WO2013104302A1 - 光子晶体波导tm-偏振分离器 - Google Patents

光子晶体波导tm-偏振分离器 Download PDF

Info

Publication number
WO2013104302A1
WO2013104302A1 PCT/CN2013/070249 CN2013070249W WO2013104302A1 WO 2013104302 A1 WO2013104302 A1 WO 2013104302A1 CN 2013070249 W CN2013070249 W CN 2013070249W WO 2013104302 A1 WO2013104302 A1 WO 2013104302A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
waveguide
polarization
crystal waveguide
polarization splitter
Prior art date
Application number
PCT/CN2013/070249
Other languages
English (en)
French (fr)
Inventor
欧阳征标
金鑫
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to US14/372,024 priority Critical patent/US9170375B2/en
Publication of WO2013104302A1 publication Critical patent/WO2013104302A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects

Definitions

  • the present invention relates to the field of micro optical polarization splitters, and more particularly to a micro optical polarization splitter based on photonic crystal technology. Background technique
  • polarization splitters are bulky and cannot be used in optical path integration. Based on photonic crystals, tiny devices can be fabricated, including polarization separators. There are currently two approaches: One is to use a photonic crystal with a TE band and TM band or TM band and TE band to achieve polarization separation of the wave. Such a polarization splitter can only be used as a single photonic crystal device in a conventional optical waveguide because of its poor transmittance and polarization and difficulty in integration into other photonic crystal devices. The other is to design different relative coupling lengths to couple light waves of different polarization states to different waveguides by means of long-range coupled waveguides using periodic coupling and odd-state variations between the waveguides. The polarization splitter obtained by these two methods, although much smaller than the conventional polarization splitter, still appears to be relatively large. Summary of the invention
  • the photonic crystal waveguide TM-polarization separator of the present invention includes one completely banned a photonic crystal waveguide with an input wave of an arbitrary polarization direction input to the polarization splitter at the input end of the photonic crystal waveguide, a TM wave is output from the output end of the polarization splitter, and a TE wave is input from the polarization splitter The end is reflected back.
  • the photonic crystal waveguide is provided with a waveguide defect dielectric column, wherein the e-light refractive index in the waveguide defective dielectric column is greater than 0 optical refractive index, and the optical axis of the waveguide defective dielectric column is aligned with the optical axis direction of the background dielectric column.
  • the number of the waveguide defective dielectric columns is 1 or 2 or 3 or 4 or 5 or 6.
  • the photonic crystal waveguide is a two-dimensional photonic crystal waveguide, comprising a two-dimensional photonic crystal waveguide of a germanium medium, a two-dimensional photonic crystal waveguide of a honeycomb structure, a two-dimensional photonic crystal waveguide of a polygonal triangular lattice, and various two-dimensional photonic crystals of irregular shape. waveguide.
  • the photonic crystal waveguide is a structure in which one or two rows or three or four rows of dielectric columns are removed from the photonic crystal.
  • the invention has the following advantages:
  • the present invention can fully realize the polarization separation function by passing two point defects in a short range. It is easy to integrate and efficient;
  • FIG. 1 is a schematic view showing the structure of a Tellurium photonic crystal waveguide device used in the present invention.
  • the initial signal light of this device is incident from the left port "1", and the port "2" is outputting TE light.
  • Fig. 2 is a diagram showing the distribution of the right channel TM and TE light intensity of the photonic crystal TM-polarization separator of the present invention as a function of the size of the dielectric column.
  • Figure 3 is a right channel TM light extinction ratio of a photonic crystal TM-polarization separator of the present invention as a function of the size of the dielectric column.
  • Figure 4 is a graph showing the degree of polarization of a light wave in a waveguide as a function of a circular point defect size in the photonic crystal TM - polarization splitter of the present invention.
  • Figure 5 is an extinction ratio of the photonic crystal TM-polarization separator of the present invention in the band gap frequency range.
  • Figure 6 is a graph showing the degree of polarization of the photonic crystal TM-polarization separator of the present invention in the band gap frequency range.
  • Fig. 7 is a simulation diagram of the TM component distribution.
  • Figure 8 is a simulation diagram of TE component distribution. detailed description
  • the dielectric material in the principle introduction and the specific embodiment of the present invention is a tantalum dielectric column.
