WO2013104306A1 - 光子晶体波导t形偏振分束器 - Google Patents

光子晶体波导t形偏振分束器 Download PDF

Info

Publication number
WO2013104306A1
WO2013104306A1 PCT/CN2013/070254 CN2013070254W WO2013104306A1 WO 2013104306 A1 WO2013104306 A1 WO 2013104306A1 CN 2013070254 W CN2013070254 W CN 2013070254W WO 2013104306 A1 WO2013104306 A1 WO 2013104306A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
waveguide
crystal waveguide
beam splitter
dielectric
Prior art date
Application number
PCT/CN2013/070254
Other languages
English (en)
French (fr)
Inventor
欧阳征标
金鑫
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to US14/372,025 priority Critical patent/US9207400B2/en
Publication of WO2013104306A1 publication Critical patent/WO2013104306A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2773Polarisation splitting or combining

Definitions

  • the present invention relates to the field of micro optical polarization beam splitters, and more particularly to a micro optical polarization beam splitter based on photonic crystal technology. Background technique
  • Tiny devices can be fabricated based on photonic crystals, including polarizing beam splitters. There are currently two approaches: One is to use a piece with
  • the photonic crystals of the forbidden zone and the ⁇ conduction band or the forbidden zone and the ⁇ conduction band are used to achieve polarization separation of the waves.
  • Such a polarization beam splitter because of its poor transmittance and polarization, and difficulty in integration into other photonic crystal devices, can only be used as a single photonic crystal device in conventional optical waveguides.
  • the other is to design different relative coupling lengths to couple light waves of different polarization states to different waveguides by means of long-range coupled waveguides using periodic coupling and odd-state variation between waveguides.
  • the polarization beam splitter obtained by these two methods although much smaller than the conventional polarization beam splitter, is still relatively large. Summary of the invention
  • the object of the present invention is to overcome the deficiencies in the prior art and to provide a photonic crystal pass-shaped polarizing beam splitter which is efficient and short-range easy to integrate.
  • the photonic crystal waveguide ⁇ -shaped polarizing beam splitter of the present invention includes a photon having a complete forbidden band
  • the crystal waveguide after the input end of the photonic crystal waveguide inputs an incident wave of an arbitrary polarization direction to the polarization beam splitter, the TE component is output from the output end of the TE, and the TM component is output from the TM output end of the beam splitter.
  • the photonic crystal waveguide is provided with a waveguide defect dielectric column, wherein the e-light refractive index in the waveguide defect dielectric column is greater than 0 optical refractive index, and the optical axis of the waveguide defective dielectric column is parallel to the photonic crystal waveguide plane and is transmitted with the wave.
  • the directions are orthogonal.
  • the optical axis of the waveguide defective dielectric column is aligned with the optical axis direction of the background dielectric column.
  • the number of the waveguide defective dielectric columns is 1 or 2 or 3 or 4 or 5 or 6.
  • the photonic crystal waveguide is a two-dimensional photonic crystal waveguide, including a two-dimensional photonic crystal waveguide of a germanium medium, a two-dimensional photonic crystal waveguide of a honeycomb structure, a two-dimensional photonic crystal waveguide of a polygonal triangular lattice, and various two-dimensional photonic crystals of irregular shape. waveguide.
  • the photonic crystal waveguide is a structure in which one or two rows or three or four rows of dielectric columns are removed from the photonic crystal.
  • the photonic crystal waveguide plane is perpendicular to the axis of the dielectric column in the photonic crystal.
  • the invention has the following advantages:
  • the present invention can completely realize the polarization separation function by passing two point defects in a short path, which is convenient for integration and high efficiency;
  • the present invention employs the characteristics that the photonic crystal can be scaled, and the function of polarization splitting of different wavelengths can be realized by changing the lattice constant in equal proportions.
  • FIG. 1 is a schematic view of a Tellurium photonic crystal and a waveguide used in the present invention.
  • the initial signal light of this device is incident from the left port "1”
  • the port “2” outputs the TE light wave
  • the port “3” outputs the TM light wave.
  • "4" is the background ⁇ dielectric column
  • the optical axis direction is perpendicular to the paper
  • its radius 0.3568a.
  • "5" is a square defect dielectric column. The direction of the optical axis is parallel to the paper surface and perpendicular to the lower end surface of the cube.
  • "6" is a circular defect dielectric column with the same optical axis as the background dielectric column.
  • FIG. 2 is a schematic structural view and a parameter distribution diagram of a photonic crystal T-shaped polarizing beam splitter of the present invention.
  • Fig. 3 is an extinction ratio of each channel of the photonic crystal T-shaped polarizing beam splitter in the forbidden band frequency range of the present invention.
  • Figure 4 is a graph showing the degree of polarization of each channel of the photonic crystal T-shaped polarizing beam splitter in the forbidden band frequency range of the present invention.
  • Figure 5 is a graph showing the transmittance of the channel TE light in the forbidden band frequency range of the photonic crystal T-shaped polarizing beam splitter of the present invention.
  • Figure 6 is a diagram showing the right channel TM light of the photonic crystal T-shaped polarizing beam splitter in the forbidden band frequency range of the present invention. Transmittance.
  • Figure 7 is a simulation of the TE component distribution.
  • Figure 8 is a simulation diagram of TM component distribution.
  • the dielectric material in the principle introduction and the specific embodiment of the present invention is exemplified by a tantalum dielectric column.
  • the photonic crystal is a square lattice with a lattice constant of ⁇ and a radius of 0.3568a, its photonic band gap is 3.928 to 4.550 ( ⁇ /2rc), and light waves of any frequency between them will be confined in the waveguide.
