embodiment is formed.
  • the second gate sidewall film 36 is formed and the metal SD region is formed in the same manner as in the third embodiment, the details thereof are omitted.
  • FIG. 6 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the fourth embodiment. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a gate structure 700 in which the gate sidewall film 36 (second gate sidewall film) is formed is formed.
  • the gate sidewall film 36 may be an insulating film such as SiO 2 or SiN.
  • a source / drain region 19 is formed in the structure in which the gate structure 700 is formed. That is, an n-type impurity for an n-MOSFET (eg, P or As for a Si or Ge substrate, Si for an III-V group compound substrate such as InGaAs), or a p-type for a p-MOSFET. Impurities (for example, B for Si or Ge substrates, Be for III-V group compound substrates such as InGaAs) are implanted. Then, activation annealing is performed.
  • an n-type impurity for an n-MOSFET eg, P or As for a Si or Ge substrate, Si for an III-V group compound substrate such as InGaAs
  • Impurities for example, B for Si or Ge substrates, Be for III-V group compound substrates such as InGaAs
  • the gate sidewall film 36 is removed by wet processing such as HF.
  • the metal film 14 which is the gate sidewall film is exposed, the metal film 14 formed on the gate sidewall is oxidized by exposure to oxygen gas, oxygen plasma, atomic oxygen, or the like.
  • the gate structure portion in which the gate sidewall film 16 (third gate sidewall film) which is an insulating film is formed is obtained.
  • the formation of the second gate sidewall film 36, ion implantation, Removal is performed and finally the metal film 14 is oxidized to form a third gate sidewall film 16.
  • the thin insulating film 16 can be formed on the gate side wall with good controllability without causing substrate digging or the like. For this reason, even in the structure in which the metal SD using the double sidewall and the p / n junction are combined, the same effect as in the first embodiment can be obtained.
  • the process is the same as in the second embodiment (FIG. 4A) until the gate structure 300 is formed. That is, as the material of the gate electrode 22, only those containing metals that are easily oxidized by oxygen plasma treatment, such as TaN, TiN, AlN, a-Si, poly-Si, a-Ge, W, Al, Ni, and Hf. It shall consist of
  • a gate structure portion 800 in which the gate sidewall film 36 (first gate sidewall film) is formed is formed.
  • the gate sidewall film 36 may be an insulating film such as SiO 2 or SiN.
  • an n-type impurity is used for an n-MOSFET (eg, P or As for a Si or Ge substrate, or a III-V group compound substrate such as InGaAs or the like).
  • Si n-MOSFET
  • p-type MOSFETs are implanted with p-type impurities (for example, B for Si and Ge substrates, Be for III-V group compound substrates such as InGaAs).
  • activation annealing is performed.
  • an SD region 19 composed of a p / n junction is formed.
  • the gate sidewall film 36 is removed by wet processing such as HF. Since the side surface of the gate electrode 22 is exposed in this state, the side surface of the gate electrode 22 is oxidized by performing oxidation by oxygen plasma treatment or the like. Thereby, as shown in FIG. 7D, a gate structure having an insulating gate sidewall film 46 (second gate sidewall film) on the sidewall of the gate electrode 22 can be formed. At this time, the thickness of the gate sidewall film 46 can be made extremely thin by controlling the oxidation time or the like.
  • the subsequent metal SD region formation process is the same as that in the third embodiment, and is omitted here. Furthermore, contact formation and wiring formation are performed by performing a post-process in the same manner as in the first embodiment. Thereby, a MOS device can be obtained.
  • ion implantation is performed on the extension region, and activation annealing is performed. Thereafter, contact formation and wiring formation are performed by performing post-processes in the same manner as in the first embodiment. Thereby, a MOS device can be obtained.
  • FIG. 8 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the fifth embodiment.
  • symbol is attached
  • This embodiment is a combination of the sidewall formation process shown in the first to fourth embodiments and the replacement gate process that is promising for improving the gate interface characteristics when using a Ge or III-V group substrate.
  • a device fabrication example will be described.
  • a gate structure, a gate sidewall film, and an SD region are formed.
  • the process up to the step shown in FIG. 5D of the third embodiment is performed, and the gate insulating film 11, the gate electrode 12, and the gate hard mask 13 are used as a dummy gate structure.
  • an insulating film 50 such as SiO 2 that sufficiently embeds the dummy gate structure is formed using PECVD or the like.
  • the CMP process is performed so that the head of the gate electrode 12 or the gate hard mask 13 is exposed or the gate electrode 12 and the gate hard mask 13 are reduced by about several nm.
  • the gate hard mask 13, the gate electrode 12, and the gate insulating film 11 are removed by wet processing or RIE.
  • the removal process of the gate hard mask 13 and the gate electrode 12 it is necessary to select a material that can have a sufficient removal selection ratio with respect to the buried insulating film 50.
  • the buried insulating film 50 is SiO 2
  • the gate insulating film 11 As for the gate insulating film 11, it is not desirable that the substrate 10 is damaged when the gate insulating film 11 is removed. For this reason, it is desirable to use an etchant that can be removed only by wet treatment and that can be removed by an etchant that does not etch the substrate, such as HF. Examples of such a film include SiO 2 and Al 2 O 3 .
  • a gate insulating film 51 is formed again by ALD or CVD as shown in FIG. Further, a gate electrode 52 is formed thereon by sputtering or CVD. Subsequently, as shown in FIG. 8E, the gate is formed by removing the gate electrode 52 on the insulating film 50 by CMP. Thereafter, by forming an interlayer insulating film and wiring, it is possible to realize a MOSFET having good interface characteristics, low parasitic resistance and low leakage current.
  • the sidewall film 16 of the dummy gate structure by using a metal oxide film such as TaNOx as the sidewall film 16 of the dummy gate structure, the sidewall film 16 is hardly etched when the dummy gate structure is removed. become. For this reason, as shown in the first to fourth embodiments, it is possible to form a thin sidewall without digging the substrate. Furthermore, the substrate digging can be suppressed by removing the gate insulating film 11 having the dummy gate structure by wet processing. Therefore, by combining the sidewall formation process shown in the first to fourth embodiments and the replacement gate process, it is possible to further improve the element characteristics and reduce variations.
  • a metal oxide film such as TaNOx
  • the metal material for forming the gate sidewall film in the first embodiment is not limited to that described in the embodiment, and may be any material having a sufficient etching selectivity with respect to the gate insulating film and the substrate.
  • the insulating gate sidewall film is formed by oxidizing the metal film only on the gate sidewall, but the present invention is not limited to this.
  • the insulating film may be etched back to leave the insulating film only on the gate sidewall.
  • the material of the gate sidewall film made of an insulating film may be any material having a sufficient etching selectivity with respect to the gate insulating film or the substrate.
  • the semiconductor substrate is not necessarily limited to a bulk substrate, and for example, a semiconductor layer formed on an insulating layer on the substrate may be used.
  • SYMBOLS 10 Semiconductor substrate 11, 51 ... Gate insulating film 12, 22, 52 ... Gate electrode 13 ... Gate hard mask 14 ... Metal film 16, 26, 46 ... Thin gate side wall film 17 ... Metal film 18 ... Metal-semiconductor Alloy layer (Metal SD structure) 19: Source / drain region (SD region) 36: thick gate sidewall film 50: buried insulating film 100, 200, 300, 400, 50, 600, 700, 800 ... gate structure

Abstract

A method for manufacturing a semiconductor device, wherein a gate structure part (100) including a gate insulating film (11) and a gate electrode (12) is formed on a semiconductor layer (10), and a gate sidewall film (16) that is an insulating film including a metallic material is formed on the sidewall of the gate structure part (100).

Description

半導体装置及びその製造方法Semiconductor device and manufacturing method thereof
 本発明は、電界効果型の半導体装置及びその製造方法に関する。 The present invention relates to a field effect semiconductor device and a method for manufacturing the same.
 CMOSデバイスにおける消費電力の低減のため、MOSEFETのソース/ドレイン領域(SD領域)の寄生抵抗の低減は重要な要素技術となってきている。近年では、更なる寄生抵抗の低減を目指して、NiSiなどの金属シリサイドを用いたセルフアラインプロセスでエクステンション領域が形成される、メタルSD化が成されるようになっている(例えば、非特許文献1参照)。このようなメタルSD構造を用いた場合でも、通常のp/n接合を用いたSD構造でも、寄生抵抗を十分低減するためには、ゲート側壁をできるだけ薄く形成する必要がある。 In order to reduce power consumption in CMOS devices, reduction of parasitic resistance in the source / drain region (SD region) of MOSEFET has become an important elemental technology. In recent years, with the aim of further reducing parasitic resistance, metal SD is formed in which an extension region is formed by a self-alignment process using a metal silicide such as NiSi (for example, non-patent literature). 1). Even when such a metal SD structure is used or an SD structure using a normal p / n junction, it is necessary to make the gate sidewall as thin as possible in order to sufficiently reduce the parasitic resistance.
