WO2013104161A1 - 用于判断挖掘机的工作姿态的系统和方法、挖掘机 - Google Patents

用于判断挖掘机的工作姿态的系统和方法、挖掘机 Download PDF

Info

Publication number
WO2013104161A1
WO2013104161A1 PCT/CN2012/074328 CN2012074328W WO2013104161A1 WO 2013104161 A1 WO2013104161 A1 WO 2013104161A1 CN 2012074328 W CN2012074328 W CN 2012074328W WO 2013104161 A1 WO2013104161 A1 WO 2013104161A1
Authority
WO
WIPO (PCT)
Prior art keywords
excavator
distance
speed
bucket
excavation
Prior art date
Application number
PCT/CN2012/074328
Other languages
English (en)
French (fr)
Inventor
孙普
阎智慧
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2013104161A1 publication Critical patent/WO2013104161A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool

Definitions

  • the present invention relates to the field of mechanical control, and in particular to a system and method for determining the working attitude of an excavator, an excavator.
  • Excavators often change load during work.
  • the control strategy adopted by the new generation of electronically controlled excavators is: Real-time accurate matching of engine speed and excavator load, so that engine speed will follow load changes. A large change has taken place. When the load suddenly increases, the engine speed demand will also rise sharply. At this time, the power response lag will occur, making the excavator operation unsmooth and affecting the mining efficiency to some extent.
  • the sudden change of the load occurs mainly at the moment when the bucket contacts the working surface to start digging.
  • the pre-judgment of the upcoming excavation action can be pre-judged by the identification of the excavator posture, and the engine is accelerated in advance, so that the engine speed at the start of excavation reaches a high level. .
  • the invention is based on the above problems, and proposes a new technique for judging the working posture of the excavator, which can accurately identify whether the excavator will perform the excavating action, thereby adjusting the engine speed of the excavator to the preset speed in advance. , to avoid problems such as power lag caused by too low.
  • the present invention provides a system for determining an operational posture of an excavator, comprising: a data acquisition device that acquires a measurement distance between a bucket of an excavator and a crawler ground on which the excavator crawler is located in real time.
  • a speed acquiring device acquiring a moving speed and a moving direction of the bucket in real time according to the measured distance acquired by the data acquiring device; and a data storage device, in the process of completing an excavating operation by the excavator The speed of movement is zero And storing the measured distance acquired by the data acquiring device as a historical measuring distance; the threshold setting device setting the bucket and the crawler ground according to the historical measuring distance stored by the data storage device a distance threshold; a mining pre-judging device, in a case where the moving direction is downward in the vertical direction and the measured distance reaches the distance threshold, it is confirmed that the excavator is about to perform a digging operation.
  • a self-learning strategy in the excavation process is realized: by storing the distance between the bucket and the crawler ground where the excavator is traveling after each completion of the excavation action, so that the next time Used to generate distance thresholds in real time when mining actions. Since the distance threshold corresponding to the result of the previous digging action generated in real time is used each time the excavation operation is performed, the posture judgment of the excavator is more accurate.
  • the data acquiring device specifically includes: an angle sensor, measuring a first angle between the boom and the horizontal plane, and a second angle between the arm and the horizontal plane; the distance calculating unit, according to Calculating, wherein, for the measuring distance, a distance between a connection position of the boom and the excavator and a ground of the crawler, the first angle, the second angle .
  • the angle sensor is used to measure the angle, thereby obtaining the distance data between the bucket and the horizontal surface, and then determining whether the excavator is about to perform the excavating action.
  • V is the moving speed of the bucket
  • the first measuring distance acquired by the data acquiring device before the delay time is a second measuring distance acquired by the data acquiring device after the delay time elapses
  • is the delay time, wherein, in a case where the moving speed V is a positive number, the moving direction is downward in a vertical direction, and in a case where the moving speed V is a negative number, the The direction of motion is upward in the vertical direction.
  • the movement direction and the moving speed of the bucket can be further obtained by controlling the time.
  • the distance between the bucket and the horizontal plane is set to: When the bucket is above the horizontal plane, the distance is positive.
  • the movement speed of the bucket also has a positive or negative value. For example, when the calculated movement speed is positive, it indicates that the bucket movement direction is downward in the vertical direction, and when it is negative, the movement direction is in the vertical direction. It is upward, and when the moving speed is 0, it means that the bucket is at the moment of separation from the excavation object.
  • the data storage device is at the moving speed V
  • the measured distance acquired by the data acquisition means is stored as the historical measurement distance.
  • the moving speed when the moving speed is 0, it indicates that the bucket is at the moment of separation from the excavating object, and the storage distance of the digging object at this time is recorded, that is, the distance of the excavating object from the horizontal plane at this time is recorded, and if Using an excavator to dig a pit, it can be understood that the depth of the pit after each excavation can be considered as the recording of the excavation effect of this excavation action, so that the next excavation action can be used as a reference to generate a new real-time
  • the distance threshold ensures an accurate judgment of the excavation action that the excavator may produce.
  • the distance threshold generated each time is generated for the historical storage distance stored last time, and the basic idea of the calculation is to determine at the distance threshold that the excavator is about to perform the excavating action, Before the bucket is just in contact with the excavation object, the excavator can complete the adjustment of the engine speed. Therefore, this is related to the descending speed of the bucket, and also relates to the speed regulation speed of the engine. Obviously, the faster the bucket descends, The slower the speed of the engine, the greater the required distance threshold.
  • the historical measurement distance 1 is a preset distance.
  • the next excavation action is performed by recording the previous excavation result. Make a judgment.
  • the preset distance is determined by the preset history.
  • the method further includes: a command transmitting device that transmits a speed control command to the control device of the engine of the excavator when the excavation pre-judging device confirms that the excavator is about to perform the excavating operation
  • the engine speed is adjusted to a preset speed.
  • an excavator comprising a system for determining an operational posture of an excavator as described in the above technical scheme.
  • a self-learning strategy in the excavation process is realized: by storing the distance between the bucket and the crawler ground where the excavator is traveling after each completion of the excavation action, the next time Used to generate distance thresholds in real time when mining actions. Since the distance threshold corresponding to the result of the previous excavation action generated in real time is used each time the excavation operation is performed, the posture judgment of the excavator is more accurate.
  • a method for determining an operating posture of an excavator comprising: Step 302: acquiring, in real time, between a bucket of an excavator and a crawler ground on which the excavator crawler is located Measuring the distance; Step 304, acquiring the moving speed and the moving direction of the bucket in real time according to the measured distance; Step 306, using the stored historical measuring distance, setting the distance between the bucket and the crawler ground a threshold value, wherein the historical measurement distance is: a measurement distance acquired when the movement speed is zero during the last completion of the excavation operation by the excavator; step 308, if the movement direction is in a vertical direction To the down, and the measured distance reaches the distance threshold, it is confirmed that the excavator is about to perform a digging action.
  • a self-learning strategy in the excavation process is realized: by storing the distance between the bucket and the crawler ground where the excavator is traveling after each completion of the excavation action, so that the next time Used to generate distance thresholds in real time when mining actions. Since the distance threshold corresponding to the result of the previous excavation action generated in real time is used each time the excavation operation is performed, the posture judgment of the excavator is more accurate.
  • the step 302 specifically includes: measuring, by using an angle sensor, a first angle between the boom and the horizontal plane, and a second angle between the arm and the horizontal plane; according to / z ⁇ / ⁇ in - Z ⁇ in + ⁇ is calculated, wherein, for the measured distance, /3 ⁇ 4 is the distance between the connection position of the boom and the excavator and the crawler ground, for the first clip The angle is the second angle.
  • the angle sensor is used to measure the angle here, thereby obtaining the distance data between the bucket and the horizontal plane, and then determining whether the excavator is about to perform the excavating action.
  • the movement direction and the moving speed of the bucket can be further obtained by controlling the time.
  • the distance between the bucket and the horizontal plane is set to: When the bucket is above the horizontal plane, the distance is positive. When the bucket is below the horizontal plane, the distance is negative.
  • the resulting movement speed of the bucket also has a positive or negative value.
  • the calculated movement speed is positive, it indicates that the bucket movement direction is downward in the vertical direction, and when it is negative, the movement direction It is upward in the vertical direction, and when the moving speed is 0, it indicates that the bucket is at the moment of separation from the excavation object.
  • the method further includes: the delay time is: an integral multiple of an acquisition period when the first angle and the second angle are collected.
  • the data acquisition period of the angle sensor can be utilized, thereby facilitating the setting of the delay time and facilitating the analysis and processing of the data.
  • the distance threshold generated each time is for the last storage.
  • the historical measurement distance is generated, and the basic idea of calculation is to hope that after the distance threshold is judged that the excavator is going to perform the excavation action, before the bucket just touches the excavation object, the excavator can complete the rotation speed of the engine. Adjustment, therefore, this is related to the descending speed of the bucket, and also related to the speed regulation speed of the engine. Obviously, the faster the bucket descends, the slower the speed of the engine, and the greater the required distance threshold.
  • the method further includes: transmitting a speed control command to the control device of the engine of the excavator to adjust the rotation speed of the engine to a preset rotation speed.
  • the engine is accelerated, so that when the bucket contacts the excavation object, the engine reaches a higher rotation speed, thereby avoiding the excavation due to the insufficient speed of the engine.
  • the dynamic lag of the action affects the work efficiency, shortens the service life of the engine, and avoids black smoke, thereby avoiding fuel waste and environmental pollution.
  • FIG. 1 shows a block diagram of a system for determining an operational posture of an excavator in accordance with an embodiment of the present invention
  • FIG. 2 shows a block diagram of an excavator in accordance with an embodiment of the present invention
  • FIG. 3 shows a flow chart of a method for determining an operational posture of an excavator according to an embodiment of the present invention
  • FIG. 4 is a flow chart showing the determination of the working posture of the excavator according to an embodiment of the present invention.
  • Fig. 5 is a view showing the judgment of the working posture of the excavator according to an embodiment of the present invention.
  • FIG. 1 shows an embodiment in accordance with the invention.
  • a system 100 for determining an operational posture of an excavator includes: a data acquisition device 102 that acquires in real time between a bucket of an excavator and a crawler ground on which an excavator crawler is located
  • the speed acquisition device 104 acquires the movement speed and the movement direction of the bucket in real time according to the measurement distance acquired by the data acquisition device 102; the data storage device 106, in the process of the excavator completing a digging operation, in the movement
  • the threshold setting device 108 sets the distance threshold between the bucket and the track ground according to the historical measurement distance stored by the data storage device 106.