  • the present invention introduces a point defect in the above-mentioned waveguide to make the point defect have different equivalent refractive indices for light waves of different polarization states, and then determine a point defect parameter that satisfies the single polarization state total reflection while the other polarization state is completely transmitted.
  • the Cartesian Cartesian coordinate system is used: the positive direction of the X axis is horizontal to the right; the positive direction of the axis is vertically upward in the plane of the paper; the positive direction of the ⁇ axis is perpendicular to the outside of the paper.
  • ⁇ and ⁇ correspond to the equivalent refractive indices of TE and TM light, respectively, E x , E y , which are the components of the electric field, respectively.
  • the reflectance and transmittance ( ⁇ ) of the light wave in the waveguide at the point defect can be expressed as:
  • the dielectric column radius can be determined by adjusting the size of the dielectric column to meet the requirements of £ 1, T TE 0 and R 3 ⁇ 4 0, thereby achieving the function of blocking TE light and transmitting TM light.
  • the horizontal position of the three dielectric columns of the horizontal waveguide is located at the horizontal center line of the waveguide and the first column At the intersection of the center line of the TM waveguide dielectric column, the distance between the center of the point defect and the center of the upper and lower dielectric columns is
  • L 4 1.5a (7)
  • the four square dielectric columns of the vertical through TE waveguide are at the same vertical center position as the background medium of the row, and the horizontal center position is respectively from the background media column on the left and right sides.
  • L 5 a (8)
  • the e-axis of the four square dielectric columns of the vertical-pass TE waveguide is offset from the other point defects and the background dielectric column, and the bias direction is the horizontal X-axis.
  • the center of each of the square dielectric columns is the same as the center of the circular dielectric column originally deleted for forming the waveguide, so four square dielectrics
  • the distance between the columns is ⁇
  • the distance from the center of the nearest background dielectric column is also ⁇
  • the length of each side is 0.575 ⁇ .
  • the optical axes of the four square tantalum dielectric columns are orthogonal to the optical axis of the background cylindrical tantalum dielectric column in the photonic crystal, while the optical axis direction is orthogonal to the upper and lower sides of the square in the figure, parallel to the left and right sides.
  • the center of each circular dielectric column is the same as the center of the circular dielectric column deleted when the waveguide was originally formed, so the distance between the three circular dielectric columns is It is ⁇ , and the distance from the center of the nearest background dielectric column is also ⁇ , and the respective radii are 0.175 ⁇ .
  • the optical axes of the three circular tantalum dielectric columns are aligned with the optical axis of the background cylindrical tantalum dielectric column in the photonic crystal.
  • the incident signal port is at the position of "1" in FIG. 1, and the light propagates in the waveguide formed by the "4" dielectric column array, after reaching the defect position of "2", The ⁇ component will pass all the way, and the ⁇ component will all block; after reaching the defect position of "6", the ⁇ component will all pass, and the ⁇ component will all block. The last component will be output at the output port "2"position; ⁇ The component will be output at the output port "3" position.
  • the following selection functions are available: (1) When the incident light is a TE or TM mixed wave, the TE components are all introduced into the upper waveguide; the TM components are all introduced into the right waveguide.
  • the TE wave is derived from the upper waveguide.
  • the TM wave is derived from the right waveguide.
  • the selection of the lattice constant and the operating wavelength can be determined in the following manner.
  • ytterbium According to the refractive index profile of the uniaxial crystal enthalpy, ytterbium has a relatively stable refractive index in the wavelength range of 3.5 « ⁇ 35 ⁇ .
  • the extinction ratio in the I-waveguide that satisfies the wavelength range which is equal to the value of the lattice constant ⁇ , can be defined as
  • Figures 5 and 6 show the transmittances of the upper waveguide TE wave and the right waveguide TM wave, respectively. It can be seen from Fig. 6 that the TM wave has a good transmittance over the entire band gap and has a worst transmittance of -1.24 dB at a wavelength close to 4.55 ⁇ .
  • the wavelength range is in the range of 4.072 ⁇ -4.129 ⁇ and 4.147 ⁇ -4.4 a
  • the best transmittance is in the range of 4.129 - 4.147
  • Figure 7 and Figure 8 show the optical field simulations obtained by the finite element software COMSOL when the free-space operating wavelength is 4.1 ⁇ . It can be observed that ⁇ and ⁇ waves are efficiently propagated in their respective passbands, respectively, and have an extremely high extinction ratio.
  • the present invention can efficiently separate light waves having TE, TM components, or light waves of a single TE or TM component.
  • the invention has a wide operating wavelength range while having a high extinction ratio, and the invention has a wide operating wavelength range while having a high extinction ratio, and can allow a pulse having a certain spectral width, or a Gaussian light, or a different wavelength.
  • the work of light, or the operation of multiple wavelengths of light has practical significance.
  • a waveguide can be formed by forming a positive uniaxial crystal ⁇ array arranged in a square lattice on a substrate, and deleting two or two columns at a central position, so that both TE and TM light can be propagated in a fundamental mode.
  • the background of the background in the photonic crystal, the e-optical axis direction of each column in the array of dielectric columns is to satisfy the cylinder
  • the axes of the bodies are in the same direction.
  • the operating wavelength can be adjusted by the lattice constant between the dielectric columns.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种光子晶体T形偏振分束器,包括一个具有完全禁带的光子晶体波导,所述光子晶体波导的输入端(1)输入任意偏振方向的入射波入射到该偏振分束器后,TE分量从TE的输出端(2)输出,而TM分量从该分束器的TM输出端(3)输出。该偏振分束器体积小,偏振度高,光传输效率高,便于集成而且高效,适合大规模光路集成,可以实现不同波长偏振分束的功能。