 また、メタルSD構造では、p/n接合を用いた場合に比べてリーク電流を低く抑えることに課題が残っている。短チャネル効果を抑制し、リーク電流を抑えたメタルSD構造を実現するには、チャネルと接するエクステンション部を除くメタルSD領域下部にp/n接合領域を形成する方法が有効である(例えば、非特許文献2参照)。そのために、ゲートの側壁に寄生抵抗低減のための極薄の第1のゲート側壁膜を形成し、その外側に第2のゲート側壁膜を形成する、二重側壁構造を採用した半導体装置が提案されている(例えば、特許文献1参照)。しかし、この場合も、ゲート側壁(第1のゲート側壁膜)をできるだけ薄く形成することが望まれる。 Moreover, in the metal SD structure, there remains a problem in suppressing the leakage current as compared with the case where the p / n junction is used. In order to realize the metal SD structure in which the short channel effect is suppressed and the leakage current is suppressed, a method of forming a p / n junction region under the metal SD region excluding the extension portion in contact with the channel is effective (for example, non Patent Document 2). For this purpose, a semiconductor device using a double sidewall structure is proposed in which a very thin first gate sidewall film for reducing parasitic resistance is formed on the sidewall of the gate, and a second gate sidewall film is formed on the outside thereof. (For example, refer to Patent Document 1). However, also in this case, it is desirable to form the gate side wall (first gate side wall film) as thin as possible.
 このように、通常のp/n接合を用いたSD領域の形成、メタルSDを用いたSD領域形成、並びに二重側壁を用いたメタルSDとp/n接合を組み合わせたSD領域形成の何れの場合でも、ゲートに接する側壁は絶縁性を保ちながら可能な限り薄くすることが望ましい。このため、ゲート側壁膜を制御良く形成するプロセスが必須であると考えられる。 As described above, any of formation of an SD region using a normal p / n junction, formation of an SD region using a metal SD, and formation of an SD region combining a metal SD using a double sidewall and a p / n junction. Even in this case, it is desirable to make the side wall in contact with the gate as thin as possible while maintaining insulation. For this reason, it is considered that a process for forming the gate sidewall film with good control is essential.
 従来はこのゲート側壁膜として、SiNやSiOなどの絶縁膜を用いることが一般的であった。しかし、これらの膜を用いて薄い側壁膜の形成を行うには、RIEプロセスにおける基板掘れの問題がある。即ち、SiOやSiNといった膜種をゲート側壁膜として形成する場合、側壁形成のためのRIE時にゲート絶縁膜及び基板をエッチングしてしまう可能性があった。これは、側壁形成のためのRIEに用いるCHFやCFといったガスの、ゲート絶縁膜や基板に対する選択比の小ささが原因である。この選択比の小ささがプロセスマージンを狭め、結果として基板掘れを起こすものと考えられる。このようなSD領域の基板掘れ、とりわけエクステンション領域における基板掘れが起きた場合、MOSFETの寄生抵抗の大幅な増大や、デバイス毎の抵抗ばらつきの増大、及び短チャネル効果の悪化が予想される。そして、これらは素子特性の劣化やばらつきを生じさせる要因となる。 Conventionally, it has been common to use an insulating film such as SiN or SiO 2 as the gate sidewall film. However, in order to form a thin sidewall film using these films, there is a problem of substrate digging in the RIE process. That is, when a film type such as SiO 2 or SiN is formed as the gate sidewall film, there is a possibility that the gate insulating film and the substrate are etched during RIE for forming the sidewall. This is due to the small selection ratio of gases such as CHF 3 and CF 4 used for RIE for sidewall formation with respect to the gate insulating film and the substrate. It is considered that this small selection ratio narrows the process margin, resulting in substrate digging. When such a substrate digging in the SD region, particularly in the extension region, is expected, the parasitic resistance of the MOSFET is greatly increased, the resistance variation for each device is increased, and the short channel effect is deteriorated. These are factors that cause deterioration and variations in element characteristics.
特開2005-217245号公報JP 2005-217245 A
 本発明の目的は、基板掘れ等を招くことなく、ゲート側壁に薄い絶縁膜を制御性良く形成することができ、素子特性の向上及びばらつきの低減をはかり得る半導体装置及びその製造方法を提供することにある。 An object of the present invention is to provide a semiconductor device that can form a thin insulating film on a gate side wall with good controllability without causing substrate digging and the like, and can improve element characteristics and reduce variations, and a method for manufacturing the same. There is.
 本発明の一態様に係わる半導体装置の製造方法は、半導体層上にゲート絶縁膜及びゲート電極を含むゲート構造部を形成する工程と、前記ゲート構造部の側壁に金属材料を含む絶縁膜であるゲート側壁膜を形成する工程と、を含むことを特徴とする。 A method for manufacturing a semiconductor device according to one embodiment of the present invention includes a step of forming a gate structure portion including a gate insulating film and a gate electrode over a semiconductor layer, and an insulating film including a metal material on a sidewall of the gate structure portion. Forming a gate sidewall film.
 より具体的には、ゲート側壁膜の形成の際のRIEによる基板掘れを起こすことなく、制御性良く側壁膜を形成することが必須であることから、これを実現するために、次のようにしてゲート形成後の側壁膜形成を行う。 More specifically, since it is essential to form a sidewall film with good controllability without causing digging of the substrate by RIE when forming the gate sidewall film, in order to realize this, the following is performed. Then, a sidewall film is formed after the gate is formed.
 即ち、TaNやTiN等のように、容易に酸化され、且つ金属膜と酸化膜(ゲート絶縁膜)との選択比の高いCl等のガスによるRIEでエッチング可能な金属材料を側壁膜として成膜し、更にRIE加工する。この後、酸素供給の下でプラズマを照射することで金属膜のみを酸化させ、これをゲート側壁膜として使用する。 That is, the sidewall film is formed of a metal material such as TaN or TiN that can be easily oxidized and etched by RIE using a gas such as Cl 2 having a high selectivity between the metal film and the oxide film (gate insulating film). Film and further RIE process. Thereafter, only the metal film is oxidized by irradiating plasma with oxygen supply, and this is used as a gate side wall film.
 また、ゲート電極にTaNやTiN等のように、容易に酸化される電極材料を用いる。そして、ゲート構造形成後の電極表面が露出している状態で電極表面を酸化し、これを極薄の側壁膜として用いる。 Also, an easily oxidized electrode material such as TaN or TiN is used for the gate electrode. Then, the electrode surface is oxidized in a state where the electrode surface after the gate structure is exposed, and this is used as an extremely thin sidewall film.
 本発明によれば、ゲート構造部の側壁に金属材料を含む絶縁膜であるゲート側壁膜を形成することにより、基板掘れ等を招くことなく、ゲート側壁に薄い絶縁膜を制御性良く形成することができる。このため、素子特性の向上及びばらつきの低減をはかることができる。 According to the present invention, by forming a gate sidewall film, which is an insulating film containing a metal material, on the sidewall of the gate structure portion, a thin insulating film can be formed on the gate sidewall with good controllability without causing substrate digging or the like. Can do. For this reason, it is possible to improve element characteristics and reduce variations.
 より具体的には、従来技術のSiN,SiOを側壁に用いる場合に比べ、以下の点が有利となる。側壁形成のRIEプロセス時、金属膜と酸化膜(ゲート絶縁膜)とのRIE選択比が、例えばClであれば20以上と高いことから、オーバーエッチングによるゲート絶縁膜のエッチング及び基板掘れを抑制でき、プロセスマージンが広がる。上記の結果、寄生抵抗が小さく、且つ短チャネル効果を抑制できるエクステンション構造が得られる。このため、より低いゲートオーバードライブで高い電流が得られるMOSトランジスタを実現することが可能となる。 More specifically, the following points are advantageous as compared with the case of using SiN, SiO 2 of the prior art for the side wall. During the RIE process for forming the sidewall, the RIE selection ratio between the metal film and the oxide film (gate insulating film) is as high as 20 or more for Cl 2 , for example, thereby suppressing the etching of the gate insulating film and substrate digging due to overetching. And the process margin is widened. As a result, an extension structure is obtained in which the parasitic resistance is small and the short channel effect can be suppressed. Therefore, it is possible to realize a MOS transistor that can obtain a high current with a lower gate overdrive.
第1の実施形態に係わる半導体装置の製造工程の前半を示す断面図である。It is sectional drawing which shows the first half of the manufacturing process of the semiconductor device concerning 1st Embodiment. 第1の実施形態に係わる半導体装置の製造工程の後半を示す断面図である。FIG. 6 is a cross-sectional view showing the second half of the manufacturing process of the semiconductor device according to the first embodiment. 第1の実施形態の変形例を示す工程断面図である。It is process sectional drawing which shows the modification of 1st Embodiment. 第2の実施形態に半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the semiconductor device in 2nd Embodiment. 第3の実施形態に係わる半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the semiconductor device concerning 3rd Embodiment. 第4の実施形態に係わる半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the semiconductor device concerning 4th Embodiment. 第4の実施形態の変形例を示す工程断面図である。It is process sectional drawing which shows the modification of 4th Embodiment. 第5の実施形態に係わる半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the semiconductor device concerning 5th Embodiment.
 以下、本発明の詳細を図示の実施形態によって説明する。 Hereinafter, the details of the present invention will be described with reference to the illustrated embodiments.