  • the excavation pre-judging device 110 confirms that the excavator is about to perform the excavating operation in the case where the moving direction is downward in the vertical direction and the measured distance reaches the distance threshold.
  • a self-learning strategy in the excavation process is realized: by storing the distance between the bucket and the crawler ground where the excavator is traveling after each completion of the excavation action, the next time Used to generate distance thresholds in real time when mining actions. Since the distance threshold corresponding to the result of the previous excavation action generated in real time is used each time the excavation operation is performed, the posture judgment of the excavator is more accurate.
  • the data acquiring device 102 specifically includes: an angle sensor 1020, measuring a first angle between the boom and the horizontal plane, and a second angle between the arm and the horizontal plane; the distance calculating unit 1022, according to + ⁇ Calculate, where, to measure the distance, the distance between the connection position of the boom and the excavator and the ground of the crawler is the first angle, which is the second angle.
  • the angle sensor 1020 measures the angle here to obtain the distance data between the bucket and the horizontal plane, and then determines whether the excavator is about to perform the excavation operation.
  • the speed obtaining device 104 specifically includes: a time setting unit
  • V is the movement speed of the bucket, the first measurement distance acquired by the data acquisition device 102 before the delay time, + is the second measurement distance acquired by the data acquisition device 102 after the delay time elapses, and ⁇ is the delay time, wherein In the case where the moving speed V is a positive number, the moving direction is downward in the vertical direction, and in the case where the moving speed V is negative, the moving direction is upward in the vertical direction.
  • the movement direction and the moving speed of the bucket can be further obtained by controlling the time.
  • the distance between the bucket and the horizontal plane is set to: When the bucket is above the horizontal plane, the distance is a positive number. When the bucket is below the horizontal plane, the distance is negative.
  • the resulting movement speed of the bucket also has a positive or negative value. For example, when the calculated movement speed is positive, it indicates that the bucket movement direction is downward in the vertical direction, and the movement direction is negative. It is upward in the vertical direction, and when the moving speed is 0, it indicates that the bucket is at the moment of separation from the excavation object.
  • the data storage device 106 stores the measurement distance acquired by the data acquisition device 102 as the historical measurement distance when the motion velocity V is zero.
  • the moving speed when the moving speed is 0, it indicates that the bucket is at the moment of separation from the excavating object, and the storage distance of the digging object at this time is recorded, that is, the distance of the excavating object from the horizontal plane at this time is recorded, and if Using an excavator to dig a pit, it can be understood that the depth of the pit after each excavation can be considered as the recording of the excavation effect of this excavation action, so that the next excavation action can be used as a reference to generate a new real-time
  • the distance threshold ensures an accurate judgment of the excavation action that the excavator may produce.
  • the distance threshold generated each time is generated for the historical storage distance stored last time, and the basic idea of the calculation is to determine at the distance threshold that the excavator is about to perform the excavating action, Before the bucket is just in contact with the excavation object, the excavator can complete the adjustment of the engine speed. Therefore, this is related to the descending speed of the bucket, and also relates to the speed regulation speed of the engine. Obviously, the faster the bucket descends, The slower the speed of the engine, the greater the required distance threshold.
  • the historical measurement distance 1 is a preset distance.
  • the next excavation action is performed by recording the previous excavation result. Make a judgment.
  • the preset distance is determined by the preset history.
  • the distance can be measured by different preset initial history for different mining objects and mining environments, so that the user can select corresponding data when needed, and can be implemented by multiple different buttons. .
  • the method further includes: the command transmitting device 112, when the excavation pre-judging device 110 confirms that the excavator is about to perform the excavating operation, transmits a speed control command to the engine control device of the excavator to adjust the engine speed To the preset speed.
  • the engine is accelerated, so that when the bucket contacts the excavation object, the engine reaches a higher rotation speed, thereby avoiding the excavation due to insufficient engine speed.
  • the dynamic lag of the action affects the work efficiency, shortens the service life of the engine, and avoids black smoke, thereby avoiding fuel waste and environmental pollution.
  • FIG. 2 shows a block diagram of an excavator in accordance with an embodiment of the present invention.
  • an embodiment of the excavator 200 is further provided, including the technology in FIG.
  • a self-learning strategy in the excavation process is realized: by storing the distance between the bucket and the crawler ground where the excavator is traveling after each completion of the excavation action, so that the next time Used to generate distance thresholds in real time when mining actions. Since the distance threshold corresponding to the result of the previous excavation action generated in real time is used each time the excavation operation is performed, the posture judgment of the excavator 200 is more accurate.
  • the system 100 for determining the working posture of the excavator includes: the data acquiring device 102, real-time acquiring the measuring distance between the bucket of the excavator 200 and the crawler ground where the excavator crawler is located;
  • the device 104 acquires the movement speed and the movement direction of the bucket in real time according to the measurement distance acquired by the data acquisition device 102.
  • the data storage device 106 when the excavator 200 completes a digging operation, when the movement speed is zero,
  • the measurement distance acquired by the data acquisition device 102 is stored as a historical measurement distance;
  • the threshold setting device 108 sets a distance threshold between the bucket and the track ground according to the historical measurement distance stored by the data storage device 106; 110.
  • a self-learning strategy in the excavation process is realized: by storing the distance between the bucket and the crawler ground where the excavator is traveling after each completion of the excavation action, the next time Used to generate distance thresholds in real time when mining actions. Since the distance threshold corresponding to the result of the previous excavation action generated in real time is used each time the excavation operation is performed, the posture judgment of the excavator 200 is made more accurate.
  • the data acquisition device 102 specifically includes: an angle sensor 1020, measuring a first angle between the boom and the horizontal plane, and a second angle between the arm and the horizontal plane; the distance calculation unit 1022, according to /z ⁇ / ⁇ ii ⁇ - Z ⁇ in + ⁇ is calculated, where, to measure the distance, /3 ⁇ 4 is the distance between the connection position of the boom and the excavator 200 and the ground of the crawler, which is the first angle and the second clamp. angle.
  • the range finder since the bucket needs to be in contact with the excavation object when performing the excavation operation, if the range finder is directly mounted on the bucket, the range finder may be caused by the contact of the bucket with the excavation object. damage.
  • the angle sensor 1020 measures the angle here to acquire the distance data between the bucket and the horizontal plane, and further determines whether the excavator 200 is about to perform the excavation operation.
  • the speed obtaining device 104 specifically includes: a time setting unit
  • V is the movement speed of the bucket, the first measurement distance acquired by the data acquisition device 102 before the delay time, + is the second measurement distance acquired by the data acquisition device 102 after the delay time elapses, and ⁇ is the delay time, wherein In the case where the moving speed V is a positive number, the moving direction is downward in the vertical direction, and in the case where the moving speed V is negative, the moving direction is upward in the vertical direction.
  • the movement direction and the moving speed of the bucket can be further obtained by controlling the time.
  • the distance between the bucket and the horizontal plane is set to: When the bucket is above the horizontal plane, the distance is a positive number. When the bucket is below the horizontal plane, the distance is negative.
  • the resulting movement speed of the bucket also has a positive or negative value. For example, when the calculated movement speed is positive, it indicates that the bucket movement direction is downward in the vertical direction, and the movement direction is negative. It is upward in the vertical direction, and when the moving speed is 0, it indicates that the bucket is at the moment of separation from the excavation object.
  • the data storage device 106 stores the measurement distance acquired by the data acquisition device 102 as the historical measurement distance when the motion velocity V is zero.
  • the moving speed when the moving speed is 0, it indicates that the bucket is at the moment of separation from the excavating object, and the storage distance of the digging object at this time is recorded, that is, the distance of the excavating object from the horizontal plane at this time is recorded, and if Using the excavator 200 to dig a pit, it can be understood that the depth of the pit after each excavation can be considered as the recording of the excavation effect of this excavation action, so that the next excavation action can be used as a reference to generate new in real time.
  • the distance threshold ensures an accurate determination of the digging action that may be generated by the excavator 200.
  • the distance threshold generated each time is generated for the historical storage distance stored last time, and the basic idea of the calculation is to determine at the distance threshold that the excavator 200 is to perform the excavation action.
  • the excavator 200 can be completed before the bucket just touches the excavation object
  • the adjustment of the engine speed therefore, is related to the bucket's descent speed, and also related to the engine's speed control speed. Obviously, the faster the bucket descends, the slower the engine's speed control speed, and the greater the required distance threshold.
  • the historical measurement distance 1 is a preset distance.
  • the next excavation action is performed by recording the previous excavation result. Make a judgment.
  • the preset distance is determined by the preset history.
  • the distance can be measured by different preset initial history for different mining objects and mining environments, so that the user can select corresponding data when needed, and can be implemented by multiple different buttons. .
  • the method further includes: a command sending device 112, in the mining pre-judge device
  • the speed control command is transmitted to the engine control device of the excavator 200 to adjust the engine speed to the preset speed.
  • the engine is accelerated, so that when the bucket contacts the excavation object, the engine reaches a higher rotation speed, thereby avoiding the lack of speed of the engine.
  • the dynamic lag of the excavation action affects the work efficiency, shortens the service life of the engine, and avoids black smoke, thereby avoiding fuel waste and environmental pollution.
  • Fig. 3 shows a flow chart of a method for determining the working posture of an excavator according to an embodiment of the present invention.
  • a method for determining an operating posture of an excavator includes: Step 302: acquiring a measuring distance between a bucket of an excavator and a crawler ground where an excavator crawler is located in real time. Step 304: Acquire a moving speed and a moving direction of the bucket in real time according to the measured distance; Step 306, using a stored historical measuring distance, setting a distance threshold between the bucket and the crawler ground, wherein the historical measuring distance is: mining Machine last completed In the process of digging, the measured distance obtained when the moving speed is zero;
  • a self-learning strategy in the excavation process is realized: by storing the distance between the bucket and the crawler ground where the excavator is traveling after each completion of the excavation action, the next time Used to generate distance thresholds in real time when mining actions. Since the distance threshold corresponding to the result of the previous excavation action generated in real time is used each time the excavation operation is performed, the posture judgment of the excavator is more accurate.
  • the angle sensor is used to measure the angle here, thereby obtaining the distance data between the bucket and the horizontal plane, and then determining whether the excavator is about to perform the excavating action.
  • the first measured distance obtained is a second measured distance acquired after the delay time elapses, and ⁇ is a delay time, wherein if the moving speed V is a positive number, the moving direction is downward in the vertical direction, if The moving speed V is a negative number, and the moving direction is upward in the vertical direction.
  • the movement direction and the moving speed of the bucket can be further obtained by controlling the time.
  • the distance between the bucket and the horizontal plane is set to: When the bucket is above the horizontal plane, the distance is positive. When the bucket is below the horizontal plane, the distance is negative. When the bucket is at the horizontal plane, the distance is 0; The resulting movement speed of the bucket also has a positive or negative value.
  • the calculated movement speed when the calculated movement speed is positive, it indicates that the bucket movement direction is downward in the vertical direction, and when it is negative, The direction of motion is upward in the vertical direction, and when the speed of motion is 0, it indicates that the bucket is at the moment of separation from the excavation object.
  • the method further includes: storing the measured distance obtained when the moving speed V is 0 as a historical measuring distance.
  • the moving speed when the moving speed is 0, it indicates that the bucket is at the moment of separation from the excavating object, and the storage distance of the digging object at this time is recorded, that is, the distance of the excavating object from the horizontal plane is recorded, and if Using an excavator to dig a pit, it can be understood that the depth of the pit after each excavation can be considered as the recording of the excavation effect of this excavation action, so that the next excavation action can be used as a reference to generate a new real-time
  • the distance threshold ensures an accurate judgment of the excavation action that the excavator may produce.
  • the method further includes: the delay time is: an integral multiple of an acquisition period when the first angle and the second angle are collected.
  • the data acquisition period of the angle sensor can be utilized, thereby facilitating the setting of the delay time and facilitating the analysis processing of the data.
  • the distance threshold generated each time is generated for the historical storage distance stored last time, and the basic idea of the calculation is to determine at the distance threshold that the excavator is about to perform the excavating action, Before the bucket is just in contact with the excavation object, the excavator can complete the adjustment of the engine speed. Therefore, this is related to the descending speed of the bucket, and also relates to the speed regulation speed of the engine. Obviously, the faster the bucket descends, The slower the speed of the engine, the greater the required distance threshold.
  • the method further includes: transmitting a speed control command to the control device of the engine of the excavator to adjust the rotation speed of the engine to the preset rotation speed.
  • the engine is accelerated, so that when the bucket contacts the excavation object, the engine reaches a higher rotation speed, thereby avoiding the excavation due to insufficient engine speed.
  • the dynamic lag of the action affects the work efficiency, shortens the service life of the engine, and avoids black smoke, thus avoiding fuel waste and the environment. Pollution.
  • Fig. 4 is a flow chart showing the determination of the working posture of the excavator according to an embodiment of the present invention.
  • the flow of judging the working posture of the excavator according to an embodiment of the present invention is as follows:
  • Step 402 Acquire the historical height.
  • the height here refers to the distance between the bucket of the excavator and the horizontal plane where the excavator is located. The acquisition of the distance will be described in detail in the following steps, and for the historical height here, It means that during the excavation work, the excavator needs to excavate the same excavation object multiple times. Then, after a digging operation, the dipper will be separated from the excavation object during the excavation operation. The distance between the bucket and the horizontal plane where the excavator is located is stored as the historical height / ⁇ . It can be considered that the historical height ⁇ is the height of the excavation object from the horizontal plane after a digging operation, which is caused by this excavation action. Action effects or results, such as when digging a pit, each digging action will make the depth of the pit of the excavation object deeper, and the depth of the pit after each digging operation is the historical height / ⁇ .
  • Step 404 Acquire a first angle and a second angle.
  • the first angle here refers to the angle between the boom and the horizontal plane obtained by the angle sensor mounted on the boom, and the second angle.
  • the user wants to install a similar device such as a range finder directly on the bucket, so that the distance between the object and the excavation object can be directly obtained, but the contact between the bucket and the excavation object may cause the installed device to be damaged.
  • the distance data is indirectly acquired by attaching an angle sensor to a portion such as a boom or an arm that does not need to directly contact the excavation object.
  • Step 406 calculating the second height / 3 ⁇ 4 in combination with the length of the boom and the stick.
  • the length of the boom and the stick is related to the model of the excavator itself.
  • the boom and The length of the stick is known so that it can be used for the distance calculation of the present application.
  • the indirect acquisition is not the distance between the bucket and the excavation object, but the distance between the angle sensor on the stick and the horizontal plane of the excavator's track, where the distance error between the angle sensor and the bucket Correction can be made by subsequent calculation of the threshold height between each digging action.
  • ⁇ 2 1 2 ⁇ 2 - ⁇ ⁇ ⁇ + , where is the angle sensor mounted on the boom and the track of the excavator
  • ⁇ 2 1 2 ⁇ 2 - ⁇ ⁇ ⁇ + , where is the angle sensor mounted on the boom and the track of the excavator
  • /3 ⁇ 4 is also known in the case of excavator models.
  • /3 ⁇ 4 is a positive number when the bucket is above the level of the excavator's track. When the bucket is below the level of the excavator's track, /3 ⁇ 4 is negative, and the bucket is located in the excavation /3 ⁇ 4 is 0 when the track is in the horizontal plane.
  • Step 408 calculating the movement speed ⁇ of the bucket. Since the bucket is at a second height from the horizontal plane / 3 ⁇ 4 (the error can be corrected in subsequent calculations and therefore treated directly as the distance between the bucket and the horizontal plane) has been calculated, as long as the time is calculated, the corresponding The speed of the bucket movement ⁇ .
  • the speed V of the movement here also has a numerical positive or negative depending on the direction of movement of the bucket, such as a positive number when the bucket is moving downward in the vertical direction, and a vertical when the bucket is in the vertical direction. When it is upward in the straight direction, it is a negative number. Therefore, it can be considered that the moving direction of the bucket can be known from the positive and negative values of the obtained running speed V.
  • step 409 it is determined whether a speed increase command is issued to the engine.
  • a speed increase command it is used to distinguish whether it has been determined that the excavator is about to perform the excavating action. If the judgment of the excavating action of the excavator has not been completed yet, it is apparent that the preset rotational speed is not reached, then the process proceeds to step 410 to make further judgment; If it is determined that the digging action is to be performed, the rotational speed must have been adjusted, and then proceeds to step 416 to prepare for acquiring and storing the historical data.
  • Step 412 determining whether the condition is satisfied: v > 0 and / wherein v > 0 indicates that the bucket is moving downward in the vertical direction, and / 3 ⁇ 4 ⁇ indicates that the distance between the bucket and the excavation object is already short, thereby Indicates that the excavator is about to perform a digging action If the condition is met, proceed to step 414, otherwise return to step 404 for data collection, which indicates that the work for the excavator In the judgment of intention, the data is continuously collected in real time, so that the working intention is continuously judged in real time, so that the real working intention of the excavator can be accurately and timely understood.
  • Step 414 adjusting the engine speed to a preset speed. Since the excavator does not perform the excavating action, the engine is in an unloaded state, and in order to save resources, the engine speed is lowered, so that when the excavator is engaged in the next excavation operation, when the bucket is in contact with the excavating object, especially At the moment of contact, the engine load will increase rapidly, which requires the engine to raise the speed to a higher value in a short time, but it is obvious that the speed increase requires a certain time, and cannot be completed in a short time, resulting in The engine's power lags behind, and it also emits black smoke, pollutes the environment, and wastes fuel.
  • the engine can be pre-evolved at an appropriate time by predicting whether the excavator is about to perform the excavating action, and the engine speed is raised to a higher speed before the bucket contacts the excavating object, and the corresponding Power, to achieve better dynamic response characteristics.
  • step 418 the /3 ⁇ 4 at this time is stored as the historical height / ⁇ , and is used for the calculation of the threshold height / 3 ⁇ 4 ° for the next excavation operation.
  • Fig. 5 shows a schematic diagram for judging the working posture of the excavator according to an embodiment of the present invention.
  • the working intention of the excavator is judged by the first angle sensor 506 mounted on the arm 503 and the second angle sensor 514 mounted on the boom 510. Whether it is going to carry out the excavation action. Since the excavator does not perform the excavating operation, the engine is in an unloaded state, and in order to save resources, the engine speed is lowered, so that when the excavator is in contact with the excavation object 504 during the next excavation operation, Especially at the moment of contact, the engine load will increase rapidly, which requires the engine to raise the speed to a higher value in a short time, but it is obvious that the speed increase needs a certain time and cannot be completed in a short time.
  • the engine's power lags, and it also emits black smoke, pollutes the environment, and wastes fuel. Therefore, the engine can be accelerated in advance at an appropriate time by predicting whether the excavator is about to perform the excavating action, and the engine speed is increased to a higher speed before the bucket 502 comes into contact with the excavation object 504. Corresponding power, to achieve better dynamic response characteristics.
  • the first angle 508 (denoted) between the arm 503 and the horizontal plane is measured by a first angle sensor 506 mounted on the stick 503, and the length of the stick 503 is known according to the model of the excavator.
  • a first length 505 of data (denoted as 4);
  • the second height 520 is a positive number when the first angle sensor 506 is above the level of the excavator's track, and is negative when the first angle sensor 506 is below the level of the excavator's track. And when the first angle sensor 506 is located at the level of the excavator track, it is zero.
  • the data of the first angle 508 and the second angle 516 are acquired and calculated in real time by the control device 526, and a second height 520 is obtained in real time.
  • the first angle sensor is known from the size change and the change speed of the second height 520. 506 (and bucket 502) direction of motion and speed of movement in the vertical direction. From the numerical property of the second height 520, it can be seen that the moving speed of the first angle sensor 506 is a negative number when the moving direction is upward, and a positive number when the moving direction is downward.
  • the bucket 502 needs to contact the excavation object 504, it may not be suitable to mount the first angle sensor 506 on the bucket 502, so that the first angle sensor 506 is mounted on the arm 503, and the error generated therein may be Corrected by the self-learning strategy that will be introduced below.
  • This embodiment embodies the self-learning ability of the excavator in a single operation process, and is embodied in: after completing a digging operation, recording the value of the second height 520 when the bucket 502 contacts the excavation object 504, and Stored as a historical measurement height (denoted as ⁇ ).
  • the correction value wherein the acceleration time of the engine is related to the model of the excavator, and the movement speed of the bucket 502 can be calculated, so that the height threshold that should be used in the excavation action can be obtained each time the excavation operation is performed.
  • the control device 526 sends a speed control command to the engine speed control device.
  • the engine speed is brought to a preset speed.
  • the present invention provides a working posture for judging the excavator.
  • the system, an excavator and a method for judging the working posture of the excavator can accurately identify whether the excavator will perform the excavating action, thereby adjusting the engine speed of the excavator to the preset speed in advance, avoiding too low The resulting power lag and other issues.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

一种用于判断挖掘机的工作姿态的系统(100),包括数据获取装置(102)、速度获取装置(104)、数据存储装置(106)、阈值设定装置(108)和挖掘预判装置(110)。还公开了一种具有该用于判断挖掘机的工作姿态的系统(100)的挖掘机(200)和一种用于判断挖掘机的工作姿态的方法。

Description

用于判断挖掘机的工作姿态的系统和方法、 挖掘机 本申请要求于 2012 年 01 月 09 日提交中国专利局、 申请号为 201210004242.9、发明名称为"用于判断挖掘机的工作姿态的系统和方法、 挖掘机 "的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及机械控制领域, 具体而言, 涉及一种用于判断挖掘机的 工作姿态的系统和方法、 一种挖掘机。
背景技术
挖掘机在工作过程中会经常发生负载变化, 比如为了降低油耗, 新 一代电控挖掘机所采取的控制策略是: 实时进行发动机转速与挖掘机负 载的精确匹配, 使得发动机转速会跟随负载变化而发生较大幅度变化。 当负载突然增加时, 发动机转速需求也会陡然升高, 这时会出现动力响 应滞后现象,使挖掘机操作变得不顺畅,并在一定程度上影响挖掘效率。
研究挖掘机工作过程得知, 负载的突变主要发生在铲斗接触工作面 开始挖掘的瞬间。为了解决该瞬间由于转速需要突变而导致的动力响应 滞后,可以通过挖掘机姿态的识别,对即将到来的挖掘动作做出预判断, 提前给发动机加速, 使挖掘开始时的发动机转速达到较高水平。
因此, 需要一种新的用于判断挖掘机的工作姿态的技术, 可以准确 识别出挖掘机是否将进行挖掘动作,从而提前将挖掘机的发动机转速调 节至预设转速, 避免转速过低导致的动力滞后等问题。
发明内容
本发明正是基于上述问题,提出了一种新的用于判断挖掘机的工作 姿态的技术, 可以准确识别出挖掘机是否将进行挖掘动作, 从而提前将 挖掘机的发动机转速调节至预设转速, 避免过低导致的动力滞后等问 题。
有鉴于此, 本发明提出了一种用于判断挖掘机的工作姿态的系统, 包括: 数据获取装置, 实时获取挖掘机的铲斗与所述挖掘机履带所处的 履带地面之间的测量距离; 速度获取装置, 根据所述数据获取装置获取 的所述测量距离, 实时获取所述铲斗的运动速度及运动方向; 数据存储 装置, 在所述挖掘机完成一次挖掘动作的过程中, 在所述运动速度为零 时, 将所述数据获取装置获取的测量距离作为历史测量距离进行存储; 阈值设定装置, 根据所述数据存储装置存储的所述历史测量距离, 设定 所述铲斗与所述履带地面之间的距离阈值; 挖掘预判装置, 在所述运动 方向在竖直方向上为向下、 且所述测量距离达到所述距离阈值的情况 下, 确认所述挖掘机将要进行挖掘动作。
在该技术方案中, 实现了一个挖掘过程中的自学习策略: 通过在每 次完成一次挖掘动作后,保存此时铲斗与挖掘机行驶时所处的履带地面 之间的距离, 从而在下一次挖掘动作时, 用于实时产生距离阈值。 由于 每次进行挖掘动作时, 都使用了实时产生的、 对应于上一次挖掘动作的 结果的距离阈值, 从而使得对挖掘机的姿态判断更为准确。
在上述技术方案中, 优选地, 所述数据获取装置具体包括: 角度传 感器,测量动臂与水平面之间的第一夹角以及斗杆与水平面之间的第二 夹角; 距离计算单元, 按照/ 进行计算, 其中, 为 所述测量距离, 为所述动臂与所述挖掘机的连接位置与所述履带地面 之间的距离, 为所述第一夹角, 为所述第二夹角。 在该技术方案中, 由于在进行挖掘动作时, 铲斗需要与挖掘对象进行接触, 因此如果直接 在铲斗上安装测距仪, 则可能由于铲斗与挖掘对象的接触, 导致测距仪 被损坏。 因而此处通过角度传感器对角度的测量, 从而获取铲斗与水平 面之间的距离数据, 进而对挖掘机是否将要进行挖掘动作进行判断。
在上述技术方案中, 优选地, 所述速度获取装置具体包括: 时间设 定单元, 设定延迟时间; 速度计算单元, 按照 ν = ϋ 进行计算, 其
At
中, V为所述铲斗的运动速度, 为所述数据获取装置在所述延迟时间 之前获取的第一测量距离, 为所述数据获取装置在经过所述延迟时 间之后获取的第二测量距离, Δ为所述延迟时间, 其中, 在所述运动速 度 V为正数的情况下, 所述运动方向在竖直方向上为向下, 在所述运动 速度 V为负数的情况下, 所述运动方向在竖直方向上为向上。 在该技术 方案中, 在获取铲斗与水平面之间的距离后, 通过对时间的掌控, 可以 进而获取铲斗的运动方向和运动速度。这里对于铲斗与水平面之间的距 离, 设定为: 当铲斗位于水平面上方时, 距离为正数, 当铲斗位于水平 面下方时, 距离为负数, 当铲斗位于水平面处时, 距离为 0; 由此得到 的铲斗的运动速度也存在数值的正负, 比如在计算得到的运动速度为正 数时, 说明铲斗运动方向在竖直方向上为向下, 为负数时, 运动方向在 竖直方向上为向上, 而当运动速度为 0时, 则说明铲斗处于与挖掘对象 分离的瞬间。
在上述技术方案中,优选地,所述数据存储装置在所述运动速度 V为
0的情况下, 将所述数据获取装置获取的测量距离作为所述历史测量距 离进行存储。 在该技术方案中, 运动速度为 0时, 说明此时铲斗处于与 挖掘对象分离的瞬间, 通过对此时的测量距离的存储, 也就是记录了此 时挖掘对象距离水平面的距离, 如果是利用挖掘机挖一个坑, 就可以理 解为每次挖掘后的坑的深度,可以认为是对本次挖掘动作的挖掘效果进 行记录, 以便下一次的挖掘动作可以以此作为基准, 实时生成新的距离 阈值, 确保对挖掘机可能产生的挖掘动作做出准确的判断。
在上述技术方案中,优选地, 所述阈值设定装置按照/^ = + x设置 所述距离阈值, 其中, /¾°为所述距离阈值, 1为所述历史测量距离, X 为对应于所述挖掘机的发动机的调速速度和所述铲斗的下降速度的校 正值。 在该技术方案中, 每次产生的距离阈值, 是针对于上一次存储的 历史测量距离产生的, 而计算的基本思想, 是希望在该距离阈值处判断 出挖掘机将要进行挖掘动作后, 在铲斗刚好接触到挖掘对象之前, 能够 使得挖掘机完成对发动机的转速的调节, 因此, 这关系到铲斗的下降速 度, 同时也关系到发动机的调速速度, 显然铲斗下降得越快、 发动机的 调速速度越慢, 需要的距离阈值越大。
在上述技术方案中, 优选地, 在所述数据存储装置中不存在所述历 史测量距离 1时, 所述历史测量距离 1为预设距离。 在该技术方案中, 在对同一挖掘对象进行的一次挖掘过程中, 比如在挖掘一个坑的过程 中, 根据本申请的技术方案, 通过对上一次的挖掘结果的记录, 从而对 下一次挖掘动作进行判断。 然而, 在首次进行挖掘动作时, 比如在挖一 个坑时,在没有进行挖掘而想要进行第一次挖掘时,是没有历史记录的, 因为在本次挖掘过程中, 还没有产生上一次挖掘的历史数据, 此时, 通 过预设历史测量距离为预设距离。
当然, 显然可以针对不同的挖掘对象和挖掘环境, 通过预设多个不 同的初始历史测量距离, 从而使得用户可以在需要的时候, 选用对应的 数据, 具体可以通过如多个不同的按钮进行实现。
在上述技术方案中, 优选地, 还包括: 命令发送装置, 在所述挖掘 预判装置确认所述挖掘机将要进行挖掘动作的情况下, 向所述挖掘机的 发动机的控制装置发送调速命令,使所述发动机的转速被调节至预设转 速。 在该技术方案中, 在判断出挖掘机将要进行挖掘动作后, 对发动机 进行提速, 使得在铲斗接触到挖掘对象时, 发动机达到了较高的转速, 从而避免由于发动机的速度不足, 使得挖掘动作的动力滞后, 影响工作 效率, 缩短发动机的使用寿命, 还可以避免造成冒黑烟, 从而避免燃料 浪费、 环境污染。
根据本发明的又一方面, 还提出了一种挖掘机, 包括如上述技术方 案所述的用于判断挖掘机的工作姿态的系统。 在该技术方案中, 实现了 一个挖掘过程中的自学习策略: 通过在每次完成一次挖掘动作后, 保存 此时铲斗与挖掘机行驶时所处的履带地面之间的距离,从而在下一次挖 掘动作时, 用于实时产生距离阈值。 由于每次进行挖掘动作时, 都使用 了实时产生的、 对应于上一次挖掘动作的结果的距离阈值, 从而使得对 挖掘机的姿态判断更为准确。
根据本发明的又一方面,还提出了一种用于判断挖掘机的工作姿态 的方法, 包括: 步骤 302 , 实时获取挖掘机的铲斗与所述挖掘机履带所 处的履带地面之间的测量距离; 步骤 304 , 根据所述测量距离, 实时获 取所述铲斗的运动速度及运动方向; 步骤 306, 利用存储的历史测量距 离, 设定所述铲斗与所述履带地面之间的距离阈值, 其中, 所述历史测 量距离为: 所述挖掘机最近一次完成挖掘动作的过程中, 在所述运动速 度为零时获取的测量距离; 步骤 308 , 若所述运动方向在竖直方向上为 向下、 且所述测量距离达到所述距离阈值, 则确认所述挖掘机将要进行 挖掘动作。 在该技术方案中, 实现了一个挖掘过程中的自学习策略: 通 过在每次完成一次挖掘动作后,保存此时铲斗与挖掘机行驶时所处的履 带地面之间的距离,从而在下一次挖掘动作时,用于实时产生距离阈值。 由于每次进行挖掘动作时, 都使用了实时产生的、 对应于上一次挖掘动 作的结果的距离阈值, 从而使得对挖掘机的姿态判断更为准确。 在上述技术方案中, 优选地, 所述步骤 302具体包括: 利用角度传 感器测量动臂与水平面之间的第一夹角、及斗杆与水平面之间的第二夹 角; 按照/ z^ /^in - Z^in + ^进行计算, 其中, 为所述测量距离, /¾为 所述动臂与所述挖掘机的连接位置与所述履带地面之间的距离, 为所 述第一夹角, 为所述第二夹角。 在该技术方案中, 由于在进行挖掘动 作时, 铲斗需要与挖掘对象进行接触, 因此如果直接在铲斗上安装测距 仪, 则可能由于铲斗与挖掘对象的接触, 导致测距仪被损坏。 因而此处 通过角度传感器对角度的测量, 从而获取铲斗与水平面之间的距离数 据, 进而对挖掘机是否将要进行挖掘动作进行判断。
在上述技术方案中, 优选地, 所述步骤 304具体包括: 设定延迟时 间; 按照 ν =ϋ 进行计算, 其中, ν为所述铲斗的运动速度, 为在
At
所述延迟时间之前获取的第一测量距离, W为在经过所述延迟时间之 后获取的第二测量距离, Δ为所述延迟时间,其中,若所述运动速度 V为 正数, 则所述运动方向在竖直方向上为向下, 若所述运动速度 V为负数, 则所述运动方向在竖直方向上为向上。 在该技术方案中, 在获取铲斗与 水平面之间的距离后, 通过对时间的掌控, 可以进而获取铲斗的运动方 向和运动速度。 这里对于铲斗与水平面之间的距离, 设定为: 当铲斗位 于水平面上方时,距离为正数, 当铲斗位于水平面下方时,距离为负数, 当铲斗位于水平面处时, 距离为 0; 由此得到的铲斗的运动速度也存在 数值的正负, 比如在计算得到的运动速度为正数时, 说明铲斗运动方向 在竖直方向上为向下, 为负数时, 运动方向在竖直方向上为向上, 而当 运动速度为 0时, 则说明铲斗处于与挖掘对象分离的瞬间。
在上述技术方案中, 优选地, 还包括: 所述延迟时间为: 对所述第 一夹角和所述第二夹角进行采集时的采集周期的整数倍。在该技术方案 中, 可以利用角度传感器对数据的采集周期, 从而方便对延迟时间的设 定, 并且便于数据的分析处理。
在上述技术方案中, 优选地, 步骤 306具体包括: 按照 /¾。= /^ + Χ设 置所述距离阈值, 其中, / ^为所述距离阈值, 1为所述历史测量距离, X为对应于所述挖掘机的发动机的调速速度和所述铲斗的下降速度的 校正值。 在该技术方案中, 每次产生的距离阈值, 是针对于上一次存储 的历史测量距离产生的, 而计算的基本思想, 是希望在该距离阈值处判 断出挖掘机将要进行挖掘动作后, 在铲斗刚好接触到挖掘对象之前, 能 够使得挖掘机完成对发动机的转速的调节, 因此, 这关系到铲斗的下降 速度, 同时也关系到发动机的调速速度, 显然铲斗下降得越快、 发动机 的调速速度越慢, 需要的距离阈值越大。
在上述技术方案中, 优选地, 在所述步骤 308之后, 还包括: 向所 述挖掘机的发动机的控制装置发送调速命令,使所述发动机的转速被调 节至预设转速。在该技术方案中,在判断出挖掘机将要进行挖掘动作后, 对发动机进行提速, 使得在铲斗接触到挖掘对象时, 发动机达到了较高 的转速, 从而避免由于发动机的速度不足, 使得挖掘动作的动力滞后, 影响工作效率, 缩短发动机的使用寿命, 还可以避免造成冒黑烟, 从而 避免燃料浪费、 环境污染。
通过以上技术方案, 可以准确识别出挖掘机是否将进行挖掘动作, 从而提前将挖掘机的发动机转速调节至预设转速,避免过低导致的动力 滞后等问题。
附图说明
图 1 示出了根据本发明的实施例的用于判断挖掘机的工作姿态的 系统的框图;
图 2示出了根据本发明的实施例的挖掘机的框图;
图 3 示出了根据本发明的实施例的用于判断挖掘机的工作姿态的 方法的流程图;
图 4 示出了根据本发明的实施例的判断挖掘机的工作姿态的流程 图; 以及
图 5 示出了根据本发明的实施例的判断挖掘机的工作姿态的示意 图。
其中, 图 5中的附图标记与部件名称之间的对应关系为:
502 铲斗 503 斗杆 504 挖掘对象 505 第一长度
506 第一角度传感器 508 第一角度 510 动臂 512 第二长度
514 第二角度传感器 516 第二角度 518 第一高度 520 第二 高度 522 历史高度 524 阈值高度 526 控制装置
具体实施方式
为了能够更清楚地理解本发明的上述目的、 特征和优点, 下面结合 附图和具体实施方式对本发明进行进一步的详细描述。
在下面的描述中阐述了很多具体细节以便于充分理解本发明, 但 是, 本发明还可以采用其他不同于在此描述的其他方式来实施, 因此, 图 1 示出了根据本发明的实施例的用于判断挖掘机的工作姿态的 系统的框图。
如图 1所示,根据本发明的实施例的用于判断挖掘机的工作姿态的 系统 100 , 包括: 数据获取装置 102, 实时获取挖掘机的铲斗与挖掘机 履带所处的履带地面之间的测量距离; 速度获取装置 104, 根据数据获 取装置 102获取的测量距离, 实时获取铲斗的运动速度及运动方向; 数 据存储装置 106, 在挖掘机完成一次挖掘动作的过程中, 在所述运动速 度为零时,将数据获取装置 102获取的测量距离作为历史测量距离进行 存储; 阈值设定装置 108 ,根据数据存储装置 106存储的历史测量距离, 设定铲斗与履带地面之间的距离阈值; 挖掘预判装置 110, 在运动方向 在竖直方向上为向下、 且测量距离达到距离阈值的情况下, 确认挖掘机 将要进行挖掘动作。 在该技术方案中, 实现了一个挖掘过程中的自学习 策略: 通过在每次完成一次挖掘动作后, 保存此时铲斗与挖掘机行驶时 所处的履带地面之间的距离, 从而在下一次挖掘动作时, 用于实时产生 距离阈值。 由于每次进行挖掘动作时, 都使用了实时产生的、 对应于上 一次挖掘动作的结果的距离阈值,从而使得对挖掘机的姿态判断更为准 确。
在上述技术方案中,数据获取装置 102具体包括:角度传感器 1020, 测量动臂与水平面之间的第一夹角以及斗杆与水平面之间的第二夹角; 距离计算单元 1022 , 按照
Figure imgf000008_0001
+ ^进行计算, 其中, 为测 量距离, 为动臂与挖掘机的连接位置与履带地面之间的距离, 为第 一夹角, 为第二夹角。 在该技术方案中, 由于在进行挖掘动作时, 铲 斗需要与挖掘对象进行接触, 因此如果直接在铲斗上安装测距仪, 则可 能由于铲斗与挖掘对象的接触, 导致测距仪被损坏。 因而此处通过角度 传感器 1020对角度的测量, 从而获取铲斗与水平面之间的距离数据, 进而对挖掘机是否将要进行挖掘动作进行判断。
在上述技术方案中, 速度获取装置 104 具体包括: 时间设定单元
1040 , 设定延迟时间; 速度计算单元 1042, 按照 ν = - +Δ进行计算,
At
其中, V为铲斗的运动速度, 为数据获取装置 102在延迟时间之前获 取的第一测量距离, + 为数据获取装置 102在经过延迟时间之后获取 的第二测量距离, Δ为延迟时间, 其中, 在运动速度 V为正数的情况下, 运动方向在竖直方向上为向下, 在运动速度 V为负数的情况下, 运动方 向在竖直方向上为向上。 在该技术方案中, 在获取铲斗与水平面之间的 距离后,通过对时间的掌控,可以进而获取铲斗的运动方向和运动速度。 这里对于铲斗与水平面之间的距离,设定为: 当铲斗位于水平面上方时, 距离为正数, 当铲斗位于水平面下方时, 距离为负数, 当铲斗位于水平 面处时, 距离为 0; 由此得到的铲斗的运动速度也存在数值的正负, 比 如在计算得到的运动速度为正数时,说明铲斗运动方向在竖直方向上为 向下, 为负数时,运动方向在竖直方向上为向上, 而当运动速度为 0时, 则说明铲斗处于与挖掘对象分离的瞬间。
在上述技术方案中,数据存储装置 106在运动速度 V为 0的情况下, 将数据获取装置 102获取的测量距离作为历史测量距离进行存储。在该 技术方案中, 运动速度为 0时, 说明此时铲斗处于与挖掘对象分离的瞬 间, 通过对此时的测量距离的存储, 也就是记录了此时挖掘对象距离水 平面的距离, 如果是利用挖掘机挖一个坑, 就可以理解为每次挖掘后的 坑的深度, 可以认为是对本次挖掘动作的挖掘效果进行记录, 以便下一 次的挖掘动作可以以此作为基准, 实时生成新的距离阈值, 确保对挖掘 机可能产生的挖掘动作做出准确的判断。
在上述技术方案中, 阈值设定装置 108 按照 /¾。= /¾ + Χ设置距离阈 值, 其中, 为距离阈值, 1为历史测量距离, X为对应于挖掘机的发 动机的调速速度和铲斗的下降速度的校正值。 在该技术方案中, 每次产 生的距离阈值, 是针对于上一次存储的历史测量距离产生的, 而计算的 基本思想, 是希望在该距离阈值处判断出挖掘机将要进行挖掘动作后, 在铲斗刚好接触到挖掘对象之前, 能够使得挖掘机完成对发动机的转速 的调节, 因此, 这关系到铲斗的下降速度, 同时也关系到发动机的调速 速度, 显然铲斗下降得越快、 发动机的调速速度越慢, 需要的距离阈值 越大。
在上述技术方案中,在数据存储装置 106中不存在历史测量距离 1 时, 历史测量距离 1为预设距离。 在该技术方案中, 在对同一挖掘对象 进行的一次挖掘过程中, 比如在挖掘一个坑的过程中, 根据本申请的技 术方案, 通过对上一次的挖掘结果的记录, 从而对下一次挖掘动作进行 判断。 然而, 在首次进行挖掘动作时, 比如在挖一个坑时, 在没有进行 挖掘而想要进行第一次挖掘时, 是没有历史记录的, 因为在本次挖掘过 程中, 还没有产生上一次挖掘的历史数据, 此时, 通过预设历史测量距 离为预设距离。
当然, 显然可以针对不同的挖掘对象和挖掘环境, 通过预设多个不 同的初始历史测量距离, 从而使得用户可以在需要的时候, 选用对应的 数据, 具体可以通过如多个不同的按钮进行实现。
在上述技术方案中, 还包括: 命令发送装置 112, 在挖掘预判装置 110确认挖掘机将要进行挖掘动作的情况下, 向挖掘机的发动机的控制 装置发送调速命令, 使发动机的转速被调节至预设转速。 在该技术方案 中, 在判断出挖掘机将要进行挖掘动作后, 对发动机进行提速, 使得在 铲斗接触到挖掘对象时, 发动机达到了较高的转速, 从而避免由于发动 机的速度不足, 使得挖掘动作的动力滞后, 影响工作效率, 缩短发动机 的使用寿命, 还可以避免造成冒黑烟, 从而避免燃料浪费、 环境污染。
图 2示出了根据本发明的实施例的挖掘机的框图。
如图 2所示, 针对图 1 所示的用于判断挖掘机的工作姿态的系统 100, 根据本发明的技术方案, 还提出了一种挖掘机 200的实施例, 包 括如图 1中的技术方案所述的用于判断挖掘机的工作姿态的系统 100。 在该技术方案中, 实现了一个挖掘过程中的自学习策略: 通过在每次完 成一次挖掘动作后,保存此时铲斗与挖掘机行驶时所处的履带地面之间 的距离, 从而在下一次挖掘动作时, 用于实时产生距离阈值。 由于每次 进行挖掘动作时, 都使用了实时产生的、 对应于上一次挖掘动作的结果 的距离阈值, 从而使得对挖掘机 200的姿态判断更为准确。
在上述技术方案中,用于判断挖掘机的工作姿态的系统 100 , 包括: 数据获取装置 102, 实时获取挖掘机 200的铲斗与挖掘机履带所处的履 带地面之间的测量距离; 速度获取装置 104, 根据数据获取装置 102获 取的测量距离, 实时获取铲斗的运动速度及运动方向; 数据存储装置 106, 在挖掘机 200完成一次挖掘动作的过程中, 在所述运动速度为零 时, 将数据获取装置 102获取的测量距离作为历史测量距离进行存储; 阈值设定装置 108 , 根据数据存储装置 106存储的历史测量距离, 设定 铲斗与履带地面之间的距离阈值; 挖掘预判装置 110, 在运动方向在竖 直方向上为向下、 且测量距离达到距离阈值的情况下, 确认挖掘机 200 将要进行挖掘动作。 在该技术方案中, 实现了一个挖掘过程中的自学习 策略: 通过在每次完成一次挖掘动作后, 保存此时铲斗与挖掘机行驶时 所处的履带地面之间的距离, 从而在下一次挖掘动作时, 用于实时产生 距离阈值。 由于每次进行挖掘动作时, 都使用了实时产生的、 对应于上 一次挖掘动作的结果的距离阈值,从而使得对挖掘机 200的姿态判断更 为准确。
在上述技术方案中,数据获取装置 102具体包括:角度传感器 1020, 测量动臂与水平面之间的第一夹角以及斗杆与水平面之间的第二夹角; 距离计算单元 1022 , 按照/ z^ /^ii^ - Z^in + ^进行计算, 其中, 为测 量距离, /¾为动臂与挖掘机 200的连接位置与履带地面之间的距离, 为 第一夹角, 为第二夹角。 在该技术方案中, 由于在进行挖掘动作时, 铲斗需要与挖掘对象进行接触, 因此如果直接在铲斗上安装测距仪, 则 可能由于铲斗与挖掘对象的接触, 导致测距仪被损坏。 因而此处通过角 度传感器 1020对角度的测量,从而获取铲斗与水平面之间的距离数据, 进而对挖掘机 200是否将要进行挖掘动作进行判断。 在上述技术方案中, 速度获取装置 104 具体包括: 时间设定单元
1040 , 设定延迟时间; 速度计算单元 1042, 按照 v = t ^进行计算,
At
其中, V为铲斗的运动速度, 为数据获取装置 102在延迟时间之前获 取的第一测量距离, + 为数据获取装置 102在经过延迟时间之后获取 的第二测量距离, Δ为延迟时间, 其中, 在运动速度 V为正数的情况下, 运动方向在竖直方向上为向下, 在运动速度 V为负数的情况下, 运动方 向在竖直方向上为向上。 在该技术方案中, 在获取铲斗与水平面之间的 距离后,通过对时间的掌控,可以进而获取铲斗的运动方向和运动速度。 这里对于铲斗与水平面之间的距离,设定为: 当铲斗位于水平面上方时, 距离为正数, 当铲斗位于水平面下方时, 距离为负数, 当铲斗位于水平 面处时, 距离为 0; 由此得到的铲斗的运动速度也存在数值的正负, 比 如在计算得到的运动速度为正数时,说明铲斗运动方向在竖直方向上为 向下, 为负数时,运动方向在竖直方向上为向上, 而当运动速度为 0时, 则说明铲斗处于与挖掘对象分离的瞬间。
在上述技术方案中,数据存储装置 106在运动速度 V为 0的情况下, 将数据获取装置 102获取的测量距离作为历史测量距离进行存储。在该 技术方案中, 运动速度为 0时, 说明此时铲斗处于与挖掘对象分离的瞬 间, 通过对此时的测量距离的存储, 也就是记录了此时挖掘对象距离水 平面的距离, 如果是利用挖掘机 200挖一个坑, 就可以理解为每次挖掘 后的坑的深度, 可以认为是对本次挖掘动作的挖掘效果进行记录, 以便 下一次的挖掘动作可以以此作为基准, 实时生成新的距离阈值, 确保对 挖掘机 200可能产生的挖掘动作做出准确的判断。
在上述技术方案中, 阈值设定装置 108 按照/ ¾。= + ^设置距离阈 值, 其中, 为距离阈值, 1为历史测量距离, X为对应于挖掘机 200 的发动机的调速速度和铲斗的下降速度的校正值。 在该技术方案中, 每 次产生的距离阈值, 是针对于上一次存储的历史测量距离产生的, 而计 算的基本思想,是希望在该距离阈值处判断出挖掘机 200将要进行挖掘 动作后, 在铲斗刚好接触到挖掘对象之前, 能够使得挖掘机 200完成对 发动机的转速的调节, 因此, 这关系到铲斗的下降速度, 同时也关系到 发动机的调速速度, 显然铲斗下降得越快、 发动机的调速速度越慢, 需 要的距离阈值越大。
在上述技术方案中,在数据存储装置 106中不存在历史测量距离 1 时, 历史测量距离 1为预设距离。 在该技术方案中, 在对同一挖掘对象 进行的一次挖掘过程中, 比如在挖掘一个坑的过程中, 根据本申请的技 术方案, 通过对上一次的挖掘结果的记录, 从而对下一次挖掘动作进行 判断。 然而, 在首次进行挖掘动作时, 比如在挖一个坑时, 在没有进行 挖掘而想要进行第一次挖掘时, 是没有历史记录的, 因为在本次挖掘过 程中, 还没有产生上一次挖掘的历史数据, 此时, 通过预设历史测量距 离为预设距离。
当然, 显然可以针对不同的挖掘对象和挖掘环境, 通过预设多个不 同的初始历史测量距离, 从而使得用户可以在需要的时候, 选用对应的 数据, 具体可以通过如多个不同的按钮进行实现。
在上述技术方案中, 还包括: 命令发送装置 112 , 在挖掘预判装置
110确认挖掘机 200将要进行挖掘动作的情况下, 向挖掘机 200的发动 机的控制装置发送调速命令, 使发动机的转速被调节至预设转速。 在该 技术方案中, 在判断出挖掘机 200将要进行挖掘动作后, 对发动机进行 提速, 使得在铲斗接触到挖掘对象时, 发动机达到了较高的转速, 从而 避免由于发动机的速度不足,使得挖掘动作的动力滞后,影响工作效率, 缩短发动机的使用寿命, 还可以避免造成冒黑烟, 从而避免燃料浪费、 环境污染。
图 3 示出了根据本发明的实施例的用于判断挖掘机的工作姿态的 方法的流程图。
如图 3所示,根据本发明的实施例的用于判断挖掘机的工作姿态的 方法, 包括: 步骤 302, 实时获取挖掘机的铲斗与挖掘机履带所处的履 带地面之间的测量距离; 步骤 304, 根据测量距离, 实时获取铲斗的运 动速度及运动方向; 步骤 306, 利用存储的历史测量距离, 设定铲斗与 履带地面之间的距离阈值, 其中, 历史测量距离为: 挖掘机最近一次完 成挖掘动作的过程中, 在所述运动速度为零时获取的测量距离; 步骤
308 , 若运动方向在竖直方向上为向下、 且测量距离达到距离阈值, 则 确认挖掘机将要进行挖掘动作。 在该技术方案中, 实现了一个挖掘过程 中的自学习策略: 通过在每次完成一次挖掘动作后, 保存此时铲斗与挖 掘机行驶时所处的履带地面之间的距离, 从而在下一次挖掘动作时, 用 于实时产生距离阈值。由于每次进行挖掘动作时,都使用了实时产生的、 对应于上一次挖掘动作的结果的距离阈值,从而使得对挖掘机的姿态判 断更为准确。
在上述技术方案中, 步骤 302具体包括: 利用角度传感器测量动臂 与水平面之间的第一夹角、 及斗杆与水平面之间的第二夹角; 按照 \ = lx sin θχ - 12 sin 02 + h2 ^ri , 其中, 为测量距离, /¾为动臂与挖掘机 的连接位置与履带地面之间的距离, 为第一夹角, 为第二夹角。 在 该技术方案中,由于在进行挖掘动作时,铲斗需要与挖掘对象进行接触, 因此如果直接在铲斗上安装测距仪, 则可能由于铲斗与挖掘对象的接 触, 导致测距仪被损坏。 因而此处通过角度传感器对角度的测量, 从而 获取铲斗与水平面之间的距离数据,进而对挖掘机是否将要进行挖掘动 作进行判断。
在上述技术方案中, 步骤 304 具体包括: 设定延迟时间; 按照 V = _ +Af进行计算, 其中, v为铲斗的运动速度, 为在延迟时间之前
At
获取的第一测量距离, 为在经过延迟时间之后获取的第二测量距 离, Δ为延迟时间, 其中, 若运动速度 V为正数, 则运动方向在竖直方 向上为向下, 若所述运动速度 V为负数, 则运动方向在竖直方向上为向 上。 在该技术方案中, 在获取铲斗与水平面之间的距离后, 通过对时间 的掌控, 可以进而获取铲斗的运动方向和运动速度。 这里对于铲斗与水 平面之间的距离, 设定为: 当铲斗位于水平面上方时, 距离为正数, 当 铲斗位于水平面下方时, 距离为负数, 当铲斗位于水平面处时, 距离为 0; 由此得到的铲斗的运动速度也存在数值的正负, 比如在计算得到的 运动速度为正数时,说明铲斗运动方向在竖直方向上为向下,为负数时, 运动方向在竖直方向上为向上, 而当运动速度为 0时, 则说明铲斗处于 与挖掘对象分离的瞬间。
在上述技术方案中, 还包括: 将运动速度 V为 0时获取的测量距离 作为历史测量距离进行存储。 在该技术方案中, 运动速度为 0时, 说明 此时铲斗处于与挖掘对象分离的瞬间, 通过对此时的测量距离的存储, 也就是记录了此时挖掘对象距离水平面的距离,如果是利用挖掘机挖一 个坑, 就可以理解为每次挖掘后的坑的深度, 可以认为是对本次挖掘动 作的挖掘效果进行记录, 以便下一次的挖掘动作可以以此作为基准, 实 时生成新的距离阈值,确保对挖掘机可能产生的挖掘动作做出准确的判 断。
在上述技术方案中, 还包括: 延迟时间为: 对第一夹角和第二夹角 进行采集时的采集周期的整数倍。 在该技术方案中, 可以利用角度传感 器对数据的采集周期, 从而方便对延迟时间的设定, 并且便于数据的分 析处理。
在上述技术方案中, 步骤 306具体包括: 按照/ ¾。= + X设置距离阈 值, 其中, 为距离阈值, V1为历史测量距离, X为对应于挖掘机的发 动机的调速速度和铲斗的下降速度的校正值。 在该技术方案中, 每次产 生的距离阈值, 是针对于上一次存储的历史测量距离产生的, 而计算的 基本思想, 是希望在该距离阈值处判断出挖掘机将要进行挖掘动作后, 在铲斗刚好接触到挖掘对象之前, 能够使得挖掘机完成对发动机的转速 的调节, 因此, 这关系到铲斗的下降速度, 同时也关系到发动机的调速 速度, 显然铲斗下降得越快、 发动机的调速速度越慢, 需要的距离阈值 越大。
在上述技术方案中, 在步骤 308之后, 还包括: 向挖掘机的发动机 的控制装置发送调速命令, 使发动机的转速被调节至预设转速。 在该技 术方案中, 在判断出挖掘机将要进行挖掘动作后, 对发动机进行提速, 使得在铲斗接触到挖掘对象时, 发动机达到了较高的转速, 从而避免由 于发动机的速度不足, 使得挖掘动作的动力滞后, 影响工作效率, 缩短 发动机的使用寿命, 还可以避免造成冒黑烟, 从而避免燃料浪费、 环境 污染。
图 4 示出了根据本发明的实施例的判断挖掘机的工作姿态的流程 图。
如图 4所示,根据本发明的实施例的判断挖掘机的工作姿态的流程 如下:
步骤 402 , 获取历史高度 这里的高度是指挖掘机的铲斗距离挖 掘机所处水平面之间的距离,对于该距离的获取将在下面的步骤进行详 细说明, 而针对这里的历史高度 ^ , 是指挖掘机在一次挖掘工作的过 程中, 需要对同一个挖掘对象进行多次挖掘, 则当进行了一次挖掘动作 后, 便将进行该挖掘动作的过程中, 铲斗与挖掘对象分离的瞬间、 铲斗 与挖掘机所处水平面之间的距离, 作为历史高度/ ^进行存储, 可以认 为, 该历史高度 ^就是经过一次挖掘动作后, 挖掘对象距离水平面的 高度,是本次挖掘动作带来的动作效果或结果,比如在挖一个坑的时候, 每次挖掘动作, 都会使得挖掘对象一一坑的深度变得更深, 则每次挖掘 动作完成后的坑的深度就是历史高度/^。
步骤 404 , 采集第一夹角 和第二夹角 。 这里的第一夹角 是指 由安装在动臂上的角度传感器获取的动臂与水平面之间的夹角, 而第二 夹角。 用户希望直接在铲斗上安装测距仪等类似的装置, 从而可以直接 获取其与挖掘对象之间的距离,但由于铲斗与挖掘对象之间的接触动作 可能导致安装的装置被损坏, 因此通过在动臂、 斗杆等不需要直接与挖 掘对象接触的部分安装角度传感器, 从而对距离数据进行间接获取。
步骤 406 , 结合动臂和斗杆的长度, 计算第二高度/ ¾。 可见, 将角 度传感器安装在动臂和斗杆上, 有着其自身的优势, 就是动臂和斗杆的 长度是与挖掘机自身的型号关联的, 对于一款挖掘机而言, 其动臂和斗 杆的长度是已知的, 从而可以用于本申请的距离计算。 当然, 这里间接 获取的并不是铲斗与挖掘对象之间的距离, 而是斗杆上的角度传感器与 挖掘机履带所处水平面之间的距离, 其中, 角度传感器与铲斗之间的距 离误差可以通过后续的每次挖掘动作之间的阈值高度的计算进行校正。 具体而言, 假定动臂的长度为 、 斗杆的长度为 /2 , 则 Η2 =12ύηθ2ιύηθι + , 其中, 为安装在动臂上的角度传感器与挖掘机 履带所处水平面之间的距离, 在挖掘机型号已知的情况下, /¾也是已知 的数据。 另外, 可以看出, 在铲斗位于挖掘机履带所处水平面之上时, /¾为正数, 在铲斗位于挖掘机履带所处水平面之下时, /¾为负数, 在铲 斗位于挖掘机履带所处水平面时, /¾为 0。
步骤 408, 计算铲斗的运动速度 ν。 由于铲斗距离水平面的第二高 度/ ¾ (误差可以在后续计算中进行校正, 因而直接作为铲斗和水平面之 间的距离进行处理) 已经计算得到, 只要对时间进行计算, 就可以得到 对应的铲斗的运动速度^。此外,这里的运动速度 V根据铲斗的运动方向 的不同, 也存在数值上的正负, 如当铲斗在竖直方向上为向下运动时, 则为正数, 而当铲斗在竖直方向上为向上运动时, 则为负数, 因而也可 以认为, 可以根据得到的运行速度 V的数值的正负情况, 从而得知铲斗 的运动方向。
步骤 409, 判断是否向发动机发出提速命令。 此处用于区分是否已 经判断出挖掘机将要进行挖掘动作,若本次挖掘机的挖掘动作的判断尚 未结束, 则显然达不到预设转速, 则进入步骤 410, 进行进一步判断; 而如果已经判断出将要进行挖掘动作, 则转速必然已经被调整, 然后进 入步骤 416, 为获取和存储历史数据做准备。
步骤 410, 计算本次的阈值高度 , 这里是根据步骤 402得到的历 史高度 ^和步骤 408得到的运动速度1、 运动方向计算得到的, 具体而 言, 采用了 = + χ , 其中, X为对应于发动机的加速时间和铲斗在挖 掘动作中的运动速度 ν、 运动方向的校正值, 其中, 发动机的加速时间 与挖掘机的型号相关, 而铲斗的运动速度 V已经通过计算得到, 因而可 以在每次进行挖掘动作时, 得到本次挖掘动作应该使用的阈值高度 h2 0
步骤 412, 判断是否满足条件: v>0且/ 其中, v>0表明铲斗 正在竖直方向上进行向下运动, 而/ ¾≤ 表明铲斗与挖掘对象之间的距 离已经很短, 从而表明挖掘机将要进行挖掘动作。 若满足条件, 则进入 步骤 414, 否则返回步骤 404进行数据的采集, 这说明对于挖掘机的工 作意图的判断中, 是通过实时连续采集数据, 从而对其工作意图进行实 时连续判断的, 从而及时准确地了解到挖掘机的真正工作意图。
步骤 414 , 将发动机转速调节至预设转速。 由于挖掘机在不进行挖 掘动作时, 发动机处于空载状态, 为了节约资源, 会将发动机的转速降 低, 从而使得挖掘机在进行下一次挖掘动作时, 在铲斗与挖掘对象接触 时, 尤其是在接触的瞬间, 会导致发动机的负载迅速增大, 这要求发动 机能够在短时间内将转速提升至较高数值水平,但显然转速的提升需要 一定时间, 而无法在短时间内完成, 从而造成发动机的动力滞后, 还会 冒黑烟, 污染环境、 浪费燃料。 因此, 可以通过对挖掘机是否将要进行 挖掘动作进行预判, 从而在合适的时间对发动机进行提前提速, 并在铲 斗与挖掘对象接触前, 将发动机的转速提升至较高转速, 获得对应的动 力, 达到较好的动力响应特性。
步骤 416, 判断是否满足 v = 0 , 若不满足, 由于对于第二高度/ ¾和 运动速度 V的获取和计算都是实时连续进行的, 因此需要返回步骤 404 , 继续进行实时计算; 若满足, 则说明此时为挖掘机的铲斗即将离开挖掘 对象的瞬间, 比如在用挖掘机挖坑的过程中, 一次挖掘动作后, 使得坑 的深度加大, 从而在铲斗运动速度为 0的时候, 获取的铲斗与挖掘机履 带所处水平面之间的距离, 可以认为是坑的深度, 而这个深度是随着每 次挖掘动作之后都会改变的, 因而此时获取的铲斗与挖掘机履带所处水 平面之间的距离可以认为是本次挖掘动作导致的,会对之后的挖掘动作 产生影响, 具体是对后续的阈值高度 的数值产生影响。
步骤 418 , 将此时的/ ¾作为历史高度/ ^进行存储, 从而用于下次挖 掘动作时对阈值高度 /¾°的计算。
对于基于本发明的技术方案的具体实施方式, 下面结合图 5进行说 明, 其中, 图 5示出了根据本发明的实施例的判断挖掘机的工作姿态的 示意图。
如图 5所示, 在本实施例中, 通过安装在斗杆 503上的第一角度传 感器 506和安装在动臂 510上的第二角度传感器 514, 来对挖掘机的工 作意图进行判断, 使其是否将要进行挖掘动作。 由于挖掘机在不进行挖掘动作时, 发动机处于空载状态, 为了节约 资源, 会将发动机的转速降低, 从而使得挖掘机在进行下一次挖掘动作 时, 在铲斗 502与挖掘对象 504接触时, 尤其是在接触的瞬间, 会导致 发动机的负载迅速增大,这要求发动机能够在短时间内将转速提升至较 高数值水平,但显然转速的提升需要一定时间,而无法在短时间内完成, 从而造成发动机的动力滞后, 还会冒黑烟, 污染环境、 浪费燃料。 因此, 可以通过对挖掘机是否将要进行挖掘动作进行预判, 从而在合适的时间 对发动机进行提前提速, 并在铲斗 502与挖掘对象 504接触前, 将发动 机的转速提升至较高转速,获得对应的动力,达到较好的动力响应特性。
本实施例的具体方式如下:
通过安装在斗杆 503上的第一角度传感器 506 , 对斗杆 503与水平 面之间的第一角度 508 (记为 ) 进行测量, 而根据挖掘机的型号, 其 斗杆 503 的长度为已知数据第一长度 505 (记为 4 ) ; 通过安装在动臂 510上的第二角度传感器 514,对动臂 510与水平面之间的第二角度 516 (记为 )进行测量, 而根据挖掘机的型号, 其动臂 510的长度为已知 数据第二长度 512 (记为 /2 ) , 再加上第二角度传感器 514至挖掘机履 带所在水平面之间的距离也是已知且不变的第一高度 518 (记为 /¾ ) , 则第一角度传感器 506 与挖掘机履带所处水平面之间的距离为第二高 度 520 (记为/ ¾ ) , 可以计算得到/ ¾ = /2 sin - /l Sin + /?1。 由此计算公式可 见,第二高度 520在第一角度传感器 506位于挖掘机履带所在水平面之 上的时候, 为正数, 在第一角度传感器 506位于挖掘机履带所在水平面 之下的时候, 为负数, 而在第一角度传感器 506位于挖掘机履带所在水 平面处的时候, 为 0。
由控制装置 526对第一角度 508和第二角度 516的数据进行实时获 取和计算, 得到实时连续的第二高度 520, 并由第二高度 520的大小变 化和变化速度, 得知第一角度传感器 506 (以及铲斗 502 ) 在竖直方向 上的运动方向和运动速度。 由第二高度 520的数值性质, 可知第一角度 传感器 506的运动速度在运动方向为向上时为负数,在运动方向为向下 时为正数。 这里由于铲斗 502需要接触到挖掘对象 504, 可能不适合将第一角 度传感器 506安装在铲斗 502上, 因而将第一角度传感器 506安装在斗 杆 503上, 而这其中产生的误差, 可以由下面将要介绍到的自学习策略 进行校正。
本实施例体现出了挖掘机在一次作业过程中的自学习能力,具体体 现在: 在完成一次挖掘动作后, 记录铲斗 502接触到挖掘对象 504时的 第二高度 520的数值, 并将其作为历史测量高度(记为 ^ ) 进行存储。
在将要进行下一次挖掘动作时, 利用存储的历史测量高度生成高度 阈值(记为 ) , 这里的 = + X , 其中, X为对应于发动机的加速时 间和铲斗 502在挖掘动作中的运动速度的校正值, 其中, 发动机的加速 时间与挖掘机的型号相关, 而铲斗 502的运动速度可以通过计算得到, 因而可以在每次进行挖掘动作时,得到本次挖掘动作应该使用的高度阈 值。
当第二高度 502不大于高度阈值、且铲斗 502的运动方向为向下时, 则可以判定为挖掘机将要进行挖掘动作,并由控制装置 526向发动机的 转速控制装置发送调速命令, 使铲斗 502与挖掘对象 504接触之前, 令 发动机的转速达到预设转速。
以上结合附图详细说明了本发明的技术方案,考虑到挖掘机在工作 过程中, 会出现由于转速突变而导致的动力响应滞后, 因此, 本发明提 供了一种用于判断挖掘机的工作姿态的系统、一种挖掘机和一种用于判 断挖掘机的工作姿态的方法,可以准确识别出挖掘机是否将进行挖掘动 作, 从而提前将挖掘机的发动机转速调节至预设转速, 避免过低导致的 动力滞后等问题。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对 于本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明 的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在 本发明的保护范围之内。

Claims

权 利 要 求
1. 一种用于判断挖掘机的工作姿态的系统, 其特征在于, 包括: 数据获取装置 ( 102) , 实时获取挖掘机的铲斗与所述挖掘机履带 所处的履带地面之间的测量距离;
速度获取装置(104) , 根据所述数据获取装置( 102)获取的所述 测量距离, 实时获取所述铲斗的运动速度及运动方向;
数据存储装置(106) , 在所述挖掘机完成一次挖掘动作的过程中, 在所述运动速度为零时, 将所述数据获取装置 ( 102) 获取的测量距离 作为历史测量距离进行存储;
阈值设定装置(108) , 根据所述数据存储装置( 106)存储的所述 历史测量距离, 设定所述铲斗与所述履带地面之间的距离阈值;
挖掘预判装置 (110) , 在所述运动方向在竖直方向上为向下、 且 所述测量距离达到所述距离阈值的情况下,确认所述挖掘机将要进行挖 掘动作。
2. 根据权利要求 1所述的用于判断挖掘机的工作姿态的系统, 其 特征在于, 所述数据获取装置 (102) 具体包括:
角度传感器( 1020) , 测量动臂与水平面之间的第一夹角以及斗杆 与水平面之间的第二夹角;
距离计算单元( 1022) , 按照
Figure imgf000021_0001
+ ^进行计算, 其中, 为所述测量距离, 为所述动臂与所述挖掘机的连接位置与所述履带 地面之间的距离, 为所述第一夹角, 为所述第二夹角。
3. 根据权利要求 1或 2所述的用于判断挖掘机的工作姿态的系统, 其特征在于, 所述速度获取装置 (104) 具体包括:
时间设定单元 ( 1040) , 设定延迟时间;
速度计算单元( 1042) , 按照 ^ — 进行计算, 其中, V为所述
At
铲斗的运动速度, 为所述数据获取装置 ( 102) 在所述延迟时间之前 获取的第一测量距离, +Δί为所述数据获取装置 ( 102) 在经过所述延 迟时间之后获取的第二测量距离, Δ为所述延迟时间, 其中, 在所述运动速度!为正数的情况下,所述运动方向在竖直方向上为向下, 在所述运动速度!为负数的情况下,所述运动方向在竖直方向上为向上。
4. 根据权利要求 1或 2所述的用于判断挖掘机的工作姿态的系统, 其特征在于, 所述阈值设定装置 (108 )按照/ ¾。= + ^设置所述距离阈 值, 其中, 为所述距离阈值, 1为所述历史测量距离, X为对应于所 述挖掘机的发动机的调速速度和所述铲斗的下降速度的校正值。
5. 根据权利要求 4所述的用于判断挖掘机的工作姿态的系统, 其 特征在于,在所述数据存储装置( 106 )中不存在所述历史测量距离 1时, 所述历史测量距离 1为预设距离。
6. 根据权利要求 1或 2所述的用于判断挖掘机的工作姿态的系统, 其特征在于, 还包括:
命令发送装置(112 ) , 在所述挖掘预判装置( 110 )确认所述挖掘 机将要进行挖掘动作的情况下, 向所述挖掘机的发动机的控制装置发送 调速命令, 使所述发动机的转速被调节至预设转速。
7. 一种挖掘机, 其特征在于, 包括如权利要求 1至 6中任一项所 述的用于判断挖掘机的工作姿态的系统。
8. 一种用于判断挖掘机的工作姿态的方法, 其特征在于, 包括: 步骤 302 , 实时获取挖掘机的铲斗与所述挖掘机履带所处的履带地 面之间的测量距离;
步骤 304 , 根据所述测量距离, 实时获取所述铲斗的运动速度及运 动方向;
步骤 306 , 利用存储的历史测量距离, 设定所述铲斗与所述履带地 面之间的距离阈值, 其中, 所述历史测量距离为: 所述挖掘机最近一次 完成挖掘动作的过程中, 在所述运动速度为零时获取的测量距离;
步骤 308 , 若所述运动方向在竖直方向上为向下、 且所述测量距离 达到所述距离阈值, 则确认所述挖掘机将要进行挖掘动作。
9. 根据权利要求 8所述的用于判断挖掘机的工作姿态的方法, 其 特征在于, 所述步骤 302具体包括:
利用角度传感器测量动臂与水平面之间的第一夹角、及斗杆与水平 面之间的第二夹角;
按照/ ¾ = /l Sin _ /2 Sin + /¾进行计算, 其中, 为所述测量距离, /¾为 所述动臂与所述挖掘机的连接位置与所述履带地面之间的距离, 为所 述第一夹角, 为所述第二夹角。
10.根据权利要求 8或 9所述的用于判断挖掘机的工作姿态的方法, 其特征在于, 所述步骤 304具体包括:
设定延迟时间;
按照 v = t ^进行计算, 其中, v为所述铲斗的运动速度, 为在
At
所述延迟时间之前获取的第一测量距离, +Δί为在经过所述延迟时间之 后获取的第二测量距离, Δ为所述延迟时间, 其中,
若所述运动速度!为正数, 则所述运动方向在竖直方向上为向下, 若所述运动速度!为负数, 则所述运动方向在竖直方向上为向上。
1 1. 根据权利要求 10所述的用于判断挖掘机的工作姿态的方法, 其特征在于, 还包括:
所述延迟时间为: 对所述第一夹角和所述第二夹角进行采集时的采 集周期的整数倍。
12.根据权利要求 8或 9所述的用于判断挖掘机的工作姿态的方法, 其特征在于, 步骤 306具体包括:
按照/ ¾。= + ^设置所述距离阈值, 其中, 。为所述距离阈值, 1为 所述历史测量距离, X为对应于所述挖掘机的发动机的调速速度和所述 铲斗的下降速度的校正值。
13.根据权利要求 8或 9所述的用于判断挖掘机的工作姿态的方法, 其特征在于, 在所述步骤 308之后, 还包括:
向所述挖掘机的发动机的控制装置发送调速命令,使所述发动机的 转速被调节至预设转速。
PCT/CN2012/074328 2012-01-09 2012-04-19 用于判断挖掘机的工作姿态的系统和方法、挖掘机 WO2013104161A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210004242.9A CN102561445B (zh) 2012-01-09 2012-01-09 用于判断挖掘机的工作姿态的系统和方法、挖掘机
CN201210004242.9 2012-01-09

Publications (1)

Publication Number Publication Date
WO2013104161A1 true WO2013104161A1 (zh) 2013-07-18

Family

ID=46407921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074328 WO2013104161A1 (zh) 2012-01-09 2012-04-19 用于判断挖掘机的工作姿态的系统和方法、挖掘机

Country Status (2)

Country Link
CN (1) CN102561445B (zh)
WO (1) WO2013104161A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102877500B (zh) * 2012-09-29 2014-10-29 浙江大学 一种挖掘机工作循环阶段自动识别方法
CN103234701B (zh) * 2013-04-09 2015-06-17 上海三一重机有限公司 一种稳定性监测系统及挖掘机
CN103900497B (zh) * 2014-03-06 2016-06-15 西南交通大学 基于视觉测量的非接触式挖掘机工作装置姿态测量方法
US9458598B2 (en) 2014-04-24 2016-10-04 Komatsu Ltd. Work vehicle
JP6532797B2 (ja) * 2015-10-08 2019-06-19 日立建機株式会社 建設機械
CN109109988A (zh) * 2018-09-30 2019-01-01 青岛力克川液压机械有限公司 一种履带式工程车辆的车身稳定控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1846047A (zh) * 2003-09-02 2006-10-11 株式会社小松制作所 作业车辆用发动机的功率输出控制方法及控制装置
CN101929169A (zh) * 2009-09-07 2010-12-29 太原理工大学 具有可停缸工作的液压挖掘机
WO2011025197A2 (ko) * 2009-08-24 2011-03-03 두산인프라코어 주식회사 훨로더 작업기의 자동 운전 제어 장치 및 방법
CN102041824A (zh) * 2010-12-09 2011-05-04 三一重机有限公司 一种挖掘机工作装置的自动控制系统及控制方法
WO2011138880A1 (ja) * 2010-05-07 2011-11-10 株式会社小松製作所 作業車両及び作業車両の制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704141A (en) * 1992-11-09 1998-01-06 Kubota Corporation Contact prevention system for a backhoe
US7530225B2 (en) * 2006-05-23 2009-05-12 Volvo Construction Equipment Holding Sweden Ab Apparatus for increasing operation speed of boom on excavators
CN201317946Y (zh) * 2008-11-29 2009-09-30 湖南山河智能机械股份有限公司 一种挖掘装载组合机
CN101413279B (zh) * 2008-11-29 2011-06-08 湖南山河智能机械股份有限公司 机电一体化挖掘装载机及控制方法
CN102277891B (zh) * 2011-05-19 2013-06-05 徐工集团工程机械股份有限公司科技分公司 步履式工程机械及其调平装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1846047A (zh) * 2003-09-02 2006-10-11 株式会社小松制作所 作业车辆用发动机的功率输出控制方法及控制装置
WO2011025197A2 (ko) * 2009-08-24 2011-03-03 두산인프라코어 주식회사 훨로더 작업기의 자동 운전 제어 장치 및 방법
CN101929169A (zh) * 2009-09-07 2010-12-29 太原理工大学 具有可停缸工作的液压挖掘机
WO2011138880A1 (ja) * 2010-05-07 2011-11-10 株式会社小松製作所 作業車両及び作業車両の制御方法
CN102041824A (zh) * 2010-12-09 2011-05-04 三一重机有限公司 一种挖掘机工作装置的自动控制系统及控制方法

Also Published As

Publication number Publication date
CN102561445A (zh) 2012-07-11
CN102561445B (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2013104161A1 (zh) 用于判断挖掘机的工作姿态的系统和方法、挖掘机
CN102535556B (zh) 用于提升挖掘机动力响应特性的系统和方法、挖掘机
JP7305823B2 (ja) ショベル及びショベルの計測システム
EP3650604B1 (en) Shovel
CN201193335Y (zh) 一种液压挖掘机正流量控制装置
JP2019183638A (ja) ショベル及びショベルの表示装置
CN112962709B (zh) 工程机械设备及其作业轨迹规划方法和系统、存储介质
JPWO2018174154A1 (ja) ショベル並びにショベルの管理装置及び支援装置
CN101481918A (zh) 一种液压挖掘机铲斗运动的控制方法及控制装置
CN101070706A (zh) 一种液压挖掘机避障控制系统和方法
CN107882080A (zh) 挖掘机精细工作控制方法、系统及挖掘机
CN108691324B (zh) 作业机械
US20170198457A1 (en) Autonomous method for detecting a pile
JP6144373B2 (ja) ショベル、ショベル管理システム、及び携帯通信端末
CN110397108A (zh) 挖掘机控制方法、装置、服务器、车载设备及存储介质
JP2019132064A (ja) 積込機械の制御装置および制御方法
CN104005446A (zh) 挖掘机的正流量控制方法和系统及挖掘机
CN111441416A (zh) 一种挖掘机作业控制方法及系统
CN114508135A (zh) 一种无人操作挖掘机及控制方法
JP6542550B2 (ja) ショベル
KR20200012584A (ko) 굴삭기용 작업부하 측정 방법 및 시스템
CN110965597B (zh) 一种自动铲装触发方法、自动铲装触发装置和装载机
KR20230042730A (ko) 작업 기계
WO2022180843A1 (ja) 制御装置、制御方法及び制御システム
CN116588122B (zh) 一种基于远程控制车辆的漏油监测方法、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864740

Country of ref document: EP

Kind code of ref document: A1