Description

光子晶体波导 τ形偏振分束器
技术领域
本发明涉及微小光学偏振分束器领域, 尤其涉及一种基于光子晶体技术 的微小光学偏振分束器。 背景技术
传统的偏振分束器体积大, 无法用于光路集成中。以光子晶体为基础可以 制作微小的器件, 包括偏振分束器。 目前有两种做法: 一种是利用一块具有
ΤΕ禁带和 ΤΜ导带或 ΤΜ禁带和 ΤΕ导带的光子晶体来实现波的偏振分离。 这 种偏振分束器, 由于其透过率和偏振度较差, 并且难以集成到其它光子晶体 器件中, 只能作为单一光子晶体器件使用在传统光学波导中。 另一种是通过 长程耦合波导, 利用波导之间周期性耦合和奇偶态变化的方法, 设计不同的 相对耦合长度把不同偏振态的光波耦合到不同的波导。 通过这两种方法所得 到的偏振分束器, 虽然其体积比传统的偏振分束器小了很多, 但还是显得比 较大。 发明内容
本发明的目的是克服现有技术中的不足, 提供一种高效短程便于集成的 光子晶体通 Τ形偏振分束器。
本发明的目的通过下述技术方案予以实现。
本发明的光子晶体波导 τ形偏振分束器, 包括一个具有完全禁带的光子 晶体波导, 所述光子晶体波导的输入端输入任意偏振方向的入射波到该偏振 分束器后, TE分量从 TE的输出端输出, 而 TM分量从该分束器的 TM输出 端输出。
所述的光子晶体波导中设置有波导缺陷介质柱,该波导缺陷介质柱中的 e 光折射率大于 0光折射率, 且波导缺陷介质柱的光轴平行于光子晶体波导平 面并与波的转播方向正交。
所述波导缺陷介质柱的光轴与背景介质柱的光轴方向一致。
所述的波导缺陷介质柱数量为 1根或 2根或 3根或 4根或 5根或 6根。 所述的光子晶体波导为二维光子晶体波导, 包括碲介质二维光子晶体波 导, 蜂窝结构二维光子晶体波导, 孔状三角晶格二维光子晶体波导, 各种非 规则形状二维光子晶体波导。
所述的光子晶体波导为所述光子晶体中移除 1排或 2排或 3排或 4排介 质柱后的结构。
所述的光子晶体波导平面垂直于所述光子晶体中的介质柱的轴线。
本发明与现有技术相比具有以下的优点:
( 1 ) 结构体积小, 偏振度高, 光传输效率高, 适合大规模光路集成;
(2 ) 本发明在短程通过两个点缺陷就可以完全实现偏振分离功能, 便于 集成而且高效;
(3 ) 本发明应用光子晶体可等比例缩放的特性, 通过等比例改变晶格常 数的方法, 可以实现不同波长偏振分束的功能。 附图说明
图 1是本发明使用的 Tellurium 光子晶体及波导示意图。 如图中所示, 本器件初始信号光从左方端口 " 1 "入射, 端口 " 2 "输出 TE光波, 端口 " 3 "输出 TM光波。 "4"为背景碲介质柱, 光轴方向垂直纸面 向外, 其半径为 R = 0.3568a。 " 5 "为方形缺陷介质柱, 光轴方向与纸面平行 并且垂直于正方体下端面, 其边长为 L = 0.575a, 其位置中心与所删除背景介 质柱的各个圆心相同。 "6 "为圆形缺陷介质柱, 光轴方向与背景介质柱相同, 其半径为 R = 0.175a, 其位置中心与所删除背景介质柱的各个圆心相同。
图 2 是本发明光子晶体 T形偏振分束器结构示意图及参数分布图。
示 , 本器件的相关参数为: (所有值都需乘以晶格常数 a
=1 (晶格常数)
=3 (波导间介质柱圆心间距)
=0.575 (方形点缺陷边长)
=1.5 (圆形点缺陷与背景介质柱距离)
=1 (方形点缺陷之间距离、 与背景介质柱距离)
=1 (圆形点缺陷之间距离)
=0.3568 (背景碲介质柱半径)
R2 =0.175 (圆形点缺陷半径)
图 3是本发明光子晶体 T形偏振分束器各通道在禁带频率范围内的消光 比。
图 4是本发明光子晶体 T形偏振分束器各通道在禁带频率范围内的偏振 度。