 (第1の実施形態)
 図1及び図2は、第1の実施形態に係わる半導体装置の製造工程を示す断面図である。
(First embodiment)
1 and 2 are cross-sectional views illustrating the manufacturing steps of the semiconductor device according to the first embodiment.
 まず、図1(a)に示すように、半導体基板10の上に、例えば厚さ5nmのゲート絶縁膜11、例えば厚さ30nmのゲート電極12、及びゲートハードマスク13を上記順に成膜する。続いて、フォトリソグラフィ及びRIE(リアクティブイオンエッチング)プロセスによって、ゲートハードマスク13及びゲート電極12をエッチングする。これにより、ゲート構造部100を形成する。 First, as shown in FIG. 1A, a gate insulating film 11 having a thickness of, for example, 5 nm, a gate electrode 12 having a thickness of, for example, 30 nm, and a gate hard mask 13 are formed in this order on the semiconductor substrate 10. Subsequently, the gate hard mask 13 and the gate electrode 12 are etched by photolithography and RIE (reactive ion etching) processes. As a result, the gate structure 100 is formed.
 ここで、半導体基板10としては、Siを初め、GeやSiGe,GaAs,GaSb,InP,InGaAs,InAsなどの高移動度材料を含む半導体であってもよい。ゲート絶縁膜11としては、上記半導体材料に含まれる物質の酸化物や窒化物を用いることができる。さらに、ゲート絶縁膜11として、ALDやCVD,PVD(スパッタリング)等によって形成されるAl2,HfO,La2,ZrO,LaLuO,LaAlOx,HfAlO,SiO,LaAlSiOx,a-Si,c-Si,Y2や、これらの混合物などの High-k 等の絶縁膜であってよい。また、ゲート電極12は、TaN,TiN,a-Si,poly-Si,a-Ge,poly-Ge,W,Al,Pd,Ti,Cr,Pt,Ni,Au,NiSi,NiGe,NiSiGeなどを含むものであってよい。さらに、ゲートハードマスク13は、SiN若しくはSiO,a-Siなどであってよい。 Here, the semiconductor substrate 10 may be a semiconductor including a high mobility material such as Si, Ge, SiGe, GaAs, GaSb, InP, InGaAs, and InAs. As the gate insulating film 11, an oxide or nitride of a substance contained in the semiconductor material can be used. Further, as the gate insulating film 11, Al 2 O 3 , HfO 2 , La 2 O 3 , ZrO 2 , LaLuO 3 , LaAlOx, HfAlO, SiO 2 , LaAlSiOx, a formed by ALD, CVD, PVD (sputtering) or the like. It may be a high-k insulating film such as -Si, c-Si, Y 2 O 3 or a mixture thereof. The gate electrode 12 is made of TaN, TiN, a-Si, poly-Si, a-Ge, poly-Ge, W, Al, Pd, Ti, Cr, Pt, Ni, Au, NiSi, NiGe, NiSiGe, or the like. It may be included. Further, the gate hard mask 13 may be SiN, SiO 2 , a-Si, or the like.
 次いで、図1(b)に示すように、酸素雰囲気中でプラズマ照射することで容易に酸化され、且つCl,BCl,CCl,SiClガスによりRIEされる金属膜14を所望の膜厚(例えば3nm)だけ成膜する。金属膜14は、スパッタ或いはCVD等の方法にて成膜する。金属膜14の材料は、例えばTaN,TiN,AlN,Ta,Ti,Al,Ni,Hf,W,a-Si、poly-Si,a-Ge,poly-Geなどがあげられる。 Next, as shown in FIG. 1B, a metal film 14 that is easily oxidized by plasma irradiation in an oxygen atmosphere and RIE using Cl 2 , BCl 3 , CCl 4 , or SiCl 4 gas is formed into a desired film. A film is formed by a thickness (for example, 3 nm). The metal film 14 is formed by a method such as sputtering or CVD. Examples of the material of the metal film 14 include TaN, TiN, AlN, Ta, Ti, Al, Ni, Hf, W, a-Si, poly-Si, a-Ge, and poly-Ge.
 次いで、Cl,BCl,CCl,SiCl等のガスにてRIEすることで、図1(c)に示すように、ゲート側壁のみに金属膜14を残す。ここで、Cl等のガスによるRIEでは、金属膜と酸化膜との選択比が20以上と非常に高い。このため、ゲート絶縁膜11は殆どエッチングされず、従ってゲート絶縁膜11下の半導体基板10はエッチングされることはない。 Next, RIE is performed with a gas such as Cl 2 , BCl 3 , CCl 4 , SiCl 4, etc., so that the metal film 14 is left only on the gate sidewall as shown in FIG. Here, in the RIE using a gas such as Cl 2 , the selectivity between the metal film and the oxide film is as high as 20 or more. For this reason, the gate insulating film 11 is hardly etched, and therefore the semiconductor substrate 10 under the gate insulating film 11 is not etched.
 以上により形成されたゲート側壁の金属膜14を含むゲート構造部100を、酸素ガス、酸素プラズマ、或いは原子状酸素等に曝すことにより酸化する。すると、図1(d)に示すように、TaN等の金属膜14がTaNOx若しくはTaOxといった絶縁性の酸化膜となる。これにより、極薄(例えば5nm)のゲート側壁膜16が形成されたゲート構造部200を得る。 The gate structure portion 100 including the metal film 14 on the gate side wall formed as described above is oxidized by exposure to oxygen gas, oxygen plasma, atomic oxygen, or the like. Then, as shown in FIG. 1D, the metal film 14 such as TaN becomes an insulating oxide film such as TaNOx or TaOx. As a result, a gate structure 200 in which a very thin (for example, 5 nm) gate sidewall film 16 is formed is obtained.
 次いで、図2(a)に示すように、ゲート構造部200以外に露出したゲート絶縁膜11を除去する。続いて、図2(b)に示すように、メタルエクステンション領域となる金属-半導体合金層を形成するために、金属膜17を例えば5nmの厚さに堆積する。ここで、金属膜17は、例えばNi,Co,Ti,Pt,Pd,W,AuGe,Auなどを含むものでよい。 Next, as shown in FIG. 2A, the exposed gate insulating film 11 other than the gate structure 200 is removed. Subsequently, as shown in FIG. 2B, a metal film 17 is deposited to a thickness of 5 nm, for example, in order to form a metal-semiconductor alloy layer to be a metal extension region. Here, the metal film 17 may include, for example, Ni, Co, Ti, Pt, Pd, W, AuGe, Au, or the like.
 次いで、合金層形成のためのアニールを行うことにより、基板10の表面と金属膜17とを反応させて、図2(c)に示すように、金属-半導体合金層18(例えば金属シリサイド)を形成する。続いて、図2(d)に示すように、ウェット処理にて未反応の金属膜17を除去する。これにより、セルフアラインプロセスによるメタルSD構造18が得られることになる。 Next, annealing for forming an alloy layer is performed to cause the surface of the substrate 10 to react with the metal film 17 to form a metal-semiconductor alloy layer 18 (for example, a metal silicide) as shown in FIG. Form. Subsequently, as shown in FIG. 2D, the unreacted metal film 17 is removed by wet processing. Thereby, the metal SD structure 18 by the self-alignment process is obtained.
 これ以降は、通常のMOSFETの製造方法と同様に、層間絶縁膜としてSiO等を堆積し、リソグラフィ及びRIE、ウェット処理によりコンタクトホールを形成する。さらに、SD領域と電気的な接触が得られるコンタクト形成を行い、配線形成を行うことでMOSデバイスが完成する。 Thereafter, as in a normal MOSFET manufacturing method, SiO 2 or the like is deposited as an interlayer insulating film, and contact holes are formed by lithography, RIE, and wet processing. Further, contact formation that provides electrical contact with the SD region is performed, and wiring formation is performed to complete the MOS device.
 このように本実施形態によれば、ゲート構造部100の側壁に形成するゲート側壁膜16を、金属材料を含む絶縁膜で形成することにより、基板掘れ等を招くことなくゲート側壁に薄い絶縁膜を制御性良く形成することができる。このため、素子特性の向上及びばらつきの低減をはかることが可能となる。 As described above, according to the present embodiment, the gate sidewall film 16 formed on the sidewall of the gate structure portion 100 is formed of an insulating film containing a metal material, so that a thin insulating film is formed on the gate sidewall without causing substrate digging or the like. Can be formed with good controllability. For this reason, it is possible to improve element characteristics and reduce variations.
 (第1の実施形態の変形例)
 第1の実施形態の変形例として、メタルSD構造ではなくp/n接合を用いたSD領域形成の例を示す。
(Modification of the first embodiment)
As a modification of the first embodiment, an example of forming an SD region using a p / n junction instead of a metal SD structure is shown.
 図3(a)に示すように、ゲート構造部200を得るまでは第1の実施形態(図1(d))と同様である。但し、以下に示すようにイオン注入を用いて不純物を導入する場合には、不純物のゲート突き抜けによる、ゲート直下のチャネル中への意図しないドーピングを防ぐ必要がある。このため、イオン注入エネルギーに応じてゲート電極12は第1の実施形態よりも厚く(例えば50nm以上など)する必要がある。 As shown in FIG. 3A, the process until the gate structure 200 is obtained is the same as that of the first embodiment (FIG. 1D). However, when impurities are introduced using ion implantation as described below, it is necessary to prevent unintentional doping into the channel directly under the gate due to the penetration of the impurity into the gate. For this reason, the gate electrode 12 needs to be thicker than the first embodiment (for example, 50 nm or more) in accordance with the ion implantation energy.