  • a positive uniaxial crystal ⁇ array arranged in a square lattice is formed on the substrate, and then two or two columns are deleted at a central position to form a waveguide, and TE and TM light are propagated in a fundamental mode.
  • the e-optical axis direction of each of the dielectric columns in the background dielectric array is such that it conforms to the axis direction of the cylinder.
  • the operating wavelength can be adjusted by the lattice constant between the dielectric columns, but the operating wavelength can not be selected beyond the linear stability range of the refractive index.
  • the background in the photonic crystal ⁇ dielectric column radius R 0.3568 ⁇ .
  • a Cartesian Cartesian coordinate system is used: X-axis The positive direction is horizontal to the right in the plane of the paper;) The positive direction of the axis is vertically upward in the plane of the paper; the positive direction of the ⁇ axis is perpendicular to the outside of the paper.
  • the equivalent refractive index of a point defect is: ⁇ ⁇ - E 2 dQ
  • ⁇ and ⁇ ? respectively correspond to the equivalent refractive indices of TE and TM light
  • E x , E y , E/j are the components of the electric field.
  • the reflectance and transmittance ( ⁇ ) of the light wave in the waveguide at the point defect can be expressed as:
  • Figure 2 shows the output intensity of the different ⁇ and ⁇ light waves caused by the change in the radius of the three circular defect dielectric columns. It can be clearly seen in the figure that chopping has a very large output intensity between a radius length range of ⁇ . ⁇ -0.22 ⁇ .
  • FIG. 4 may be determined in line with R TM T TM 1 and R re 3 ⁇ 4 1, the radius of the dielectric column T TE 0 these two conditions at the same time by adjusting the size of the dielectric column 3, to achieve barrier TE Light, the function of transmitting TM light. (At this time, the offset direction of the optical axis of the defective dielectric column e coincides with the background ⁇ dielectric column)
  • the chopping wave when the circular point defect side length ranges between 0.1 ⁇ -0.227 ⁇ , the chopping wave has a maximum extinction ratio of not less than 18 dB. According to Fig. 4, when the circular point defect side length ranges between 0.1 ⁇ - 0.227 ⁇ , the chopping wave has a degree of polarization greater than 0.995. Referring to FIG. 3 and FIG. 4, the radius of the circular dielectric column when the chopping has a maximum extinction ratio is (5)
  • the center of each circular dielectric column is the same as the center of the circular dielectric column originally deleted for forming the waveguide, so the distance between the three circular dielectric columns is ⁇ .
  • the distance from the center of the nearest background dielectric column is also ⁇ , and the respective radius is 0.175 ⁇ .
  • the optical axes of the three circular ⁇ dielectric columns coincide with the optical axis direction of the background cylindrical ⁇ dielectric column in the photonic crystal.
  • the incident signal port is at the position "1" in FIG. 1, and the light propagates in the waveguide formed by the "3" dielectric column array, after reaching the defect position of "4", ⁇ The components will all pass, and the ⁇ component will be completely blocked. Finally, the defect processed signal will be output at the output port "2" position.
  • the following selection functions are available:
  • the TM wave is derived from the right waveguide.
  • the TE When the incident light is a TE wave, the TE will not be able to be guided into the right waveguide.
  • the selection of the lattice constant and the operating wavelength can be determined in the following manner. From the refractive index profile of the uniaxial crystal enthalpy, ytterbium has a relatively stable refractive index in the wavelength range of 3.5 ⁇ ⁇ 35 ⁇ .
  • the value satisfying the wavelength range can be obtained by changing the value of the lattice constant.
  • the extinction ratio in the waveguide is defined as:
  • Figure 6 shows that when the operating wavelength is between 3.928 ⁇ -4.55 ⁇ 7, the output is The polarization of the port TM wave is all greater than 0.9996, which means that it has excellent polarization throughout the forbidden band.
  • Figure 7 and Figure 8 show the light field simulations obtained by the finite element software COMSOL when the free-space operating wavelength is 4.1 ⁇ . It can be observed that the TE light propagates at a high transmittance, while the TM light is completely blocked and has an extremely high extinction ratio.
  • the invention has a wide operating wavelength range while having a high extinction ratio, and can allow pulses having a certain spectral width, or Gaussian light, or light of different wavelengths, or multiple wavelengths of light to work simultaneously, which has practical significance.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种光子晶体TM-偏振分离器,包括一个具有完全禁带的光子晶体波导,所述光子晶体波导的输入端(1)输入任意偏振方向的入射波入射到该偏振分离器后,TM波从该偏振分离器的输出端(2)输出,而TE波从该偏振分离器的输入端(1)反射回去。该TM-偏振分离器体积小,偏振度高,光传输效率高,便于集成而且高效,适合大规模光路集成,可以实现不同波长偏振分束的功能。