图 5是本发明光子晶体 T形偏振分束器上通道 TE光在禁带频率范围内的 透过率。
图 6是本发明光子晶体 T形偏振分束器右通道 TM光在禁带频率范围内的 透过率。
图 7是 TE分量分布模拟图。
图 8是 TM分量分布模拟图 具体实施方式
本发明的原理介绍和具体实施方式中的介质材料均以碲介质柱为例。 碲 是一种正单轴晶体, n。=4.8, ne=6.2, 当 e光轴与介质柱轴同向时, 通过平面波 展开发可以得到其光子禁带。 当光子晶体为正方晶格, 晶格常数为 Ω, 半径为 0.3568a时, 其光子禁带为 3.928 至 4.550(∞/2rc), 其中间的任何频率的光 波将被限制在波导中。
本发明通过在上述波导中引入点缺陷, 使点缺陷针对不同偏振态的光波 的等效折射率不同, 继而确定符合单偏振态全反射, 同时另一偏振态全透射 的点缺陷参数。 将这些不同规格的点缺陷应用到不同偏振态波导的端面附近, 就可以实现不同偏振态光波的分离。
如图 1与图 2所示, 本发明所使用碲介质波导需要删除两行或两列介质 柱而形成导波波导, 其 Α=α, ^=3α, 背景介质柱半径 = 0.3568 。 本说 明中使用笛卡尔直角坐标系: X轴正方向为水平向右; )/轴正方向为在纸面内 竖直向上; ζ轴正方向为垂直于纸面向外。
Figure imgf000006_0001
式中 ^与 ^分别对应 TE与 TM光的等效折射率, Ex, Ey, 分别为电场 的 分量。
波导中的光波在点缺陷处的反射率 与透射率 (Γ)可以表示为:
Figure imgf000007_0001
可以通过调节介质柱的大小来确定符合 £ 1, TTE 0且 R ¾0, 这两个条件的介质柱半径, 从而实现阻隔 TE光, 传输 TM光的功能。
通过数值扫描计算得到, TM波具有消光比极大值时的圆形介质柱的半径
R = 0.175α (5) 此时的 ^→οο, →\。
同时, 也可以通过同时调节两行并排介质柱的大小来确定符合 RTE 0, TTE ^且 ?^ 1, TTM 0这两个条件的介质柱半径, 从而实现阻隔 TM 光, 传输 TE光的功能。 (此时介质柱 e光轴的偏置方向与波传播方向正交) 通过数值扫描计算得到 TE波具有消光比极大值时的方形介质柱的边长为
= 0.575α (6) 此时, η →1,η →∞。
水平通 ΤΜ 波导的三个介质柱中心位置位于波导水平中心线与第一列通 TM波导介质柱中心线交叉点处, 其点缺陷中心与上下两个介质柱中心的距离 为
L4 = 1.5a (7) 垂直通 TE波导的四个方形介质柱与其所在行背景介质垂直中心位置相同, 水平中心位置分别与左右两边的背景介质柱的距离为
L5 = a (8) 垂直通 TE波导的四个方形介质柱的 e光轴的偏置方向与其它点缺陷和背 景介质柱不同, 其偏置方向为水平 X轴。
如图 1与图 2所示, 通 TE波导端口的四个方形缺陷介质柱中, 每一个方 形介质柱的中心与原来为形成波导所删除的圆形介质柱的中心相同, 故四个 方形介质柱各自距离为 Ω, 同时与最近背景介质柱中心的距离也为 Ω, 各自边 长为 0.575α。 四个方形碲介质柱的光轴与光子晶体中的背景圆柱碲介质柱的 光轴正交, 同时光轴方向与图中正方形的上下边正交, 与左右边平行。
同时,在通 TM波导端口的 3个圆形缺陷介质柱中,每一个圆形介质柱的 中心与原来形成波导时所删除的圆形介质柱的中心相同, 故 3个圆形介质柱 各自距离为 Ω,同时与最近背景介质柱中心的距离也为 Ω,各自半径为 0.175Ω。 3个圆形碲介质柱的光轴与光子晶体中的背景圆柱碲介质柱的光轴方向一致。
当在碲介质柱阵列波导中引入上述缺陷后, 入射信号端口为图 1 中 " 1 " 的位置, 光在以 "4"介质柱阵列形成的波导中传播, 到达 " 2 " 的缺陷位置 后, ΤΕ分量将全部通过, ΤΜ分量将全部阻隔; 到达 " 6"的缺陷位置后, ΤΜ 分量将全部通过, ΤΕ分量将全部阻隔。 最后 ΤΕ分量将在输出端口 " 2 "位置 输出; ΤΜ 分量将在输出端口 "3 "位置输出。 对不同输入的信号, 具有以下 选择功能: (1)、 当入射光为 TE、 TM混合波时, TE分量将全部导入上方波导; TM 分量将全部导入右方波导。
(2)、 当入射光为仅为 TE波时, TE波从上方波导导出。
(3)、 当入射光为仅为 TM波时, TM波从右方波导导出。
对于晶格常数和工作波长的选取, 可以用以下方式确定。 通过单轴晶体 碲的折射率曲线知,在波长范围为 3.5« ~35Ω之间,碲具有比较稳定的折射率。 通过公式
Figure imgf000009_0001
其中为 /禁带频率, 以及本发明中正方晶格碲结构的的归一化禁带频率范围
/ = 0.2197740.25458 (10) 计算出相应的禁带波长范围为
Figure imgf000009_0002
由此可见,可以通过改变晶格常数 α的值得到与其等比例的满足波长范围的 I 波导中的消光比定义为
LTE
ΤΕ波: Extinction RatioTE = 10 x log '10 (12)
LTM
TM
TM波: Extinction Ratiom = 10 x log10 (13) 偏振度定义为:
LTE ^TM
TE波: Degree of Polarization . = (14)
TM
TM lTE
TM波: Degree of Polarization^ = (15)
TE 通过图 3可以发现当工作波长为 3.93-4.5左右时, TE波和 TM波的消光 比全部大于 25dB, 并且在图 4中可以观察到 TE、 TM波都具有近乎 1的偏振 度, 而此光子晶体禁带波长范围为 3.928 Ω -4.55 Ω , 这说明本发明具有很大的 工作波长范围, 这是其它耦合腔模式偏振分光器件所不具备的。
图 5、 图 6分别为上波导 TE波与右波导 TM波的透过率。 从图 6可以看 到, TM波在整个禁带范围内具有良好的透过率, 在接近 4.55 α相对波长时有 最差透过率 -1.24dB。而从图 5可以看到,波长范围在 4.072 α -4.129 α和 4.147 α -4.4 a两个波段范围内具有最佳透过率, 而在 4.129 -4.147 之间有一个 ΤΕ波 透过率为 -20.7dB的极小值。 因此, 结合图 3-图 6可得, 本发明的最佳工作波 长范围为 4.072 -4.129 、 4.147 -4.4 。 在这两个波段范围可以实现极高的 消光比及透过率。
图 7、 图 8为自由空间工作波长为 4.1 α时, 通过有限元软件 COMSOL进 行计算, 得到的光场模拟图。 可以观察到, ΤΕ及 ΤΜ波分别高效地在各自的 通带传播, 并且具有极高的消光比。
本发明可以短程高效地分离同时具有 TE、 TM分量的光波,或定向导通单 TE或 TM分量的光波。 本发明在具有高消光比的同时具有较宽的工作波长范 围, 本发明在具有高消光比的同时具有较宽的工作波长范围, 可以允许有一 定频谱宽度的脉冲, 或高斯光, 或不同波长的光工作, 或多个波长的光同时 工作, 具有实用意义。
本发明可以通过在基板上建立以正方晶格排列的正单轴晶体碲阵列, 在 中心位置删除两行或两列的方式形成波导,使 TE、TM光都能以基模形式传播。 光子晶体中的背景碲介质柱阵列中的每一个柱的 e光光轴方向要满足与圆柱 体的轴线方向一致。 工作波长可以通过介质柱间晶格常数来调节。
以上所述本发明在具体实施方式及应用范围均有改进之处, 不应当 ί! 为对本发明限制。

Claims

权利要求书
1、 一种光子晶体波导 τ形偏振分束器, 包括一个具有完全禁带的光子晶体波 导, 其特征在于: 所述光子晶体波导的输入端输入任意偏振方向的入射波入 射到该偏振分束器后, ΤΕ分量从 ΤΕ的输出端输出, 而 ΤΜ分量从该分束器 的 ΤΜ输出端输出。
2、 按照权利要求 1所述的光子晶体波导 Τ形偏振分束器, 其特征在于: 所述 的光子晶波导中设置有波导缺陷介质柱, 该波导缺陷介质柱中的 e光折射率 大于 0光折射率, 且波导缺陷介质柱的光轴平行于光子晶体波导平面并与波 的传播方向正交。
3、 按照权利要求 2所述的光子晶体波导 T形偏振分束器, 其特征在于: 所述 波导缺陷介质柱的光轴与背景介质柱的光轴方向一致。
4、 按照权利要求 2或 3所述的光子晶体波导 T形偏振分束器, 其特征在于: 所述的波导缺陷介质柱数量为 1根或 2根或 3根或 4根或 5根或 6根。
5、 按照权利要求 1所述的光子晶体波导 T形偏振分束器, 其特征在于: 所述 的光子晶体波导为二维光子晶体波导, 包括碲介质二维光子晶体波导, 蜂窝 结构二维光子晶体波导, 孔状三角晶格二维光子晶体波导, 各种非规则形状 二维光子晶体波导。
6、 按照权利要求 1所述的光子晶体波导 T形偏振分束器, 其特征在于: 所述 的光子晶体波导为所述光子晶体中移除 1排或 2排或 3排或 4排介质柱后的 结构。
7、 按照权利要求 1所述的光子晶体波导 T形偏振分离器, 其特征在于: 所述 的光子晶体波导平面垂直于所述光子晶体中的介质柱的轴线。
PCT/CN2013/070254 2012-01-13 2013-01-09 光子晶体波导t形偏振分束器 WO2013104306A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/372,025 US9207400B2 (en) 2012-01-13 2013-01-09 T-shape polarization beam splitter based on photonic crystal waveguide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210064948.4A CN102650714B (zh) 2012-01-13 2012-01-13 光子晶体波导t形偏振分束器
CN201210064948.4 2012-01-13

Publications (1)

Publication Number Publication Date
WO2013104306A1 true WO2013104306A1 (zh) 2013-07-18

Family

ID=46692752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070254 WO2013104306A1 (zh) 2012-01-13 2013-01-09 光子晶体波导t形偏振分束器

Country Status (3)

Country Link
US (1) US9207400B2 (zh)
CN (1) CN102650714B (zh)
WO (1) WO2013104306A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650714B (zh) * 2012-01-13 2015-04-08 深圳大学 光子晶体波导t形偏振分束器
US9170375B2 (en) * 2012-01-13 2015-10-27 Shenzhen University TM-polarization splitter based on photonic crystal waveguide
CN102809782B (zh) * 2012-08-15 2013-12-25 深圳大学 基于二维光子晶体薄板的三维偏振分束器
CN103941337B (zh) * 2014-02-22 2017-01-04 浙江大学 基于同构二维光子晶体的y型偏振滤波分束器
CN103901537B (zh) * 2014-03-21 2016-08-17 深圳大学 基于光子晶体波导的十字红外偏振光桥
CN104950383B (zh) * 2014-09-29 2020-11-13 欧阳征标 方孔式正方晶格光子晶体低折射率双补偿散射柱直角波导
CN104950389B (zh) * 2014-09-29 2017-01-25 欧阳征标 圆柱式正方晶格光子晶体高折射率双补偿散射柱直角波导
CN104950386B (zh) * 2014-09-29 2017-03-22 深圳市浩源光电技术有限公司 方柱式正方晶格光子晶体高折射率单补偿散射柱直角波导
CN104950385B (zh) * 2014-09-29 2017-01-11 欧阳征标 方柱式正方晶格光子晶体高折射率双补偿散射柱直角波导
CN104950384B (zh) * 2014-09-29 2020-11-13 欧阳征标 圆孔式正方晶格光子晶体低折射率双补偿散射柱直角波导
CN104360440B (zh) * 2014-11-04 2017-08-25 深圳大学 一种基于完全禁带型光子晶体波导的x形交叉偏振光桥
CN104459990B (zh) * 2014-12-10 2017-01-11 欧阳征标 基于平板光子晶体的高消光比偏振无关光开关
CN104459989B (zh) * 2014-12-10 2017-03-08 深圳市浩源光电技术有限公司 基于平板光子晶体的高消光比te光开关
CN105607304B (zh) * 2016-02-15 2021-02-19 欧阳征标 基于光子晶体t型波导的横向输出磁控二选一光路开关
WO2019156785A1 (en) 2018-02-06 2019-08-15 Exxonmobil Research And Engineering Company Estimating phase fraction/distribution with dielectric contrast analysis
CN108873165B (zh) * 2018-06-28 2020-05-15 哈尔滨工程大学 基于超构表面集成的双芯光纤的任意偏振态合成器
US10698159B2 (en) 2018-10-19 2020-06-30 Globalfoundries Inc. Multiple-layer arrangements including one or more dielectric layers over a waveguide
US11733079B2 (en) 2020-05-26 2023-08-22 ExxonMobil Technology and Engineering Company Measuring the flow rate of fluids with dielectric contrast analysis
CN114325935B (zh) * 2021-12-08 2024-04-16 南京邮电大学 非磁性光子晶体非互易性双通道窄带滤波器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080124037A1 (en) * 2004-12-28 2008-05-29 Kyoto University Two-Dimensional Photonic Crystal And Optical Device Using The Same
CN101251627A (zh) * 2008-03-28 2008-08-27 中国科学院上海技术物理研究所 光子晶体波导偏振分束器
US20090232441A1 (en) * 2005-03-18 2009-09-17 Kyoto University Polarized Light Mode Converter
CN101840024A (zh) * 2010-04-07 2010-09-22 浙江日风电气有限公司 一种基于二维光子晶体偏振通道下路滤波器
CN101881862A (zh) * 2010-06-07 2010-11-10 南昌大学 基于光子晶体微谐振环的超微偏振分束器
CN102650714A (zh) * 2012-01-13 2012-08-29 深圳大学 光子晶体波导t形偏振分束器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174659A (ja) * 1999-12-15 2001-06-29 Showa Electric Wire & Cable Co Ltd モード分離方法及びモード分離器
US6597851B2 (en) * 2000-08-09 2003-07-22 Massachusetts Institute Of Technology Periodic dielectric structure having a complete three-dimensional photonic band gap
US7058242B2 (en) * 2003-06-24 2006-06-06 Massachusetts Institute Of Technology Polarization-independent optical networks in 3D photonic crystals
CN100541249C (zh) * 2007-09-12 2009-09-16 哈尔滨工程大学 二维完全带隙光子晶体和消偏振分束器
EP2445986A4 (en) * 2009-06-22 2017-09-13 The Trustees Of Princeton University Non-crystalline materials having complete photonic, electronic, or phononic band gaps
CN101887145B (zh) * 2010-06-17 2011-11-09 中国科学院半导体研究所 光子晶体矩形耦合腔零色散慢光波导
CA2728879C (en) * 2011-01-19 2018-03-20 National Research Council Of Canada Composite subwavelength-structured waveguide in optical systems
US8923661B2 (en) * 2011-07-27 2014-12-30 Massachusetts Institute Of Technology 2-pattern compound photonic crystals with a large, complete photonic band gap