 次いで、図3(b)に示すように、ゲート構造部200をマスクに半導体基板10にイオン注入法により不純物をドープすることにより、p/n接合からなるSD領域19を形成する。続いて、活性化アニールを行う。ここで、n-MOSFETであれば、n型の不純物(例えば、SiやGe基板であればPやAs等、InGaAs等のIII-V族化合物基板であればSi)をドープすればよい。さらに、p-MOSFETであれば、p型不純物(例えば、SiやGe基板であればBなど、InGaAs等のIII-V族化合物基板であればBeなど)をドープすればよい。さらに、エクステンション領域へのイオン注入や、Halo形成のためのイオン注入を行ってもよい。 Next, as shown in FIG. 3B, an impurity region is doped into the semiconductor substrate 10 by an ion implantation method using the gate structure 200 as a mask, thereby forming an SD region 19 composed of a p / n junction. Subsequently, activation annealing is performed. Here, for an n-MOSFET, an n-type impurity (for example, P or As for a Si or Ge substrate, or Si for a III-V group compound substrate such as InGaAs) may be doped. Further, for a p-MOSFET, a p-type impurity (for example, B for a Si or Ge substrate or Be for a III-V group compound substrate such as InGaAs) may be doped. Further, ion implantation into the extension region or ion implantation for forming Halo may be performed.
 最後に、図3(c)に示すように、Ni,Co,Ti,Pt,Pd,W,AuGe,Auなどを含む金属膜を形成し、サリサイドを行う。これにより、金属シリサイド層68が形成され、配線層のコンタクト抵抗の低減と、SD領域のDeep領域の抵抗低減が可能となる。なお、図3(c)中では、イオン注入によるエクステンション領域69も示している。 Finally, as shown in FIG. 3C, a metal film containing Ni, Co, Ti, Pt, Pd, W, AuGe, Au, or the like is formed and salicide is performed. Thereby, the metal silicide layer 68 is formed, and the contact resistance of the wiring layer can be reduced and the resistance of the deep region of the SD region can be reduced. In FIG. 3C, an extension region 69 by ion implantation is also shown.
 これ以降は、層間絶縁膜としてSiOなどを堆積し、コンタクト形成等を行うが、後工程は第1の実施形態と同様なので、ここでは省くこととする。 Thereafter, SiO 2 or the like is deposited as an interlayer insulating film and contact formation is performed. However, the subsequent steps are the same as those in the first embodiment, and are omitted here.
 (第2の実施形態)
 図4は、第2の実施形態に係わる半導体装置の製造工程を示す断面図である。なお、図1及び図2と同一部分には同一符号を付して、その詳しい説明は省略する。
(Second Embodiment)
FIG. 4 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the second embodiment. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図4(a)に示すように、半導体基板10の上にゲート絶縁膜11,ゲート電極22,及びゲートハードマスク13を有するゲート構造部300を形成するまでは、第1の実施形態(図1(a))と実質的に同様である。但し、本実施形態においてゲート電極22の材料は、TaN,TiN,AlN,a-Si,poly-Si,a-Ge,poly-Ge,Pd,Ti,W,Al,Ni,Hfなどの、酸素プラズマ処理等により表面が酸化されやすい金属を含むもののみで構成されることが望ましい。 As shown in FIG. 4A, the first embodiment (FIG. 1) is performed until the gate structure 300 having the gate insulating film 11, the gate electrode 22, and the gate hard mask 13 is formed on the semiconductor substrate 10. This is substantially the same as (a)). However, in the present embodiment, the material of the gate electrode 22 is oxygen such as TaN, TiN, AlN, a-Si, poly-Si, a-Ge, poly-Ge, Pd, Ti, W, Al, Ni, and Hf. It is desirable that the surface is composed of only a metal that easily oxidizes due to plasma treatment or the like.
 上記TaNやTiNを初めとする酸化されやすい金属をゲート電極22としてゲート構造部300を形成した後、酸素ガス、酸素プラズマ、或いは原子状酸素等に曝すことにより、ゲート電極22の側面を酸化させる。そして、図4(b)に示すように、例えば厚さ5nmの酸化膜26を形成する。これにより、絶縁性のゲート側壁膜26を形成したゲート構造部400が得られる。 After the gate structure 22 is formed using the easily oxidized metal such as TaN or TiN as the gate electrode 22, the side surface of the gate electrode 22 is oxidized by exposure to oxygen gas, oxygen plasma, atomic oxygen, or the like. . Then, as shown in FIG. 4B, for example, an oxide film 26 having a thickness of 5 nm is formed. As a result, the gate structure 400 in which the insulating gate sidewall film 26 is formed is obtained.
 ゲート構造部400を形成した後は、第1の実施形態と同様にしてメタルSD構造18を形成することができる。さらに、これ以降の工程も、第1の実施形態と同様なので、ここでは省くこととする。 After forming the gate structure 400, the metal SD structure 18 can be formed in the same manner as in the first embodiment. Further, the subsequent steps are the same as those in the first embodiment, and are omitted here.
 このように本実施形態では、ゲート電極22を酸化してゲート側壁膜26を形成することにより、ゲート側壁膜26を形成する際に基板掘れが生じることはない。従って、先の第1の実施形態と同様の効果が得られる。また、本実施形態では第1の実施形態に比して、金属膜14の形成及びRIEが必要ないことから、製造プロセスの簡略化をはかり得るという利点もある。 As described above, in this embodiment, the gate electrode 22 is oxidized to form the gate sidewall film 26, so that the substrate digging does not occur when the gate sidewall film 26 is formed. Therefore, the same effect as in the first embodiment can be obtained. In addition, the present embodiment has an advantage that the manufacturing process can be simplified because the formation of the metal film 14 and the RIE are not necessary as compared with the first embodiment.
 (第2の実施形態の変形例)
 第2の実施形態の変形例として、メタルSD構造ではなくp/n接合を用いたSD領域形成の例を示す。
(Modification of the second embodiment)
As a modification of the second embodiment, an example of forming an SD region using a p / n junction instead of a metal SD structure is shown.
 ゲート構造部400を得るまでは第2の実施形態と同様である。但し、p/n接合をイオン注入にて形成する場合には、第1の実施形態の変形例で述べたように、ゲート電極の厚さを厚くすることが必要である。 The process until the gate structure 400 is obtained is the same as in the second embodiment. However, when the p / n junction is formed by ion implantation, it is necessary to increase the thickness of the gate electrode as described in the modification of the first embodiment.
 次いで、イオン注入法等によりn-MOSFETであれば、n型の不純物(例えば、SiやGe基板であればPやAs等、InGaAs等のIII-V族化合物基板であればSi)をドープする。さらに、p-MOSFETであれば、p型不純物(例えばSiやGe基板であればBなど、InGaAs等のIII-V族化合物基板であればBeなど)をドープする。また、エクステンション領域へのイオン注入や、Halo形成のためのイオン注入を行ってもよい。続いて、活性化アニールを行う。 Next, in the case of an n-MOSFET by ion implantation or the like, an n-type impurity (for example, P or As for a Si or Ge substrate, Si for an III-V group compound substrate such as InGaAs) is doped. . Further, for a p-MOSFET, a p-type impurity (for example, B for a Si or Ge substrate or Be for a III-V group compound substrate such as InGaAs) is doped. Further, ion implantation into the extension region or ion implantation for forming Halo may be performed. Subsequently, activation annealing is performed.
 次いで、層間絶縁膜としてSiOなどを堆積し、コンタクト形成等を行うが、後工程は第1の実施形態と同様なので、ここでは省くこととする。 Next, SiO 2 or the like is deposited as an interlayer insulating film, and contact formation or the like is performed. However, the subsequent steps are the same as those in the first embodiment, and are omitted here.
 (第3の実施形態)
 図5は、第3の実施形態に係わる半導体装置の製造工程を示す断面図である。なお、図1乃至図3と同一部分には同一符号を付して、その詳しい説明は省略する。
(Third embodiment)
FIG. 5 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the third embodiment. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
 絶縁膜であるゲート側壁を備えるゲート構造を形成するまでは、第1の実施形態と同様である。即ち、第1の実施形態におけるゲート構造部200を形成したものと考える。なお、ここでも第1の実施形態の変形例と同じく、後にイオン注入工程を行うことから、ゲート高さは、第1の実施形態の変形例と同程度に高くする必要がある。 The process is the same as that of the first embodiment until a gate structure including a gate sidewall which is an insulating film is formed. That is, it is considered that the gate structure 200 in the first embodiment is formed. Here again, as in the modification of the first embodiment, the ion implantation process is performed later, so that the gate height needs to be as high as in the modification of the first embodiment.
