WO2013105415A1 - Method for manufacturing glass roll, device for manufacturing glass roll, and glass roll - Google Patents

Method for manufacturing glass roll, device for manufacturing glass roll, and glass roll Download PDF

Info

Publication number
WO2013105415A1
WO2013105415A1 PCT/JP2012/083120 JP2012083120W WO2013105415A1 WO 2013105415 A1 WO2013105415 A1 WO 2013105415A1 JP 2012083120 W JP2012083120 W JP 2012083120W WO 2013105415 A1 WO2013105415 A1 WO 2013105415A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment
sheet
winding
glass
core
Prior art date
Application number
PCT/JP2012/083120
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 ▲濱▼田
利之 植松
吉田 聡
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013105415A1 publication Critical patent/WO2013105415A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/28Wound package of webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/032Controlling transverse register of web
    • B65H23/038Controlling transverse register of web by rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/14Roller pairs
    • B65H2404/142Roller pairs arranged on movable frame
    • B65H2404/1421Roller pairs arranged on movable frame rotating, pivoting or oscillating around an axis, e.g. parallel to the roller axis
    • B65H2404/14212Roller pairs arranged on movable frame rotating, pivoting or oscillating around an axis, e.g. parallel to the roller axis rotating, pivoting or oscillating around an axis perpendicular to the roller axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/61Display device manufacture, e.g. liquid crystal displays