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080124037A1 (en) * 2004-12-28 2008-05-29 Kyoto University Two-Dimensional Photonic Crystal And Optical Device Using The Same
US20090232441A1 (en) * 2005-03-18 2009-09-17 Kyoto University Polarized Light Mode Converter
CN101251627A (zh) * 2008-03-28 2008-08-27 中国科学院上海技术物理研究所 光子晶体波导偏振分束器
CN101840024A (zh) * 2010-04-07 2010-09-22 浙江日风电气有限公司 一种基于二维光子晶体偏振通道下路滤波器
CN101881862A (zh) * 2010-06-07 2010-11-10 南昌大学 基于光子晶体微谐振环的超微偏振分束器
CN102650714A (zh) * 2012-01-13 2012-08-29 深圳大学 光子晶体波导t形偏振分束器

Also Published As

Publication number Publication date
US20140355927A1 (en) 2014-12-04
CN102650714B (zh) 2015-04-08
US9207400B2 (en) 2015-12-08
CN102650714A (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
WO2013104306A1 (zh) 光子晶体波导t形偏振分束器
WO2013104307A1 (zh) 光子晶体波导te-偏振分离器
Mehdizadeh et al. All optical multi reflection structure based on one dimensional photonic crystals for WDM communication systems
EP3314320B1 (en) Mode converter with a s-bent taper and related polarization rotator
US9784915B2 (en) Cross-shaped infrared polarized light bridge based on photonic crystal waveguide
CN112034550B (zh) 基于悬空波导结构的氮化硅相控阵芯片
CN101251627A (zh) 光子晶体波导偏振分束器
Ren et al. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti: Sapphire crystal
JP5723260B2 (ja) 偏波もつれ光子対発生素子
WO2013104302A1 (zh) 光子晶体波导tm-偏振分离器
WO2014032510A1 (zh) 光子晶体波导全偏振态整数比功率分配器
CN103941337A (zh) 基于同构二维光子晶体的y型偏振滤波分束器
Mohammadi et al. Five-port power splitter based on pillar photonic crystal
US9395493B2 (en) 3D polarization beam splitter based on 2D photonic crystal slab
Saral et al. Two-dimensional photonic crystal based compact power splitters
Sinha et al. Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer
CN106680933A (zh) 一种横向非对称的无反射周期波导微腔带通滤波器
US9170375B2 (en) TM-polarization splitter based on photonic crystal waveguide
CN104360440B (zh) 一种基于完全禁带型光子晶体波导的x形交叉偏振光桥
CN103941414A (zh) 基于异构二维光子晶体的y型偏振滤波分束器
CN216646870U (zh) 基于光子晶体波导的太赫兹偏振分束器
CN111290144B (zh) 一种光子晶体数字型光开关
CN110764174B (zh) 一种介质光栅窄带滤波器及其制作方法
CN108519715B (zh) 一种多功能等离子体逻辑器件及其逻辑状态的操控方法
JP6846145B2 (ja) フォトニック結晶垂直型光導波路デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14372025

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13736261

Country of ref document: EP

Kind code of ref document: A1