 次に、図5(a)に示すように、ゲート側壁膜16(第1のゲート側壁膜)を形成したゲート構造部(上述のゲート構造部200)に対し、ゲート側壁膜36(第2のゲート側壁膜)を形成したゲート構造部500を形成する。ここで、ゲート側壁膜36は、SiOやSiNといった絶縁膜であってよい。また、ゲート側壁膜36の形成には、全面に絶縁膜を堆積した後にRIEでエッチバックする、いわゆる側壁残しの技術を用いればよい。ゲート側壁膜36の厚さは、側壁形成後のイオン注入及び活性化による横方向の不純物の拡散長程度の厚さ、例えば20nmとすればよい。 Next, as shown in FIG. 5A, the gate sidewall film 36 (second gate structure) is formed on the gate structure portion (the above-described gate structure portion 200) on which the gate sidewall film 16 (first gate sidewall film) is formed. A gate structure 500 having a gate sidewall film is formed. Here, the gate sidewall film 36 may be an insulating film such as SiO 2 or SiN. The gate sidewall film 36 may be formed by using a so-called sidewall leaving technique in which an insulating film is deposited on the entire surface and then etched back by RIE. The thickness of the gate sidewall film 36 may be about the thickness of the impurity diffusion length in the lateral direction by ion implantation and activation after the sidewall formation, for example, 20 nm.
 次いで、図5(b)に示すように、n-MOSFETであればn型の不純物(例えば、SiやGe基板であればPやAs等、InGaAs等のIIII-V族化合物基板であればSi)、p-MOSFETであればp型不純物(例えば、SiやGe基板であればBなど、InGaAs等のIII-V族化合物基板であればBeなど)を注入する。そして、活性化アニールを行うことにより、SD領域19を形成する。 Next, as shown in FIG. 5B, for an n-MOSFET, an n-type impurity (for example, P or As for a Si or Ge substrate, or Si group for an IIII-V group compound substrate such as InGaAs) is used. In the case of a p-MOSFET, a p-type impurity (for example, B for a Si or Ge substrate or Be for a III-V group compound substrate such as InGaAs) is implanted. Then, an SD region 19 is formed by performing activation annealing.
 次いで、図5(c)に示すように、ゲート側壁膜36をHFなどのウェット処理により除去する。続いて、SD領域19上に形成されているゲート絶縁膜11をウェット処理等にて除去する。 Next, as shown in FIG. 5C, the gate sidewall film 36 is removed by wet processing such as HF. Subsequently, the gate insulating film 11 formed on the SD region 19 is removed by wet processing or the like.
 次いで、図5(d)に示すように、第1の実施形態と同様に、金属材料を成膜してアニール処理を行うことによりメタルSD構造18を形成する。ここで、金属-半導体合金層を形成するための金属材料は、Ni,Co,Ti,PT,Pd,W,AuGe,Auを含む金属でよい。これにより、セルフアラインにて金属-半導体合金層18を形成する。続いて、未反応金属がある場合には、これをウェット処理などにより除去する。 Next, as shown in FIG. 5D, a metal SD structure 18 is formed by forming a metal material and performing an annealing process, as in the first embodiment. Here, the metal material for forming the metal-semiconductor alloy layer may be a metal including Ni, Co, Ti, PT, Pd, W, AuGe, and Au. Thus, the metal-semiconductor alloy layer 18 is formed by self-alignment. Subsequently, if there is an unreacted metal, it is removed by wet treatment or the like.
 以上の工程より、エクステンションはメタルSD化され、ディープ領域はp/n接合が形成された、低寄生抵抗且つ低リーク電流を実現するSD領域が形成された。 Through the above steps, the extension is converted into metal SD, and the SD region is formed in which the p / n junction is formed in the deep region and low parasitic resistance and low leakage current are realized.
 このように本実施形態によれば、TaNOx等からなる第1のゲート側壁膜16とSiO等からなる第2のゲート側壁膜36とのエッチング選択比を大きくすることができる。このため、ゲート側壁膜36をエッチング除去する際にゲート側壁膜16は殆どエッチングされずに残ることになる。従って、二重側壁を用いたメタルSDとp/n接合を組み合わせた構造においても、先の第1の実施形態と同様の効果が得られる。 Thus, according to the present embodiment, the etching selectivity between the first gate sidewall film 16 made of TaNOx or the like and the second gate sidewall film 36 made of SiO 2 or the like can be increased. For this reason, when the gate sidewall film 36 is removed by etching, the gate sidewall film 16 remains almost unetched. Therefore, even in the structure in which the metal SD using the double sidewall and the p / n junction are combined, the same effect as in the first embodiment can be obtained.
 (第3の実施形態の変形例)
 第3の実施形態の変形例として、第2の実施形態と同様な金属ゲートの側面を酸化して絶縁膜であるゲート側壁を備えるゲート構造を形成する例を示す。
(Modification of the third embodiment)
As a modification of the third embodiment, an example is shown in which a side surface of a metal gate similar to that of the second embodiment is oxidized to form a gate structure including gate sidewalls that are insulating films.
 まず、金属ゲートの側面を酸化し、酸化膜26からなる側壁を形成するまでは第2の実施形態(図4(b))と同様である。即ち、第2の実施形態におけるゲート構造部400を形成したものと考える。以下、第2のゲート側壁膜36を形成し、メタルSD領域を形成するまで第3の実施形態と同様なので、その詳細は省くこととする。 First, the process is the same as in the second embodiment (FIG. 4B) until the side surface of the metal gate is oxidized to form the side wall made of the oxide film 26. That is, it is considered that the gate structure 400 in the second embodiment is formed. Hereinafter, since the second gate sidewall film 36 is formed and the metal SD region is formed in the same manner as in the third embodiment, the details thereof are omitted.
 (第3の実施形態の別の変形例)
 第3の実施形態並びに第3の実施形態の変形例で得られるメタルSD構造の更なる変形例として、p/n接合を用いたSD領域形成の例を示す。
(Another modification of the third embodiment)
As a further modification of the metal SD structure obtained in the third embodiment and the modification of the third embodiment, an example of SD region formation using a p / n junction will be shown.
 第3の実施形態及び第3の実施形態の変形例においてディープ領域のイオン注入を行い、第2のゲート側壁膜36を除去するまでは同様(図5(c))である。次いで、第1のゲート側壁膜16が残っている状態で、エクステンション領域のイオン注入を行い、活性化アニールを行う。これ以降は、第1の実施形態と同様にして後工程を行うことでコンタクト形成、配線形成を行う。これにより、MOSデバイスを得ることができる。 This is the same until the deep region is ion-implanted and the second gate sidewall film 36 is removed in the third embodiment and the modification of the third embodiment (FIG. 5C). Next, in the state where the first gate sidewall film 16 remains, the extension region is ion-implanted and activation annealing is performed. Thereafter, contact formation and wiring formation are performed by performing post-processes in the same manner as in the first embodiment. Thereby, a MOS device can be obtained.
 (第4の実施形態)
 図6は、第4の実施形態に係わる半導体装置の製造工程を示す断面図である。なお、図1乃至図3と同一部分には同一符号を付して、その詳しい説明は省略する。
(Fourth embodiment)
FIG. 6 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the fourth embodiment. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
 側壁が酸化されていないゲート構造を形成するまでは、第1の実施形態(図1(c))と同様なのでここでは省くこととする。これより、図6(a)に示すように、ゲート側壁に金属膜14(第1のゲート側壁膜)が形成された、ゲート構造部600が形成されたものとする。 Until the gate structure in which the side wall is not oxidized is formed, it is omitted here because it is the same as in the first embodiment (FIG. 1C). As a result, as shown in FIG. 6A, it is assumed that the gate structure 600 in which the metal film 14 (first gate sidewall film) is formed on the gate sidewall is formed.
 次いで、図6(b)に示すように、ゲート側壁膜36(第2のゲート側壁膜)を形成したゲート構造部700を形成する。ここで、ゲート側壁膜36はSiOやSiNといった絶縁膜であってよい。 Next, as shown in FIG. 6B, a gate structure 700 in which the gate sidewall film 36 (second gate sidewall film) is formed is formed. Here, the gate sidewall film 36 may be an insulating film such as SiO 2 or SiN.
 次いで、図6(c)に示すように、このゲート構造部700を形成した構造に対して、ソース/ドレイン領域19を形成する。即ち、n-MOSFETであればn型の不純物(例えば、SiやGe基板であればPやAs等、InGaAs等のIII-V族化合物基板であればSi)、p-MOSFETであればp型不純物(例えば、SiやGe基板であればBなど、InGaAs等のIII-V族化合物基板であればBeなど)を注入する。そして、活性化アニールを行う。 Next, as shown in FIG. 6C, a source / drain region 19 is formed in the structure in which the gate structure 700 is formed. That is, an n-type impurity for an n-MOSFET (eg, P or As for a Si or Ge substrate, Si for an III-V group compound substrate such as InGaAs), or a p-type for a p-MOSFET. Impurities (for example, B for Si or Ge substrates, Be for III-V group compound substrates such as InGaAs) are implanted. Then, activation annealing is performed.