Definitions

  • the present invention relates to a glass roll manufacturing method, a glass roll manufacturing apparatus, and a glass roll.
  • the glass roll is manufactured by winding a glass sheet around a core.
  • the glass roll is used, for example, for manufacturing a display panel such as a liquid crystal panel or an organic EL panel, a solar battery, or the like by a roll-to-roll method.
  • the core When controlling the winding position of the glass sheet, if the core is moved in the axial direction of the core when the glass sheet is wound around the core, shear stress is generated. Since the glass sheet is easier to break than the resin sheet, the glass sheet may be broken.
  • This invention is made
  • a glass roll manufacturing method for manufacturing a glass roll by winding a glass sheet around a core By monitoring the position of the side edge of the glass sheet with respect to the winding core and adjusting the distribution in the winding axis direction of the winding radius of the glass sheet based on the monitoring result, the winding around the winding core is performed thereafter.
  • the glass roll manufacturing apparatus which winds a glass sheet to a core and manufactures a glass roll
  • a position sensor for monitoring a side edge position of the glass sheet with respect to the core By adjusting the distribution in the winding axis direction of the winding radius of the glass sheet based on the monitoring result by the position sensor, the winding position of the glass sheet wound around the core is adjusted thereafter. And an adjustment unit.
  • a glass roll formed by winding a glass sheet into a roll shape,
  • the winding radius of at least a part of the glass sheet increases from one end side in the winding axis direction to the other end side.
  • a glass roll manufacturing method a glass roll manufacturing apparatus, and a glass roll that can control the winding position of the glass sheet without breaking the glass sheet are provided.
  • FIG. 1 is a side view of the glass roll manufacturing apparatus according to the first embodiment.
  • FIG. 2 is a plan view of the glass roll manufacturing apparatus according to the first embodiment.
  • Drawing 3 is an explanatory view of the glass roll manufacturing method by a 1st embodiment, and is a sectional view showing the situation of the layer of the glass sheet formed on a core.
  • FIG. 4 is a diagram illustrating an example of a temporal change in the side edge position of the glass sheet. 2 and 3, the Y direction is a direction parallel to the winding axis direction, and the winding axis direction is the axial direction of the winding core.
  • the glass roll manufacturing apparatus 100 winds the glass sheet 10 around the core 110 to manufacture a glass roll 190 (see FIG. 3).
  • the core 110 may be pulled out from the glass roll 190 after the manufacture.
  • the glass sheet 10 may be wound around the core 110 so as to overlap with a slip sheet (interleaf) or a resin sheet in order to prevent scratches or the like from being generated during or after winding.
  • a slip sheet interleaf
  • a resin sheet in order to prevent scratches or the like from being generated during or after winding.
  • the glass of the glass sheet 10 is selected according to the application.
  • an alkali-free glass that does not substantially contain an alkali metal oxide is used.
  • general glass such as soda lime glass and quartz glass can be used.
  • the glass sheet 10 may be formed by a general method such as a float method, a fusion downdraw method, a slit downdraw method, or a redraw method.
  • the average thickness of the glass sheet 10 is preferably 0.3 mm or less.
  • the glass sheet 10 has good flexibility, so that bending stress generated when the glass sheet 10 is wound is reduced, and breakage of the glass sheet 10 is suppressed.
  • a functional film may be formed on the glass sheet 10.
  • the functional film may be, for example, a conductive film, an insulating film, a protective film, and the like, and the material of the functional film is selected according to the type of the functional film.
  • the functional film material include a metal material, an inorganic material, and an organic material.
  • the method for forming the functional film include a sputtering method, a vacuum deposition method, a CVD method, and a method of applying a liquid material and drying.
  • the front end portion of the glass sheet 10 may be fixed to the winding core 110 with a double-sided tape or electrostatic force, or may be sandwiched and fixed between a slip sheet or a resin sheet and the winding core 110.
  • the width direction of the glass sheet 10 and the axial direction of the core 110 are parallel.
  • the winding core 110 is connected to a winding motor 112.
  • the winding motor 112 may be a servo motor, and may be feedback controlled so that the winding tension of the glass sheet 10 becomes a predetermined amount.
  • the glass roll manufacturing apparatus 100 includes a position sensor 120 that monitors the position of the side end 11 of the glass sheet 10 with respect to the core 110, and an adjustment unit that adjusts the winding position of the core 110 based on the monitoring result of the position sensor 120. 130.
  • the position sensor 120 is fixed to a frame (not shown) that supports the core 110 so as to be rotatable about the central axis of the core 110.
  • the position sensor 120 detects the position of the side end 11 of the glass sheet 10 that moves toward the core 110, for example.
  • the position sensor 120 includes a light projecting unit 122 that projects a laser beam 121 parallel to the width direction of the glass sheet 10 and a light receiving unit 123 that is disposed to face the light projecting unit 122 (FIGS. 1 and 11). reference).
  • the light receiving unit 123 includes a plurality of light receiving elements arranged in a direction parallel to the width direction of the glass sheet 10.
  • the position sensor 120 may be configured by an image sensor such as a CCD or a CMOS that images a glass sheet and an image processing unit that performs image processing on an image captured by the image sensor.
  • the image processing unit includes a microcomputer including, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • the image processing unit performs image processing on the image picked up by the image pickup device, identifies a portion where the brightness of the image changes suddenly, and detects the position of the side edge 11 of the glass sheet 10.
  • the position sensor 120 may be comprised by the nozzle which injects gas, such as air, and the air volume sensor arrange
  • the position sensor 120 detects the gas air volume with the air volume sensor and detects the side edge position of the glass sheet 10.
  • the position sensor 120 is a capacitance sensor that detects a capacitance according to a gap formed between the conductive film formed on the side edge 11 of the glass sheet 10 or a contact type linear gauge sensor. It may be configured.
  • the position sensor 120 may detect the position of the side end 11 of the glass sheet 10 using ultrasonic waves.
  • the installation position of the position sensor 120 may be set upstream of the position where the glass sheet 10 and the adjustment sheet 20 overlap. Since it is not necessary to distinguish between the glass sheet 10 and the adjustment sheet 20, the position detection of the side edge 11 of the glass sheet 10 is easy, and the detection accuracy is improved.
  • the position sensor 120 of this embodiment monitors the position of the side end 11 of the glass sheet 10 that is moving toward the core 110, but the outermost layer of the glass sheet 10 that is wound around the core 110. You may detect the position of the side edge.
  • the adjusting unit 130 adjusts the distribution in the winding axis direction of the winding radius R of the glass sheet 10 based on the monitoring result by the position sensor 120, and then the glass sheet wound around the core 110. 10 winding position is adjusted.
  • the distribution of the winding radius R of the glass sheet 10 in the winding axis direction is measured along the width direction of the glass sheet 10.
  • the adjustment of the distribution of the winding radius R of the glass sheet 10 in the winding axis direction is, for example, at least one of the insertion position of the adjustment sheet 20 inserted between the glass sheets 10 and the size and shape of the adjustment sheet 20. Done by adjusting.
  • the adjusting unit 130 of the present embodiment adjusts the distribution of the winding radius R of the glass sheet 10 in the winding axis direction by adjusting the insertion position of the adjusting sheet 20 narrower than the glass sheet 10.
  • the adjustment sheet 20 a resin film, paper, or the like is used.
  • the adjustment sheet 20 may be disposed radially inward of the core 110 relative to the glass sheet 10. Since the adjustment sheets 21 and 22 are wound around the winding core and the distribution of the winding radius R of the glass sheet 10 in the winding axis direction is changed, the responsiveness is good.
  • the adjustment unit 130 includes an adjustment core 131 around which the adjustment sheet 20 is wound, an adjustment motor 133 that rotates the adjustment core 131 around the central axis of the adjustment core 131, and an adjustment sheet that is sent from the adjustment core 131 by the adjustment motor 133. And a cutting machine 135 for cutting 20.
  • the adjustment core 131 is disposed above the movement path of the glass sheet 10 moving toward the winding core 110, and a plurality (for example, two) of adjustment cores 131 are arranged in a direction parallel to the width direction of the glass sheet 10.
  • the adjustment motor 133 rotates the adjustment core 131.
  • a plurality of adjustment motors 133 are provided corresponding to the plurality of adjustment cores 131.
  • the adjustment motor 133 may be a servo motor and is feedback-controlled so that the feeding speed of the adjustment sheet 20 is the same as the moving speed of the glass sheet 10.
  • the cutting machine 135 includes, for example, a slide 137 that guides the adjustment sheet 20 fed from the adjustment core 131 by the adjustment motor 133 toward a position where the adjustment sheet 20 overlaps the glass sheet 10, and a cutting roll that cuts the adjustment sheet 20 supported by the slide 137. 139 and a cutting motor 141 that rotates the cutting roll 139.
  • a plurality of cutting machines 135 are installed corresponding to the plurality of adjustment cores 131.
  • the slide 137 guides the adjustment sheet 20 obliquely downward.
  • the adjustment sheet 20 slides down from the slide 137 and is then placed on the glass sheet 10, transported toward the core 110 together with the glass sheet 10, and between the glass sheet layers formed on the core 110. Inserted.
  • the adjustment sheet 20 is attached to the glass sheet 10 by electrostatic force or frictional force.
  • the cutting roll 139 is disposed near the lower end of the slide 137.
  • the cutting motor 141 rotates and the cutting roll 139 rotates, the adjustment sheet 20 supported by the slide 137 is cut at a predetermined length.
  • the control unit 180 includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various driving units (for example, a winding motor 112, an adjustment motor 133, a cutting motor) The motor 141) is controlled.
  • various driving units for example, a winding motor 112, an adjustment motor 133, a cutting motor
  • the control unit 180 drives the winding motor 112 at time t0 shown in FIG. 4 to rotate the winding core 110 to which the front end portion of the glass sheet 10 is fixed, and winds the glass sheet 10 around the winding core 110.
  • the adjustment motor 133 and the cutting motor 141 are stopped.
  • the control unit 180 starts monitoring by the position sensor 120 at time t0.
  • the control unit 180 When the control unit 180 detects that the position of the side end 11 of the glass sheet 10 has moved from the reference position Y0 in the Y1 direction beyond the set value ⁇ Y1 at time t1 shown in FIG. 4, the control unit 180 controls the Y2 side adjustment motor 133. Driven to feed out the adjustment sheet 20 wound around the adjustment core 131 on the Y2 side. The adjustment sheet 20 slides down on the Y2 side slide 137 and is placed on the end of the glass sheet 10 on the Y2 side, and is then transported toward the core 110 together with the glass sheet 10 to form a roll-shaped glass sheet 10. It is inserted between each other. Thereby, as shown to Fig.3 (a), the winding radius R of the glass sheet 10 becomes large, so that it goes to a Y2 direction from the Y1 side.
  • FIG. 5 is a diagram showing a state when a band-like object is wound around the side surface of the truncated cone.
  • the strip 30 is wound around the side surface 41 of the truncated cone 40 while being in surface contact, the strip 30 is wound spirally. At this time, the strip 30 naturally moves in the direction in which the radius of the side surface 41 of the truncated cone 40 increases.
  • the glass sheet 10 is subsequently wound around the core 110 as shown in FIG. Is wound in the Y2 direction.
  • the control unit 180 detects that the distance between the position of the side edge 11 of the glass sheet 10 and the reference position Y0 has returned to the set value ⁇ Y1 or less at time t2 shown in FIG. 4, the Y2 side adjustment motor The driving of 133 is stopped and the cutting motor 141 on the Y2 side is driven to cut the adjustment sheet 20 on the Y2 side.
  • control unit 180 When the control unit 180 detects that the position of the side end 11 of the glass sheet 10 has moved from the reference position Y0 in the Y2 direction beyond the set value ⁇ Y2 at time t3 shown in FIG. 4, the control unit 180 moves the adjustment motor 133 on the Y1 side. Driven to feed out the adjustment sheet 20 wound around the adjustment core 131 on the Y1 side. The adjustment sheet 20 slides down on the Y1 side slide 137 and is placed on the Y1 side end of the glass sheet 10, and is then conveyed toward the core 110 together with the glass sheet 10, and the roll-shaped glass sheet 10. It is inserted between each other.
  • control unit 180 controls the winding position of the glass sheet 10. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is hardly broken. Therefore, a high quality glass roll 190 is obtained. An adjustment sheet 20 narrower than the glass sheet 10 is inserted into the glass roll 190.
  • the adjustment part of this embodiment contains the some adjustment core 131 arranged in the direction parallel to the width direction of the glass sheet 10, the number of the adjustment cores 131 may be one.
  • the adjustment unit adjusts the insertion position of the adjustment sheet 20 in the Y direction by moving the adjustment core 131 in the Y direction with respect to the winding core 110.
  • the strip-shaped adjustment sheet 20 is inserted at the end in the width direction of the glass sheet 10 for the purpose of adjusting the distribution of the winding radius R of the glass sheet 10 in the winding axis direction.
  • the present embodiment is different in that the insertion positions of a plurality of types of adjustment sheets having different dimensions and shapes are adjusted for the same purpose.
  • the difference will be mainly described.
  • FIG. 6 is a side view of the glass roll manufacturing apparatus according to the second embodiment.
  • FIG. 7 is a plan view of the glass roll manufacturing apparatus according to the second embodiment.
  • FIG. 8 is an explanatory view of the glass roll manufacturing method according to the second embodiment, and is a cross-sectional view showing the state of the glass sheet layer formed on the core.
  • the glass roll manufacturing apparatus 200 of this embodiment includes a core 110, a position sensor 120, an adjustment unit 230, and a control unit 280.
  • the adjustment unit 230 adjusts the distribution in the winding axis direction (Y direction) of the winding radius R of the glass sheet 10 based on the monitoring result by the position sensor 120, and then winds around the core 110.
  • the winding position of the glass sheet 10 to be adjusted is adjusted.
  • the adjusting unit 230 of the present embodiment adjusts the distribution of the winding radius R of the glass sheet 10 in the winding axis direction by adjusting the insertion positions of the plurality of types of adjusting sheets 21 and 22 having different dimensions and shapes.
  • the adjustment sheets 21 and 22 may be wider than the glass sheet 10. There are few gaps formed between the glass sheets 10, and the glass sheet 10 can be stably supported.
  • the thickness of the one adjustment sheet 21 increases as it goes from one end side to the other end side in the width direction of the adjustment sheet 21 (as it goes from the Y1 side to the Y2 direction).
  • the remaining adjustment sheet 22 becomes thicker from the other end side to the one end side along the width direction of the adjustment sheet 22 (as it goes from the Y2 side to the Y1 direction).
  • the adjustment sheets 21 and 22 When the adjustment sheets 21 and 22 are wound around the core 110 together with the glass sheet 10, the adjustment sheets 21 and 22 may be arranged radially inward of the core 110 than the glass sheet 10. Since the adjustment sheets 21 and 22 are wound around the winding core 110 and the distribution of the winding radius R of the glass sheet 10 in the winding axis direction is changed, the responsiveness is good.
  • the adjustment unit 230 includes adjustment cores 231 and 232 around which the adjustment sheets 21 and 22 are wound, adjustment motors 233 and 234 that rotate the adjustment cores 231 and 232 about the central axes of the adjustment cores 231 and 232, and adjustment motors And cutting machines 235 and 236 for cutting the adjustment sheets 21 and 22 sent out from the adjustment cores 231 and 232 by 233 and 234, respectively.
  • the adjustment cores 231 and 232 are disposed above the movement path of the glass sheet 10 that moves toward the winding core 110 and are aligned along the movement path of the glass sheet 10.
  • Adjustment motors 233 and 234 rotate the adjustment cores 231 and 232.
  • the adjustment motors 233 and 234 may be servo motors, and are feedback-controlled so that the feeding speed of the adjustment sheets 21 and 22 is the same as the moving speed of the glass sheet 10.
  • the cutting machines 235 and 236 cut the adjustment sheets 21 and 22 supported by the slides 237 and 238 and the slides 237 and 238 that guide the adjustment sheets 21 and 22 sent out from the adjustment cores 231 and 232 obliquely downward. It comprises rolls 239 and 240 and cutting motors 241 and 242 for rotating the cutting rolls 239 and 240.
  • the slides 237 and 238 guide the adjustment sheets 21 and 22 toward the position where they overlap the glass sheet 10.
  • the adjustment sheets 21 and 22 slide on the slides 237 and 238, and are then placed on the glass sheet 10 and conveyed toward the core 110 together with the glass sheet 10, and are formed on the core 110. It is inserted between each other.
  • the cutting rolls 239 and 240 are disposed in the vicinity of the lower ends of the slides 237 and 238.
  • the cutting motors 241 and 242 rotate and the cutting rolls 239 and 240 rotate, the adjustment sheets 21 and 22 are cut by the blades of the cutting rolls 239 and 240.
  • the control unit 280 includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various drive units (for example, the winding motor 112, the adjustment motors 233, 234). The cutting motors 241 and 242) are controlled.
  • the control unit 280 drives the winding motor 112 at time t0 shown in FIG. 4 to rotate the winding core 110 to which the front end portion of the glass sheet 10 is fixed, and winds the glass sheet 10 around the winding core 110.
  • the adjustment motors 233 and 234 and the cutting motors 241 and 242 are stopped.
  • the control unit 280 starts monitoring by the position sensor 120 at time t0.
  • the controller 280 drives the adjustment motor 233.
  • the adjustment sheet 21 whose thickness increases from the Y1 side in the Y2 direction is sent out from the adjustment core 231.
  • the adjustment sheet 21 sent out from the adjustment core 231 slides down on the slide 237 and is placed on the glass sheet 10, and then conveyed toward the core 110 together with the glass sheet 10, and is formed on the core 110. Inserted between the glass sheet layers. Then, as shown in FIG.
  • the winding radius R of the glass sheet 10 increases from the Y1 side in the Y2 direction, so that the winding around the core 110 is thereafter performed as shown in FIG. 8B.
  • the winding position of the rotated glass sheet 10 is shifted in the Y2 direction.
  • the controller 280 drives the adjustment motor 233. And the cutting motor 241 is driven to cut the adjustment sheet 21.
  • the control unit 280 drives the adjustment motor 234.
  • the adjustment sheet 22 whose thickness increases from the Y2 side toward the Y1 direction is sent out from the adjustment core 232.
  • the adjustment sheet 22 sent out from the adjustment core 232 slides down on the slide 238 and is placed on the glass sheet 10, and then conveyed toward the core 110 together with the glass sheet 10, and formed on the core 110. Inserted between the glass sheet layers.
  • the winding radius R of the glass sheet 10 increases from the Y2 side toward the Y1 direction. Therefore, as shown in FIG.3 (d), the winding position of the glass sheet 10 wound around the core 110 after that shifts to the Y1 direction.
  • control unit 280 controls the winding position of the glass sheet 10. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound as in the first embodiment, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is difficult to break. Therefore, the glass roll 290 with good quality is obtained. Inside the glass roll 290, adjustment sheets 21 and 22 that are thicker from one end side to the other end side along the width direction are inserted.
  • the insertion position of the adjustment sheet is adjusted for the purpose of adjusting the distribution of the winding radius R of the glass sheet 10 in the winding axis direction.
  • the present embodiment is different in that the size and shape of the adjustment sheet continuously wound around the core 110 are adjusted for the same purpose.
  • the difference will be mainly described.
  • FIG. 9A is a perspective view of a glass roll manufacturing apparatus according to the third embodiment.
  • FIG. 9A illustration of a winding motor, an adjustment core, an adjustment motor for rotating the adjustment core, and a position sensor is omitted for convenience.
  • FIG. 9B is a diagram illustrating members disposed between the support frame and the ball screw unit. 9B shows a state when the central axis of the nip roll is inclined with respect to the central axis of the winding core, FIG. 9B (1) is a plan view, and FIG. 9B (2) is a side view.
  • FIG. 10 is an explanatory view of the glass roll manufacturing method according to the third embodiment, and is a cross-sectional view showing the state of the glass sheet layer formed on the core.
  • the glass roll manufacturing apparatus 300 of this embodiment includes a core 110, a position sensor 120, an adjustment unit 330, and a control unit 380.
  • the adjusting unit 330 adjusts the distribution in the winding axis direction of the winding radius R of the glass sheet 10 based on the monitoring result by the position sensor 120. This adjustment is performed by adjusting the distribution in the width direction of the thickness of the adjustment sheet 25 that is continuously wound around the core 110 together with the glass sheet 10.
  • the adjustment unit 330 adjusts the width direction distribution of the winding tension of the adjustment sheet 25 in order to adjust the width direction distribution of the thickness of the adjustment sheet 25.
  • the adjustment sheet 25 a resin film or paper is used.
  • the adjustment sheet 25 may be wider than the glass sheet 10. There are few gaps formed between the glass sheets 10, and the glass sheet 10 can be stably supported.
  • the front end portion of the glass sheet 10 may be fixed to the winding core 110 with a double-sided tape or electrostatic force, or may be fixed by being sandwiched between a slip sheet or a resin sheet and the winding core 110.
  • the front end portion of the adjustment sheet 25 may be fixed to the winding core 110 with a double-sided tape, electrostatic force, or the like, or may be fixed between a slip sheet or a resin sheet and the winding core 110.
  • the adjustment unit 330 rotates one of the adjustment core around which the adjustment sheet 25 is wound, the two nip rolls 333 and 334 that sandwich the adjustment sheet 25 that moves from the adjustment core toward the winding core 110, and the nip rolls 333 and 334.
  • a rotating motor 335 to be operated. When the rotation motor 335 rotates one nip roll 333, the adjustment sheet 25 sandwiched between the nip rolls 333 and 334 is sent toward the core 110, and the other nip roll 334 rotates.
  • the adjustment core passively rotates as the nip rolls 333 and 334 rotate, and sends the adjustment sheet 25 toward the nip rolls 333 and 334.
  • the thickness of the adjustment sheet 25 before passing through the nip rolls 333 and 334 may be uniform in the width direction of the adjustment sheet 25.
  • the central axis of the adjustment core is parallel to the central axis of the winding core 110.
  • the nip rolls 333 and 334 sandwich and support the adjustment sheet 25 sent out from the adjustment core.
  • the nip rolls 333 and 334 sandwich the adjustment sheet 25 with the pressure of the fluid pressure cylinders 336 and 337, for example.
  • the nip rolls 333 and 334 are disposed below the moving path of the glass sheet 10. Therefore, the movement path of the adjustment sheet 25 is arranged below the movement path of the glass sheet 10. The nip rolls 333 and 334 may be disposed above the movement path of the glass sheet 10.
  • the central axes of the nip rolls 333 and 334 are parallel to the central axis of the core 110 and can be inclined with respect to the central axis of the core 110.
  • the rotary motor 335 is controlled so that a predetermined winding tension is applied to the adjustment sheet 25 fed from the nip rolls 333 and 334 toward the core 110. This control is performed by the control unit 380.
  • the adjustment unit 330 further includes a support frame 340 that rotatably supports the nip rolls 333 and 334 around the center axis of the nip rolls 333 and 334, and a swing motor 343 that swings the support frame 340.
  • the support frame 340 supports the nip rolls 333 and 334 rotatably.
  • a rotation motor 335 and fluid pressure cylinders 336 and 337 are fixed to the support frame 340.
  • the support frame 340 can swing along an arcuate frame guide 342.
  • the swing motor 343 swings the support frame 340. Between the swing motor 343 and the support frame 340, a ball screw unit 344 that converts the rotational motion of the swing motor 343 into a linear motion is disposed.
  • the ball screw unit 344 includes a screw shaft 345 that rotates together with the swing motor 343 and a movable body 346 that includes a screw hole into which the screw shaft 345 is screwed.
  • the movable body 346 and the support frame 340 are fixed to the support frame 340 and a block 347 that is rotatably connected to the movable body 346 by a pin joint or the like.
  • a block guide 348 is provided. The block guide 348 guides the block 347 along the longitudinal direction of the support frame 340.
  • the rotational force of the swing motor 343 applies a force in a direction approaching the core 110 to one axial end of the nip rolls 333 and 334 and moves away from the core 110 to the other axial end of the nip rolls 333 and 334.
  • the winding tension of the adjustment sheet 25 increases as the distance from one end side (for example, Y2 side) to the other end side (for example, Y1 side) of the adjustment sheet 25 increases, and the adjustment sheet 25 increases in elongation.
  • the thickness of 25 is reduced.
  • the elongation of the adjustment sheet 25 may be elastic deformation or plastic deformation.
  • the control unit 380 includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various drive units (for example, a winding motor 112, a rotation motor 335, a fluid, and the like) The pressure cylinders 336 and 337 and the swing motor 343) are controlled.
  • various drive units for example, a winding motor 112, a rotation motor 335, a fluid, and the like.
  • the control unit 380 drives the winding motor 112 at time t0 shown in FIG. 4 to rotate the core 110 to which the front end of the glass sheet 10 and the front end of the adjustment sheet 25 are fixed. The glass sheet 10 and the adjustment sheet 25 are wound up. At this time, the control unit 380 drives the fluid pressure cylinders 336 and 337, sandwiches the adjustment sheet 25 with the nip rolls 333 and 334, and sends the adjustment sheet 25 toward the core 110. At time t0, the center axes of the nip rolls 333 and 334 are parallel to the center axis of the winding core 110, and the swing motor 343 is stopped. For example, the control unit 380 starts monitoring by the position sensor 120 at time t0.
  • the controller 380 When the controller 380 detects that the position of the side edge 11 of the glass sheet 10 has moved from the reference position Y0 in the Y1 direction beyond the set value ⁇ Y1 at time t1 shown in FIG. 4, the controller 380 drives the swing motor 343.
  • the winding tension of the adjustment sheet 25 is reduced as it goes from the Y1 side to the Y2 direction. Thereby, there is little elongation of the adjustment sheet 25 and the thickness of the adjustment sheet 25 becomes thick, so that it goes to the Y2 direction from the Y1 side. Therefore, since the winding radius R of the glass sheet 10 increases from the Y1 side in the Y2 direction as shown in FIG. 10A, the winding around the core 110 is thereafter performed as shown in FIG. 10B. The winding position of the rotated glass sheet 10 is shifted in the Y2 direction.
  • control unit 380 When the control unit 380 detects that the distance between the position of the side end 11 of the glass sheet 10 and the reference position Y0 has returned to the set value ⁇ Y1 or less at time t2 shown in FIG. 4, the control unit 380 moves the support frame 340 to the original position. The driving of the swing motor 343 is stopped.
  • the control unit 380 detects that the position of the side end 11 of the glass sheet 10 has moved from the reference position Y0 in the Y2 direction beyond the set value ⁇ Y2 at time t3 shown in FIG. 4, the control unit 380 drives the swing motor 343. And the winding tension
  • seat 25 is made small so that it goes to the Y1 direction from the Y2 side. Thereby, there is little elongation of the adjustment sheet 25 and the thickness of the adjustment sheet 25 becomes thick, so that it goes to the Y1 direction from the Y2 side. Therefore, as shown in FIG.
  • the winding radius R of the glass sheet 10 increases from the Y2 side in the Y1 direction, so that the winding around the core 110 is thereafter performed as shown in FIG.
  • the winding position of the glass sheet 10 to be rotated is shifted in the Y1 direction.
  • the control unit 380 controls the winding position of the glass sheet 10. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound as in the first embodiment, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is difficult to break. Therefore, a high quality glass roll 390 is obtained.
  • the adjustment sheet 25 is inserted into the glass roll 390, and at least a part of the adjustment sheet 25 increases in thickness from one end side to the other end side in the width direction.
  • the adjustment sheet 25 of this embodiment is wound around the core 110 together with the glass sheet 10
  • the adjustment sheet 25 is arranged on the outer side in the radial direction of the core 110 than the glass sheet 10.
  • 110 may be arranged inward in the radial direction, or may be arranged on both sides.
  • the central axis of the nip rolls 333 and 334 is set to the central axis of the core 110 for the purpose of adjusting the width direction distribution of the thickness of the adjustment sheet 25 continuously wound around the core 110. Rock.
  • this modification is different in that the central axis of the adjustment sheet 25 is swung with respect to the central axis of the core 110 for the same purpose.
  • the difference will be mainly described.
  • FIG. 11 is a perspective view of a glass roll manufacturing apparatus according to a first modification of the third embodiment.
  • the glass roll manufacturing apparatus 300A of the present embodiment includes a core 110, a position sensor 120, an adjustment unit 330A, and a control unit 380A.
  • the adjusting unit 330A adjusts the distribution in the winding axis direction of the winding radius R of the glass sheet 10 based on the monitoring result by the position sensor 120. This adjustment is performed by adjusting the distribution in the width direction of the thickness of the adjustment sheet 25 that is continuously wound around the core 110 together with the glass sheet 10.
  • the adjusting unit 330A adjusts the widthwise distribution of the winding tension of the adjusting sheet 25 in order to adjust the widthwise distribution of the thickness of the adjusting sheet 25.
  • the adjustment sheet 25 a resin film or paper is used.
  • the adjustment sheet 25 may be wider than the glass sheet 10.
  • the front end portion of the glass sheet 10 may be fixed to the winding core 110 with a double-sided tape or electrostatic force, or may be fixed by being sandwiched between a slip sheet or a resin sheet and the winding core 110.
  • the front end portion of the adjustment sheet 25 may be fixed to the winding core 110 with a double-sided tape, electrostatic force, or the like, or may be fixed between a slip sheet or a resin sheet and the winding core 110.
  • the adjustment unit 330A includes an adjustment core 331A around which the adjustment sheet 25 is wound, and an adjustment motor 341A that rotates the adjustment core 331A around the central axis of the adjustment core 331A.
  • the adjustment core 331 ⁇ / b> A is rotated by the adjustment motor 341 ⁇ / b> A and sends the adjustment sheet 25 toward the winding core 110.
  • the thickness of the adjustment sheet 25 before being sent out from the adjustment core 331A may be uniform in the width direction.
  • the central axis of the adjustment core 331A is parallel to the central axis of the winding core 110 and can be inclined with respect to the central axis of the winding core 110.
  • the adjustment unit 330A further includes a support frame 340A that rotatably supports the adjustment core 331A about the central axis of the adjustment core 331A, and a swing motor 343A that swings the support frame 340A.
  • the support frame 340A rotatably supports the adjustment core 331A.
  • An adjustment motor 341A is fixed to the support frame 340A.
  • the support frame 340A can swing along an arcuate frame guide 342A.
  • the swing motor 343A swings the support frame 340A. Between the swing motor 343A and the support frame 340A, a ball screw unit 344A that converts the rotational motion of the swing motor 343A into a linear motion is disposed.
  • the ball screw unit 344A includes a screw shaft 345A that rotates together with the swing motor 343A, and a movable body 346A that includes a screw hole into which the screw shaft 345A is screwed.
  • a block 347 and a block guide 348 shown in FIG. 9B are arranged between the movable body 346A and the support frame 340A.
  • the rotational force of the swing motor 343A gives a force in a direction approaching the winding core 110 to one axial end of the adjustment core 331A, and moves away from the winding core 110 to the other axial end of the adjustment core 331A.
  • the winding tension of the adjustment sheet 25 increases as the distance from one end side (for example, Y2 side) to the other end side (for example, Y1 side) of the adjustment sheet 25 increases, and the adjustment sheet 25 increases in elongation.
  • the thickness of 25 is reduced.
  • the elongation of the adjustment sheet 25 may be elastic deformation or plastic deformation.
  • the control unit 380A includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various drive units (for example, a winding motor 112, an adjustment motor 341A, a swing motor, and the like). The motor 343A) is controlled.
  • the width direction distribution of the winding tension of the adjustment sheet 25 is adjusted by swinging the center axis of the adjustment core 310A with respect to the center axis of the winding core 110, and the width of the thickness of the adjustment sheet 25 is adjusted. Adjust the direction distribution. Thereby, the distribution in the winding axis direction of the winding radius R of the glass sheet 10 can be adjusted, and the winding position of the glass sheet 10 wound around the winding core 110 after that can be controlled. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound as in the first embodiment, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is difficult to break. Therefore, a good quality glass roll is obtained.
  • the central axis of the nip rolls 333 and 334 is set to the central axis of the core 110 for the purpose of adjusting the width direction distribution of the thickness of the adjustment sheet 25 continuously wound around the core 110. Rock.
  • FIG. 12 is a perspective view of a glass roll manufacturing apparatus according to a second modification of the third embodiment.
  • FIG. 12 for the sake of convenience, the illustration of the adjustment core and the adjustment motor that rotates the adjustment core is omitted.
  • FIG. 13 is a side view showing a support roll that supports an adjustment sheet that moves from the adjustment core toward the winding core.
  • the glass roll manufacturing apparatus 300B of this embodiment includes a core 110, a position sensor 120, an adjustment unit 330B, and a control unit 380B.
  • the adjusting unit 330B adjusts the distribution in the winding axis direction of the winding radius R of the glass sheet 10 based on the monitoring result by the position sensor 120. This adjustment is performed by adjusting the distribution in the width direction of the thickness of the adjustment sheet 25 that is continuously wound around the core 110 together with the glass sheet 10.
  • the adjustment unit 330B adjusts the width direction distribution of the winding tension of the adjustment sheet 25 in order to adjust the width direction distribution of the thickness of the adjustment sheet 25.
  • the adjustment sheet 25 a resin film or paper is used.
  • the adjustment sheet 25 may be wider than the glass sheet 10.
  • the front end portion of the glass sheet 10 may be fixed to the winding core 110 with a double-sided tape or electrostatic force, or may be fixed by being sandwiched between a slip sheet or a resin sheet and the winding core 110.
  • the front end portion of the adjustment sheet 25 may be fixed to the winding core 110 with a double-sided tape, electrostatic force, or the like, or may be fixed between a slip sheet or a resin sheet and the winding core 110.
  • the adjustment unit 330B supports the adjustment core around which the adjustment sheet 25 is wound, the adjustment motor that rotates the adjustment core around the central axis of the adjustment core, and the adjustment sheet 25 that moves from the adjustment core toward the winding core 110.
  • the adjustment core is rotated by the adjustment motor, and sends out the adjustment sheet 25 toward the support rolls 332B to 334B.
  • the thickness of the adjustment sheet 25 before passing through the support rolls 332B to 334B may be uniform in the width direction of the adjustment sheet 25.
  • the central axis of the adjustment core is parallel to the central axis of the winding core 110.
  • the adjustment motor is controlled so that a predetermined tension is applied to the adjustment sheet 25 between the adjustment core and the support rolls 332B to 334B. This control is performed by the control unit 380B.
  • the support rolls 332B to 334B support the adjustment sheet 25 in an arc shape as shown in FIG.
  • the adjustment sheet 25 has an arc shape along a part of the outer peripheral surface of the support rolls 332B to 334B.
  • the arrangement of the support rolls 332B to 334B is set so as to satisfy the following formula (1).
  • U1 represents the tension of the adjustment sheet 25 before passing through the support rolls 332B to 334B
  • U2 ( ⁇ U1) represents the tension of the adjustment sheet 25 after passing through the support rolls 332B to 334B.
  • ⁇ 1 to ⁇ 3 are static friction coefficients between the support rolls 332B to 334B and the adjustment sheet 25
  • ⁇ 1 to ⁇ 3 are center angles of arcuate portions of the adjustment sheet 25.
  • the support rolls 332B to 334B rotate passively with the rotation of the core 110, and send the adjustment sheet 25 toward the core 110.
  • the central axes of the support rolls 332B to 334B are parallel to the central axis of the core 110 and can be inclined with respect to the central axis of the core 110.
  • the adjustment unit 330B further includes a support frame 340B that supports the support rolls 332B to 334B rotatably about the central axis of the support rolls 332B to 334B, and a swing motor 343B that swings the support frame 340B.
  • the support frame 340B rotatably supports the support rolls 332B to 334B.
  • the support frame 340B can swing along the arcuate frame guide 342B.
  • the support frame 340B may support the support rolls 332B to 334B so as to be rotatable, and may support the adjustment core so as to be rotatable about the central axis of the adjustment core.
  • the swing motor 343B swings the support frame 340B. Between the swing motor 343B and the support frame 340B, a ball screw unit 344B that converts the rotational motion of the swing motor 343B into a linear motion is disposed.
  • the ball screw unit 344B includes a screw shaft 345B that rotates together with the swing motor 343B, and a movable body 346B that includes a screw hole into which the screw shaft 345B is screwed.
  • a block 347 and a block guide 348 shown in FIG. 9B are arranged between the movable body 346B and the support frame 340B.
  • the rotational force of the swing motor 343B applies a force in a direction approaching the core 110 to one axial end of the support rolls 332B to 334B, and the core 110 to the other axial end of the support rolls 332B to 334B.
  • the winding tension of the adjustment sheet 25 increases as the distance from one end side (for example, Y2 side) to the other end side (for example, Y1 side) of the adjustment sheet 25 increases, and the adjustment sheet 25 increases in elongation.
  • the thickness of 25 is reduced.
  • the elongation of the adjustment sheet 25 may be elastic deformation or plastic deformation.
  • the control unit 380B includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various driving units (for example, a winding motor 112, an adjustment motor, a swing motor) The motor 343B) is controlled.
  • various driving units for example, a winding motor 112, an adjustment motor, a swing motor
  • the width direction distribution of the winding tension of the adjustment sheet 25 is adjusted by swinging the center axis of the support rolls 332B to 334B with respect to the center axis of the winding core 110, and the thickness of the adjustment sheet 25 is adjusted. Adjust the distribution in the width direction. Thereby, the distribution in the winding axis direction of the winding radius R of the glass sheet 10 can be adjusted, and the winding position of the glass sheet 10 wound around the winding core 110 after that can be controlled. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound as in the first embodiment, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is difficult to break. Therefore, a good quality glass roll is obtained.
  • a plurality of (for example, three) support rolls 332B to 334B are used.
  • the number of support rolls may be one, and the number of support rolls is not particularly limited.
  • this modification is different in that the width direction distribution of the nip pressure of the adjustment sheet 25 is adjusted for the same purpose.
  • the difference will be mainly described.
  • FIG. 14 is a perspective view of a glass roll manufacturing apparatus according to a third modification of the third embodiment.
  • illustration of the adjustment core and the position sensor is omitted for convenience.
  • the glass roll manufacturing apparatus 300C of the present embodiment includes a core 110, a position sensor 120, an adjustment unit 330C, and a control unit 380C.
  • the adjusting unit 330C adjusts the distribution of the winding radius R of the glass sheet 10 in the winding axis direction based on the monitoring result by the position sensor 120. This adjustment is performed by adjusting the distribution in the width direction of the thickness of the adjustment sheet 25 that is continuously wound around the core 110 together with the glass sheet 10.
  • the adjustment unit 330C adjusts the width direction distribution of the nip pressure of the adjustment sheet 25 in order to adjust the width direction distribution of the thickness of the adjustment sheet 25.
  • the adjustment sheet 25 a resin film or paper is used.
  • the adjustment sheet 25 may be wider than the glass sheet 10.
  • the front end portion of the glass sheet 10 may be fixed to the winding core 110 with a double-sided tape or electrostatic force, or may be fixed by being sandwiched between a slip sheet or a resin sheet and the winding core 110.
  • the front end portion of the adjustment sheet 25 may be fixed to the winding core 110 with a double-sided tape, electrostatic force, or the like, or may be fixed between a slip sheet or a resin sheet and the winding core 110.
  • the adjustment unit 330C rotates one of the adjustment core around which the adjustment sheet 25 is wound, the two nip rolls 333C and 334C that sandwich the adjustment sheet 25 that moves from the adjustment core toward the winding core 110, and the nip rolls 333C and 334C.
  • a rotating motor 335C When the rotation motor 335C rotates one nip roll 333C, the adjustment sheet 25 sandwiched between the nip rolls 333C and 334C is sent out toward the core 110, and the other nip roll 334C rotates.
  • the adjustment core passively rotates as the nip rolls 333C and 334C rotate, and sends the adjustment sheet 25 toward the nip rolls 333C and 334C.
  • the thickness of the adjustment sheet 25 before passing through the nip rolls 333C and 334C may be uniform in the width direction of the adjustment sheet.
  • the central axis of the adjustment core is parallel to the central axis of the winding core 110.
  • the nip rolls 333C and 334C sandwich and support the adjustment sheet 25 sent out from the adjustment core.
  • the nip rolls 333C and 334C sandwich the adjustment sheet 25 with the pressure of the fluid pressure cylinders 336C and 337C, for example.
  • the fluid pressure cylinders 336C and 337C are fixed to the support frame 340C.
  • the central axes of the nip rolls 333C and 334C are parallel to the central axis of the core 110, and the central axis of one nip roll 333C can be inclined with respect to the central axis of the other nip roll 334C.
  • the pressures of the fluid pressure cylinders 336C and 337 are set so that the adjustment sheet 25 is plastically deformed when passing between the two nip rolls 333C and 334C.
  • the pressure in the fluid pressure cylinders 336C and 337C is controlled by the control unit 380C.
  • the nip pressure of the adjustment sheet 25 increases from the Y2 side in the width direction of the adjustment sheet 25 toward the Y1 direction.
  • the thickness of the adjustment sheet 25 is reduced.
  • the pressure of the fluid pressure cylinder 336C on the Y2 side becomes larger than the pressure of the fluid pressure cylinder 337C on the Y1 side
  • the nip pressure of the adjustment sheet 25 increases from the Y1 side in the width direction of the adjustment sheet 25 toward the Y2 direction.
  • the thickness of the adjustment sheet 25 is reduced.
  • the control unit 380C includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various drive units (for example, the winding motor 112, the fluid pressure cylinder 336C, 337C, rotary motor 335C).
  • the width direction distribution of the nip pressure of the adjustment sheet 25 is adjusted by adjusting the pressure of the fluid pressure cylinders 338C and 339C, and the width direction distribution of the thickness of the adjustment sheet 25 is adjusted.
  • the distribution in the winding axis direction of the winding radius R of the glass sheet 10 can be adjusted, and the winding position of the glass sheet 10 wound around the winding core 110 after that can be controlled. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound as in the first embodiment, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is difficult to break. Therefore, a good quality glass roll is obtained.
  • a plurality of fluid pressure cylinders 338C and 339C are used.
  • the nip pressure can be unevenly distributed using one fluid pressure cylinder.
  • a fluid pressure cylinder is used as a turning source for turning around the hinge, the nip pressure can be unevenly distributed by one fluid pressure cylinder. It is.
  • the width direction distribution of the winding tension of the adjustment sheet 25 is adjusted for the purpose of adjusting the width direction distribution of the thickness of the adjustment sheet 25.
  • the present embodiment is different in that the distribution in the width direction of the winding tension of the glass sheet 10 is adjusted for the same purpose.
  • the difference will be mainly described.
  • FIG. 15 is a perspective view of a glass roll manufacturing apparatus according to the fourth embodiment.
  • the illustration of the adjustment core, the adjustment motor that rotates the adjustment core, and the position sensor is omitted.
  • FIG. 16 is an explanatory diagram of the glass roll manufacturing method according to the fourth embodiment, and is a cross-sectional view showing the state of the glass sheet layer formed on the core.
  • the glass roll manufacturing apparatus 400 of this embodiment includes a core 110, a position sensor 120, an adjustment unit 430, and a control unit 480.
  • the adjustment unit 430 adjusts the distribution in the winding axis direction of the winding radius R of the glass sheet 10 based on the monitoring result by the position sensor 120. This adjustment is performed by adjusting the distribution in the width direction of the thickness of the adjustment sheet 25 that is continuously wound around the core 110 together with the glass sheet 10.
  • the adjustment unit 430 adjusts the width direction distribution of the winding tension of the glass sheet 10, and adjusts the thickness of the adjustment sheet 25 already wound around the core 110.
  • the width direction distribution of the compressive force compressed in the direction is adjusted.
  • a resin film or paper is used as the adjustment sheet 25 .
  • the adjustment sheet 25 may be wider than the glass sheet 10.
  • the adjustment unit 430 includes an adjustment core around which the adjustment sheet 25 is wound, an adjustment motor that rotates the adjustment core, two nip rolls 433 and 434 that sandwich the glass sheet 10 that moves toward the winding core 110, and a nip roll 433.
  • Rotation motor 435 that rotates one of 434. When the rotation motor 435 rotates one nip roll 433, the glass sheet 10 sandwiched between the nip rolls 433 and 434 is sent out toward the core 110, and the other nip roll 434 rotates.
  • the adjustment core is rotated by the adjustment motor, and the adjustment sheet 25 is sent out toward the winding core 110.
  • the thickness of the adjustment sheet 25 before being wound around the winding core 110 may be uniform in the width direction of the adjustment sheet 25.
  • the central axis of the adjustment core is parallel to the central axis of the winding core 110.
  • the adjustment motor is controlled so that a predetermined winding tension is applied to the adjustment sheet 25 fed from the adjustment core toward the winding core 110. This control is performed by the control unit 480.
  • the nip rolls 433 and 434 sandwich and support the glass sheet 10 that moves toward the core 110.
  • the nip rolls 433 and 434 sandwich the glass sheet 10 with the pressure of the fluid pressure cylinders 436 and 437, for example.
  • the central axes of the nip rolls 433 and 434 are parallel to the central axis of the core 110 and can be inclined with respect to the central axis of the core 110.
  • the rotation motor 435 is controlled so that a predetermined winding tension is applied to the glass sheet 10 fed from the nip rolls 433 and 434 toward the core 110. This control is performed by the control unit 480.
  • the adjusting unit 430 further includes a support frame 440 that rotatably supports the nip rolls 433 and 434 around the center axis of the nip rolls 433 and 434, and a swing motor 443 that swings the support frame 440.
  • the support frame 440 supports the nip rolls 433 and 434 in a rotatable manner.
  • a rotation motor 435 and fluid pressure cylinders 436 and 437 are fixed to the support frame 440.
  • the support frame 440 can swing along an arcuate frame guide 442.
  • the swing motor 443 swings the support frame 440. Between the swing motor 443 and the support frame 440, a ball screw unit 444 that converts the rotational motion of the swing motor 443 into a linear motion is disposed.
  • the ball screw unit 444 includes a screw shaft 445 that rotates together with the swing motor 443 and a movable body 446 that includes a screw hole into which the screw shaft 445 is screwed.
  • a block 347 and a block guide 348 shown in FIG. 9B are disposed between the movable body 446 and the support frame 440.
  • the rotational force of the swing motor 443 applies a force in a direction approaching the core 110 to one axial end of the nip rolls 433 and 434 and moves away from the core 110 to the other axial end of the nip rolls 433 and 434.
  • the compression force that compresses the sheet 25 in the thickness direction is increased.
  • the control unit 480 includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various driving units (for example, a winding motor 112, an adjustment motor, a rotation motor) 435, fluid pressure cylinders 436, 437, and swing motor 443).
  • various driving units for example, a winding motor 112, an adjustment motor, a rotation motor
  • the control unit 480 drives the winding motor 112 at time t0 shown in FIG. 4 to rotate the core 110 to which the front end of the glass sheet 10 and the front end of the adjustment sheet 25 are fixed. The glass sheet 10 and the adjustment sheet 25 are wound up. At this time, the control unit 480 drives the fluid pressure cylinders 436 and 437, sandwiches the adjustment sheet 25 with the nip rolls 433 and 434, and sends it out toward the core 110. At time t0, the center axes of the nip rolls 433 and 434 are parallel to the center axis of the core 110, and the swing motor 443 is stopped. For example, the control unit 480 starts monitoring by the position sensor 120 at time t0.
  • the controller 480 drives the swing motor 443.
  • the winding tension of the glass sheet 10 is reduced as it goes from the Y1 side to the Y2 direction.
  • the force which compresses the adjustment sheet 25 already wound around the core 110 in the thickness direction becomes smaller and the thickness of the adjustment sheet 25 becomes thicker toward the Y2 direction from the Y1 side. Therefore, the winding radius R of the glass sheet 10 increases from the Y1 side toward the Y2 direction as shown in FIG. 16 (a), so that the winding around the core 110 is thereafter performed as shown in FIG. 16 (b).
  • the winding position of the rotated glass sheet 10 is shifted in the Y2 direction.
  • the control unit 480 detects that the distance between the position of the side edge 11 of the glass sheet 10 and the reference position Y0 has returned to the set value ⁇ Y1 or less at time t2 shown in FIG. 4, the control unit 480 moves the support frame 440 to the original position.
  • the driving of the swing motor 443 is stopped.
  • the rigidity of the glass sheet 10 is higher than that of the adjustment sheet 25, and the glass sheet 10 is hardly deformed by the driving force of the swing motor 443 (because it does not expand or contract), so that the drive state and stop of the swing motor 443 are stopped.
  • the position of the support frame 440 hardly changes depending on the state.
  • the control unit 480 When the control unit 480 detects that the position of the side edge 11 of the glass sheet 10 has moved from the reference position Y0 in the Y2 direction beyond the set value ⁇ Y2 at time t3 shown in FIG. 4, it drives the swing motor 443.
  • the winding tension of the glass sheet 10 is increased from the Y1 side toward the Y2 direction.
  • the compression force which compresses the adjustment sheet 25 already wound around the core 110 in the thickness direction becomes weaker toward the Y1 direction from the Y2 side, and the thickness of the adjustment sheet 25 becomes thicker. Therefore, as shown in FIG. 16C, the winding radius R of the glass sheet 10 increases from the Y2 side in the Y1 direction, so that the winding around the core 110 is thereafter performed as shown in FIG.
  • the winding position of the glass sheet 10 to be rotated is shifted in the Y1 direction.
  • control unit 480 controls the winding position of the glass sheet 10. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound as in the first embodiment, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is difficult to break. Therefore, a high quality glass roll 490 is obtained.
  • the adjustment sheet 25 is inserted into the glass roll 490, and at least a part of the adjustment sheet 25 increases in thickness from one end side to the other end side along the width direction.
  • the driving force of the swing motor 443 is used to adjust the width direction distribution of the winding tension of the glass sheet 10, but even if the width direction distribution of the nip pressure of the glass sheet 10 is adjusted. Good. The higher the nip pressure of the glass sheet 10, the slower the feeding speed of the glass sheet 10, so that the winding tension of the glass sheet 10 becomes higher. Adjustment of the width direction distribution of the nip pressure of the glass sheet 10 is performed by adjusting the pressure of the fluid pressure cylinders 436 and 437, for example.
  • nip rolls 433 and 434 that sandwich the glass sheet 10 are used to adjust the distribution in the width direction of the winding tension of the glass sheet 10, but the same as in the second modification of the third embodiment.
  • support rolls 332B to 334B that support the glass sheet 10 in an arc shape may be used.
  • the adjustment sheet 25 of the present embodiment when wound around the core 110 together with the glass sheet 10, the adjustment sheet 25 is disposed radially outward of the core 110 than the glass sheet 10, but the core is more than the glass sheet 10. 110 may be arranged inward in the radial direction, or may be arranged on both sides.
  • the driving force of the swing motor 543 is used to adjust the width direction distribution of the winding tension of the glass sheet 10.
  • the width direction distribution of the nip pressure of the glass sheet 10 is adjusted. Good.
  • Adjustment of the width direction distribution of the nip pressure of the glass sheet 10 is performed by adjusting the pressure of the fluid pressure cylinders 536 and 537, for example.
  • nip rolls 533 and 534 that sandwich the glass sheet 10 are used in order to adjust the distribution in the width direction of the winding tension of the glass sheet 10, but the same as in the second modification of the third embodiment.
  • support rolls 332B to 334B that support the glass sheet 10 in an arc shape may be used.
  • a glass sheet in order to arrange the winding position of a glass sheet, although adjusting the distribution in the winding axis direction of the winding radius R of a glass sheet, in order to shift the winding position of a glass sheet, a glass sheet
  • the distribution of the winding radius R in the winding axis direction may be adjusted.
  • the present invention is suitable for a glass roll manufacturing method, a glass roll manufacturing apparatus, and a glass roll in which a glass sheet used for a display panel such as a liquid crystal panel or an organic EL panel, a solar battery or the like is wound around a winding core. .