Description

光子晶体波导 TM-偏振分离器 技术领域
本发明涉及微小光学偏振分离器领域, 尤其涉及一种基于光子 晶体技术的微小光学偏振分离器。 背景技术
传统的偏振分离器体积大, 无法用于光路集成中。 以光子晶体为 基础可以制作微小的器件, 包括偏振分离器。 目前有两种做法: 一种 是利用一块具有 TE禁带和 TM导带或 TM禁带和 TE导带的光子晶体 来实现波的偏振分离。这种偏振分离器,由于其透过率和偏振度较差, 并且难以集成到其它光子晶体器件中,只能作为单一光子晶体器件使 用在传统光学波导中。另一种是通过长程耦合波导, 利用波导之间周 期性耦合和奇偶态变化的方法,设计不同的相对耦合长度把不同偏振 态的光波耦合到不同的波导。 通过这两种方法所得到的偏振分离器, 虽然其体积比传统的偏振分离器小了很多, 但还是显得比较大。 发明内容
本发明的目的是克服现有技术中的不足,提供一种高效短程便于 集成的光子晶体通 TM-偏振分离器。
本发明的目的通过下述技术方案予以实现。
本发明的光子晶体波导 TM-偏振分离器, 包括一个具有完全禁 带的光子晶体波导,所述光子晶体波导的输入端输入任意偏振方向的 入射波到该偏振分离器后, TM波从该偏振分离器的输出端输出, 而 TE波从该偏振分离器的输入端反射回去。
所述的光子晶体波导中设置有波导缺陷介质柱,该波导缺陷介质 柱中的 e光折射率大于 0光折射率,且波导缺陷介质柱的光轴与背景 介质柱的光轴方向一致。
所述的波导缺陷介质柱数量为 1根或 2根或 3根或 4根或 5根或 6根。
所述的光子晶体波导为二维光子晶体波导,包括碲介质二维光子 晶体波导, 蜂窝结构二维光子晶体波导, 孔状三角晶格二维光子晶体 波导, 各种非规则形状二维光子晶体波导。
所述的光子晶体波导为所述光子晶体中移除 1排或 2排或 3排或 4排介质柱后的结构。
本发明与现有技术相比具有以下的优点:
( 1 ) 结构体积小, 偏振度高, 光传输效率高, 适合大规模光路 集成;
(2 ) 本发明在短程通过两个点缺陷就可以完全实现偏振分离功 會^ 便于集成而且高效;
(3 ) 本发明应用光子晶体可等比例缩放的特性, 通过等比例改 变晶格常数的方法, 来实现不同波长偏振分束的功能。 附图说明 图 1是本发明使用的 Tellurium 光子晶体波导器件结构示意图。 本器件初始信号光从左方端口 " 1 "入射, 端口 " 2 "输出 TE光 波。 " 3 " 为背景碲介质柱, 光轴方向垂直纸面向外, 其半径为 R = 0.3568α。 "4"为圆形缺陷介质柱, 光轴方向与背景介质柱相同, 其半径为 R = 0.175a, 其位置中心与所删除背景介质柱的各个圆心相 同。
图 2是本发明光子晶体 TM -偏振分离器随介质柱大小变化的右 通道 TM、 TE光强分布图。
图 3是本发明光子晶体 TM -偏振分离器随介质柱大小变化的右 通道 TM光消光比。
图 4是本发明光子晶体 TM -偏振分离器, 波导中的光波随圆形 点缺陷大小变化的偏振度。
图 5是本发明光子晶体 TM -偏振分离器在禁带频率范围内的消 光比。
图 6是本发明光子晶体 TM -偏振分离器在禁带频率范围内的偏 振度。
图 7是 TM分量分布模拟图。
图 8是 TE分量分布模拟图。 具体实施方式
下面结合附图对本发明作进一步的描述。
本发明的原理介绍和具体实施方式中的介质材料均以碲介质柱 为例。先在基板上建立以正方晶格排列的正单轴晶体碲阵列, 然后在 中心位置删除两行或两列以形成波导, TE、 TM光都以基模形式传播。 背景碲介质柱阵列中的每一个介质柱的 e 光光轴方向要满足与圆柱 体的轴线方向一致。工作波长可以通过介质柱间晶格常数来调节, 但 工作波长的选取不能超出折射率线性稳定范围。
如图 1所示,本发明所使用的碲介质波导需要删除两行或两列介 质柱而形成导光波导, 其宽度为 L = 3 a, 为波导两边介质柱圆心之 间的间距, 其中 Ω为所述的光子晶体的晶格常数。 光子晶体中的背景 碲介质柱半径 R = 0.3568 α。 本说明中使用笛卡尔直角坐标系: X轴 正方向在纸面内水平向右; ) 轴正方向在纸面内竖直向上; ζ轴正方 向垂直于纸面向外。
点缺陷的等效折射率为: ί η - E2dQ
eff — ί E'da
(1)
Figure imgf000006_0001
(2)
式中 Ϊ与^?分别对应 TE与 TM光的等效折射率, Ex , Ey , E/j 别为电场的 分量。
波导中的光波在点缺陷处的反射率 与透射率 ( Γ )可以表示为:
Figure imgf000007_0001
3
V
2
Figure imgf000007_0002
(4)
图 2示出了 3个圆形缺陷介质柱的半径变化导致的不同 ΤΕ、 ΤΜ 光波的输出强度。在图中可以明显看到,在半径长度范围为 Ο.ΙΩ-0.22 β之间, ΤΜ波具有极大输出强度。
如图 3、 图 4所示, 可以通过同时调节 3个介质柱的大小来确定 符合 RTM TTM 1且 Rre ¾1, TTE 0这两个条件的的介质柱半径,从 而实现阻隔 TE光, 传输 TM光的功能。 (此时缺陷介质柱 e光轴的偏 置方向与背景碲介质柱一致)
根据图 3, 当圆形点缺陷边长范围在 0.1α-0.227β之间时, ΤΜ波 具不小于 18dB的极大消光比。 根据图 4, 当圆形点缺陷边长范围在 0.1α-0.227β之间时, ΤΜ波具有大于 0.995的偏振度。 结合图 3与图 4, ΤΜ波具有极大消光比时的圆形介质柱的半径为 (5)
此时, →\,n →∞。
如图 1所示, 3个圆形缺陷介质柱中, 每一个圆形介质柱的中心 与原来为形成波导所删除的圆形介质柱的中心相同,故 3个圆形介质 柱各自距离为 Ω, 同时与最近背景介质柱中心的距离也为 Ω, 各自半 径为 0.175Ω。 3个圆形碲介质柱的光轴与光子晶体中的背景圆柱碲介 质柱的光轴方向一致。
当碲介质柱阵列波导中引入上述缺陷后,入射信号端口为图 1中 "1"的位置, 光在以 "3"介质柱阵列形成的波导中传播, 到达" 4" 的缺陷位置后, ΤΜ分量将全部通过, ΤΕ分量将全部阻隔, 最后经过 缺陷处理后的信号将在输出端口" 2"位置输出。对不同输入的信号, 具有以下选择功能:
(1)、 当入射光为 ΤΕ、 TM混合波时, TM分量将全部从右方波 导导出, TE分量将全部被隔离。
(2)、 当入射光为 TM波时, TM波从右方波导导出。
(3)、 当入射光为 TE波时, TE将不能导入右方波导。
对于晶格常数和工作波长的选取, 可以用以下方式确定。通过单 轴晶体碲的折射率曲线知, 在波长范围为 3.5β~35β之间, 碲具有比 较稳定的折射率。 通过公式
Figure imgf000009_0001
(6)
其中/为归一化禁带频率,以及本发明中正方晶格碲结构的的禁带范 = 0.21977 -0.25458
计算出相应的禁带波长范围为:
Figure imgf000009_0002
由此可见, 可以通过改变晶格常数 的值得到与其等比例的满足波长 范围的 值。
波导中的消光比定义为:
TE波: LTE
Extinction RatioTE = 10 x log 10
TM
TM波: Extinction RatioTM = 10 x log 10 偏振度定义为:
TE波: Degree of Polarization =
LTE TM
TM ATE
TM波: Degree of Polarization^ = 通过图 5可以发现当工作波长为 3.928α-4.55β之间时, 在输出 端口 ΤΜ波的消光比全部大于 38dB, 即在整个禁带区间具有极好的 消光比。
通过图 6可以发现当工作波长为 3.928β-4.55ί7之间时, 在输出 端口 TM波的偏振度全部大于 0.9996, 即在整个禁带区间具有极好的 偏振度。
结合图 5、图 6以及上述分析,可以发现所有在禁带波段 3.928 Ω -4.55 Ω之间光波可以很好的实现本发明的功能。这说明本发明具有很 大的工作波长范围, 这是其它耦合腔模式偏振分光器件所不具备的。
图 7、 图 8 为自由空间工作波长为 4.1 Ω时, 通过有限元软件 COMSOL进行计算, 得到的光场模拟图。可以观察到, TE光以高透过 率传播, 而 TM光完全被阻隔, 并且具有极高的消光比。
本发明在具有高消光比的同时具有较宽的工作波长范围,可以允 许有一定频谱宽度的脉冲, 或高斯光, 或不同波长的光工作, 或多个 波长的光同时工作, 具有实用意义。
以上所述本发明在具体实施方式及应用范围均有改进之处,不应 当理解为对本发明限制。

Claims

权利要求书
1、 一种光子晶体波导 TM-偏振分离器, 包括一个具有完全禁带的光 子晶体波导, 其特征在于: 所述光子晶体波导的输入端输入任意偏振 方向的入射波入射到该偏振分离器后, TM波从该偏振分离器的输出 端输出, 而 TE波从该偏振分离器的输入端反射回去。
2、 按照权利要求 1所述的光子晶体波导 TM-偏振分离器, 其特征在 于: 所述的光子晶体波导中设置有波导缺陷介质柱, 该波导缺陷介质 柱中的 e光折射率大于 0光折射率,且波导缺陷介质柱的光轴与背景 介质柱的光轴方向一致。
3、 按照权利要求 2所述的光子晶体波导 TM-偏振分离器, 其特征在 于:所述的波导缺陷介质柱数量为 1根或 2根或 3根或 4根或 5根或 6根。
4、 按照权利要求 1所述的光子晶体波导 TM-偏振分离器, 其特征在 于: 所述的光子晶体波导为二维光子晶体波导, 包括碲介质二维光子 晶体波导, 蜂窝结构二维光子晶体波导, 孔状三角晶格二维光子晶体 波导, 各种非规则形状二维光子晶体波导。
5、 按照权利要求 1所述的光子晶体波导 TM-偏振分离器, 其特征在 于:所述的光子晶体波导为所述光子晶体中移除 1排或 2排或 3排或 4排介质柱后的结构。
PCT/CN2013/070249 2012-01-13 2013-01-09 光子晶体波导tm-偏振分离器 WO2013104302A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/372,024 US9170375B2 (en) 2012-01-13 2013-01-09 TM-polarization splitter based on photonic crystal waveguide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210064942.7 2012-01-13
CN201210064942.7A CN102650713B (zh) 2012-01-13 2012-01-13 光子晶体波导tm-偏振分离器

Publications (1)

Publication Number Publication Date
WO2013104302A1 true WO2013104302A1 (zh) 2013-07-18

Family

ID=46692751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070249 WO2013104302A1 (zh) 2012-01-13 2013-01-09 光子晶体波导tm-偏振分离器

Country Status (2)