 次いで、図6(d)に示すように、ゲート側壁膜36をHFなどのウェット処理により除去する。ここで、ゲート側壁膜である金属膜14が露出するので、酸素ガス、酸素プラズマ、或いは原子状酸素等に曝すことにより、ゲート側壁に形成されている金属膜14を酸化する。以上により、絶縁性の膜であるゲート側壁膜16(第3のゲート側壁膜)が形成されたゲート構造部を得る。 Next, as shown in FIG. 6D, the gate sidewall film 36 is removed by wet processing such as HF. Here, since the metal film 14 which is the gate sidewall film is exposed, the metal film 14 formed on the gate sidewall is oxidized by exposure to oxygen gas, oxygen plasma, atomic oxygen, or the like. As described above, the gate structure portion in which the gate sidewall film 16 (third gate sidewall film) which is an insulating film is formed is obtained.
 以降のメタルSD領域形成プロセスは第3の実施形態と同様なので、ここでは省くこととする。さらには、第1の実施形態と同様にして後工程を行うことでコンタクト形成、配線形成を行う。これによりMOSデバイスを得ることができる。 Since the subsequent metal SD region formation process is the same as that of the third embodiment, it is omitted here. Furthermore, contact formation and wiring formation are performed by performing a post-process in the same manner as in the first embodiment. Thereby, a MOS device can be obtained.
 このように本実施形態によれば、ゲート構造100の側壁に第1のゲート側壁膜としての金属膜14を形成した状態で、第2のゲート側壁膜36の形成、イオン注入、側壁膜36の除去を行い、最終的に金属膜14を酸化して第3のゲート側壁膜16を形成する。これにより、基板掘れ等を招くことなく、ゲート側壁に薄い絶縁膜16を制御性良く形成することができる。このため、二重側壁を用いたメタルSDとp/n接合を組み合わせた構造においても、先の第1の実施形態と同様の効果が得られる。 As described above, according to this embodiment, in the state where the metal film 14 as the first gate sidewall film is formed on the sidewall of the gate structure 100, the formation of the second gate sidewall film 36, ion implantation, Removal is performed and finally the metal film 14 is oxidized to form a third gate sidewall film 16. Thereby, the thin insulating film 16 can be formed on the gate side wall with good controllability without causing substrate digging or the like. For this reason, even in the structure in which the metal SD using the double sidewall and the p / n junction are combined, the same effect as in the first embodiment can be obtained.
 (第4の実施形態の変形例)
 図7(a)に示すように、ゲート構造部300を形成するまでは第2の実施形態(図4(a))と同様である。即ち、ゲート電極22の材料として、TaN,TiN,AlN,a-Si,poly-Si,a-Ge,W,Al,Ni,Hfなどの、酸素プラズマ処理等により酸化されやすい金属を含むもののみで構成されているものとする。
(Modification of the fourth embodiment)
As shown in FIG. 7A, the process is the same as in the second embodiment (FIG. 4A) until the gate structure 300 is formed. That is, as the material of the gate electrode 22, only those containing metals that are easily oxidized by oxygen plasma treatment, such as TaN, TiN, AlN, a-Si, poly-Si, a-Ge, W, Al, Ni, and Hf. It shall consist of
 次に、図7(b)に示すように、ゲート側壁膜36(第1のゲート側壁膜)を形成したゲート構造部800を形成する。ここで、ゲート側壁膜36はSiOやSiNといった絶縁膜であってよい。このゲート構造部800を形成した構造に対して、n-MOSFETであればn型の不純物(例えば、SiやGe基板であればPやAs等、InGaAs等のIII-V族化合物基板であればSi)、p-MOSFETであればp型不純物(例えば、SiやGe基板であればBなど、InGaAs等のIII-V族化合物基板であればBeなど)を注入する。そして、活性化アニールを行う。これにより、p/n接合からなるSD領域19を形成する。 Next, as shown in FIG. 7B, a gate structure portion 800 in which the gate sidewall film 36 (first gate sidewall film) is formed is formed. Here, the gate sidewall film 36 may be an insulating film such as SiO 2 or SiN. In contrast to the structure in which the gate structure 800 is formed, an n-type impurity is used for an n-MOSFET (eg, P or As for a Si or Ge substrate, or a III-V group compound substrate such as InGaAs or the like). Si) and p-type MOSFETs are implanted with p-type impurities (for example, B for Si and Ge substrates, Be for III-V group compound substrates such as InGaAs). Then, activation annealing is performed. As a result, an SD region 19 composed of a p / n junction is formed.
 次いで、図7(c)に示すように、上記のゲート側壁膜36をHFなどのウェット処理により除去する。この状態で、ゲート電極22の側面が露出されていることから、酸素プラズマ処理等により酸化を行うことでゲート電極22の側面が酸化される。これにより、図7(d)に示すように、ゲート電極22の側壁に絶縁性のゲート側壁膜46(第2のゲート側壁膜)を持ったゲート構造部を形成することができる。このとき、ゲート側壁膜46の厚みは、酸化時間等を制御することにより極めて薄くすることが可能である。 Next, as shown in FIG. 7C, the gate sidewall film 36 is removed by wet processing such as HF. Since the side surface of the gate electrode 22 is exposed in this state, the side surface of the gate electrode 22 is oxidized by performing oxidation by oxygen plasma treatment or the like. Thereby, as shown in FIG. 7D, a gate structure having an insulating gate sidewall film 46 (second gate sidewall film) on the sidewall of the gate electrode 22 can be formed. At this time, the thickness of the gate sidewall film 46 can be made extremely thin by controlling the oxidation time or the like.
 以降のメタルSD領域形成プロセスは第3の実施形態と同様なのでここでは省くこととする。さらには、第1の実施形態と同様にして後工程を行うことでコンタクト形成、配線形成を行う。これによりMOSデバイスを得ることができる。 The subsequent metal SD region formation process is the same as that in the third embodiment, and is omitted here. Furthermore, contact formation and wiring formation are performed by performing a post-process in the same manner as in the first embodiment. Thereby, a MOS device can be obtained.
 (第4の実施形態の別の変形例)
 第4の実施形態及びその変形例に対する変形例として、メタルSD構造ではなくp/n接合を用いたSD領域の形成の例を示す。ディープ領域のイオン注入を行い、第1のゲート側壁膜36を除去したのちに第2のゲート側壁膜46を形成(酸化)するまでは、図7(d)と同様である。
(Another modification of the fourth embodiment)
As a modification to the fourth embodiment and its modification, an example of forming an SD region using a p / n junction instead of a metal SD structure is shown. 7D is performed until the second gate sidewall film 46 is formed (oxidized) after the deep region ion implantation is performed and the first gate sidewall film 36 is removed.
 次に、エクステンション領域に対してイオン注入を行い、活性化アニールを行う。以降、第1の実施形態と同様にして後工程を行うことでコンタクト形成、配線形成を行う。これにより、MOSデバイスを得ることができる。 Next, ion implantation is performed on the extension region, and activation annealing is performed. Thereafter, contact formation and wiring formation are performed by performing post-processes in the same manner as in the first embodiment. Thereby, a MOS device can be obtained.
 (第5の実施形態)
 図8は、第5の実施形態に係わる半導体装置の製造工程を示す断面図である。なお、図5と同一部分には同一符号を付して、その詳しい説明は省略する。
(Fifth embodiment)
FIG. 8 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the fifth embodiment. In addition, the same code | symbol is attached | subjected to FIG. 5 and an identical part, and the detailed description is abbreviate | omitted.
 本実施形態は、第1から第4の実施形態で示した側壁形成プロセスと、GeやIII-V族基板を用いた際のゲート界面特性向上に有望である、リプレイスメントゲートプロセスを組み合わせた場合のデバイス作製例を説明する。 This embodiment is a combination of the sidewall formation process shown in the first to fourth embodiments and the replacement gate process that is promising for improving the gate interface characteristics when using a Ge or III-V group substrate. A device fabrication example will be described.
 第1から第4の実施形態とそれらの変形例と同様に、ゲート構造部、ゲート側壁膜、及びSD領域を形成する。ここでは、一例として第3の実施形態の図5(d)に示す工程まで行ったものとし、ゲート絶縁膜11,ゲート電極12,及びゲートハードマスク13をダミーゲート構造として用いる。 As in the first to fourth embodiments and their modifications, a gate structure, a gate sidewall film, and an SD region are formed. Here, as an example, the process up to the step shown in FIG. 5D of the third embodiment is performed, and the gate insulating film 11, the gate electrode 12, and the gate hard mask 13 are used as a dummy gate structure.
 次いで、図8(a)に示すように、PECVDなどを用いてダミーゲート構造を十分に埋め込むだけのSiOなどの絶縁膜50を形成する。 Next, as shown in FIG. 8A, an insulating film 50 such as SiO 2 that sufficiently embeds the dummy gate structure is formed using PECVD or the like.
 次いで、図8(b)に示すように、ゲート電極12、若しくはゲートハードマスク13の頭部が露出する、若しくはゲート電極12及びゲートハードマスク13が数nm程度減少する程度にCMP処理を行う。 Next, as shown in FIG. 8B, the CMP process is performed so that the head of the gate electrode 12 or the gate hard mask 13 is exposed or the gate electrode 12 and the gate hard mask 13 are reduced by about several nm.