Landscapes

  • Winding Of Webs (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)

Abstract

A manufacturing method for a glass roll includes an adjustment step for adjusting a winding position for a glass sheet (10). In this step, the position of a side end (11) of the glass sheet (10) is monitored with respect to the winding core (110). On the basis of these results, a resin film, paper or other adjusting sheet (20) is inserted between glass sheets (10) that are being wound. The distribution of the winding radius (R) for the glass sheet (10) in the axial direction of winding is adjusted by the thickness of the adjusting sheet (20) that is inserted. Therefore, the winding position of the glass sheet (10) wound around the winding core (110) is adjusted thereafter. A device (100) for manufacturing a glass roll has a position sensor (120) that monitors the position of a side end (11) of the glass sheet (10) with respect to the winding core (110) and an adjusting unit (130) that inserts adjusting sheets (20) between the glass sheets (10) being wound.

Description

ガラスロール製造方法、ガラスロール製造装置、及びガラスロールGlass roll manufacturing method, glass roll manufacturing apparatus, and glass roll
 本発明は、ガラスロール製造方法、ガラスロール製造装置、及びガラスロールに関する。 The present invention relates to a glass roll manufacturing method, a glass roll manufacturing apparatus, and a glass roll.
 ガラスロールは、ガラスシートを巻芯に巻回して作製される。ガラスロールは、例えば液晶パネルや有機ELパネルなどの表示パネル、太陽電池などをロール・ツー・ロール方式で製造するために用いられる。 The glass roll is manufactured by winding a glass sheet around a core. The glass roll is used, for example, for manufacturing a display panel such as a liquid crystal panel or an organic EL panel, a solar battery, or the like by a roll-to-roll method.
 また、別の技術として、炭素繊維を含む樹脂シートを巻芯に巻回するとき、タケノコ状の巻ずれを防止するため、巻芯を巻芯の軸方向に移動させる技術が提案されている(例えば、特許文献1参照)。 As another technique, a technique of moving the winding core in the axial direction of the winding core has been proposed in order to prevent a bamboo shoot-like winding slip when a resin sheet containing carbon fiber is wound around the winding core ( For example, see Patent Document 1).
特開2008-247610号公報JP 2008-247610 A
 ガラスシートの巻き位置を制御するため、ガラスシートを巻芯に巻回するとき巻芯を巻芯の軸方向に移動させると、せん断応力が生じる。ガラスシートは樹脂シートよりも割れやすいので、ガラスシートが割れることがあった。 When controlling the winding position of the glass sheet, if the core is moved in the axial direction of the core when the glass sheet is wound around the core, shear stress is generated. Since the glass sheet is easier to break than the resin sheet, the glass sheet may be broken.
 本発明は、上記課題に鑑みてなされたものであって、ガラスシートを割らずにガラスシートの巻き位置を制御できるガラスロール製造方法、ガラスロール製造装置、およびガラスロールの提供を目的とする。 This invention is made | formed in view of the said subject, Comprising: It aims at provision of the glass roll manufacturing method which can control the winding position of a glass sheet, without breaking a glass sheet, a glass roll manufacturing apparatus, and a glass roll.
 上記課題を解決するため、本発明の一態様によれば、ガラスシートを巻芯に巻回してガラスロールを製造するガラスロール製造方法は、
 前記巻芯に対する前記ガラスシートの側端の位置を監視し、監視結果に基づいて前記ガラスシートの巻回半径の巻回軸方向における分布を調整することにより、その後に前記巻芯の周りに巻回される前記ガラスシートの巻き位置を調整する調整工程を含む。
In order to solve the above problems, according to one aspect of the present invention, a glass roll manufacturing method for manufacturing a glass roll by winding a glass sheet around a core,
By monitoring the position of the side edge of the glass sheet with respect to the winding core and adjusting the distribution in the winding axis direction of the winding radius of the glass sheet based on the monitoring result, the winding around the winding core is performed thereafter. An adjustment step of adjusting the winding position of the glass sheet to be rotated;
 また、本発明の他の態様によれば、ガラスシートを巻芯に巻回してガラスロールを製造するガラスロール製造装置は、
 前記巻芯に対する前記ガラスシートの側端位置を監視する位置センサと、
 該位置センサによる監視結果に基づいて前記ガラスシートの巻回半径の巻回軸方向における分布を調整することにより、その後に前記巻芯の周りに巻回される前記ガラスシートの巻き位置を調整する調整部とを含む。
Moreover, according to the other aspect of this invention, the glass roll manufacturing apparatus which winds a glass sheet to a core and manufactures a glass roll,
A position sensor for monitoring a side edge position of the glass sheet with respect to the core;
By adjusting the distribution in the winding axis direction of the winding radius of the glass sheet based on the monitoring result by the position sensor, the winding position of the glass sheet wound around the core is adjusted thereafter. And an adjustment unit.
 さらに、本発明の別の態様によれば、ガラスシートをロール状に巻回してなるガラスロールは、
 少なくとも一部の前記ガラスシートの巻回半径が巻回軸方向の一端側から他端側に向かうほど大きくなっている。
Furthermore, according to another aspect of the present invention, a glass roll formed by winding a glass sheet into a roll shape,
The winding radius of at least a part of the glass sheet increases from one end side in the winding axis direction to the other end side.
 本発明によれば、ガラスシートを割らずにガラスシートの巻き位置を制御できるガラスロール製造方法、ガラスロール製造装置、およびガラスロールが提供される。 According to the present invention, a glass roll manufacturing method, a glass roll manufacturing apparatus, and a glass roll that can control the winding position of the glass sheet without breaking the glass sheet are provided.
第1の実施形態によるガラスロール製造装置の側面図である。It is a side view of the glass roll manufacturing apparatus by 1st Embodiment. 第1の実施形態によるガラスロール製造装置の平面図である。It is a top view of the glass roll manufacturing apparatus by a 1st embodiment. 第1の実施形態によるガラスロール製造方法の説明図である。It is explanatory drawing of the glass roll manufacturing method by 1st Embodiment. ガラスシートの側端位置の経時変化の一例を示す図である。It is a figure which shows an example of the time-dependent change of the side end position of a glass sheet. 円錐台の側面に帯状物を巻き付けたときの様子を示す図である。It is a figure which shows a mode when a strip | belt-shaped object is wound around the side surface of a truncated cone. 第2の実施形態によるガラスロール製造装置の側面図である。It is a side view of the glass roll manufacturing apparatus by 2nd Embodiment. 第2の実施形態によるガラスロール製造装置の平面図である。It is a top view of the glass roll manufacturing apparatus by 2nd Embodiment. 第2の実施形態によるガラスロール製造方法の説明図である。It is explanatory drawing of the glass roll manufacturing method by 2nd Embodiment. 第3の実施形態によるガラスロール製造装置の斜視図である。It is a perspective view of the glass roll manufacturing apparatus by 3rd Embodiment. 支持フレームとボールネジユニットとの間に配設される部材を示す図である。It is a figure which shows the member arrange | positioned between a support frame and a ball screw unit. 第3の実施形態によるガラスロール製造方法の説明図である。It is explanatory drawing of the glass roll manufacturing method by 3rd Embodiment. 第3の実施形態の第1の変形例によるガラスロール製造装置の斜視図である。It is a perspective view of the glass roll manufacturing apparatus by the 1st modification of 3rd Embodiment. 第3の実施形態の第2の変形例によるガラスロール製造装置の斜視図である。It is a perspective view of the glass roll manufacturing apparatus by the 2nd modification of 3rd Embodiment. 調整芯から巻芯に向けて移動する調整シートを支持する支持ロールを示す側面図である。It is a side view which shows the support roll which supports the adjustment sheet | seat which moves toward a winding core from an adjustment core. 第3の実施形態の第3の変形例によるガラスロール製造装置の斜視図である。It is a perspective view of the glass roll manufacturing apparatus by the 3rd modification of 3rd Embodiment. 第4の実施形態によるガラスロール製造装置の斜視図である。It is a perspective view of the glass roll manufacturing apparatus by 4th Embodiment. 第4の実施形態によるガラスロール製造方法の説明図である。It is explanatory drawing of the glass roll manufacturing method by 4th Embodiment.
 以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して、説明を省略する。また、各図面において、図面を見やすくするため、調整シートを灰色で示す。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted. In each drawing, the adjustment sheet is shown in gray to make the drawing easy to see.
 [第1の実施形態]
 図1は、第1の実施形態によるガラスロール製造装置の側面図である。図2は、第1の実施形態によるガラスロール製造装置の平面図である。図3は、第1の実施形態によるガラスロール製造方法の説明図であって、巻芯上に形成されるガラスシートの層の様子を示す断面図である。図4は、ガラスシートの側端位置の経時変化の一例を示す図である。図2及び図3において、Y方向は巻回軸方向と平行な方向であり、巻回軸方向は巻芯の軸方向のことである。
[First Embodiment]
FIG. 1 is a side view of the glass roll manufacturing apparatus according to the first embodiment. FIG. 2 is a plan view of the glass roll manufacturing apparatus according to the first embodiment. Drawing 3 is an explanatory view of the glass roll manufacturing method by a 1st embodiment, and is a sectional view showing the situation of the layer of the glass sheet formed on a core. FIG. 4 is a diagram illustrating an example of a temporal change in the side edge position of the glass sheet. 2 and 3, the Y direction is a direction parallel to the winding axis direction, and the winding axis direction is the axial direction of the winding core.
 ガラスロール製造装置100は、ガラスシート10を巻芯110に巻回してガラスロール190(図3参照)を製造する。製造後、ガラスロール190から巻芯110を引き抜いてもよい。 The glass roll manufacturing apparatus 100 winds the glass sheet 10 around the core 110 to manufacture a glass roll 190 (see FIG. 3). The core 110 may be pulled out from the glass roll 190 after the manufacture.
 ガラスシート10は、巻回時や巻回後に擦り傷などが生じるのを防止するため、合紙(間紙)や樹脂シートと重ねて巻芯110に巻回されてもよい。 The glass sheet 10 may be wound around the core 110 so as to overlap with a slip sheet (interleaf) or a resin sheet in order to prevent scratches or the like from being generated during or after winding.
 ガラスシート10のガラスは、用途に応じて選定される。例えば、液晶ディスプレイ用ガラス基板の場合、アルカリ金属酸化物を実質的に含まない無アルカリガラスが用いられる。用途によっては、ソーダライムガラス、石英ガラスなどの一般的なガラスが使用可能である。 The glass of the glass sheet 10 is selected according to the application. For example, in the case of a glass substrate for a liquid crystal display, an alkali-free glass that does not substantially contain an alkali metal oxide is used. Depending on the application, general glass such as soda lime glass and quartz glass can be used.
 ガラスシート10の成形方法は一般的な方法であってよく、フロート法、フュージョンダウンドロー法、スリットダウンドロー法、リドロー法などが用いられる。 The glass sheet 10 may be formed by a general method such as a float method, a fusion downdraw method, a slit downdraw method, or a redraw method.
 ガラスシート10の平均厚さは、0.3mm以下であることが好ましい。平均厚さが0.3mm以下であると、ガラスシート10が良好な可撓性を有するので、ガラスシート10の巻回時に生じる曲げ応力が軽減され、ガラスシート10の破損が抑制される。 The average thickness of the glass sheet 10 is preferably 0.3 mm or less. When the average thickness is 0.3 mm or less, the glass sheet 10 has good flexibility, so that bending stress generated when the glass sheet 10 is wound is reduced, and breakage of the glass sheet 10 is suppressed.
 ガラスシート10には、機能膜が成膜されていてもよい。機能膜は、例えば導電性膜、絶縁性膜、保護膜などでよく、機能膜の種類に応じて機能膜の材料が選定される。機能膜の材料としては、金属材料、無機材料、有機材料などがある。機能膜の成膜方法には、例えばスパッタ法、真空蒸着法、CVD法、液状物を塗布して乾燥する方法などがある。 A functional film may be formed on the glass sheet 10. The functional film may be, for example, a conductive film, an insulating film, a protective film, and the like, and the material of the functional film is selected according to the type of the functional film. Examples of the functional film material include a metal material, an inorganic material, and an organic material. Examples of the method for forming the functional film include a sputtering method, a vacuum deposition method, a CVD method, and a method of applying a liquid material and drying.
 ガラスシート10の前端部は、巻芯110に両面テープや静電気力などで固定されていてもよく、合紙や樹脂シートと巻芯110との間に挟まれて固定されていてもよい。ガラスシート10の幅方向と、巻芯110の軸方向とは平行になっている。 The front end portion of the glass sheet 10 may be fixed to the winding core 110 with a double-sided tape or electrostatic force, or may be sandwiched and fixed between a slip sheet or a resin sheet and the winding core 110. The width direction of the glass sheet 10 and the axial direction of the core 110 are parallel.
 巻芯110は、巻回モータ112に接続されている。巻回モータ112が回転すると、ガラスシート10が巻芯110に巻き取られる。巻回モータ112は、サーボモータであってよく、ガラスシート10の巻き取り張力が所定量となるようにフィードバック制御されてよい。 The winding core 110 is connected to a winding motor 112. When the winding motor 112 rotates, the glass sheet 10 is wound around the core 110. The winding motor 112 may be a servo motor, and may be feedback controlled so that the winding tension of the glass sheet 10 becomes a predetermined amount.
 巻芯110がガラスシート10を巻き取るとき、巻芯110の径偏差、軸ずれ、振動などによって巻芯110に対してガラスシート10の側端11、12の位置が意図しない方向に移動することがある。 When the core 110 winds up the glass sheet 10, the position of the side edges 11, 12 of the glass sheet 10 moves in an unintended direction with respect to the core 110 due to a diameter deviation, an axis deviation, vibration, or the like of the core 110. There is.
 そこで、ガラスロール製造装置100は、巻芯110に対するガラスシート10の側端11の位置を監視する位置センサ120と、位置センサ120による監視結果に基づいて巻芯110の巻き位置を調整する調整部130とを含む。 Therefore, the glass roll manufacturing apparatus 100 includes a position sensor 120 that monitors the position of the side end 11 of the glass sheet 10 with respect to the core 110, and an adjustment unit that adjusts the winding position of the core 110 based on the monitoring result of the position sensor 120. 130.
 位置センサ120は、巻芯110を巻芯110の中心軸を中心に回転自在に支持する図示されないフレームに対して固定されている。位置センサ120は、例えば巻芯110に向けて移動するガラスシート10の側端11の位置を検出する。位置センサ120は、ガラスシート10の幅方向と平行なレーザ光121を投光する投光部122と、投光部122と対向配置される受光部123とで構成される(図1及び図11参照)。受光部123は、ガラスシート10の幅方向と平行な方向に並ぶ複数の受光素子を含む。投光部122と受光部123との間をガラスシート10の側端11が通過するとき、受光素子での受光量の変化が急激になる位置を検出して、ガラスシート10の側端11の位置を検出する。 The position sensor 120 is fixed to a frame (not shown) that supports the core 110 so as to be rotatable about the central axis of the core 110. The position sensor 120 detects the position of the side end 11 of the glass sheet 10 that moves toward the core 110, for example. The position sensor 120 includes a light projecting unit 122 that projects a laser beam 121 parallel to the width direction of the glass sheet 10 and a light receiving unit 123 that is disposed to face the light projecting unit 122 (FIGS. 1 and 11). reference). The light receiving unit 123 includes a plurality of light receiving elements arranged in a direction parallel to the width direction of the glass sheet 10. When the side end 11 of the glass sheet 10 passes between the light projecting unit 122 and the light receiving unit 123, a position where the change in the amount of light received by the light receiving element becomes abrupt is detected, and the side end 11 of the glass sheet 10 is detected. Detect position.
 尚、位置センサ120の構成は多種多様であってよい。例えば、位置センサ120は、ガラスシートを撮像するCCDやCMOS等の撮像素子と、撮像素子で撮像された画像を画像処理する画像処理部とで構成されてもよい。画像処理部は、例えばCPU(Central Processing Unit)、RAM(Random Access Memory)及びROM(Read Only Memory)等を含むマイクロコンピュータで構成される。画像処理部は、撮像素子で撮像された画像を画像処理し、画像の明るさが急激に変わる箇所を特定し、ガラスシート10の側端11の位置を検出する。また、位置センサ120は、空気等のガスを噴射するノズルと、ノズルと対向配置される風量センサとで構成されてもよい。この位置センサ120は、ノズルと風量センサとの間をガラスシート10の側端11が通過するとき、風量センサでガスの風量を検出して、ガラスシート10の側端位置を検出する。さらに、位置センサ120は、ガラスシート10の側端11に形成される導電膜との間に形成されるギャップに応じた静電容量を検出する静電容量センサ、又は接触式のリニアゲージセンサで構成されてもよい。さらにまた、位置センサ120は、超音波を用いてガラスシート10の側端11の位置を検出してもよい。 Note that the configuration of the position sensor 120 may vary widely. For example, the position sensor 120 may be configured by an image sensor such as a CCD or a CMOS that images a glass sheet and an image processing unit that performs image processing on an image captured by the image sensor. The image processing unit includes a microcomputer including, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. The image processing unit performs image processing on the image picked up by the image pickup device, identifies a portion where the brightness of the image changes suddenly, and detects the position of the side edge 11 of the glass sheet 10. Moreover, the position sensor 120 may be comprised by the nozzle which injects gas, such as air, and the air volume sensor arrange | positioned facing a nozzle. When the side end 11 of the glass sheet 10 passes between the nozzle and the air volume sensor, the position sensor 120 detects the gas air volume with the air volume sensor and detects the side edge position of the glass sheet 10. Further, the position sensor 120 is a capacitance sensor that detects a capacitance according to a gap formed between the conductive film formed on the side edge 11 of the glass sheet 10 or a contact type linear gauge sensor. It may be configured. Furthermore, the position sensor 120 may detect the position of the side end 11 of the glass sheet 10 using ultrasonic waves.
 位置センサ120の設置位置は、ガラスシート10と調整シート20とが重なる位置よりも上流側に設定されてよい。ガラスシート10と調整シート20とを識別する必要がないので、ガラスシート10の側端11の位置検出が容易であり、検出精度も良くなる。 The installation position of the position sensor 120 may be set upstream of the position where the glass sheet 10 and the adjustment sheet 20 overlap. Since it is not necessary to distinguish between the glass sheet 10 and the adjustment sheet 20, the position detection of the side edge 11 of the glass sheet 10 is easy, and the detection accuracy is improved.
 尚、本実施形態の位置センサ120は、巻芯110に向けて移動中のガラスシート10の側端11の位置を監視するが、巻芯110の周りに巻回されるガラスシート10の最外層の側端の位置を検出してもよい。 The position sensor 120 of this embodiment monitors the position of the side end 11 of the glass sheet 10 that is moving toward the core 110, but the outermost layer of the glass sheet 10 that is wound around the core 110. You may detect the position of the side edge.
 調整部130は、位置センサ120による監視結果に基づいて、ガラスシート10の巻回半径Rの巻回軸方向における分布を調整することにより、その後に巻芯110の周りに巻回されるガラスシート10の巻き位置を調整する。ガラスシート10の巻回半径Rの巻き回軸方向における分布は、ガラスシート10の幅方向に沿って計測する。 The adjusting unit 130 adjusts the distribution in the winding axis direction of the winding radius R of the glass sheet 10 based on the monitoring result by the position sensor 120, and then the glass sheet wound around the core 110. 10 winding position is adjusted. The distribution of the winding radius R of the glass sheet 10 in the winding axis direction is measured along the width direction of the glass sheet 10.
 ガラスシート10の巻回半径Rの巻回軸方向における分布の調整は、例えばガラスシート10同士の間に挿入される調整シート20の挿入位置、及び調整シート20の寸法及び形状のうちの少なくとも一方の調整によって行われる。 The adjustment of the distribution of the winding radius R of the glass sheet 10 in the winding axis direction is, for example, at least one of the insertion position of the adjustment sheet 20 inserted between the glass sheets 10 and the size and shape of the adjustment sheet 20. Done by adjusting.
 本実施形態の調整部130は、ガラスシート10よりも幅狭の調整シート20の挿入位置を調整することにより、ガラスシート10の巻回半径Rの巻回軸方向における分布を調整する。調整シート20としては、樹脂フィルムや紙などが用いられる。調整シート20は、ガラスシート10と共に巻芯110に巻き取られるとき、ガラスシート10よりも巻芯110の径方向内方に配されてよい。調整シート21、22が巻芯に巻き取られると同時に、ガラスシート10の巻回半径Rの巻回軸方向における分布が変わるので、応答性が良い。 The adjusting unit 130 of the present embodiment adjusts the distribution of the winding radius R of the glass sheet 10 in the winding axis direction by adjusting the insertion position of the adjusting sheet 20 narrower than the glass sheet 10. As the adjustment sheet 20, a resin film, paper, or the like is used. When the adjustment sheet 20 is wound around the core 110 together with the glass sheet 10, the adjustment sheet 20 may be disposed radially inward of the core 110 relative to the glass sheet 10. Since the adjustment sheets 21 and 22 are wound around the winding core and the distribution of the winding radius R of the glass sheet 10 in the winding axis direction is changed, the responsiveness is good.
 調整部130は、調整シート20が巻回された調整芯131と、調整芯131を調整芯131の中心軸を中心に回転させる調整モータ133と、調整モータ133によって調整芯131から送り出される調整シート20を切断する切断機135とを含む。 The adjustment unit 130 includes an adjustment core 131 around which the adjustment sheet 20 is wound, an adjustment motor 133 that rotates the adjustment core 131 around the central axis of the adjustment core 131, and an adjustment sheet that is sent from the adjustment core 131 by the adjustment motor 133. And a cutting machine 135 for cutting 20.
 調整芯131は、巻芯110に向けて移動するガラスシート10の移動経路の上方に配設され、ガラスシート10の幅方向と平行な方向に複数(例えば2つ)並んでいる。 The adjustment core 131 is disposed above the movement path of the glass sheet 10 moving toward the winding core 110, and a plurality (for example, two) of adjustment cores 131 are arranged in a direction parallel to the width direction of the glass sheet 10.
 調整モータ133は、調整芯131を回転させる。複数の調整芯131に対応して複数の調整モータ133が設けられている。調整モータ133が回転すると、対応する調整芯131が回転し、調整芯131から調整シート20が送り出される。調整モータ133は、サーボモータであってよく、調整シート20の送り出し速度がガラスシート10の移動速度と同じになるようにフィードバック制御される。 The adjustment motor 133 rotates the adjustment core 131. A plurality of adjustment motors 133 are provided corresponding to the plurality of adjustment cores 131. When the adjustment motor 133 rotates, the corresponding adjustment core 131 rotates, and the adjustment sheet 20 is sent out from the adjustment core 131. The adjustment motor 133 may be a servo motor and is feedback-controlled so that the feeding speed of the adjustment sheet 20 is the same as the moving speed of the glass sheet 10.
 切断機135は、例えば、調整モータ133によって調整芯131から送り出される調整シート20をガラスシート10と重ねる位置に向けて案内する滑り台137と、滑り台137で支持される調整シート20を切断する切断ロール139と、切断ロール139を回転させる切断モータ141とで構成される。複数の調整芯131に対応して複数の切断機135が設置されている。 The cutting machine 135 includes, for example, a slide 137 that guides the adjustment sheet 20 fed from the adjustment core 131 by the adjustment motor 133 toward a position where the adjustment sheet 20 overlaps the glass sheet 10, and a cutting roll that cuts the adjustment sheet 20 supported by the slide 137. 139 and a cutting motor 141 that rotates the cutting roll 139. A plurality of cutting machines 135 are installed corresponding to the plurality of adjustment cores 131.
 滑り台137は、調整シート20を斜め下方に向けて案内する。調整シート20は、滑り台137から滑り落ちた後、ガラスシート10上に載置され、ガラスシート10と共に巻芯110に向けて搬送され、巻芯110上に形成されるガラスシート層同士の間に挿入される。調整シート20は、巻芯110に向けて搬送されるとき、静電気力や摩擦力によってガラスシート10に貼り付いている。 The slide 137 guides the adjustment sheet 20 obliquely downward. The adjustment sheet 20 slides down from the slide 137 and is then placed on the glass sheet 10, transported toward the core 110 together with the glass sheet 10, and between the glass sheet layers formed on the core 110. Inserted. When the adjustment sheet 20 is conveyed toward the core 110, the adjustment sheet 20 is attached to the glass sheet 10 by electrostatic force or frictional force.
 切断ロール139は、滑り台137の下端近傍に配設される。切断モータ141が回転し、切断ロール139が回転すると、滑り台137で支持される調整シート20が所定の長さで切断される。 The cutting roll 139 is disposed near the lower end of the slide 137. When the cutting motor 141 rotates and the cutting roll 139 rotates, the adjustment sheet 20 supported by the slide 137 is cut at a predetermined length.
 制御部180は、CPU、RAM及びROM等を含むマイクロコンピュータで構成され、ROM等に格納されるプログラムをCPUに実行させることにより、各種駆動部(例えば、巻回モータ112、調整モータ133、切断モータ141)を制御する。 The control unit 180 includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various driving units (for example, a winding motor 112, an adjustment motor 133, a cutting motor) The motor 141) is controlled.
 次に、上記構成のガラスロール製造装置の動作(ガラスロール製造方法)について説明する。ガラスロール製造装置100の各種動作は、制御部180による制御下で行われる。 Next, the operation (glass roll manufacturing method) of the glass roll manufacturing apparatus having the above configuration will be described. Various operations of the glass roll manufacturing apparatus 100 are performed under the control of the control unit 180.
 制御部180は、図4に示す時刻t0で巻回モータ112を駆動して、ガラスシート10の前端部が固定された巻芯110を回転させ、巻芯110にガラスシート10を巻き取る。時刻t0では、調整モータ133及び切断モータ141は停止している。制御部180は、例えば時刻t0で位置センサ120による監視を開始する。 The control unit 180 drives the winding motor 112 at time t0 shown in FIG. 4 to rotate the winding core 110 to which the front end portion of the glass sheet 10 is fixed, and winds the glass sheet 10 around the winding core 110. At time t0, the adjustment motor 133 and the cutting motor 141 are stopped. For example, the control unit 180 starts monitoring by the position sensor 120 at time t0.
 制御部180は、図4に示す時刻t1で、ガラスシート10の側端11の位置が基準位置Y0からY1方向に設定値ΔY1を超えて移動したことを検知すると、Y2側の調整モータ133を駆動して、Y2側の調整芯131に巻き取られた調整シート20を送り出す。調整シート20は、Y2側の滑り台137上を滑り落ち、ガラスシート10のY2側の端部に載置された後、ガラスシート10と共に巻芯110に向けて搬送され、ロール状のガラスシート10同士の間に挿入される。これにより、図3(a)に示すようにY1側からY2方向に向かうほどガラスシート10の巻回半径Rが大きくなる。 When the control unit 180 detects that the position of the side end 11 of the glass sheet 10 has moved from the reference position Y0 in the Y1 direction beyond the set value ΔY1 at time t1 shown in FIG. 4, the control unit 180 controls the Y2 side adjustment motor 133. Driven to feed out the adjustment sheet 20 wound around the adjustment core 131 on the Y2 side. The adjustment sheet 20 slides down on the Y2 side slide 137 and is placed on the end of the glass sheet 10 on the Y2 side, and is then transported toward the core 110 together with the glass sheet 10 to form a roll-shaped glass sheet 10. It is inserted between each other. Thereby, as shown to Fig.3 (a), the winding radius R of the glass sheet 10 becomes large, so that it goes to a Y2 direction from the Y1 side.
 図5は、円錐台の側面に帯状物を巻き付けたときの様子を示す図である。円錐台40の側面41に帯状物30を面接触させながら巻き付けると、帯状物30が螺旋状に巻き付けられる。このとき、帯状物30は、円錐台40の側面41の半径が大きくなる方向に自然に移動する。 FIG. 5 is a diagram showing a state when a band-like object is wound around the side surface of the truncated cone. When the strip 30 is wound around the side surface 41 of the truncated cone 40 while being in surface contact, the strip 30 is wound spirally. At this time, the strip 30 naturally moves in the direction in which the radius of the side surface 41 of the truncated cone 40 increases.
 本実施形態では、Y1側からY2方向に向かうほどガラスシート10の巻回半径Rが大きくなるので、図3(b)に示すようにその後に巻芯110の周りに巻回されるガラスシート10の巻き位置がY2方向にずれる。 In the present embodiment, since the winding radius R of the glass sheet 10 increases from the Y1 side in the Y2 direction, the glass sheet 10 is subsequently wound around the core 110 as shown in FIG. Is wound in the Y2 direction.
 制御部180は、図4に示す時刻t2で、ガラスシート10の側端11の位置と、基準位置Y0との間の距離が設定値ΔY1以下に戻ったことを検出すると、Y2側の調整モータ133の駆動を停止すると共に、Y2側の切断モータ141を駆動して、Y2側の調整シート20を切断する。 When the control unit 180 detects that the distance between the position of the side edge 11 of the glass sheet 10 and the reference position Y0 has returned to the set value ΔY1 or less at time t2 shown in FIG. 4, the Y2 side adjustment motor The driving of 133 is stopped and the cutting motor 141 on the Y2 side is driven to cut the adjustment sheet 20 on the Y2 side.
 制御部180は、図4に示す時刻t3で、ガラスシート10の側端11の位置が基準位置Y0からY2方向に設定値ΔY2を超えて移動したことを検知すると、Y1側の調整モータ133を駆動して、Y1側の調整芯131に巻き取られた調整シート20を送り出す。調整シート20は、Y1側の滑り台137上を滑り落ち、ガラスシート10のY1側の端部に載置された後、ガラスシート10と共に巻芯110に向けて搬送され、ロール状のガラスシート10同士の間に挿入される。これにより、図3(c)に示すようにY2側からY1方向に向かうほどガラスシート10の巻回半径Rが大きくなる。そのため、図3(d)に示すように、その後に巻芯110の周りに巻回されるガラスシート10の巻き位置がY1方向にずれる。 When the control unit 180 detects that the position of the side end 11 of the glass sheet 10 has moved from the reference position Y0 in the Y2 direction beyond the set value ΔY2 at time t3 shown in FIG. 4, the control unit 180 moves the adjustment motor 133 on the Y1 side. Driven to feed out the adjustment sheet 20 wound around the adjustment core 131 on the Y1 side. The adjustment sheet 20 slides down on the Y1 side slide 137 and is placed on the Y1 side end of the glass sheet 10, and is then conveyed toward the core 110 together with the glass sheet 10, and the roll-shaped glass sheet 10. It is inserted between each other. Thereby, as shown in FIG.3 (c), the winding radius R of the glass sheet 10 becomes large as it goes to the Y1 direction from the Y2 side. Therefore, as shown in FIG.3 (d), the winding position of the glass sheet 10 wound around the core 110 after that shifts to the Y1 direction.
 このようにして、制御部180は、ガラスシート10の巻き位置を制御する。この制御はガラスシート10を巻き付ける面の形状を調整することで行われるので、ガラスシート10にせん断応力がほとんど加わらず、ガラスシート10が割れにくい。よって、品質の良いガラスロール190が得られる。このガラスロール190の内部には、ガラスシート10よりも幅狭の調整シート20が挿入されている。 In this way, the control unit 180 controls the winding position of the glass sheet 10. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is hardly broken. Therefore, a high quality glass roll 190 is obtained. An adjustment sheet 20 narrower than the glass sheet 10 is inserted into the glass roll 190.
 尚、本実施形態の調整部は、ガラスシート10の幅方向と平行な方向に並ぶ複数の調整芯131を含むが、調整芯131の数は1つであってもよい。この場合、調整部は、巻芯110に対して調整芯131をY方向に移動させることにより、調整シート20のY方向における挿入位置を調整する。 In addition, although the adjustment part of this embodiment contains the some adjustment core 131 arranged in the direction parallel to the width direction of the glass sheet 10, the number of the adjustment cores 131 may be one. In this case, the adjustment unit adjusts the insertion position of the adjustment sheet 20 in the Y direction by moving the adjustment core 131 in the Y direction with respect to the winding core 110.
 [第2の実施形態]
 上記第1の実施形態では、ガラスシート10の巻回半径Rの巻回軸方向における分布を調整する目的で、ガラスシート10の幅方向端部に短冊状の調整シート20を挿入する。
[Second Embodiment]
In the first embodiment, the strip-shaped adjustment sheet 20 is inserted at the end in the width direction of the glass sheet 10 for the purpose of adjusting the distribution of the winding radius R of the glass sheet 10 in the winding axis direction.
 これに対し、本実施形態では、同じ目的で、寸法及び形状の異なる複数種類の調整シートの挿入位置を調整する点で相違する。以下、相違点を中心に説明する。 In contrast, the present embodiment is different in that the insertion positions of a plurality of types of adjustment sheets having different dimensions and shapes are adjusted for the same purpose. Hereinafter, the difference will be mainly described.
 図6は、第2の実施形態によるガラスロール製造装置の側面図である。図7は、第2の実施形態によるガラスロール製造装置の平面図である。図8は、第2の実施形態によるガラスロール製造方法の説明図であって、巻芯上に形成されるガラスシートの層の様子を示す断面図である。 FIG. 6 is a side view of the glass roll manufacturing apparatus according to the second embodiment. FIG. 7 is a plan view of the glass roll manufacturing apparatus according to the second embodiment. FIG. 8 is an explanatory view of the glass roll manufacturing method according to the second embodiment, and is a cross-sectional view showing the state of the glass sheet layer formed on the core.
 本実施形態のガラスロール製造装置200は、巻芯110と、位置センサ120と、調整部230と、制御部280とを備える。 The glass roll manufacturing apparatus 200 of this embodiment includes a core 110, a position sensor 120, an adjustment unit 230, and a control unit 280.
 調整部230は、位置センサ120による監視結果に基づいて、ガラスシート10の巻回半径Rの巻回軸方向(Y方向)における分布を調整することにより、その後に巻芯110の周りに巻回されるガラスシート10の巻き位置を調整する。 The adjustment unit 230 adjusts the distribution in the winding axis direction (Y direction) of the winding radius R of the glass sheet 10 based on the monitoring result by the position sensor 120, and then winds around the core 110. The winding position of the glass sheet 10 to be adjusted is adjusted.
 本実施形態の調整部230は、寸法及び形状の異なる複数種類の調整シート21、22の挿入位置を調整することにより、ガラスシート10の巻回半径Rの巻回軸方向における分布を調整する。調整シート21、22としては、樹脂フィルムや紙などが用いられる。調整シート21、22は、ガラスシート10よりも幅広であってよい。ガラスシート10同士の間に形成される隙間が少なく、ガラスシート10を安定的に支持することができる。 The adjusting unit 230 of the present embodiment adjusts the distribution of the winding radius R of the glass sheet 10 in the winding axis direction by adjusting the insertion positions of the plurality of types of adjusting sheets 21 and 22 having different dimensions and shapes. As the adjustment sheets 21 and 22, a resin film or paper is used. The adjustment sheets 21 and 22 may be wider than the glass sheet 10. There are few gaps formed between the glass sheets 10, and the glass sheet 10 can be stably supported.
 一の調整シート21は、調整シート21の幅方向に沿って一端側から他端側に向かうほど(Y1側からY2方向に向かうほど)厚さが厚くなる。残りの調整シート22は、調整シート22の幅方向に沿って他端側から一端側に向かうほど(Y2側からY1方向に向かうほど)厚さが厚くなる。 The thickness of the one adjustment sheet 21 increases as it goes from one end side to the other end side in the width direction of the adjustment sheet 21 (as it goes from the Y1 side to the Y2 direction). The remaining adjustment sheet 22 becomes thicker from the other end side to the one end side along the width direction of the adjustment sheet 22 (as it goes from the Y2 side to the Y1 direction).
 調整シート21、22は、ガラスシート10と共に巻芯110に巻き取られるとき、ガラスシート10よりも巻芯110の径方向内方に配されてよい。調整シート21、22が巻芯110に巻き取られると同時に、ガラスシート10の巻回半径Rの巻回軸方向における分布が変わるので、応答性が良い。 When the adjustment sheets 21 and 22 are wound around the core 110 together with the glass sheet 10, the adjustment sheets 21 and 22 may be arranged radially inward of the core 110 than the glass sheet 10. Since the adjustment sheets 21 and 22 are wound around the winding core 110 and the distribution of the winding radius R of the glass sheet 10 in the winding axis direction is changed, the responsiveness is good.
 調整部230は、調整シート21、22が巻回された調整芯231、232と、調整芯231、232を調整芯231、232の中心軸を中心に回転させる調整モータ233、234と、調整モータ233、234によって調整芯231、232から送り出される調整シート21、22を切断する切断機235、236とを含む。 The adjustment unit 230 includes adjustment cores 231 and 232 around which the adjustment sheets 21 and 22 are wound, adjustment motors 233 and 234 that rotate the adjustment cores 231 and 232 about the central axes of the adjustment cores 231 and 232, and adjustment motors And cutting machines 235 and 236 for cutting the adjustment sheets 21 and 22 sent out from the adjustment cores 231 and 232 by 233 and 234, respectively.
 調整芯231、232は、巻芯110に向けて移動するガラスシート10の移動経路の上方に配設され、ガラスシート10の移動経路に沿って並んでいる。 The adjustment cores 231 and 232 are disposed above the movement path of the glass sheet 10 that moves toward the winding core 110 and are aligned along the movement path of the glass sheet 10.
 調整モータ233、234は、調整芯231、232を回転させる。調整モータ233、234が回転すると、調整芯231、232が回転し、調整芯231、232から調整シート21、22が送り出される。調整モータ233、234は、サーボモータであってよく、調整シート21、22の送り出し速度がガラスシート10の移動速度と同じになるようにフィードバック制御される。 Adjustment motors 233 and 234 rotate the adjustment cores 231 and 232. When the adjustment motors 233 and 234 rotate, the adjustment cores 231 and 232 rotate, and the adjustment sheets 21 and 22 are sent out from the adjustment cores 231 and 232. The adjustment motors 233 and 234 may be servo motors, and are feedback-controlled so that the feeding speed of the adjustment sheets 21 and 22 is the same as the moving speed of the glass sheet 10.
 切断機235、236は、調整芯231、232から送り出された調整シート21、22を斜め下方に案内する滑り台237、238と、滑り台237、238で支持される調整シート21、22を切断する切断ロール239、240と、切断ロール239、240を回転させる切断モータ241、242とで構成される。 The cutting machines 235 and 236 cut the adjustment sheets 21 and 22 supported by the slides 237 and 238 and the slides 237 and 238 that guide the adjustment sheets 21 and 22 sent out from the adjustment cores 231 and 232 obliquely downward. It comprises rolls 239 and 240 and cutting motors 241 and 242 for rotating the cutting rolls 239 and 240.
 滑り台237、238は、調整シート21、22をガラスシート10と重ねる位置に向けて案内する。調整シート21、22は、滑り台237、238から滑り落ちた後、ガラスシート10上に載置され、ガラスシート10と共に巻芯110に向けて搬送され、巻芯110上に形成されるガラスシート層同士の間に挿入される。 The slides 237 and 238 guide the adjustment sheets 21 and 22 toward the position where they overlap the glass sheet 10. The adjustment sheets 21 and 22 slide on the slides 237 and 238, and are then placed on the glass sheet 10 and conveyed toward the core 110 together with the glass sheet 10, and are formed on the core 110. It is inserted between each other.
 切断ロール239、240は、滑り台237、238の下端近傍に配設される。切断モータ241、242が回転し、切断ロール239、240が回転すると、切断ロール239、240の刃で調整シート21、22が切断される。 The cutting rolls 239 and 240 are disposed in the vicinity of the lower ends of the slides 237 and 238. When the cutting motors 241 and 242 rotate and the cutting rolls 239 and 240 rotate, the adjustment sheets 21 and 22 are cut by the blades of the cutting rolls 239 and 240.
 制御部280は、CPU、RAM及びROM等を含むマイクロコンピュータで構成され、ROM等に格納されるプログラムをCPUに実行させることにより、各種駆動部(例えば、巻回モータ112、調整モータ233、234、切断モータ241、242)を制御する。 The control unit 280 includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various drive units (for example, the winding motor 112, the adjustment motors 233, 234). The cutting motors 241 and 242) are controlled.
 次に、上記構成のガラスロール製造装置200の動作(ガラスロール製造方法)について説明する。ガラスロール製造装置200の各種動作は、制御部280による制御下で行われる。 Next, the operation (glass roll manufacturing method) of the glass roll manufacturing apparatus 200 having the above configuration will be described. Various operations of the glass roll manufacturing apparatus 200 are performed under the control of the control unit 280.
 制御部280は、図4に示す時刻t0で巻回モータ112を駆動して、ガラスシート10の前端部が固定された巻芯110を回転させ、巻芯110にガラスシート10を巻き取る。時刻t0では、調整モータ233、234及び切断モータ241、242は停止している。制御部280は、例えば時刻t0で位置センサ120による監視を開始する。 The control unit 280 drives the winding motor 112 at time t0 shown in FIG. 4 to rotate the winding core 110 to which the front end portion of the glass sheet 10 is fixed, and winds the glass sheet 10 around the winding core 110. At time t0, the adjustment motors 233 and 234 and the cutting motors 241 and 242 are stopped. For example, the control unit 280 starts monitoring by the position sensor 120 at time t0.
 制御部280は、図4に示す時刻t1で、ガラスシート10の側端11の位置が基準位置Y0からY1方向に設定値ΔY1を超えて移動したことを検知すると、調整モータ233を駆動して、Y1側からY2方向に向かうほど厚さが厚くなる調整シート21を調整芯231から送り出す。調整芯231から送り出された調整シート21は、滑り台237上を滑り落ち、ガラスシート10上に載置された後、ガラスシート10と共に巻芯110に向けて搬送され、巻芯110上に形成されるガラスシート層同士の間に挿入される。そうすると、図8(a)に示すようにY1側からY2方向に向かうほどガラスシート10の巻回半径Rが大きくなるので、図8(b)に示すようにその後に巻芯110の周りに巻回されるガラスシート10の巻き位置がY2方向にずれる。 When the controller 280 detects that the position of the side edge 11 of the glass sheet 10 has moved from the reference position Y0 in the Y1 direction beyond the set value ΔY1 at time t1 shown in FIG. 4, the controller 280 drives the adjustment motor 233. The adjustment sheet 21 whose thickness increases from the Y1 side in the Y2 direction is sent out from the adjustment core 231. The adjustment sheet 21 sent out from the adjustment core 231 slides down on the slide 237 and is placed on the glass sheet 10, and then conveyed toward the core 110 together with the glass sheet 10, and is formed on the core 110. Inserted between the glass sheet layers. Then, as shown in FIG. 8A, the winding radius R of the glass sheet 10 increases from the Y1 side in the Y2 direction, so that the winding around the core 110 is thereafter performed as shown in FIG. 8B. The winding position of the rotated glass sheet 10 is shifted in the Y2 direction.
 制御部280は、図4に示す時刻t2で、ガラスシート10の側端11の位置と、基準位置Y0との間の距離が設定値ΔY1以下に戻ったことを検出すると、調整モータ233の駆動を停止すると共に、切断モータ241を駆動して、調整シート21を切断する。 When the control unit 280 detects that the distance between the position of the side end 11 of the glass sheet 10 and the reference position Y0 has returned to the set value ΔY1 or less at time t2 shown in FIG. 4, the controller 280 drives the adjustment motor 233. And the cutting motor 241 is driven to cut the adjustment sheet 21.
 制御部280は、図4に示す時刻t3で、ガラスシート10の側端11の位置が基準位置Y0からY2方向に設定値ΔY2を超えて移動したことを検知すると、調整モータ234を駆動して、Y2側からY1方向に向かうほど厚さが厚くなる調整シート22を調整芯232から送り出す。調整芯232から送り出された調整シート22は、滑り台238上を滑り落ち、ガラスシート10上に載置された後、ガラスシート10と共に巻芯110に向けて搬送され、巻芯110上に形成されるガラスシート層同士の間に挿入される。そうすると、図3(c)に示すようにY2側からY1方向に向かうほどガラスシート10の巻回半径Rが大きくなる。そのため、図3(d)に示すように、その後に巻芯110の周りに巻回されるガラスシート10の巻き位置がY1方向にずれる。 When the control unit 280 detects that the position of the side edge 11 of the glass sheet 10 has moved from the reference position Y0 in the Y2 direction beyond the set value ΔY2 at time t3 shown in FIG. 4, the control unit 280 drives the adjustment motor 234. The adjustment sheet 22 whose thickness increases from the Y2 side toward the Y1 direction is sent out from the adjustment core 232. The adjustment sheet 22 sent out from the adjustment core 232 slides down on the slide 238 and is placed on the glass sheet 10, and then conveyed toward the core 110 together with the glass sheet 10, and formed on the core 110. Inserted between the glass sheet layers. Then, as shown in FIG. 3C, the winding radius R of the glass sheet 10 increases from the Y2 side toward the Y1 direction. Therefore, as shown in FIG.3 (d), the winding position of the glass sheet 10 wound around the core 110 after that shifts to the Y1 direction.
 このようにして、制御部280は、ガラスシート10の巻き位置を制御する。この制御は第1の実施形態と同様にガラスシート10を巻き付ける面の形状を調整することで行われるので、ガラスシート10にせん断応力がほとんど加わらず、ガラスシート10が割れにくい。よって、品質の良いガラスロール290が得られる。このガラスロール290の内部には、幅方向に沿って一端側から他端側に向かうほど厚さが厚くなる調整シート21、22が挿入されている。 In this way, the control unit 280 controls the winding position of the glass sheet 10. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound as in the first embodiment, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is difficult to break. Therefore, the glass roll 290 with good quality is obtained. Inside the glass roll 290, adjustment sheets 21 and 22 that are thicker from one end side to the other end side along the width direction are inserted.
 [第3の実施形態]
 上記第1及び第2の実施形態では、ガラスシート10の巻回半径Rの巻回軸方向における分布を調整する目的で、調整シートの挿入位置を調整する。
[Third Embodiment]
In the first and second embodiments, the insertion position of the adjustment sheet is adjusted for the purpose of adjusting the distribution of the winding radius R of the glass sheet 10 in the winding axis direction.
 これに対し、本実施形態では、同じ目的で、巻芯110に連続的に巻き取られる調整シートの寸法及び形状を調整する点で相違する。以下、相違点を中心に説明する。 In contrast, the present embodiment is different in that the size and shape of the adjustment sheet continuously wound around the core 110 are adjusted for the same purpose. Hereinafter, the difference will be mainly described.
 図9Aは、第3の実施形態によるガラスロール製造装置の斜視図である。図9Aにおいて、便宜上、巻回モータ、調整芯及び調整芯を回転させる調整モータ、並びに位置センサの図示を省略する。図9Bは、支持フレームとボールネジユニットとの間に配設される部材を示す図である。図9Bはニップロールの中心軸が巻芯の中心軸に対して傾斜したときの状態を示し、図9B(1)は平面図、図9B(2)は側面図である。図10は、第3の実施形態によるガラスロール製造方法の説明図であって、巻芯上に形成されるガラスシートの層の様子を示す断面図である。 FIG. 9A is a perspective view of a glass roll manufacturing apparatus according to the third embodiment. In FIG. 9A, illustration of a winding motor, an adjustment core, an adjustment motor for rotating the adjustment core, and a position sensor is omitted for convenience. FIG. 9B is a diagram illustrating members disposed between the support frame and the ball screw unit. 9B shows a state when the central axis of the nip roll is inclined with respect to the central axis of the winding core, FIG. 9B (1) is a plan view, and FIG. 9B (2) is a side view. FIG. 10 is an explanatory view of the glass roll manufacturing method according to the third embodiment, and is a cross-sectional view showing the state of the glass sheet layer formed on the core.
 本実施形態のガラスロール製造装置300は、巻芯110と、位置センサ120と、調整部330と、制御部380とを備える。 The glass roll manufacturing apparatus 300 of this embodiment includes a core 110, a position sensor 120, an adjustment unit 330, and a control unit 380.
 調整部330は、位置センサ120による監視結果に基づいて、ガラスシート10の巻回半径Rの巻回軸方向における分布を調整する。この調整は、ガラスシート10と共に巻芯110に連続的に巻き取られる調整シート25の厚さの幅方向分布を調整して行われる。 The adjusting unit 330 adjusts the distribution in the winding axis direction of the winding radius R of the glass sheet 10 based on the monitoring result by the position sensor 120. This adjustment is performed by adjusting the distribution in the width direction of the thickness of the adjustment sheet 25 that is continuously wound around the core 110 together with the glass sheet 10.
 調整部330は、調整シート25の厚さの幅方向分布を調整するため、調整シート25の巻き取り張力の幅方向分布を調整する。調整シート25としては、樹脂フィルムや紙などが用いられる。調整シート25は、ガラスシート10よりも幅広であってよい。ガラスシート10同士の間に形成される隙間が少なく、ガラスシート10を安定的に支持することができる。ガラスシート10の前端部は、巻芯110に両面テープや静電気力などで固定されていてもよく、合紙や樹脂シートと巻芯110との間に挟まれて固定されていてもよい。調整シート25の前端部は、巻芯110に両面テープや静電気力などで固定されていてもよく、合紙や樹脂シートと巻芯110との間に挟まれて固定されていてもよい。 The adjustment unit 330 adjusts the width direction distribution of the winding tension of the adjustment sheet 25 in order to adjust the width direction distribution of the thickness of the adjustment sheet 25. As the adjustment sheet 25, a resin film or paper is used. The adjustment sheet 25 may be wider than the glass sheet 10. There are few gaps formed between the glass sheets 10, and the glass sheet 10 can be stably supported. The front end portion of the glass sheet 10 may be fixed to the winding core 110 with a double-sided tape or electrostatic force, or may be fixed by being sandwiched between a slip sheet or a resin sheet and the winding core 110. The front end portion of the adjustment sheet 25 may be fixed to the winding core 110 with a double-sided tape, electrostatic force, or the like, or may be fixed between a slip sheet or a resin sheet and the winding core 110.
 調整部330は、調整シート25が巻回された調整芯と、調整芯から巻芯110に向けて移動する調整シート25を挟み込む2本のニップロール333、334と、ニップロール333、334の一方を回転させる回転モータ335とを含む。回転モータ335が一方のニップロール333を回転させると、ニップロール333、334で挟み込まれた調整シート25が巻芯110に向けて送り出され、他方のニップロール334が回転する。 The adjustment unit 330 rotates one of the adjustment core around which the adjustment sheet 25 is wound, the two nip rolls 333 and 334 that sandwich the adjustment sheet 25 that moves from the adjustment core toward the winding core 110, and the nip rolls 333 and 334. A rotating motor 335 to be operated. When the rotation motor 335 rotates one nip roll 333, the adjustment sheet 25 sandwiched between the nip rolls 333 and 334 is sent toward the core 110, and the other nip roll 334 rotates.
 調整芯は、ニップロール333、334の回転に伴って受動的に回転し、ニップロール333、334に向けて調整シート25を送り出す。ニップロール333、334を通過する前の調整シート25の厚さは調整シート25の幅方向に均一であってよい。調整芯の中心軸は、巻芯110の中心軸と平行となっている。 The adjustment core passively rotates as the nip rolls 333 and 334 rotate, and sends the adjustment sheet 25 toward the nip rolls 333 and 334. The thickness of the adjustment sheet 25 before passing through the nip rolls 333 and 334 may be uniform in the width direction of the adjustment sheet 25. The central axis of the adjustment core is parallel to the central axis of the winding core 110.
 ニップロール333、334は、調整芯から送り出される調整シート25を挟み込んで支持する。ニップロール333、334は、例えば流体圧シリンダ336、337の圧力で調整シート25を挟み込んでいる。 The nip rolls 333 and 334 sandwich and support the adjustment sheet 25 sent out from the adjustment core. The nip rolls 333 and 334 sandwich the adjustment sheet 25 with the pressure of the fluid pressure cylinders 336 and 337, for example.
 ニップロール333、334は、ガラスシート10の移動経路よりも下方に配置されている。そのため、ガラスシート10の移動経路よりも下方に調整シート25の移動経路が配される。尚、ニップロール333、334は、ガラスシート10の移動経路よりも上方に配置されてもよい。 The nip rolls 333 and 334 are disposed below the moving path of the glass sheet 10. Therefore, the movement path of the adjustment sheet 25 is arranged below the movement path of the glass sheet 10. The nip rolls 333 and 334 may be disposed above the movement path of the glass sheet 10.
 ニップロール333、334の中心軸は、巻芯110の中心軸と平行とされ、巻芯110の中心軸に対して傾斜可能である。 The central axes of the nip rolls 333 and 334 are parallel to the central axis of the core 110 and can be inclined with respect to the central axis of the core 110.
 回転モータ335は、ニップロール333、334から巻芯110に向けて送り出される調整シート25に所定の巻き取り張力がかかるように制御される。この制御は、制御部380によって行われる。 The rotary motor 335 is controlled so that a predetermined winding tension is applied to the adjustment sheet 25 fed from the nip rolls 333 and 334 toward the core 110. This control is performed by the control unit 380.
 調整部330は、ニップロール333、334をニップロール333、334の中心軸を中心に回転自在に支持する支持フレーム340と、支持フレーム340を揺動させる揺動モータ343とをさらに含んでいる。 The adjustment unit 330 further includes a support frame 340 that rotatably supports the nip rolls 333 and 334 around the center axis of the nip rolls 333 and 334, and a swing motor 343 that swings the support frame 340.
 支持フレーム340は、ニップロール333、334を回転自在に支持する。支持フレーム340には、回転モータ335及び流体圧シリンダ336、337が固定されている。支持フレーム340は円弧状のフレームガイド342に沿って揺動自在である。 The support frame 340 supports the nip rolls 333 and 334 rotatably. A rotation motor 335 and fluid pressure cylinders 336 and 337 are fixed to the support frame 340. The support frame 340 can swing along an arcuate frame guide 342.
 揺動モータ343は、支持フレーム340を揺動させるものである。揺動モータ343と、支持フレーム340との間には、揺動モータ343の回転運動を直線運動に変換するボールネジユニット344が配設されている。ボールネジユニット344は、揺動モータ343と共に回転するネジ軸345と、ネジ軸345が螺合するネジ孔を含む可動体346とで構成される。可動体346と支持フレーム340との間には、図9Bに示すように、ピンジョイントなどで可動体346に対して回動自在に連結されるブロック347と、支持フレーム340に対して固定されるブロックガイド348とが設けられる。ブロックガイド348は支持フレーム340の長手方向に沿ってブロック347を案内する。 The swing motor 343 swings the support frame 340. Between the swing motor 343 and the support frame 340, a ball screw unit 344 that converts the rotational motion of the swing motor 343 into a linear motion is disposed. The ball screw unit 344 includes a screw shaft 345 that rotates together with the swing motor 343 and a movable body 346 that includes a screw hole into which the screw shaft 345 is screwed. As shown in FIG. 9B, the movable body 346 and the support frame 340 are fixed to the support frame 340 and a block 347 that is rotatably connected to the movable body 346 by a pin joint or the like. A block guide 348 is provided. The block guide 348 guides the block 347 along the longitudinal direction of the support frame 340.
 揺動モータ343が回転すると、ネジ軸345が回転し、ネジ軸345の軸方向に可動体346及びブロック347が移動する。このとき、ブロック347は可動体346に対して回動すると共にブロックガイド348に沿って移動し、支持フレーム340が円弧状のフレームガイド342に沿って揺動する。よって、ニップロール333、334の中心軸が巻芯110の中心軸に対して傾斜する。 When the swing motor 343 rotates, the screw shaft 345 rotates, and the movable body 346 and the block 347 move in the axial direction of the screw shaft 345. At this time, the block 347 rotates with respect to the movable body 346 and moves along the block guide 348, and the support frame 340 swings along the arcuate frame guide 342. Accordingly, the central axes of the nip rolls 333 and 334 are inclined with respect to the central axis of the winding core 110.
 揺動モータ343の回転力は、ニップロール333、334の軸方向一端部に対して巻芯110に近づく方向の力を与え、ニップロール333、334の軸方向他端部に対して巻芯110から遠ざかる方向の力を与える。そのため、調整シート25の幅方向の一端側(例えばY2側)から他端側(例えばY1側)に向かうほど、調整シート25の巻き取り張力が強くなり、調整シート25の伸びが大きく、調整シート25の厚さが薄くなる。調整シート25の伸びは弾性変形でも塑性変形でもよい。 The rotational force of the swing motor 343 applies a force in a direction approaching the core 110 to one axial end of the nip rolls 333 and 334 and moves away from the core 110 to the other axial end of the nip rolls 333 and 334. Give direction force. Therefore, the winding tension of the adjustment sheet 25 increases as the distance from one end side (for example, Y2 side) to the other end side (for example, Y1 side) of the adjustment sheet 25 increases, and the adjustment sheet 25 increases in elongation. The thickness of 25 is reduced. The elongation of the adjustment sheet 25 may be elastic deformation or plastic deformation.
 制御部380は、CPU、RAM及びROM等を含むマイクロコンピュータで構成され、ROM等に格納されるプログラムをCPUに実行させることにより、各種駆動部(例えば、巻回モータ112、回転モータ335、流体圧シリンダ336、337、揺動モータ343)を制御する。 The control unit 380 includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various drive units (for example, a winding motor 112, a rotation motor 335, a fluid, and the like) The pressure cylinders 336 and 337 and the swing motor 343) are controlled.
 次に、上記構成のガラスロール製造装置300の動作(ガラスロール製造方法)について説明する。ガラスロール製造装置300の各種動作は、制御部380による制御下で行われる。 Next, the operation (glass roll manufacturing method) of the glass roll manufacturing apparatus 300 having the above configuration will be described. Various operations of the glass roll manufacturing apparatus 300 are performed under the control of the control unit 380.
 制御部380は、図4に示す時刻t0で巻回モータ112を駆動して、ガラスシート10の前端部、及び調整シート25の前端部が固定された巻芯110を回転させ、巻芯110にガラスシート10及び調整シート25を巻き取る。このとき、制御部380は流体圧シリンダ336、337を駆動して、ニップロール333、334で調整シート25を挟み込んで巻芯110に向けて送り出す。時刻t0では、ニップロール333、334の中心軸は巻芯110の中心軸と平行になっており、揺動モータ343は停止している。制御部380は、例えば時刻t0で位置センサ120による監視を開始する。 The control unit 380 drives the winding motor 112 at time t0 shown in FIG. 4 to rotate the core 110 to which the front end of the glass sheet 10 and the front end of the adjustment sheet 25 are fixed. The glass sheet 10 and the adjustment sheet 25 are wound up. At this time, the control unit 380 drives the fluid pressure cylinders 336 and 337, sandwiches the adjustment sheet 25 with the nip rolls 333 and 334, and sends the adjustment sheet 25 toward the core 110. At time t0, the center axes of the nip rolls 333 and 334 are parallel to the center axis of the winding core 110, and the swing motor 343 is stopped. For example, the control unit 380 starts monitoring by the position sensor 120 at time t0.
 制御部380は、図4に示す時刻t1でガラスシート10の側端11の位置が基準位置Y0からY1方向に設定値ΔY1を超えて移動したことを検知すると、揺動モータ343を駆動して、Y1側からY2方向に向かうほど調整シート25の巻き取り張力を小さくする。これにより、Y1側からY2方向に向かうほど、調整シート25の伸びが少なく、調整シート25の厚さが厚くなる。そのため、図10(a)に示すようにY1側からY2方向に向かうほどガラスシート10の巻回半径Rが大きくなるので、図10(b)に示すようにその後に巻芯110の周りに巻回されるガラスシート10の巻き位置がY2方向にずれる。 When the controller 380 detects that the position of the side edge 11 of the glass sheet 10 has moved from the reference position Y0 in the Y1 direction beyond the set value ΔY1 at time t1 shown in FIG. 4, the controller 380 drives the swing motor 343. The winding tension of the adjustment sheet 25 is reduced as it goes from the Y1 side to the Y2 direction. Thereby, there is little elongation of the adjustment sheet 25 and the thickness of the adjustment sheet 25 becomes thick, so that it goes to the Y2 direction from the Y1 side. Therefore, since the winding radius R of the glass sheet 10 increases from the Y1 side in the Y2 direction as shown in FIG. 10A, the winding around the core 110 is thereafter performed as shown in FIG. 10B. The winding position of the rotated glass sheet 10 is shifted in the Y2 direction.
 制御部380は、図4に示す時刻t2でガラスシート10の側端11の位置と基準位置Y0との間の距離が設定値ΔY1以下に戻ったことを検出すると、支持フレーム340を元の位置に戻し、揺動モータ343の駆動を停止する。 When the control unit 380 detects that the distance between the position of the side end 11 of the glass sheet 10 and the reference position Y0 has returned to the set value ΔY1 or less at time t2 shown in FIG. 4, the control unit 380 moves the support frame 340 to the original position. The driving of the swing motor 343 is stopped.
 その後、制御部380は、図4に示す時刻t3でガラスシート10の側端11の位置が基準位置Y0からY2方向に設定値ΔY2を超えて移動したことを検知すると、揺動モータ343を駆動して、Y2側からY1方向に向かうほど調整シート25の巻き取り張力を小さくする。これにより、Y2側からY1方向に向かうほど、調整シート25の伸びが少なく、調整シート25の厚さが厚くなる。そのため、図10(c)に示すようにY2側からY1方向に向かうほどガラスシート10の巻回半径Rが大きくなるので、図10(d)に示すようにその後に巻芯110の周りに巻回されるガラスシート10の巻き位置がY1方向にずれる。 Thereafter, when the control unit 380 detects that the position of the side end 11 of the glass sheet 10 has moved from the reference position Y0 in the Y2 direction beyond the set value ΔY2 at time t3 shown in FIG. 4, the control unit 380 drives the swing motor 343. And the winding tension | tensile_strength of the adjustment sheet | seat 25 is made small so that it goes to the Y1 direction from the Y2 side. Thereby, there is little elongation of the adjustment sheet 25 and the thickness of the adjustment sheet 25 becomes thick, so that it goes to the Y1 direction from the Y2 side. Therefore, as shown in FIG. 10C, the winding radius R of the glass sheet 10 increases from the Y2 side in the Y1 direction, so that the winding around the core 110 is thereafter performed as shown in FIG. The winding position of the glass sheet 10 to be rotated is shifted in the Y1 direction.
 このようにして、制御部380は、ガラスシート10の巻き位置を制御する。この制御は第1の実施形態と同様にガラスシート10を巻き付ける面の形状を調整することで行われるので、ガラスシート10にせん断応力がほとんど加わらず、ガラスシート10が割れにくい。よって、品質の良いガラスロール390が得られる。このガラスロール390の内部には調整シート25が挿入されており、調整シート25の少なくとも一部分は、幅方向に沿って一端側から他端側に向かうほど厚さが厚くなる。 In this way, the control unit 380 controls the winding position of the glass sheet 10. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound as in the first embodiment, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is difficult to break. Therefore, a high quality glass roll 390 is obtained. The adjustment sheet 25 is inserted into the glass roll 390, and at least a part of the adjustment sheet 25 increases in thickness from one end side to the other end side in the width direction.
 尚、本実施形態の調整シート25は、ガラスシート10と共に巻芯110に巻き取られるとき、ガラスシート10よりも巻芯110の径方向外方に配されるが、ガラスシート10よりも巻芯110の径方向内方に配されてもよく、両側に配されてもよい。 In addition, when the adjustment sheet 25 of this embodiment is wound around the core 110 together with the glass sheet 10, the adjustment sheet 25 is arranged on the outer side in the radial direction of the core 110 than the glass sheet 10. 110 may be arranged inward in the radial direction, or may be arranged on both sides.
 [第3の実施形態の第1の変形例]
 上記第3実施形態では、巻芯110に連続的に巻き取られる調整シート25の厚さの幅方向分布を調整する目的で、巻芯110の中心軸に対してニップロール333、334の中心軸を揺動させる。
[First Modification of Third Embodiment]
In the third embodiment, the central axis of the nip rolls 333 and 334 is set to the central axis of the core 110 for the purpose of adjusting the width direction distribution of the thickness of the adjustment sheet 25 continuously wound around the core 110. Rock.
 これに対し、本変形例では、同じ目的で、巻芯110の中心軸に対して調整シート25の中心軸を揺動させる点で相違する。以下、相違点を中心に説明する。 On the other hand, this modification is different in that the central axis of the adjustment sheet 25 is swung with respect to the central axis of the core 110 for the same purpose. Hereinafter, the difference will be mainly described.
 図11は、第3の実施形態の第1の変形例によるガラスロール製造装置の斜視図である。 FIG. 11 is a perspective view of a glass roll manufacturing apparatus according to a first modification of the third embodiment.
 本実施形態のガラスロール製造装置300Aは、巻芯110と、位置センサ120と、調整部330Aと、制御部380Aとを備える。 The glass roll manufacturing apparatus 300A of the present embodiment includes a core 110, a position sensor 120, an adjustment unit 330A, and a control unit 380A.
 調整部330Aは、位置センサ120による監視結果に基づいて、ガラスシート10の巻回半径Rの巻回軸方向における分布を調整する。この調整は、ガラスシート10と共に巻芯110に連続的に巻き取られる調整シート25の厚さの幅方向分布を調整して行われる。 The adjusting unit 330A adjusts the distribution in the winding axis direction of the winding radius R of the glass sheet 10 based on the monitoring result by the position sensor 120. This adjustment is performed by adjusting the distribution in the width direction of the thickness of the adjustment sheet 25 that is continuously wound around the core 110 together with the glass sheet 10.
 調整部330Aは、調整シート25の厚さの幅方向分布を調整するため、調整シート25の巻き取り張力の幅方向分布を調整する。調整シート25としては、樹脂フィルムや紙などが用いられる。調整シート25は、ガラスシート10よりも幅広であってよい。ガラスシート10の前端部は、巻芯110に両面テープや静電気力などで固定されていてもよく、合紙や樹脂シートと巻芯110との間に挟まれて固定されていてもよい。調整シート25の前端部は、巻芯110に両面テープや静電気力などで固定されていてもよく、合紙や樹脂シートと巻芯110との間に挟まれて固定されていてもよい。 The adjusting unit 330A adjusts the widthwise distribution of the winding tension of the adjusting sheet 25 in order to adjust the widthwise distribution of the thickness of the adjusting sheet 25. As the adjustment sheet 25, a resin film or paper is used. The adjustment sheet 25 may be wider than the glass sheet 10. The front end portion of the glass sheet 10 may be fixed to the winding core 110 with a double-sided tape or electrostatic force, or may be fixed by being sandwiched between a slip sheet or a resin sheet and the winding core 110. The front end portion of the adjustment sheet 25 may be fixed to the winding core 110 with a double-sided tape, electrostatic force, or the like, or may be fixed between a slip sheet or a resin sheet and the winding core 110.
 調整部330Aは、調整シート25が巻回された調整芯331Aと、調整芯331Aを調整芯331Aの中心軸を中心に回転させる調整モータ341Aとを含む。 The adjustment unit 330A includes an adjustment core 331A around which the adjustment sheet 25 is wound, and an adjustment motor 341A that rotates the adjustment core 331A around the central axis of the adjustment core 331A.
 調整芯331Aは、調整モータ341Aによって回転され、巻芯110に向けて調整シート25を送り出す。調整芯331Aから送り出される前の調整シート25の厚さは幅方向に均一であってよい。 The adjustment core 331 </ b> A is rotated by the adjustment motor 341 </ b> A and sends the adjustment sheet 25 toward the winding core 110. The thickness of the adjustment sheet 25 before being sent out from the adjustment core 331A may be uniform in the width direction.
 調整芯331Aの中心軸は、巻芯110の中心軸と平行とされ、巻芯110の中心軸に対して傾斜可能である。 The central axis of the adjustment core 331A is parallel to the central axis of the winding core 110 and can be inclined with respect to the central axis of the winding core 110.
 調整部330Aは、調整芯331Aを調整芯331Aの中心軸を中心に回転自在に支持する支持フレーム340Aと、支持フレーム340Aを揺動させる揺動モータ343Aとをさらに含む。 The adjustment unit 330A further includes a support frame 340A that rotatably supports the adjustment core 331A about the central axis of the adjustment core 331A, and a swing motor 343A that swings the support frame 340A.
 支持フレーム340Aは、調整芯331Aを回転自在に支持する。支持フレーム340Aには、調整モータ341Aが固定されている。支持フレーム340Aは円弧状のフレームガイド342Aに沿って揺動自在である。 The support frame 340A rotatably supports the adjustment core 331A. An adjustment motor 341A is fixed to the support frame 340A. The support frame 340A can swing along an arcuate frame guide 342A.
 揺動モータ343Aは、支持フレーム340Aを揺動させるものである。揺動モータ343Aと、支持フレーム340Aとの間には、揺動モータ343Aの回転運動を直線運動に変換するボールネジユニット344Aが配設されている。ボールネジユニット344Aは、揺動モータ343Aと共に回転するネジ軸345Aと、ネジ軸345Aが螺合するネジ孔を含む可動体346Aとで構成される。可動体346Aと、支持フレーム340Aとの間には、図9Bに示すブロック347及びブロックガイド348が配設されている。 The swing motor 343A swings the support frame 340A. Between the swing motor 343A and the support frame 340A, a ball screw unit 344A that converts the rotational motion of the swing motor 343A into a linear motion is disposed. The ball screw unit 344A includes a screw shaft 345A that rotates together with the swing motor 343A, and a movable body 346A that includes a screw hole into which the screw shaft 345A is screwed. A block 347 and a block guide 348 shown in FIG. 9B are arranged between the movable body 346A and the support frame 340A.
 揺動モータ343Aが回転すると、ネジ軸345Aが回転し、ネジ軸345Aの軸方向に可動体346Aが移動する。このとき、支持フレーム340Aが円弧状のフレームガイド342Aに沿って揺動し、調整芯331Aの中心軸が巻芯110の中心軸に対して傾斜する。 When the swing motor 343A rotates, the screw shaft 345A rotates and the movable body 346A moves in the axial direction of the screw shaft 345A. At this time, the support frame 340 </ b> A swings along the arc-shaped frame guide 342 </ b> A, and the central axis of the adjustment core 331 </ b> A is inclined with respect to the central axis of the winding core 110.
 揺動モータ343Aの回転力は、調整芯331Aの軸方向一端部に対して巻芯110に近づく方向の力を与え、調整芯331Aの軸方向他端部に対して巻芯110から遠ざかる方向の力を与える。そのため、調整シート25の幅方向の一端側(例えばY2側)から他端側(例えばY1側)に向かうほど、調整シート25の巻き取り張力が強くなり、調整シート25の伸びが大きく、調整シート25の厚さが薄くなる。調整シート25の伸びは弾性変形でも塑性変形でもよい。 The rotational force of the swing motor 343A gives a force in a direction approaching the winding core 110 to one axial end of the adjustment core 331A, and moves away from the winding core 110 to the other axial end of the adjustment core 331A. Give power. Therefore, the winding tension of the adjustment sheet 25 increases as the distance from one end side (for example, Y2 side) to the other end side (for example, Y1 side) of the adjustment sheet 25 increases, and the adjustment sheet 25 increases in elongation. The thickness of 25 is reduced. The elongation of the adjustment sheet 25 may be elastic deformation or plastic deformation.
 制御部380Aは、CPU、RAM及びROM等を含むマイクロコンピュータで構成され、ROM等に格納されるプログラムをCPUに実行させることにより、各種駆動部(例えば、巻回モータ112、調整モータ341A、揺動モータ343A)を制御する。 The control unit 380A includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various drive units (for example, a winding motor 112, an adjustment motor 341A, a swing motor, and the like). The motor 343A) is controlled.
 本変形例では、巻芯110の中心軸に対して調整芯310Aの中心軸を揺動させることにより、調整シート25の巻き取り張力の幅方向分布を調整し、調整シート25の厚さの幅方向分布を調整する。これにより、ガラスシート10の巻回半径Rの巻回軸方向における分布を調整し、その後に巻芯110の周りに巻回されるガラスシート10の巻き位置を制御することができる。この制御は第1の実施形態と同様にガラスシート10を巻き付ける面の形状を調整することで行われるので、ガラスシート10にせん断応力がほとんど加わらず、ガラスシート10が割れにくい。よって、品質の良いガラスロールが得られる。 In this modification, the width direction distribution of the winding tension of the adjustment sheet 25 is adjusted by swinging the center axis of the adjustment core 310A with respect to the center axis of the winding core 110, and the width of the thickness of the adjustment sheet 25 is adjusted. Adjust the direction distribution. Thereby, the distribution in the winding axis direction of the winding radius R of the glass sheet 10 can be adjusted, and the winding position of the glass sheet 10 wound around the winding core 110 after that can be controlled. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound as in the first embodiment, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is difficult to break. Therefore, a good quality glass roll is obtained.
 [第3の実施形態の第2の変形例]
 上記第3実施形態では、巻芯110に連続的に巻き取られる調整シート25の厚さの幅方向分布を調整する目的で、巻芯110の中心軸に対してニップロール333、334の中心軸を揺動させる。
[Second Modification of Third Embodiment]
In the third embodiment, the central axis of the nip rolls 333 and 334 is set to the central axis of the core 110 for the purpose of adjusting the width direction distribution of the thickness of the adjustment sheet 25 continuously wound around the core 110. Rock.
 これに対し、本変形例では、ニップロール333、334の代わりに、調整シート25を円弧状に支持する支持ロールを用い、支持ロールの中心軸を巻芯110の中心軸に対して揺動させる点で相違する。以下、相違点を中心に説明する。 On the other hand, in this modification, instead of the nip rolls 333 and 334, a support roll that supports the adjustment sheet 25 in an arc shape is used, and the central axis of the support roll is swung with respect to the central axis of the core 110. Is different. Hereinafter, the difference will be mainly described.
 図12は、第3の実施形態の第2の変形例によるガラスロール製造装置の斜視図である。図12において、便宜上、調整芯及び調整芯を回転させる調整モータの図示を省略する。図13は、調整芯から巻芯に向けて移動する調整シートを支持する支持ロールを示す側面図である。 FIG. 12 is a perspective view of a glass roll manufacturing apparatus according to a second modification of the third embodiment. In FIG. 12, for the sake of convenience, the illustration of the adjustment core and the adjustment motor that rotates the adjustment core is omitted. FIG. 13 is a side view showing a support roll that supports an adjustment sheet that moves from the adjustment core toward the winding core.
 本実施形態のガラスロール製造装置300Bは、巻芯110と、位置センサ120と、調整部330Bと、制御部380Bとを備える。 The glass roll manufacturing apparatus 300B of this embodiment includes a core 110, a position sensor 120, an adjustment unit 330B, and a control unit 380B.
 調整部330Bは、位置センサ120による監視結果に基づいて、ガラスシート10の巻回半径Rの巻回軸方向における分布を調整する。この調整は、ガラスシート10と共に巻芯110に連続的に巻き取られる調整シート25の厚さの幅方向分布を調整して行われる。 The adjusting unit 330B adjusts the distribution in the winding axis direction of the winding radius R of the glass sheet 10 based on the monitoring result by the position sensor 120. This adjustment is performed by adjusting the distribution in the width direction of the thickness of the adjustment sheet 25 that is continuously wound around the core 110 together with the glass sheet 10.
 調整部330Bは、調整シート25の厚さの幅方向分布を調整するため、調整シート25の巻き取り張力の幅方向分布を調整する。調整シート25としては、樹脂フィルムや紙などが用いられる。調整シート25は、ガラスシート10よりも幅広であってよい。ガラスシート10の前端部は、巻芯110に両面テープや静電気力などで固定されていてもよく、合紙や樹脂シートと巻芯110との間に挟まれて固定されていてもよい。調整シート25の前端部は、巻芯110に両面テープや静電気力などで固定されていてもよく、合紙や樹脂シートと巻芯110との間に挟まれて固定されていてもよい。 The adjustment unit 330B adjusts the width direction distribution of the winding tension of the adjustment sheet 25 in order to adjust the width direction distribution of the thickness of the adjustment sheet 25. As the adjustment sheet 25, a resin film or paper is used. The adjustment sheet 25 may be wider than the glass sheet 10. The front end portion of the glass sheet 10 may be fixed to the winding core 110 with a double-sided tape or electrostatic force, or may be fixed by being sandwiched between a slip sheet or a resin sheet and the winding core 110. The front end portion of the adjustment sheet 25 may be fixed to the winding core 110 with a double-sided tape, electrostatic force, or the like, or may be fixed between a slip sheet or a resin sheet and the winding core 110.
 調整部330Bは、調整シート25が巻回された調整芯と、調整芯を調整芯の中心軸を中心に回転させる調整モータと、調整芯から巻芯110に向けて移動する調整シート25を支持する複数(例えば3本)の支持ロール332B~334Bとを含む。 The adjustment unit 330B supports the adjustment core around which the adjustment sheet 25 is wound, the adjustment motor that rotates the adjustment core around the central axis of the adjustment core, and the adjustment sheet 25 that moves from the adjustment core toward the winding core 110. A plurality of (for example, three) support rolls 332B to 334B.
 調整芯は、調整モータによって回転され、支持ロール332B~334Bに向けて調整シート25を送り出す。支持ロール332B~334Bを通過する前の調整シート25の厚さは調整シート25の幅方向に均一であってよい。調整芯の中心軸は、巻芯110の中心軸と平行となっている。 The adjustment core is rotated by the adjustment motor, and sends out the adjustment sheet 25 toward the support rolls 332B to 334B. The thickness of the adjustment sheet 25 before passing through the support rolls 332B to 334B may be uniform in the width direction of the adjustment sheet 25. The central axis of the adjustment core is parallel to the central axis of the winding core 110.
 調整モータは、調整芯と、支持ロール332B~334Bとの間において、調整シート25に所定の張力がかかるように制御される。この制御は、制御部380Bによって行われる。 The adjustment motor is controlled so that a predetermined tension is applied to the adjustment sheet 25 between the adjustment core and the support rolls 332B to 334B. This control is performed by the control unit 380B.
 支持ロール332B~334Bは、図13に示すように調整シート25を円弧状に支持する。調整シート25は、支持ロール332B~334Bの外周面の一部に沿って円弧状になっている。 The support rolls 332B to 334B support the adjustment sheet 25 in an arc shape as shown in FIG. The adjustment sheet 25 has an arc shape along a part of the outer peripheral surface of the support rolls 332B to 334B.
 支持ロール332B~334Bの配置は、下記の式(1)を満たすように設定される。 The arrangement of the support rolls 332B to 334B is set so as to satisfy the following formula (1).
  U2/U1≦exp(μ1×θ1+μ2×θ2+μ3×θ3)・・・(1)
 上記式(1)中、U1は支持ロール332B~334Bを通過する前の調整シート25の張力、U2(≧U1)は支持ロール332B~334Bを通過した後の調整シート25の張力を示す。また、μ1~μ3は支持ロール332B~334Bと調整シート25との静止摩擦係数、θ1~θ3は調整シート25の円弧状部分の中心角度を表す。
U2 / U1 ≦ exp (μ1 × θ1 + μ2 × θ2 + μ3 × θ3) (1)
In the above formula (1), U1 represents the tension of the adjustment sheet 25 before passing through the support rolls 332B to 334B, and U2 (≧ U1) represents the tension of the adjustment sheet 25 after passing through the support rolls 332B to 334B. Further, μ1 to μ3 are static friction coefficients between the support rolls 332B to 334B and the adjustment sheet 25, and θ1 to θ3 are center angles of arcuate portions of the adjustment sheet 25.
 支持ロール332B~334Bは、巻芯110の回転に伴って受動的に回転し、巻芯110に向けて調整シート25を送り出す。支持ロール332B~334Bの中心軸は、巻芯110の中心軸と平行とされ、巻芯110の中心軸に対して傾斜可能である。 The support rolls 332B to 334B rotate passively with the rotation of the core 110, and send the adjustment sheet 25 toward the core 110. The central axes of the support rolls 332B to 334B are parallel to the central axis of the core 110 and can be inclined with respect to the central axis of the core 110.
 調整部330Bは、支持ロール332B~334Bを支持ロール332B~334Bの中心軸を中心に回転自在に支持する支持フレーム340Bと、支持フレーム340Bを揺動させる揺動モータ343Bとをさらに含んでいる。 The adjustment unit 330B further includes a support frame 340B that supports the support rolls 332B to 334B rotatably about the central axis of the support rolls 332B to 334B, and a swing motor 343B that swings the support frame 340B.
 支持フレーム340Bは、支持ロール332B~334Bを回転自在に支持する。支持フレーム340Bは円弧状のフレームガイド342Bに沿って揺動自在である。尚、支持フレーム340Bは、支持ロール332B~334Bを回転自在に支持すると共に、調整芯を調整芯の中心軸を中心に回転自在に支持するものであってもよい。 The support frame 340B rotatably supports the support rolls 332B to 334B. The support frame 340B can swing along the arcuate frame guide 342B. The support frame 340B may support the support rolls 332B to 334B so as to be rotatable, and may support the adjustment core so as to be rotatable about the central axis of the adjustment core.
 揺動モータ343Bは、支持フレーム340Bを揺動させるものである。揺動モータ343Bと、支持フレーム340Bとの間には、揺動モータ343Bの回転運動を直線運動に変換するボールネジユニット344Bが配設されている。ボールネジユニット344Bは、揺動モータ343Bと共に回転するネジ軸345Bと、ネジ軸345Bが螺合するネジ孔を含む可動体346Bとで構成される。可動体346Bと、支持フレーム340Bとの間には、図9Bに示すブロック347及びブロックガイド348が配設されている。 The swing motor 343B swings the support frame 340B. Between the swing motor 343B and the support frame 340B, a ball screw unit 344B that converts the rotational motion of the swing motor 343B into a linear motion is disposed. The ball screw unit 344B includes a screw shaft 345B that rotates together with the swing motor 343B, and a movable body 346B that includes a screw hole into which the screw shaft 345B is screwed. A block 347 and a block guide 348 shown in FIG. 9B are arranged between the movable body 346B and the support frame 340B.
 揺動モータ343Bが回転すると、ネジ軸345Bが回転し、ネジ軸345Bの軸方向に可動体346Bが移動する。このとき、支持フレーム340Bが円弧状のフレームガイド342Bに沿って揺動し、支持ロール332B~334Bの中心軸が巻芯110の中心軸に対して傾斜する。 When the swing motor 343B rotates, the screw shaft 345B rotates, and the movable body 346B moves in the axial direction of the screw shaft 345B. At this time, the support frame 340B swings along the arcuate frame guide 342B, and the central axes of the support rolls 332B to 334B are inclined with respect to the central axis of the core 110.
 揺動モータ343Bの回転力は、支持ロール332B~334Bの軸方向一端部に対して巻芯110に近づく方向の力を与え、支持ロール332B~334Bの軸方向他端部に対して巻芯110から遠ざかる方向の力を与える。そのため、調整シート25の幅方向の一端側(例えばY2側)から他端側(例えばY1側)に向かうほど、調整シート25の巻き取り張力が強くなり、調整シート25の伸びが大きく、調整シート25の厚さが薄くなる。調整シート25の伸びは弾性変形でも塑性変形でもよい。 The rotational force of the swing motor 343B applies a force in a direction approaching the core 110 to one axial end of the support rolls 332B to 334B, and the core 110 to the other axial end of the support rolls 332B to 334B. Give the force away from the. Therefore, the winding tension of the adjustment sheet 25 increases as the distance from one end side (for example, Y2 side) to the other end side (for example, Y1 side) of the adjustment sheet 25 increases, and the adjustment sheet 25 increases in elongation. The thickness of 25 is reduced. The elongation of the adjustment sheet 25 may be elastic deformation or plastic deformation.
 制御部380Bは、CPU、RAM及びROM等を含むマイクロコンピュータで構成され、ROM等に格納されるプログラムをCPUに実行させることにより、各種駆動部(例えば、巻回モータ112、調整モータ、揺動モータ343B)を制御する。 The control unit 380B includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various driving units (for example, a winding motor 112, an adjustment motor, a swing motor) The motor 343B) is controlled.
 本変形例では、巻芯110の中心軸に対して支持ロール332B~334Bの中心軸を揺動させることにより、調整シート25の巻き取り張力の幅方向分布を調整し、調整シート25の厚さの幅方向分布を調整する。これにより、ガラスシート10の巻回半径Rの巻回軸方向における分布を調整し、その後に巻芯110の周りに巻回されるガラスシート10の巻き位置を制御することができる。この制御は第1の実施形態と同様にガラスシート10を巻き付ける面の形状を調整することで行われるので、ガラスシート10にせん断応力がほとんど加わらず、ガラスシート10が割れにくい。よって、品質の良いガラスロールが得られる。 In this modification, the width direction distribution of the winding tension of the adjustment sheet 25 is adjusted by swinging the center axis of the support rolls 332B to 334B with respect to the center axis of the winding core 110, and the thickness of the adjustment sheet 25 is adjusted. Adjust the distribution in the width direction. Thereby, the distribution in the winding axis direction of the winding radius R of the glass sheet 10 can be adjusted, and the winding position of the glass sheet 10 wound around the winding core 110 after that can be controlled. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound as in the first embodiment, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is difficult to break. Therefore, a good quality glass roll is obtained.
 尚、本変形例では、複数(例えば3本)の支持ロール332B~334Bを用いたが。調整シート25を円弧状に支持することができれば、支持ロールの数は1本であってもよく、支持ロールの数は特に限定されない。 In this modification, a plurality of (for example, three) support rolls 332B to 334B are used. As long as the adjustment sheet 25 can be supported in an arc shape, the number of support rolls may be one, and the number of support rolls is not particularly limited.
 [第3の実施形態の第3の変形例]
 上記第3実施形態では、巻芯110に連続的に巻き取られる調整シート25の厚さの幅方向分布を調整する目的で、調整シート25の巻き取り張力の幅方向分布を調整した。
[Third Modification of Third Embodiment]
In the said 3rd Embodiment, the width direction distribution of the winding tension | tensile_strength of the adjustment sheet 25 was adjusted in order to adjust the width direction distribution of the thickness of the adjustment sheet 25 wound around the winding core 110 continuously.
 これに対し、本変形例では、同じ目的で、調整シート25のニップ圧の幅方向分布を調整する点で相違する。以下、相違点を中心に説明する。 On the other hand, this modification is different in that the width direction distribution of the nip pressure of the adjustment sheet 25 is adjusted for the same purpose. Hereinafter, the difference will be mainly described.
 図14は、第3の実施形態の第3の変形例によるガラスロール製造装置の斜視図である。図14において、便宜上、調整芯及び位置センサの図示を省略する。 FIG. 14 is a perspective view of a glass roll manufacturing apparatus according to a third modification of the third embodiment. In FIG. 14, illustration of the adjustment core and the position sensor is omitted for convenience.
 本実施形態のガラスロール製造装置300Cは、巻芯110と、位置センサ120と、調整部330Cと、制御部380Cとを備える。 The glass roll manufacturing apparatus 300C of the present embodiment includes a core 110, a position sensor 120, an adjustment unit 330C, and a control unit 380C.
 調整部330Cは、位置センサ120による監視結果に基づいて、ガラスシート10の巻回半径Rの巻回軸方向における分布を調整する。この調整は、ガラスシート10と共に巻芯110に連続的に巻き取られる調整シート25の厚さの幅方向分布を調整して行われる。 The adjusting unit 330C adjusts the distribution of the winding radius R of the glass sheet 10 in the winding axis direction based on the monitoring result by the position sensor 120. This adjustment is performed by adjusting the distribution in the width direction of the thickness of the adjustment sheet 25 that is continuously wound around the core 110 together with the glass sheet 10.
 調整部330Cは、調整シート25の厚さの幅方向分布を調整するため、調整シート25のニップ圧の幅方向分布を調整する。調整シート25としては、樹脂フィルムや紙などが用いられる。調整シート25は、ガラスシート10よりも幅広であってよい。ガラスシート10の前端部は、巻芯110に両面テープや静電気力などで固定されていてもよく、合紙や樹脂シートと巻芯110との間に挟まれて固定されていてもよい。調整シート25の前端部は、巻芯110に両面テープや静電気力などで固定されていてもよく、合紙や樹脂シートと巻芯110との間に挟まれて固定されていてもよい。 The adjustment unit 330C adjusts the width direction distribution of the nip pressure of the adjustment sheet 25 in order to adjust the width direction distribution of the thickness of the adjustment sheet 25. As the adjustment sheet 25, a resin film or paper is used. The adjustment sheet 25 may be wider than the glass sheet 10. The front end portion of the glass sheet 10 may be fixed to the winding core 110 with a double-sided tape or electrostatic force, or may be fixed by being sandwiched between a slip sheet or a resin sheet and the winding core 110. The front end portion of the adjustment sheet 25 may be fixed to the winding core 110 with a double-sided tape, electrostatic force, or the like, or may be fixed between a slip sheet or a resin sheet and the winding core 110.