Country Link
CN (1) CN102650713B (zh)
WO (1) WO2013104302A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650713B (zh) * 2012-01-13 2015-04-08 深圳大学 光子晶体波导tm-偏振分离器
CN103941414A (zh) * 2014-02-22 2014-07-23 浙江大学 基于异构二维光子晶体的y型偏振滤波分束器
CN104570206B (zh) * 2015-01-09 2017-06-09 中国科学院大学 基于光子晶体驻波谐振的分束方法
CN108152886A (zh) * 2016-12-05 2018-06-12 上海新微科技服务有限公司 一种基于硅光子晶体的三光束分光器
CN109669242B (zh) * 2019-01-04 2021-01-01 深圳大学 一种光子晶体波导对角模干涉fano共振结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001175659A (ja) * 1999-12-14 2001-06-29 Canon Inc 文書管理システム、文書管理方法および記憶媒体
JP2004125919A (ja) * 2002-09-30 2004-04-22 Mitsui Chemicals Inc 偏光分離素子
CN101126828A (zh) * 2007-09-12 2008-02-20 哈尔滨工程大学 二维完全带隙光子晶体偏振和消偏振分束器
US20090232441A1 (en) * 2005-03-18 2009-09-17 Kyoto University Polarized Light Mode Converter
CN101840024A (zh) * 2010-04-07 2010-09-22 浙江日风电气有限公司 一种基于二维光子晶体偏振通道下路滤波器
CN102650713A (zh) * 2012-01-13 2012-08-29 深圳大学 光子晶体波导tm-偏振分离器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174659A (ja) * 1999-12-15 2001-06-29 Showa Electric Wire & Cable Co Ltd モード分離方法及びモード分離器
CN101887145B (zh) * 2010-06-17 2011-11-09 中国科学院半导体研究所 光子晶体矩形耦合腔零色散慢光波导

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001175659A (ja) * 1999-12-14 2001-06-29 Canon Inc 文書管理システム、文書管理方法および記憶媒体
JP2004125919A (ja) * 2002-09-30 2004-04-22 Mitsui Chemicals Inc 偏光分離素子
US20090232441A1 (en) * 2005-03-18 2009-09-17 Kyoto University Polarized Light Mode Converter
CN101126828A (zh) * 2007-09-12 2008-02-20 哈尔滨工程大学 二维完全带隙光子晶体偏振和消偏振分束器
CN101840024A (zh) * 2010-04-07 2010-09-22 浙江日风电气有限公司 一种基于二维光子晶体偏振通道下路滤波器
CN102650713A (zh) * 2012-01-13 2012-08-29 深圳大学 光子晶体波导tm-偏振分离器

Also Published As

Publication number Publication date
CN102650713A (zh) 2012-08-29
CN102650713B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2013104306A1 (zh) 光子晶体波导t形偏振分束器
US9927575B2 (en) Optical coupling using polarization beam displacer
WO2013104307A1 (zh) 光子晶体波导te-偏振分离器
JP5307558B2 (ja) コア間カップリングを備えたマルチコアフォトニックバンドギャップファイバ
EP3411737B1 (en) A waveguide crossing
WO2013104302A1 (zh) 光子晶体波导tm-偏振分离器
Ren et al. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti: Sapphire crystal
WO2015139612A1 (zh) 基于光子晶体波导的十字红外偏振光桥
CN106772703B (zh) 一种基于绝缘体上硅薄膜(soi)的1×8高性能光子晶体并行复用传感器阵列结构
TW202221368A (zh) 用於光纖通訊的基於超表面的光學信號操控裝置
CN103941337A (zh) 基于同构二维光子晶体的y型偏振滤波分束器
WO2014032510A1 (zh) 光子晶体波导全偏振态整数比功率分配器
Mohammadi et al. Five-port power splitter based on pillar photonic crystal
WO2014026580A1 (zh) 基于二维光子晶体薄板的三维偏振分束器
Ke et al. Photonic crystal broadband y-shaped 1× 2 beam splitter inversely designed by genetic algorithm
Sharma et al. Review and analysis of photonic crystal beam splitters for optical communication applications
Shi A compact polarization beam splitter based on a multimode photonic crystal waveguide with an internal photonic crystal section
US9170375B2 (en) TM-polarization splitter based on photonic crystal waveguide
CN104102016A (zh) 基于光子晶体的偏振光分束器设计方法
CN104360440B (zh) 一种基于完全禁带型光子晶体波导的x形交叉偏振光桥
Sukhoivanov et al. Introduction to photonic crystals
CN110764174B (zh) 一种介质光栅窄带滤波器及其制作方法
CN103941414A (zh) 基于异构二维光子晶体的y型偏振滤波分束器
JP6846145B2 (ja) フォトニック結晶垂直型光導波路デバイス
Wu et al. Spectral Engineering Based on Mode Splitting in Integrated Cascaded Sagnac Loop Reflectors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13735738

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14372024

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (26.03.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13735738

Country of ref document: EP

Kind code of ref document: A1