 次いで、図8(c)に示すように、ゲートハードマスク13,ゲート電極12,及びゲート絶縁膜11を、ウェット処理若しくはRIEによって除去する。ここで、ゲートハードマスク13及びゲート電極12の除去プロセスにおいては、埋め込み絶縁膜50との除去選択比が十分にとれるような材料を選ぶ必要がある。例えば、埋め込み絶縁膜50がSiOであれば、ゲートハードマスク13はSiN、ゲート電極12はa-Siなどを用いることが望ましい。これは、SiNであればH3PO,a-SiであればTMAHを用いることで、SiOをエッチングすることなくこれらの材料を選択的に除去することができるからである。 Next, as shown in FIG. 8C, the gate hard mask 13, the gate electrode 12, and the gate insulating film 11 are removed by wet processing or RIE. Here, in the removal process of the gate hard mask 13 and the gate electrode 12, it is necessary to select a material that can have a sufficient removal selection ratio with respect to the buried insulating film 50. For example, if the buried insulating film 50 is SiO 2 , it is desirable to use SiN for the gate hard mask 13 and a-Si for the gate electrode 12. This is because these materials can be selectively removed without etching SiO 2 by using H 3 PO 4 for SiN and TMAH for a-Si.
 また、ゲート絶縁膜11に関しては、ゲート絶縁膜11の除去時に基板10へのダメージがあることは望ましくない。このため、ウェット処理のみで除去可能かつ基板をエッチングしないエッチャント、例えばHF等で除去可能な膜が望ましい。このような膜としては、SiO,Al2などがあげられる。 As for the gate insulating film 11, it is not desirable that the substrate 10 is damaged when the gate insulating film 11 is removed. For this reason, it is desirable to use an etchant that can be removed only by wet treatment and that can be removed by an etchant that does not etch the substrate, such as HF. Examples of such a film include SiO 2 and Al 2 O 3 .
 これらダミーゲート構造の全てを除去したのち、図8(d)に示すように、再度ゲート絶縁膜51をALDやCVDで成膜する。さらに、その上に、ゲート電極52をスパッタやCVD等で成膜する。続いて、図8(e)に示すように、CMPにより絶縁膜50上のゲート電極52を除去することにより、ゲート形成を行う。この後、層間絶縁膜の形成及び配線形成を行うことにより、界面特性が良く、低寄生抵抗かつ低リーク電流のMOSFETを実現することが可能となる。 After removing all the dummy gate structures, a gate insulating film 51 is formed again by ALD or CVD as shown in FIG. Further, a gate electrode 52 is formed thereon by sputtering or CVD. Subsequently, as shown in FIG. 8E, the gate is formed by removing the gate electrode 52 on the insulating film 50 by CMP. Thereafter, by forming an interlayer insulating film and wiring, it is possible to realize a MOSFET having good interface characteristics, low parasitic resistance and low leakage current.
 このように本実施形態によれば、ダミーゲート構造の側壁膜16としてTaNOx等の金属の酸化膜を用いることにより、ダミーゲート構造を除去する際に側壁膜16は殆どエッチングされることなく残ることになる。このため、第1から第4の実施形態で示したように、基板掘れなく薄い側壁形成が可能となる。さらに、ダミーゲート構造のゲート絶縁膜11をウェット処理で除去することにより、基板掘れを抑制することができる。従って、第1から第4の実施形態で示した側壁形成プロセスと、リプレイスメントゲートプロセスを組み合わせることで、更なる素子特性の向上及びばらつきの低減をはかることが可能となる。 As described above, according to the present embodiment, by using a metal oxide film such as TaNOx as the sidewall film 16 of the dummy gate structure, the sidewall film 16 is hardly etched when the dummy gate structure is removed. become. For this reason, as shown in the first to fourth embodiments, it is possible to form a thin sidewall without digging the substrate. Furthermore, the substrate digging can be suppressed by removing the gate insulating film 11 having the dummy gate structure by wet processing. Therefore, by combining the sidewall formation process shown in the first to fourth embodiments and the replacement gate process, it is possible to further improve the element characteristics and reduce variations.
 (変形例)
 なお、本発明は上述した各実施形態に限定されるものではない。
(Modification)
The present invention is not limited to the above-described embodiments.
 第1の実施形態におけるゲート側壁膜を形成するための金属の材料は、実施形態で説明したものに限らず、ゲート絶縁膜や基板に対して十分なエッチング選択比を有するものであればよい。 The metal material for forming the gate sidewall film in the first embodiment is not limited to that described in the embodiment, and may be any material having a sufficient etching selectivity with respect to the gate insulating film and the substrate.
 第1の実施形態では、ゲート側壁のみに金属膜を残した状態で酸化することにより絶縁性のゲート側壁膜を形成したが、これに限るものではない。例えば、全面に形成した金属膜を酸化して絶縁膜を形成した後に、この絶縁膜をエッチバックすることにより、絶縁膜をゲート側壁のみに残すようにしても良い。この場合、絶縁膜からなるゲート側壁膜の材料は、ゲート絶縁膜や基板に対して十分なエッチング選択比を有するものであればよい。 In the first embodiment, the insulating gate sidewall film is formed by oxidizing the metal film only on the gate sidewall, but the present invention is not limited to this. For example, after the metal film formed on the entire surface is oxidized to form an insulating film, the insulating film may be etched back to leave the insulating film only on the gate sidewall. In this case, the material of the gate sidewall film made of an insulating film may be any material having a sufficient etching selectivity with respect to the gate insulating film or the substrate.
 また、半導体基板は、必ずしもバルク基板に限るものではなく、例えば基板上に絶縁層を介して半導体層を形成したものであっても良い。 Also, the semiconductor substrate is not necessarily limited to a bulk substrate, and for example, a semiconductor layer formed on an insulating layer on the substrate may be used.
 本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the scope of claims and the equivalents thereof.
 10…半導体基板
 11,51…ゲート絶縁膜
 12,22,52…ゲート電極
 13…ゲートハードマスク
 14…金属膜
 16,26,46…膜厚の薄いゲート側壁膜
 17…金属膜
 18…金属-半導体合金層(メタルSD構造)
 19…ソース/ドレイン領域(SD領域)
 36…膜厚の厚いゲート側壁膜
 50…埋め込み絶縁膜
 100,200,300,400,50,600,700,800…ゲート構造
DESCRIPTION OF SYMBOLS 10 ... Semiconductor substrate 11, 51 ... Gate insulating film 12, 22, 52 ... Gate electrode 13 ... Gate hard mask 14 ... Metal film 16, 26, 46 ... Thin gate side wall film 17 ... Metal film 18 ... Metal-semiconductor Alloy layer (Metal SD structure)
19: Source / drain region (SD region)
36: thick gate sidewall film 50: buried insulating film 100, 200, 300, 400, 50, 600, 700, 800 ... gate structure

Claims (10)

  1.  半導体層上にゲート絶縁膜及びゲート電極を含むゲート構造部を形成し、
     前記ゲート構造部の側壁に金属材料を含む絶縁膜であるゲート側壁膜を形成する、
     ことを特徴とする半導体装置の製造方法。
    Forming a gate structure including a gate insulating film and a gate electrode on the semiconductor layer;
    Forming a gate sidewall film that is an insulating film containing a metal material on the sidewall of the gate structure;
    A method for manufacturing a semiconductor device.
  2.  前記ゲート側壁膜を形成することは、前記ゲート構造部の側壁に金属膜を形成した後、該金属膜を酸化することで絶縁性のゲート側壁膜を形成することである、請求項1記載の半導体装置の製造方法。 The gate sidewall film is formed by forming an insulating gate sidewall film by forming a metal film on the sidewall of the gate structure and then oxidizing the metal film. A method for manufacturing a semiconductor device.
  3.  前記ゲート側壁膜を形成することは、前記ゲート電極を金属で形成しておき、該金属ゲート電極の側面を酸化することで絶縁性のゲート側壁膜を形成することである、請求項1記載の半導体装置の製造方法。 The gate sidewall film is formed by forming the gate electrode from metal and oxidizing the side surface of the metal gate electrode to form an insulating gate sidewall film. A method for manufacturing a semiconductor device.
  4.  半導体層上にゲート絶縁膜及びゲート電極を含むゲート構造部を形成し、
     前記ゲート構造部の側壁に金属材料を含む絶縁膜である第1のゲート側壁膜を形成し、
     前記第1のゲート側壁膜の外側に、該側壁膜とは構成材料が異なり、前記第1のゲート側壁膜よりも膜厚の厚い第2のゲート側壁膜を形成し、
     前記ゲート構造部と前記第1及び第2のゲート側壁膜をマスクに、前記半導体層に不純物をドープすることによりソース/ドレイン領域を形成し、
     前記ソース/ドレイン領域の形成の後に、前記第2のゲート側壁膜を除去する、
     ことを特徴とする半導体装置の製造方法。
    Forming a gate structure including a gate insulating film and a gate electrode on the semiconductor layer;
    Forming a first gate sidewall film, which is an insulating film containing a metal material, on the sidewall of the gate structure;
    A second gate sidewall film having a thickness different from that of the first gate sidewall film is formed on the outside of the first gate sidewall film.