 調整部330Cは、調整シート25が巻回された調整芯と、調整芯から巻芯110に向けて移動する調整シート25を挟み込む2本のニップロール333C、334Cと、ニップロール333C、334Cの一方を回転させる回転モータ335Cとを含む。回転モータ335Cが一方のニップロール333Cを回転させると、ニップロール333C、334Cで挟み込まれた調整シート25が巻芯110に向けて送り出され、他方のニップロール334Cが回転する。 The adjustment unit 330C rotates one of the adjustment core around which the adjustment sheet 25 is wound, the two nip rolls 333C and 334C that sandwich the adjustment sheet 25 that moves from the adjustment core toward the winding core 110, and the nip rolls 333C and 334C. A rotating motor 335C. When the rotation motor 335C rotates one nip roll 333C, the adjustment sheet 25 sandwiched between the nip rolls 333C and 334C is sent out toward the core 110, and the other nip roll 334C rotates.
 調整芯は、ニップロール333C、334Cの回転に伴って受動的に回転し、ニップロール333C、334Cに向けて調整シート25を送り出す。ニップロール333C、334Cを通過する前の調整シート25の厚さは調整シートの幅方向に均一であってよい。調整芯の中心軸は、巻芯110の中心軸と平行となっている。 The adjustment core passively rotates as the nip rolls 333C and 334C rotate, and sends the adjustment sheet 25 toward the nip rolls 333C and 334C. The thickness of the adjustment sheet 25 before passing through the nip rolls 333C and 334C may be uniform in the width direction of the adjustment sheet. The central axis of the adjustment core is parallel to the central axis of the winding core 110.
 ニップロール333C、334Cは、調整芯から送り出される調整シート25を挟み込んで支持する。ニップロール333C、334Cは、例えば流体圧シリンダ336C、337Cの圧力で調整シート25を挟み込んでいる。流体圧シリンダ336C、337Cは支持フレーム340Cに固定されている。 The nip rolls 333C and 334C sandwich and support the adjustment sheet 25 sent out from the adjustment core. The nip rolls 333C and 334C sandwich the adjustment sheet 25 with the pressure of the fluid pressure cylinders 336C and 337C, for example. The fluid pressure cylinders 336C and 337C are fixed to the support frame 340C.
 ニップロール333C、334Cの中心軸は、巻芯110の中心軸と平行とされ、一方のニップロール333Cの中心軸が他方のニップロール334Cの中心軸に対して傾斜可能となっている。 The central axes of the nip rolls 333C and 334C are parallel to the central axis of the core 110, and the central axis of one nip roll 333C can be inclined with respect to the central axis of the other nip roll 334C.
 2本のニップロール333C、334Cの間を通過するとき調整シート25が塑性変形するように、流体圧シリンダ336C、337の圧力が設定されている。流体圧シリンダ336C、337Cの圧力は、制御部380Cによって制御される。 The pressures of the fluid pressure cylinders 336C and 337 are set so that the adjustment sheet 25 is plastically deformed when passing between the two nip rolls 333C and 334C. The pressure in the fluid pressure cylinders 336C and 337C is controlled by the control unit 380C.
 Y1側の流体圧シリンダ336Cの圧力がY2側の流体圧シリンダ337Cの圧力よりも大きくなると、調整シート25の幅方向のY2側からY1方向に向かうほど、調整シート25のニップ圧が高くなり、調整シート25の厚さが薄くなる。一方、Y2側の流体圧シリンダ336Cの圧力がY1側の流体圧シリンダ337Cの圧力よりも大きくなると、調整シート25の幅方向のY1側からY2方向に向かうほど、調整シート25のニップ圧が高くなり、調整シート25の厚さが薄くなる。 When the pressure of the fluid pressure cylinder 336C on the Y1 side becomes larger than the pressure of the fluid pressure cylinder 337C on the Y2 side, the nip pressure of the adjustment sheet 25 increases from the Y2 side in the width direction of the adjustment sheet 25 toward the Y1 direction. The thickness of the adjustment sheet 25 is reduced. On the other hand, when the pressure of the fluid pressure cylinder 336C on the Y2 side becomes larger than the pressure of the fluid pressure cylinder 337C on the Y1 side, the nip pressure of the adjustment sheet 25 increases from the Y1 side in the width direction of the adjustment sheet 25 toward the Y2 direction. Thus, the thickness of the adjustment sheet 25 is reduced.
 制御部380Cは、CPU、RAM及びROM等を含むマイクロコンピュータで構成され、ROM等に格納されるプログラムをCPUに実行させることにより、各種駆動部(例えば、巻回モータ112、流体圧シリンダ336C、337C、回転モータ335C)を制御する。 The control unit 380C includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various drive units (for example, the winding motor 112, the fluid pressure cylinder 336C, 337C, rotary motor 335C).
 本変形例では、流体圧シリンダ338C、339Cの圧力を調整することにより、調整シート25のニップ圧の幅方向分布を調整し、調整シート25の厚さの幅方向分布を調整する。これにより、ガラスシート10の巻回半径Rの巻回軸方向における分布を調整し、その後に巻芯110の周りに巻回されるガラスシート10の巻き位置を制御することができる。この制御は第1の実施形態と同様にガラスシート10を巻き付ける面の形状を調整することで行われるので、ガラスシート10にせん断応力がほとんど加わらず、ガラスシート10が割れにくい。よって、品質の良いガラスロールが得られる。 In this modification, the width direction distribution of the nip pressure of the adjustment sheet 25 is adjusted by adjusting the pressure of the fluid pressure cylinders 338C and 339C, and the width direction distribution of the thickness of the adjustment sheet 25 is adjusted. Thereby, the distribution in the winding axis direction of the winding radius R of the glass sheet 10 can be adjusted, and the winding position of the glass sheet 10 wound around the winding core 110 after that can be controlled. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound as in the first embodiment, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is difficult to break. Therefore, a good quality glass roll is obtained.
 尚、本変形例では複数の流体圧シリンダ338C、339Cを用いたが、1つの流体圧シリンダを用いてニップ圧を偏在させることも可能である。例えば、ニップロール333C、334Cの一方の端部をヒンジで支持して、ヒンジを中心に回動させる回動源として流体圧シリンダを用いれば、1つの流体圧シリンダでニップ圧を偏在させることが可能である。 In this modification, a plurality of fluid pressure cylinders 338C and 339C are used. However, the nip pressure can be unevenly distributed using one fluid pressure cylinder. For example, if one end of each of the nip rolls 333C and 334C is supported by a hinge and a fluid pressure cylinder is used as a turning source for turning around the hinge, the nip pressure can be unevenly distributed by one fluid pressure cylinder. It is.
 [第4の実施形態]
 上記第3の実施形態では、調整シート25の厚さの幅方向分布を調整する目的で、調整シート25の巻き取り張力の幅方向分布を調整する。
[Fourth Embodiment]
In the third embodiment, the width direction distribution of the winding tension of the adjustment sheet 25 is adjusted for the purpose of adjusting the width direction distribution of the thickness of the adjustment sheet 25.
 これに対し、本実施形態では、同じ目的で、ガラスシート10の巻き取り張力の幅方向分布を調節する点で相違する。以下、相違点を中心に説明する。 On the other hand, the present embodiment is different in that the distribution in the width direction of the winding tension of the glass sheet 10 is adjusted for the same purpose. Hereinafter, the difference will be mainly described.
 図15は、第4の実施形態によるガラスロール製造装置の斜視図である。図15において、便宜上、調整芯及び調整芯を回転させる調整モータ、並びに位置センサの図示を省略する。図16は、第4の実施形態によるガラスロール製造方法の説明図であって、巻芯上に形成されるガラスシートの層の様子を示す断面図である。 FIG. 15 is a perspective view of a glass roll manufacturing apparatus according to the fourth embodiment. In FIG. 15, for the sake of convenience, the illustration of the adjustment core, the adjustment motor that rotates the adjustment core, and the position sensor is omitted. FIG. 16 is an explanatory diagram of the glass roll manufacturing method according to the fourth embodiment, and is a cross-sectional view showing the state of the glass sheet layer formed on the core.
 本実施形態のガラスロール製造装置400は、巻芯110と、位置センサ120と、調整部430と、制御部480とを備える。 The glass roll manufacturing apparatus 400 of this embodiment includes a core 110, a position sensor 120, an adjustment unit 430, and a control unit 480.
 調整部430は、位置センサ120による監視結果に基づいて、ガラスシート10の巻回半径Rの巻回軸方向における分布を調整する。この調整は、ガラスシート10と共に巻芯110に連続的に巻き取られる調整シート25の厚さの幅方向分布を調整して行われる。 The adjustment unit 430 adjusts the distribution in the winding axis direction of the winding radius R of the glass sheet 10 based on the monitoring result by the position sensor 120. This adjustment is performed by adjusting the distribution in the width direction of the thickness of the adjustment sheet 25 that is continuously wound around the core 110 together with the glass sheet 10.
 調整部430は、調整シート25の厚さの幅方向分布を調整するため、ガラスシート10の巻き取り張力の幅方向分布を調整し、巻芯110に既に巻き取られた調整シート25を厚さ方向に圧縮する圧縮力の幅方向分布を調整する。調整シート25としては、樹脂フィルムや紙などが用いられる。調整シート25は、ガラスシート10よりも幅広であってよい。 In order to adjust the width direction distribution of the thickness of the adjustment sheet 25, the adjustment unit 430 adjusts the width direction distribution of the winding tension of the glass sheet 10, and adjusts the thickness of the adjustment sheet 25 already wound around the core 110. The width direction distribution of the compressive force compressed in the direction is adjusted. As the adjustment sheet 25, a resin film or paper is used. The adjustment sheet 25 may be wider than the glass sheet 10.
 調整部430は、調整シート25が巻回された調整芯と、調整芯を回転させる調整モータと、巻芯110に向けて移動するガラスシート10を挟み込む2本のニップロール433、434と、ニップロール433、434の一方を回転させる回転モータ435とを含む。回転モータ435が一方のニップロール433を回転させると、ニップロール433、434で挟み込まれたガラスシート10が巻芯110に向けて送り出され、他方のニップロール434が回転する。 The adjustment unit 430 includes an adjustment core around which the adjustment sheet 25 is wound, an adjustment motor that rotates the adjustment core, two nip rolls 433 and 434 that sandwich the glass sheet 10 that moves toward the winding core 110, and a nip roll 433. Rotation motor 435 that rotates one of 434. When the rotation motor 435 rotates one nip roll 433, the glass sheet 10 sandwiched between the nip rolls 433 and 434 is sent out toward the core 110, and the other nip roll 434 rotates.
 調整芯は、調整モータによって回転され、巻芯110に向けて調整シート25を送り出す。巻芯110に巻き取られる前の調整シート25の厚さは調整シート25の幅方向に均一であってよい。調整芯の中心軸は、巻芯110の中心軸と平行となっている。 The adjustment core is rotated by the adjustment motor, and the adjustment sheet 25 is sent out toward the winding core 110. The thickness of the adjustment sheet 25 before being wound around the winding core 110 may be uniform in the width direction of the adjustment sheet 25. The central axis of the adjustment core is parallel to the central axis of the winding core 110.
 調整モータは、調整芯から巻芯110に向けて送り出される調整シート25に所定の巻き取り張力がかかるように制御される。この制御は、制御部480によって行われる。 The adjustment motor is controlled so that a predetermined winding tension is applied to the adjustment sheet 25 fed from the adjustment core toward the winding core 110. This control is performed by the control unit 480.
 ニップロール433、434は、巻芯110に向けて移動するガラスシート10を挟み込んで支持する。ニップロール433、434は、例えば流体圧シリンダ436、437の圧力でガラスシート10を挟み込んでいる。 The nip rolls 433 and 434 sandwich and support the glass sheet 10 that moves toward the core 110. The nip rolls 433 and 434 sandwich the glass sheet 10 with the pressure of the fluid pressure cylinders 436 and 437, for example.
 ニップロール433、434の中心軸は、巻芯110の中心軸と平行とされ、巻芯110の中心軸に対して傾斜可能となっている。 The central axes of the nip rolls 433 and 434 are parallel to the central axis of the core 110 and can be inclined with respect to the central axis of the core 110.
 回転モータ435は、ニップロール433、434から巻芯110に向けて送り出されるガラスシート10に所定の巻き取り張力がかかるように制御される。この制御は、制御部480によって行われる。 The rotation motor 435 is controlled so that a predetermined winding tension is applied to the glass sheet 10 fed from the nip rolls 433 and 434 toward the core 110. This control is performed by the control unit 480.
 調整部430は、ニップロール433、434をニップロール433、434の中心軸を中心に回転自在に支持する支持フレーム440と、支持フレーム440を揺動させる揺動モータ443とをさらに含んでいる。 The adjusting unit 430 further includes a support frame 440 that rotatably supports the nip rolls 433 and 434 around the center axis of the nip rolls 433 and 434, and a swing motor 443 that swings the support frame 440.
 支持フレーム440は、ニップロール433、434を回転自在に支持する。支持フレーム440には、回転モータ435及び流体圧シリンダ436、437が固定されている。支持フレーム440は円弧状のフレームガイド442に沿って揺動自在である。 The support frame 440 supports the nip rolls 433 and 434 in a rotatable manner. A rotation motor 435 and fluid pressure cylinders 436 and 437 are fixed to the support frame 440. The support frame 440 can swing along an arcuate frame guide 442.
 揺動モータ443は、支持フレーム440を揺動させるものである。揺動モータ443と、支持フレーム440との間には、揺動モータ443の回転運動を直線運動に変換するボールネジユニット444が配設されている。ボールネジユニット444は、揺動モータ443と共に回転するネジ軸445と、ネジ軸445が螺合するネジ孔を含む可動体446とで構成される。可動体446と、支持フレーム440との間には、図9Bに示すブロック347及びブロックガイド348が配設されている。 The swing motor 443 swings the support frame 440. Between the swing motor 443 and the support frame 440, a ball screw unit 444 that converts the rotational motion of the swing motor 443 into a linear motion is disposed. The ball screw unit 444 includes a screw shaft 445 that rotates together with the swing motor 443 and a movable body 446 that includes a screw hole into which the screw shaft 445 is screwed. A block 347 and a block guide 348 shown in FIG. 9B are disposed between the movable body 446 and the support frame 440.
 揺動モータ443が回転すると、ネジ軸445が回転し、ネジ軸445の軸方向に可動体446が移動する。このとき、支持フレーム440が円弧状のフレームガイド442に沿って揺動し、ニップロール433、434の中心軸が巻芯110の中心軸に対して傾斜する。 When the swing motor 443 rotates, the screw shaft 445 rotates and the movable body 446 moves in the axial direction of the screw shaft 445. At this time, the support frame 440 swings along the arcuate frame guide 442, and the central axes of the nip rolls 433 and 434 are inclined with respect to the central axis of the core 110.
 揺動モータ443の回転力は、ニップロール433、434の軸方向一端部に対して巻芯110に近づく方向の力を与え、ニップロール433、434の軸方向他端部に対して巻芯110から遠ざかる方向の力を与える。そのため、ガラスシート10の幅方向の一端側(例えばY2側)から他端側(例えばY1側)に向かうほど、ガラスシート10の巻き取り張力が強くなり、巻芯110に既に巻き取られた調整シート25を厚さ方向に圧縮する圧縮力が強くなる。従って、調整シート25の幅方向の一端側(例えばY2側)から他端側(例えばY1側)に向かうほど、調整シート25が強く圧縮され、調整シート25の厚さが薄くなる。調整シート25の圧縮は弾性変形でも塑性変形でもよい。なお、調整シート25が圧縮されるとき、ガラスシート10はほとんど変形しない、
 制御部480は、CPU、RAM及びROM等を含むマイクロコンピュータで構成され、ROM等に格納されるプログラムをCPUに実行させることにより、各種駆動部(例えば、巻回モータ112、調整モータ、回転モータ435、流体圧シリンダ436、437、揺動モータ443)を制御する。
The rotational force of the swing motor 443 applies a force in a direction approaching the core 110 to one axial end of the nip rolls 433 and 434 and moves away from the core 110 to the other axial end of the nip rolls 433 and 434. Give direction force. Therefore, the winding tension of the glass sheet 10 increases as it goes from one end side (for example, Y2 side) in the width direction of the glass sheet 10 to the other end side (for example, Y1 side), and adjustment that has already been wound around the core 110. The compression force that compresses the sheet 25 in the thickness direction is increased. Accordingly, the adjustment sheet 25 is more strongly compressed and the thickness of the adjustment sheet 25 is reduced from one end side (for example, Y2 side) in the width direction of the adjustment sheet 25 to the other end side (for example, Y1 side). The compression of the adjustment sheet 25 may be elastic deformation or plastic deformation. In addition, when the adjustment sheet 25 is compressed, the glass sheet 10 hardly deforms.
The control unit 480 includes a microcomputer including a CPU, a RAM, a ROM, and the like. By causing the CPU to execute a program stored in the ROM or the like, various driving units (for example, a winding motor 112, an adjustment motor, a rotation motor) 435, fluid pressure cylinders 436, 437, and swing motor 443).
 次に、上記構成のガラスロール製造装置400の動作(ガラスロール製造方法)について説明する。ガラスロール製造装置400の各種動作は、制御部480による制御下で行われる。 Next, the operation (glass roll manufacturing method) of the glass roll manufacturing apparatus 400 having the above configuration will be described. Various operations of the glass roll manufacturing apparatus 400 are performed under the control of the control unit 480.
 制御部480は、図4に示す時刻t0で巻回モータ112を駆動して、ガラスシート10の前端部、及び調整シート25の前端部が固定された巻芯110を回転させ、巻芯110にガラスシート10及び調整シート25を巻き取る。このとき、制御部480は流体圧シリンダ436、437を駆動して、ニップロール433、434で調整シート25を挟み込んで巻芯110に向けて送り出す。時刻t0では、ニップロール433、434の中心軸は巻芯110の中心軸と平行になっており、揺動モータ443は停止している。制御部480は、例えば時刻t0で位置センサ120による監視を開始する。 The control unit 480 drives the winding motor 112 at time t0 shown in FIG. 4 to rotate the core 110 to which the front end of the glass sheet 10 and the front end of the adjustment sheet 25 are fixed. The glass sheet 10 and the adjustment sheet 25 are wound up. At this time, the control unit 480 drives the fluid pressure cylinders 436 and 437, sandwiches the adjustment sheet 25 with the nip rolls 433 and 434, and sends it out toward the core 110. At time t0, the center axes of the nip rolls 433 and 434 are parallel to the center axis of the core 110, and the swing motor 443 is stopped. For example, the control unit 480 starts monitoring by the position sensor 120 at time t0.
 制御部480は、図4に示す時刻t1でガラスシート10の側端11の位置が基準位置Y0からY1方向に設定値ΔY1を超えて移動したことを検知すると、揺動モータ443を駆動して、Y1側からY2方向に向かうほどガラスシート10の巻き取り張力を小さくする。これにより、Y1側からY2方向に向かうほど、巻芯110に既に巻き取られた調整シート25を厚さ方向に圧縮する力が小さくなり、調整シート25の厚さが厚くなる。そのため、図16(a)に示すようにY1側からY2方向に向かうほどガラスシート10の巻回半径Rが大きくなるので、図16(b)に示すようにその後に巻芯110の周りに巻回されるガラスシート10の巻き位置がY2方向にずれる。 When the control unit 480 detects that the position of the side edge 11 of the glass sheet 10 has moved beyond the set value ΔY1 in the Y1 direction from the reference position Y0 at time t1 shown in FIG. 4, the controller 480 drives the swing motor 443. The winding tension of the glass sheet 10 is reduced as it goes from the Y1 side to the Y2 direction. Thereby, the force which compresses the adjustment sheet 25 already wound around the core 110 in the thickness direction becomes smaller and the thickness of the adjustment sheet 25 becomes thicker toward the Y2 direction from the Y1 side. Therefore, the winding radius R of the glass sheet 10 increases from the Y1 side toward the Y2 direction as shown in FIG. 16 (a), so that the winding around the core 110 is thereafter performed as shown in FIG. 16 (b). The winding position of the rotated glass sheet 10 is shifted in the Y2 direction.
 制御部480は、図4に示す時刻t2でガラスシート10の側端11の位置と基準位置Y0との間の距離が設定値ΔY1以下に戻ったことを検出すると、支持フレーム440を元の位置に戻し、揺動モータ443の駆動を停止する。尚、ガラスシート10の剛性は、調整シート25の剛性よりも高く、ガラスシート10は揺動モータ443の駆動力によってほとんど変形しないので(伸び縮みしないので)、揺動モータ443の駆動状態と停止状態とで支持フレーム440の位置はほとんど変動しない。 When the control unit 480 detects that the distance between the position of the side edge 11 of the glass sheet 10 and the reference position Y0 has returned to the set value ΔY1 or less at time t2 shown in FIG. 4, the control unit 480 moves the support frame 440 to the original position. The driving of the swing motor 443 is stopped. The rigidity of the glass sheet 10 is higher than that of the adjustment sheet 25, and the glass sheet 10 is hardly deformed by the driving force of the swing motor 443 (because it does not expand or contract), so that the drive state and stop of the swing motor 443 are stopped. The position of the support frame 440 hardly changes depending on the state.
 制御部480は、図4に示す時刻t3でガラスシート10の側端11の位置が基準位置Y0からY2方向に設定値ΔY2を超えて移動したことを検知すると、揺動モータ443を駆動して、Y1側からY2方向に向かうほどガラスシート10の巻き取り張力を大きくする。これにより、Y2側からY1方向に向かうほど、巻芯110に既に巻き取られた調整シート25を厚さ方向に圧縮する圧縮力が弱くなり、調整シート25の厚さが厚くなる。そのため、図16(c)に示すようにY2側からY1方向に向かうほどガラスシート10の巻回半径Rが大きくなるので、図16(d)に示すようにその後に巻芯110の周りに巻回されるガラスシート10の巻き位置がY1方向にずれる。 When the control unit 480 detects that the position of the side edge 11 of the glass sheet 10 has moved from the reference position Y0 in the Y2 direction beyond the set value ΔY2 at time t3 shown in FIG. 4, it drives the swing motor 443. The winding tension of the glass sheet 10 is increased from the Y1 side toward the Y2 direction. Thereby, the compression force which compresses the adjustment sheet 25 already wound around the core 110 in the thickness direction becomes weaker toward the Y1 direction from the Y2 side, and the thickness of the adjustment sheet 25 becomes thicker. Therefore, as shown in FIG. 16C, the winding radius R of the glass sheet 10 increases from the Y2 side in the Y1 direction, so that the winding around the core 110 is thereafter performed as shown in FIG. The winding position of the glass sheet 10 to be rotated is shifted in the Y1 direction.
 このようにして、制御部480は、ガラスシート10の巻き位置を制御する。この制御は第1の実施形態と同様にガラスシート10を巻き付ける面の形状を調整することで行われるので、ガラスシート10にせん断応力がほとんど加わらず、ガラスシート10が割れにくい。よって、品質の良いガラスロール490が得られる。このガラスロール490の内部には調整シート25が挿入されており、調整シート25の少なくとも一部分は、幅方向に沿って一端側から他端側に向かうほど厚さが厚くなる。 In this way, the control unit 480 controls the winding position of the glass sheet 10. Since this control is performed by adjusting the shape of the surface around which the glass sheet 10 is wound as in the first embodiment, almost no shear stress is applied to the glass sheet 10 and the glass sheet 10 is difficult to break. Therefore, a high quality glass roll 490 is obtained. The adjustment sheet 25 is inserted into the glass roll 490, and at least a part of the adjustment sheet 25 increases in thickness from one end side to the other end side along the width direction.
 尚、本実施形態では、ガラスシート10の巻き取り張力の幅方向分布を調整するため、揺動モータ443の駆動力を用いたが、ガラスシート10のニップ圧の幅方向分布を調整してもよい。ガラスシート10のニップ圧が高くなるほど、ガラスシート10の送り出し速度が遅くなるので、ガラスシート10の巻き取り張力が高くなる。ガラスシート10のニップ圧の幅方向分布の調整は、例えば流体圧シリンダ436、437の圧力調整によって行われる。 In this embodiment, the driving force of the swing motor 443 is used to adjust the width direction distribution of the winding tension of the glass sheet 10, but even if the width direction distribution of the nip pressure of the glass sheet 10 is adjusted. Good. The higher the nip pressure of the glass sheet 10, the slower the feeding speed of the glass sheet 10, so that the winding tension of the glass sheet 10 becomes higher. Adjustment of the width direction distribution of the nip pressure of the glass sheet 10 is performed by adjusting the pressure of the fluid pressure cylinders 436 and 437, for example.
 また、本実施形態では、ガラスシート10の巻き取り張力の幅方向分布を調整するため、ガラスシート10を挟み込むニップロール433、434が用いられるが、第3の実施形態の第2の変形例と同様に、ガラスシート10を円弧状に支持する支持ロール332B~334Bを用いてもよい。 Further, in this embodiment, nip rolls 433 and 434 that sandwich the glass sheet 10 are used to adjust the distribution in the width direction of the winding tension of the glass sheet 10, but the same as in the second modification of the third embodiment. In addition, support rolls 332B to 334B that support the glass sheet 10 in an arc shape may be used.
 また、本実施形態の調整シート25は、ガラスシート10と共に巻芯110に巻き取られるとき、ガラスシート10よりも巻芯110の径方向外方に配されるが、ガラスシート10よりも巻芯110の径方向内方に配されてもよく、両側に配されてもよい。 Further, when the adjustment sheet 25 of the present embodiment is wound around the core 110 together with the glass sheet 10, the adjustment sheet 25 is disposed radially outward of the core 110 than the glass sheet 10, but the core is more than the glass sheet 10. 110 may be arranged inward in the radial direction, or may be arranged on both sides.
 尚、本実施形態では、ガラスシート10の巻き取り張力の幅方向分布を調整するため、揺動モータ543の駆動力を用いたが、ガラスシート10のニップ圧の幅方向分布を調整してもよい。ガラスシート10のニップ圧が高くなるほど、ガラスシート10の送り出し速度が遅くなるので、ガラスシート10の巻き取り張力が高くなる。ガラスシート10のニップ圧の幅方向分布の調整は、例えば流体圧シリンダ536、537の圧力調整によって行われる。 In this embodiment, the driving force of the swing motor 543 is used to adjust the width direction distribution of the winding tension of the glass sheet 10. However, even if the width direction distribution of the nip pressure of the glass sheet 10 is adjusted. Good. The higher the nip pressure of the glass sheet 10, the slower the feeding speed of the glass sheet 10, so that the winding tension of the glass sheet 10 becomes higher. Adjustment of the width direction distribution of the nip pressure of the glass sheet 10 is performed by adjusting the pressure of the fluid pressure cylinders 536 and 537, for example.
 また、本実施形態では、ガラスシート10の巻き取り張力の幅方向分布を調整するため、ガラスシート10を挟み込むニップロール533、534が用いられるが、第3の実施形態の第2の変形例と同様に、ガラスシート10を円弧状に支持する支持ロール332B~334Bを用いてもよい。 In this embodiment, nip rolls 533 and 534 that sandwich the glass sheet 10 are used in order to adjust the distribution in the width direction of the winding tension of the glass sheet 10, but the same as in the second modification of the third embodiment. In addition, support rolls 332B to 334B that support the glass sheet 10 in an arc shape may be used.
 以上、本発明の第1~第4の実施形態及びその変形例について説明したが、本発明は上記実施形態及びその変形例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 The first to fourth embodiments of the present invention and the modifications thereof have been described above, but the present invention is not limited to the above-described embodiments and modifications thereof, and the present invention described in the claims. Various modifications and changes can be made within the scope of the present invention.
 例えば、上記実施形態及びその変形例では、ガラスシートの巻き位置を揃えるため、ガラスシートの巻回半径Rの巻回軸方向における分布を調整するが、ガラスシートの巻き位置をずらすため、ガラスシートの巻回半径Rの巻回軸方向における分布を調整してもよい。 For example, in the said embodiment and its modification, in order to arrange the winding position of a glass sheet, although adjusting the distribution in the winding axis direction of the winding radius R of a glass sheet, in order to shift the winding position of a glass sheet, a glass sheet The distribution of the winding radius R in the winding axis direction may be adjusted.
 また、上記実施形態及びその変形例は組み合わせて用いてもよい。組合せは多種多様であってよい。 Also, the above embodiment and its modifications may be used in combination. Combinations can vary widely.
 本発明は、例えば液晶パネルや有機ELパネルなどの表示パネル、太陽電池などに用いられるガラスシートを巻芯に巻回して作製するガラスロール製造方法、ガラスロール製造装置、及びガラスロールに好適である。 The present invention is suitable for a glass roll manufacturing method, a glass roll manufacturing apparatus, and a glass roll in which a glass sheet used for a display panel such as a liquid crystal panel or an organic EL panel, a solar battery or the like is wound around a winding core. .
 本出願は、2012年1月13日に日本国特許庁に出願された特願2012-005647に基づくものであり、その出願を優先権主張するものであり、その出願の全ての内容を参照することにより包含するものである。 This application is based on Japanese Patent Application No. 2012-005647 filed with the Japan Patent Office on January 13, 2012, claims the priority thereof, and refers to the entire contents of the application. It is included.
10  ガラスシート
20  調整シート
100 ガラスロール製造装置
110 巻芯
112 巻回モータ
120 位置センサ
130 調整部
180 制御部
DESCRIPTION OF SYMBOLS 10 Glass sheet 20 Adjustment sheet 100 Glass roll manufacturing apparatus 110 Core 112 Winding motor 120 Position sensor 130 Adjustment part 180 Control part

Claims (18)

  1.  ガラスシートを巻芯に巻回してガラスロールを製造するガラスロール製造方法において、
     前記巻芯に対する前記ガラスシートの側端の位置を監視し、監視結果に基づいて前記ガラスシートの巻回半径の巻回軸方向における分布を調整することにより、その後に前記巻芯の周りに巻回される前記ガラスシートの巻き位置を調整する調整工程を含むガラスロール製造方法。
    In a glass roll manufacturing method of manufacturing a glass roll by winding a glass sheet around a core,
    By monitoring the position of the side edge of the glass sheet with respect to the winding core and adjusting the distribution in the winding axis direction of the winding radius of the glass sheet based on the monitoring result, the winding around the winding core is performed thereafter. The glass roll manufacturing method including the adjustment process which adjusts the winding position of the said glass sheet rotated.
  2.  前記調整工程は、前記ガラスシート同士の間に挿入される調整シートの挿入位置、並びに前記調整シートの寸法及び形状のうち、少なくとも一方を調整することにより、前記ガラスシートの巻回半径の巻回軸方向における分布を調整する請求項1に記載のガラスロール製造方法。 The adjustment step includes adjusting the winding position of the glass sheet by adjusting at least one of the insertion position of the adjustment sheet inserted between the glass sheets and the size and shape of the adjustment sheet. The glass roll manufacturing method of Claim 1 which adjusts distribution in an axial direction.
  3.  前記調整工程は、前記ガラスシートよりも幅狭の前記調整シートの挿入位置を調整することにより、前記ガラスシートの巻回半径の巻回軸方向における分布を調整する請求項2に記載のガラスロール製造方法。 The said adjustment process adjusts distribution in the winding axis direction of the winding radius of the said glass sheet by adjusting the insertion position of the said adjustment sheet | seat narrower than the said glass sheet. Production method.
  4.  前記調整工程は、寸法及び形状の異なる複数種類の前記調整シートの挿入位置を調整することにより、前記ガラスシートの巻回半径の巻回軸方向における分布を調整する請求項2に記載のガラスロール製造方法。 The said adjustment process adjusts distribution in the winding axis direction of the winding radius of the said glass sheet by adjusting the insertion position of the said multiple types of said adjustment sheet from which a dimension and a shape differ. Production method.
  5.  前記調整シートは、前記ガラスシートと共に前記巻芯に連続的に巻き取られ、
     前記調整工程は、前記調整シートの巻き取り張力の幅方向分布を調整することにより、前記調整シートの厚さの幅方向分布を調整する請求項2に記載のガラスロール製法。
    The adjustment sheet is continuously wound around the core together with the glass sheet,
    The said adjustment process is a glass roll manufacturing method of Claim 2 which adjusts the width direction distribution of the thickness of the said adjustment sheet | seat by adjusting the width direction distribution of the winding tension | tensile_strength of the said adjustment sheet.
  6.  前記調整シートは、ニップロールの間を通過した後、前記ガラスシートと共に前記巻芯に連続的に巻き取られ、
     前記調整工程は、前記調整シートのニップ圧の幅方向分布を調整することにより、前記調整シートの厚さの幅方向分布を調整する請求項2に記載のガラスロール製造方法。
    The adjustment sheet, after passing between nip rolls, is continuously wound around the core together with the glass sheet,
    The said adjustment process is a glass roll manufacturing method of Claim 2 which adjusts the width direction distribution of the thickness of the said adjustment sheet | seat by adjusting the width direction distribution of the nip pressure of the said adjustment sheet | seat.
  7.  前記調整シートは、前記ガラスシートと共に前記巻芯に連続的に巻き取られ、
     前記調整工程は、前記ガラスシートの巻き取り張力の幅方向分布を調整することにより、前記巻芯に既に巻き取られた前記調整シートの厚さの幅方向分布を調整する請求項2に記載のガラスロール製造方法。
    The adjustment sheet is continuously wound around the core together with the glass sheet,
    The said adjustment process adjusts the width direction distribution of the thickness of the said adjustment sheet already wound by the said core by adjusting the width direction distribution of the winding tension | tensile_strength of the said glass sheet. Glass roll manufacturing method.
  8.  前記調整工程は、前記巻芯に対する前記ガラスシートの側端の位置が基準位置から所定方向に設定値を超えて移動したとき、前記巻回軸方向に沿って前記所定方向と反対方向に向かうほど前記ガラスシートの巻径を大きくし、その後に前記巻芯の周りに巻回される前記ガラスシートの巻き位置を調整する請求項1~7のいずれか一項に記載のガラスロール製造方法。 In the adjustment step, when the position of the side edge of the glass sheet with respect to the winding core moves beyond a set value in a predetermined direction from a reference position, the direction toward the direction opposite to the predetermined direction along the winding axis direction increases. The method for producing a glass roll according to any one of claims 1 to 7, wherein the winding diameter of the glass sheet is increased, and then the winding position of the glass sheet wound around the core is adjusted.
  9.  ガラスシートを巻芯に巻回してガラスロールを製造するガラスロール製造装置において、
     前記巻芯に対する前記ガラスシートの側端位置を監視する位置センサと、
     該位置センサによる監視結果に基づいて前記ガラスシートの巻回半径の巻回軸方向における分布を調整することにより、その後に前記巻芯の周りに巻回される前記ガラスシートの巻き位置を調整する調整部とを含むガラスロール製造装置。
    In a glass roll manufacturing apparatus for manufacturing a glass roll by winding a glass sheet around a core,
    A position sensor for monitoring a side edge position of the glass sheet with respect to the core;
    By adjusting the distribution in the winding axis direction of the winding radius of the glass sheet based on the monitoring result by the position sensor, the winding position of the glass sheet wound around the core is adjusted thereafter. The glass roll manufacturing apparatus containing an adjustment part.
  10.  前記調整部は、前記ガラスシート同士の間に挿入される調整シートの挿入位置、並びに前記調整シートの寸法及び形状のうち、少なくとも一方を調整することにより、前記ガラスシートの巻回半径の巻回軸方向における分布を調整する請求項9に記載のガラスロール製造装置。 The adjustment unit adjusts at least one of the insertion position of the adjustment sheet inserted between the glass sheets and the size and shape of the adjustment sheet, thereby winding the winding radius of the glass sheet. The glass roll manufacturing apparatus of Claim 9 which adjusts distribution in an axial direction.
  11.  前記調整部は、前記ガラスシートよりも幅狭の前記調整シートの挿入位置を調整することにより、前記ガラスシートの巻回半径の巻回軸方向における分布を調整する請求項10に記載のガラスロール製造装置。 The said adjustment part adjusts the distribution in the winding axis direction of the winding radius of the said glass sheet by adjusting the insertion position of the said adjustment sheet | seat narrower than the said glass sheet, The glass roll of Claim 10 Manufacturing equipment.
  12.  前記調整部は、寸法及び形状の異なる複数種類の前記調整シートの挿入位置を調整することにより、前記ガラスシートの巻回半径の巻回軸方向における分布を調整する請求項10に記載のガラスロール製造装置。 The said adjustment part adjusts distribution in the winding axis direction of the winding radius of the said glass sheet by adjusting the insertion position of the said multiple types of said adjustment sheet from which a dimension and a shape differ, The glass roll of Claim 10 Manufacturing equipment.
  13.  前記調整シートは、前記ガラスシートと共に前記巻芯に連続的に巻き取られ、
     前記調整部は、前記調整シートの巻き取り張力の幅方向分布を調整することにより、前記調整シートの厚さの幅方向分布を調整する請求項10に記載のガラスロール装置。
    The adjustment sheet is continuously wound around the core together with the glass sheet,
    The said adjustment part is a glass roll apparatus of Claim 10 which adjusts the width direction distribution of the thickness of the said adjustment sheet | seat by adjusting the width direction distribution of the winding tension | tensile_strength of the said adjustment sheet | seat.
  14.  前記調整シートは、ニップロールの間を通過した後、前記ガラスシートと共に前記巻芯に連続的に巻き取られ、
     前記調整部は、前記調整シートのニップ圧の幅方向分布を調整することにより、前記調整シートの厚さの幅方向分布を調整する請求項10に記載のガラスロール製造装置。
    The adjustment sheet, after passing between nip rolls, is continuously wound around the core together with the glass sheet,
    The said adjustment part is a glass roll manufacturing apparatus of Claim 10 which adjusts the width direction distribution of the thickness of the said adjustment sheet | seat by adjusting the width direction distribution of the nip pressure of the said adjustment sheet | seat.
  15.  前記調整シートは、前記ガラスシートと共に前記巻芯に連続的に巻き取られ、
     前記調整部は、前記ガラスシートの巻き取り張力の幅方向分布を調整することにより、前記巻芯に既に巻き取られた前記調整シートの厚さの幅方向分布を調整する請求項10に記載のガラスロール製造装置。
    The adjustment sheet is continuously wound around the core together with the glass sheet,
    The said adjustment part adjusts the width direction distribution of the thickness of the said adjustment sheet already wound by the said core by adjusting the width direction distribution of the winding tension | tensile_strength of the said glass sheet. Glass roll manufacturing equipment.
  16.  前記調整部は、前記位置センサによって検出される前記巻芯に対する前記ガラスシートの側端の位置が基準位置から所定方向に設定値を超えて移動したとき、前記巻回軸方向に沿って前記所定方向と反対方向に向かうほど前記ガラスシートの巻径を大きくし、その後に前記巻芯の周りに巻回される前記ガラスシートの巻き位置を調整する請求項9~15のいずれか一項に記載のガラスロール製造装置。 When the position of the side edge of the glass sheet with respect to the winding core detected by the position sensor moves beyond a set value in a predetermined direction from a reference position, the adjusting unit moves along the winding axis direction along the predetermined winding axis direction. The winding diameter of the glass sheet is increased as it goes in the direction opposite to the direction, and then the winding position of the glass sheet wound around the core is adjusted. Glass roll manufacturing equipment.
  17.  ガラスシートをロール状に巻回してなるガラスロールにおいて、
     少なくとも一部の前記ガラスシートの巻回半径が巻回軸方向の一端側から他端側に向かうほど大きくなっているガラスロール。
    In a glass roll formed by winding a glass sheet into a roll,
    A glass roll in which a winding radius of at least a part of the glass sheet increases from one end side to the other end side in the winding axis direction.
  18.  前記ガラスシートよりも幅狭の調整シート、又は前記ガラスシートの幅方向の一端側から他端側に向かうほど厚さが厚くなる調整シートが挿入されている請求項17に記載のガラスロール。 The glass roll according to claim 17, wherein an adjustment sheet narrower than the glass sheet, or an adjustment sheet having a thickness that increases from one end side in the width direction to the other end side of the glass sheet is inserted.
PCT/JP2012/083120 2012-01-13 2012-12-20 Method for manufacturing glass roll, device for manufacturing glass roll, and glass roll WO2013105415A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-005647 2012-01-13
JP2012005647A JP2015057358A (en) 2012-01-13 2012-01-13 Glass roll production method, device, and glass roll

Publications (1)

Publication Number Publication Date
WO2013105415A1 true WO2013105415A1 (en) 2013-07-18

Family

ID=48781373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083120 WO2013105415A1 (en) 2012-01-13 2012-12-20 Method for manufacturing glass roll, device for manufacturing glass roll, and glass roll

Country Status (3)

Country Link
JP (1) JP2015057358A (en)
TW (1) TW201339078A (en)
WO (1) WO2013105415A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023423B (en) * 2021-02-04 2023-05-05 山东信恩无纺布有限公司 Melt-blown cloth production winding device with anti-position-deviation structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987006626A1 (en) * 1986-05-02 1987-11-05 Deposition Technology, Inc. Sputter-coated thin glass sheeting in roll form and method for continuous production thereof
JPH04138056U (en) * 1991-06-17 1992-12-24 三菱重工業株式会社 Plastic film winding device
WO2011150149A1 (en) * 2010-05-28 2011-12-01 Corning Incorporated Roll of flexible glass and method for rolling
WO2012074979A1 (en) * 2010-11-30 2012-06-07 Corning Incorporated Winding glass ribbon by tensioning interleaving material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987006626A1 (en) * 1986-05-02 1987-11-05 Deposition Technology, Inc. Sputter-coated thin glass sheeting in roll form and method for continuous production thereof
JPH04138056U (en) * 1991-06-17 1992-12-24 三菱重工業株式会社 Plastic film winding device
WO2011150149A1 (en) * 2010-05-28 2011-12-01 Corning Incorporated Roll of flexible glass and method for rolling
WO2012074979A1 (en) * 2010-11-30 2012-06-07 Corning Incorporated Winding glass ribbon by tensioning interleaving material

Also Published As

Publication number Publication date
JP2015057358A (en) 2015-03-26
TW201339078A (en) 2013-10-01

Similar Documents

Publication Publication Date Title
TWI820156B (en) How to make glass rolls
KR102662902B1 (en) Winding apparatus and method
TWI627120B (en) Component manufacturing device
WO2015008518A1 (en) Glass roll manufacturing method and glass roll
JP5427929B2 (en) Optical display panel continuous manufacturing method and optical display panel continuous manufacturing system
KR20140105960A (en) Materials automatically exchanging device of secondary battery winding equipment
TWI546182B (en) A continuous manufacturing system of an optical display panel, and a continuous manufacturing method of an optical display panel
EP2535439A1 (en) Flexible substrate position control device
JP2012236676A (en) Device of correcting winding deviation of film and method of correcting winding deviation
CN105683076A (en) Tension control device and continuous web processing method using same
JP5633467B2 (en) Glass film winding misalignment correction apparatus and winding misalignment correcting method
JP2012166896A (en) Web winder
WO2012099073A1 (en) Glass roll, glass roll manufacturing apparatus, and glass roll manufacturing method
WO2013105415A1 (en) Method for manufacturing glass roll, device for manufacturing glass roll, and glass roll
WO2020088220A1 (en) Transfer roller, winder, and method for transferring cell core pole piece
JP4749033B2 (en) Roll manufacturing equipment
JP5887800B2 (en) Brittle material sheet folding device
JP6190637B2 (en) Stretched film manufacturing method and manufacturing apparatus thereof
EP1555094A1 (en) Cutting device of a slitter to make a line of cut with a wave shape
KR20200099393A (en) Roll to roll limiantion apparatus for plate display
JP3763832B2 (en) Rubbing equipment
WO2019244654A1 (en) Glass roll manufacturing method
JP2019036458A (en) Cutting device for electrode
JP2008290851A (en) Tape winding device
JP5929324B2 (en) Transport device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865533

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12865533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: DE