    Source / drain regions are formed by doping impurities into the semiconductor layer using the gate structure portion and the first and second gate sidewall films as a mask,
    Removing the second gate sidewall film after forming the source / drain regions;
    A method for manufacturing a semiconductor device.
  5.  半導体層上にゲート絶縁膜及びゲート電極を含むゲート構造部を形成し、
     前記ゲート構造部の側壁に金属材料からなる第1のゲート側壁膜を形成し、
     前記第1のゲート側壁膜の外側に、該側壁膜とは構成材料が異なり、前記第1のゲート側壁膜よりも膜厚の厚い第2のゲート側壁膜を形成し、
     前記ゲート構造部と前記第1及び第2のゲート側壁膜をマスクに、前記半導体層に不純物をドープすることによりソース/ドレイン領域を形成し、
     前記ソース/ドレイン領域の形成の後に、前記第2のゲート側壁膜を除去し、
     前記第2のゲート側壁膜の除去の後に、前記第1のゲート側壁膜を酸化することにより絶縁性の第3のゲート側壁膜を形成する、
     ことを特徴とする半導体装置の製造方法。
    Forming a gate structure including a gate insulating film and a gate electrode on the semiconductor layer;
    Forming a first gate sidewall film made of a metal material on the sidewall of the gate structure;
    A second gate sidewall film having a thickness different from that of the first gate sidewall film is formed on the outside of the first gate sidewall film.
    Source / drain regions are formed by doping impurities into the semiconductor layer using the gate structure portion and the first and second gate sidewall films as a mask,
    After the formation of the source / drain regions, the second gate sidewall film is removed,
    After the removal of the second gate sidewall film, an insulating third gate sidewall film is formed by oxidizing the first gate sidewall film.
    A method for manufacturing a semiconductor device.
  6.  半導体層上に、ゲート絶縁膜及び金属材料からなるゲート電極を含むゲート構造部を形成し、
     前記ゲート電極の側壁に第1のゲート側壁膜を形成し、
     前記ゲート構造部及び前記第1のゲート側壁膜をマスクに、前記半導体層に不純物をドープすることによりソース/ドレイン領域を形成し、
     前記ソース/ドレイン領域の形成の後に、前記第1のゲート側壁膜を除去し、
     前記第1のゲート側壁膜の除去の後に、前記ゲート電極の側面を酸化して前記第1のゲート側壁膜よりも膜厚の薄い絶縁性の第2のゲート側壁膜を形成する、
     ことを特徴とする半導体装置の製造方法。
    A gate structure including a gate insulating film and a gate electrode made of a metal material is formed on the semiconductor layer,
    Forming a first gate sidewall film on the sidewall of the gate electrode;
    Source / drain regions are formed by doping impurities into the semiconductor layer using the gate structure portion and the first gate sidewall film as a mask,
    After the formation of the source / drain regions, the first gate sidewall film is removed,
    After the removal of the first gate sidewall film, the side surface of the gate electrode is oxidized to form an insulating second gate sidewall film having a thickness smaller than that of the first gate sidewall film.
    A method for manufacturing a semiconductor device.
  7.  前記基板は、Si、Ge或いはIII-V族化合物半導体を含むことを特徴とする、請求項1~6の何れかに記載の半導体装置の製造方法。 7. The method of manufacturing a semiconductor device according to claim 1, wherein the substrate includes Si, Ge, or a III-V group compound semiconductor.
  8.  前記ゲート側壁膜を形成する金属材料は、TaN,TiN,AlN,Ta,Ti,Al,Ni,Hf,Wから選ばれた少なくとも1種であることを特徴とする、請求項1~6の何れかに記載の半導体装置の製造方法。 7. The metal material for forming the gate sidewall film is at least one selected from TaN, TiN, AlN, Ta, Ti, Al, Ni, Hf, and W. A method for manufacturing the semiconductor device according to claim 1.
  9.  前記ゲート電極側面を酸化する際に酸素ガス、酸素プラズマ、或いは原子状酸素を用いて酸化することを特徴とする請求項1~6の何れかに記載の半導体装置の製造方法。 7. The method of manufacturing a semiconductor device according to claim 1, wherein the side surface of the gate electrode is oxidized using oxygen gas, oxygen plasma, or atomic oxygen.
  10.  半導体層上に形成された、ゲート絶縁膜及びゲート電極を含むゲート構造部と、
     前記ゲート構造部の側壁に形成された、金属材料を含む絶縁膜であるゲート側壁膜と、
     前記ゲート構造部を挟んで前記半導体層の表面部に形成されたソース/ドレイン領域と、
     を具備したことを特徴とする半導体装置。
    A gate structure formed on the semiconductor layer and including a gate insulating film and a gate electrode;
    A gate sidewall film, which is an insulating film containing a metal material, formed on the sidewall of the gate structure;
    Source / drain regions formed on the surface of the semiconductor layer with the gate structure interposed therebetween;
    A semiconductor device comprising:
PCT/JP2013/050116 2012-01-13 2013-01-08 Semiconductor device and method for manufacturing same WO2013105550A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012005398A JP2013145800A (en) 2012-01-13 2012-01-13 Semiconductor device and manufacturing method of the same
JP2012-005398 2012-01-13

Publications (1)

Publication Number Publication Date
WO2013105550A1 true WO2013105550A1 (en) 2013-07-18

Family

ID=48781497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050116 WO2013105550A1 (en) 2012-01-13 2013-01-08 Semiconductor device and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP2013145800A (en)
TW (1) TW201340184A (en)
WO (1) WO2013105550A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207020A (en) * 2012-03-28 2013-10-07 Nippon Telegr & Teleph Corp <Ntt> Field effect transistor and manufacturing method of the same
JP6268069B2 (en) 2014-09-12 2018-01-24 信越化学工業株式会社 Polishing composition and polishing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799314A (en) * 1993-05-26 1995-04-11 Semiconductor Energy Lab Co Ltd Semiconductor device
JPH08204186A (en) * 1995-01-27 1996-08-09 Nippondenso Co Ltd Manufacture of semiconductor device
JP2004535077A (en) * 2001-07-13 2004-11-18 インターナショナル・ビジネス・マシーンズ・コーポレーション Method of improving gate activation using atomic oxygen-promoted oxidation (atomicoxygenenhanced oxidation)
JP2008515205A (en) * 2004-09-29 2008-05-08 インターナショナル・ビジネス・マシーンズ・コーポレーション Structure and method for fabricating strained channel field effect transistors using sacrificial spacers
JP2009164218A (en) * 2007-12-28 2009-07-23 Panasonic Corp Semiconductor device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799314A (en) * 1993-05-26 1995-04-11 Semiconductor Energy Lab Co Ltd Semiconductor device
JPH08204186A (en) * 1995-01-27 1996-08-09 Nippondenso Co Ltd Manufacture of semiconductor device
JP2004535077A (en) * 2001-07-13 2004-11-18 インターナショナル・ビジネス・マシーンズ・コーポレーション Method of improving gate activation using atomic oxygen-promoted oxidation (atomicoxygenenhanced oxidation)
JP2008515205A (en) * 2004-09-29 2008-05-08 インターナショナル・ビジネス・マシーンズ・コーポレーション Structure and method for fabricating strained channel field effect transistors using sacrificial spacers
JP2009164218A (en) * 2007-12-28 2009-07-23 Panasonic Corp Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
TW201340184A (en) 2013-10-01
JP2013145800A (en) 2013-07-25

Similar Documents

Publication Publication Date Title
CN107527801B (en) Semiconductor device and method of forming the same
KR101027107B1 (en) Metal gate mosfet by full semiconductor metal alloy conversion
US7585716B2 (en) High-k/metal gate MOSFET with reduced parasitic capacitance
US20070210354A1 (en) Semiconductor device and semiconductor device manufacturing method
JP5569173B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2008193060A (en) Semiconductor device and manufacturing method of semiconductor device
JP2009099702A (en) Semiconductor device and its manufacturing method
JP2006054423A (en) Semiconductor device and its manufacturing method
JP2007335834A (en) Semiconductor device and manufacturing method thereof
US8883577B2 (en) Semiconductor device and producing method thereof
US8592911B2 (en) Asymmetric semiconductor device having a high-k/metal gate and method of manufacturing the same
US9691903B2 (en) Semiconductor device and manufacturing method thereof
JP2007165558A (en) Semiconductor device and method of manufacturing same
CN107785266B (en) Method for manufacturing semiconductor structure
JP2010118500A (en) Semiconductor device and its production process
CN111261592B (en) Method for manufacturing semiconductor device
EP3176828A1 (en) Semiconductor device and fabrication method thereof
CN107104143B (en) Semiconductor device and method for manufacturing the same
CN109712935B (en) Method for providing source and drain doping and semiconductor device formed thereby
WO2013105550A1 (en) Semiconductor device and method for manufacturing same
JP2009059761A (en) Semiconductor device and manufacturing method of semiconductor device
JP2008227165A (en) Semiconductor device and its manufacturing method
JP5717706B2 (en) Semiconductor device and manufacturing method thereof
JP5315784B2 (en) Semiconductor device
JP2008117842A (en) Semiconductor device, and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13735874

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13735874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE