WO2013102420A1 - 离子迁移管信号提取电路、方法以及离子迁移探测器 - Google Patents

离子迁移管信号提取电路、方法以及离子迁移探测器 Download PDF

Info

Publication number
WO2013102420A1
WO2013102420A1 PCT/CN2012/087863 CN2012087863W WO2013102420A1 WO 2013102420 A1 WO2013102420 A1 WO 2013102420A1 CN 2012087863 W CN2012087863 W CN 2012087863W WO 2013102420 A1 WO2013102420 A1 WO 2013102420A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
ion
transfer tube
signal
ion transfer
Prior art date
Application number
PCT/CN2012/087863
Other languages
English (en)
French (fr)
Inventor
张清军
陈志强
李元景
赵自然
刘以农
曹士娉
邹湘
李祥华
常建平
董淑强
郑严
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to GB1409642.4A priority Critical patent/GB2510543B/en
Priority to US13/983,334 priority patent/US9429542B2/en
Priority to DE112012001154.6T priority patent/DE112012001154B4/de
Priority to CA2858256A priority patent/CA2858256C/en
Publication of WO2013102420A1 publication Critical patent/WO2013102420A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/025Detectors specially adapted to particle spectrometers

Definitions

  • the invention relates to the technical field of substance detection, and particularly relates to an ion migration tube signal extraction circuit, an ion migration tube signal extraction method, and an ion migration detector for setting the ion mobility tube signal extraction circuit and applying the ion mobility tube signal extraction method.
  • ion migration technology can detect dangerous goods (such as explosives, drugs), thereby preventing dangerous goods from flowing into the public. place.
  • ion transport detectors that detect dangerous products by ion migration technology are classified into positive mode ion transport detectors for detecting positive ions and negative ions for detecting negative ions according to the polarity of ions detected.
  • Mode ion migration detector The detection coverage of the ion mobility detector described above is limited by the positive and negative ion modes. However, since most of the molecules have a specific electrical affinity, a small number of molecules can simultaneously produce both positive and negative ions.
  • dual-mode ion mobility detectors or bipolar IMS with positive and negative migration regions have been developed. This ion-migrating detector is bulky, has a large coverage of the detector, and has high resolution. It appears mainly in the form of a desktop computer on the market, and its price is more expensive than the single mode.
  • the existing dual-mode ion migration detector is mainly composed of an ion source, a positive ion gate, a negative ion gate, two drift tubes (TOF) and two Faraday discs.
  • the simplest configuration method is that two drift tubes are located in the ion source.
  • the potential of the ion source is generally the ground potential (zero potential).
  • the amplitude of the pulse voltage is determined by the amount of ions reaching the Faraday disk. It generally reflects the amount of ions collected, so the specific type of material can be determined by analyzing the variation law of the ripple voltage.
  • the Faraday disk In order to ensure sufficient electric field strength between the Faraday disk and the ion source, the Faraday disk is at a high potential of several kilovolts (usually around 3000V), and is connected to the pulsating voltage (usually several millivolts) of the lead circuit behind the Faraday disk. And the amplifying circuit of the ripple voltage, the analog-to-digital conversion circuit, and the like are suspended at a high potential of several kilovolts.
  • a transformer is generally used to change the high voltage of the kilovolt to a zero potential, that is, the rear amplification shaping circuit is suspended at a high voltage of several kilovolts, and the amplified pulse electrical signal is led out through the isolation device. Since the high voltage of several kilovolts requires very high voltage resistance to electronic devices, the range of electronic devices that can be selected by the transformer It is relatively narrow, and the circuit inside the transformer and the peripheral extraction circuit electrically connected thereto are also complicated, which leads to the design and manufacturing difficulty of the ripple circuit on the Faraday disk, and thus the digitization and subsequent processing of the ripple voltage signal. It is difficult. Summary of the invention
  • An object of the present invention is to provide an ion transfer tube signal extraction circuit, an ion transport detector for setting the ion transfer tube signal extraction circuit, and an ion transfer tube signal extraction method.
  • the design of the extraction circuit for the ripple voltage on the Faraday disk existing in the prior art and the technical problem of relatively large manufacturing difficulty are solved.
  • the ion transfer tube signal extraction circuit comprises a DC-through module provided with a signal introduction end and a signal output end, wherein:
  • the signal introduction end is electrically connected to the Faraday disk in the ion transfer tube;
  • the DC-blocking module is configured to remove a DC voltage in a voltage drawn from the Faraday disk by the signal introduction terminal, and to generate a ripple voltage in a voltage drawn from the Faraday disk by the signal introduction terminal
  • the signal output terminal outputs.
  • the DC-blocking module includes at least two capacitors, the capacitors being connected in series or in parallel with each other, and the signal-introducing end is electrically connected to one of a positive pole or a cathode of the capacitor, and the signal-extracting end is The positive or negative electrode of the capacitor is electrically connected to the other.
  • At least two of the capacitors are connected in series with each other, and the capacitance of each of the capacitors is 5 nf ⁇ 20nf.
  • the ion migration detector provided by the embodiment of the invention includes an ion migration tube
  • the signal introduction end in the ion migrating tube signal extraction circuit is electrically connected to the Faraday disk in the ion migrating tube;
  • the ripple voltage processing circuit is electrically connected to the signal output terminal, and the ripple voltage processing circuit is configured to perform amplification and/or analog to digital conversion of the ripple voltage outputted by the signal terminal.
  • the ion transfer tube is further provided with an outer shield and an inner shield, wherein:
  • the Faraday disk includes a first side and a second side opposite in position, the first side is for receiving ions; the outer shield is disposed outside the Faraday disk, and the concave portion of the outer shield is concave Opposite the second side position of the Faraday disk;
  • the Faraday disk is electrically connected to the inner core of the first coaxial cable through a connecting core wire;
  • the inner shield is located in the outer shield, the concave portion of the inner shield and the Faraday disk
  • the second side is oppositely positioned and disposed outside the connecting core wire
  • the inner core of the first coaxial cable is electrically connected in parallel with the signal introduction end and the first power supply end of the ion transfer tube;
  • Two ends of the first outer conductor of the first coaxial cable are electrically connected to the outer shield and the second power end of the ion transfer tube, respectively;
  • Both ends of the second outer conductor of the first coaxial cable are electrically connected to the inner shield and the first power terminal, respectively.
  • At least one resistor is further connected in series between the first power end of the ion transfer tube and the inner core of the first coaxial cable.
  • the first power end of the ion transfer tube and the inner core of the first coaxial cable and the second outer conductor of the first coaxial cable are further connected to one of the at least one filter capacitor Connected, the other pole of each of the filter capacitors is grounded.
  • the first power end and the second power end of the ion transfer tube are electrically connected to different high voltage power sources through two core wires of the two core cables, and the outer shield layer of the two core cables is grounded.
  • the resistance of the resistor is 400 ⁇ ⁇ to 600 ⁇ ⁇ .
  • the signal output end is electrically connected to the second coaxial cable, and the ripple voltage outputted from the signal output terminal is output from an inner core of the second coaxial cable, the second coaxial cable The outer conductor is grounded.
  • the first coaxial cable and the second coaxial cable are all triaxial cables
  • the first outer conductor is a sheath shielding layer of the triaxial cable
  • the second outer conductor is three The endothelial signal layer of the shaft cable.
  • the ion transfer tube signal extraction circuit is disposed on the circuit board, and the circuit board is filled in the potting glue, and the potting glue is covered with a grounded metal shield.
  • the ion transport detector is a dual mode ion transport detector having positive and negative ion transport regions.
  • the ion migration tube signal extraction method provided by the embodiment of the invention includes the following steps:
  • the DC voltage in the voltage drawn from the Faraday disk is removed, and the ripple voltage in the voltage drawn from the Faraday disk is output.
  • the technical solution provided by the above embodiments of the present invention can at least produce the following technical effects: Since the voltage on the Faraday disk in the ion transfer tube is taken out of the Faraday disk by the embodiment of the present invention, it is removed by pulling from the Faraday disk. The DC voltage in the voltage, and the method of outputting the ripple voltage in the voltage drawn from the Faraday disk finally leads to the ripple voltage, so that the process of pulling out the ripple voltage does not require a method Pulling the voltage of several thousand volts on the first disk for voltage transformation processing, so there is no need to use internal circuits and transformers with complicated peripheral circuits.
  • the module or other circuit with the function of blocking and passing can be realized. It is much simpler to remove the DC voltage than to withstand and convert the voltage of several thousand volts on the Faraday disk.
  • the internal structure of the internal circuit or other circuits with blocking function is also simpler, and the design and manufacturing difficulty are relatively small, which makes the digitization and subsequent processing of the ripple voltage signal easier, thus solving the existing
  • the technology has the design of the pull-out circuit of the pulsating voltage on the Faraday disk and the technical problem of manufacturing difficulty.
  • FIG. 1 is a schematic diagram showing a connection relationship between internal components of an ion transfer tube signal extraction circuit according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a connection relationship between an ion transfer tube and an ion transfer tube signal extraction circuit and other peripheral circuits in an ion transport detector according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a connection relationship between an ion transfer tube and a first coaxial cable in an ion mobility detector according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing a connection relationship between a preferred embodiment of an internal component of an ion transfer tube signal extraction circuit and other peripheral electronic devices according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an internal flow of an ion migration tube signal extraction method according to an embodiment of the present invention. detailed description
  • the embodiment of the invention provides an ion transfer tube signal extraction circuit with simple structure and low cost, an ion migration detector provided with the ion transfer tube signal extraction circuit, and an ion migration tube signal extraction used by the ion transfer tube signal extraction circuit. method.
  • the ion transfer tube signal extraction circuit includes a DC-blocking module 1 provided with a signal introduction end In and a signal output end Out.
  • the signal introduction end In is electrically connected to the Faraday disk 21 in the ion transfer tube 2 as shown in FIG. 2 or as shown in FIG.
  • the DC-blocking module 1 is for removing a DC voltage from a voltage drawn from the signal introduction terminal In from the Faraday disk 21, and pulsating a voltage from a voltage drawn from the signal introduction terminal In from the Faraday disk 21 from the signal terminal
  • the DC voltage in the voltage drawn from the Faraday disk 21 is removed.
  • the method of outputting the ripple voltage in the voltage drawn from the Faraday disk 21 finally leads to the ripple voltage, so that in the process of extracting the ripple voltage, it is not necessary to perform voltage transformation processing on the voltage of several thousand volts on the Faraday disk 21, so there is no need to Use internal circuit and transformer with complicated peripheral circuit.
  • to achieve the purpose of removing the DC voltage to pull out the ripple voltage use the block-through (or straight-through, straight-through) module or other circuits with DC-blocking function.
  • the DC-blocking module 1 in FIG. 4 is represented by a dashed box, and the DC-blocking module 1 may be a single electronic device or a circuit composed of a plurality of electronic components.
  • the DC-through module 1 includes at least two capacitors, and the capacitors are connected in series or in parallel with each other.
  • the signal-introducing terminal In is electrically connected to one of the positive or negative poles of the capacitor, and the signal output terminal Out and the positive or negative pole of the capacitor. Another electrical connection.
  • the capacitor is preferably a non-polar capacitor, and the capacitor has good direct-transmission performance and is low in cost.
  • the voltage applied to each capacitor is low, which helps to extend the life of a single capacitor, thereby improving the reliability of the circuit.
  • the total capacity of the DC-blocking module 1 as shown in FIG. 4 can be ensured.
  • At least two capacitors are connected in series with each other.
  • two capacitors namely Cl and C2 are connected in series with each other as shown in FIG. 4.
  • the capacitance of each capacitor is 5nf ⁇ 20nf, preferably 10nf.
  • the capacitance of each capacitor is not limited to the above-disclosed range, and can be determined according to the magnitude of the voltage on the Faraday disk 21 as shown in FIG.
  • the ion mobility detector provided by the embodiment of the present invention includes the ion migration tube 2 as shown in FIG.
  • the Faraday disk 21 inside is electrically connected;
  • the ripple voltage processing circuit 3 is electrically connected to the signal output terminal Out, and the ripple voltage processing circuit 3 is used for amplifying and/or analog-to-digital conversion of the ripple voltage outputted from the output end of the signal bow.
  • the pulsation voltage is usually only a few millivolts
  • the fluctuation curve of the pulsating voltage is more easily observed, and the fluctuation curve according to the amplified pulsating voltage value is stored in advance.
  • the fluctuation curve of the pulsating voltage value corresponding to different types of substances can be compared to determine the type of material.
  • the digital-to-analog conversion circuit in the ripple voltage processing circuit 3 is used to convert the fluctuation curve of the ripple voltage from an analog quantity to a digital quantity, so that it is easier to display and compare with a computer device having a higher information processing capability.
  • the fluctuation curve of the pre-stored ripple voltage value can be detected and recorded before the substance is detected.
  • the ripple voltage processing circuit 3 can directly use the existing ripple voltage processing circuit.
  • an outer shield 22 and an inner shield 23 are provided in the ion transfer tube 2.
  • the Faraday disk 21 includes a first side 211 and a second side 212 that are opposite in position, and the first side 211 is for receiving ions.
  • the outer shield 22 is disposed on the Faraday disk 21, and the concave portion of the outer shield 22 is opposed to the second side 212 of the Faraday disk 21.
  • the Faraday disk 21 is electrically connected to the inner core 410 of the first coaxial cable 41 via a connecting core wire 24.
  • the inner shield 23 is located in the outer shield 22, and the concave portion of the inner shield 23 is opposed to the second side 212 of the Faraday disk 21 and is disposed outside the connecting core 24.
  • the inner core 410 of the first coaxial cable 41 is electrically connected in parallel with the signal introduction end In and the first power supply terminal 51 of the ion transfer tube 2 as shown in FIG.
  • Both ends of the first outer conductor 411 of the first coaxial cable 41 are electrically connected to the outer shield 22 and the second power supply terminal 52 of the ion transfer tube 2 as shown in FIG.
  • Both ends of the second outer conductor 412 of the first coaxial cable 41 are electrically connected to the inner shield 23 and the first power terminal 51, respectively.
  • the connecting core wire 24 may be a part of the inner core 410 of the first coaxial cable 41, or may be a single wire, preferably the inner core 410 of the first coaxial cable 41 is extended and bent. Get it off.
  • the first power supply terminal 51 supplies high voltage power to the Faraday disk 21 and the inner shield cover 23 (high voltage electric voltage is preferably 3000V), and both the Faraday disk 21 and the inner shield cover 23 are equipotential, and the second power supply terminal 52 is external.
  • the shield 22 supplies high voltage (the high voltage is preferably 2970V;).
  • the outer shield 22 prevents the electric field or interference signal outside the ion transfer tube 2 from interfering with the electric field between the Faraday disk 21 and the ion source, thereby ensuring the accuracy of the detection.
  • the outer shield 22 Since the electric field between the Faraday disk 21 and the ion source in the ion transfer tube 2 is stepwise decreasing (for a positive mode ion transfer tube) or increasing (for a negative mode ion transfer tube), the outer shield 22 There is a voltage difference of about 70V to 100V between the Faraday disk 21, and a power line is generated between the two, and the inner shield 23 can block the power line between the outer shield 22 and the Faraday disk 21, thereby avoiding the use of the ion migration detector.
  • the connecting core wire 24 cuts the power line between the outer shield 22 and the Faraday disk 21 in a wobbling state to generate noise.
  • one or more inner shields 23 may be further disposed between the outer shield 22 of the ion transfer tube 2 and the connecting core 24, and one or more outer shields may be disposed outside the outer shield 22. Cover 22.
  • the number of the outer shield 22 and the inner shield 23 depends on the intensity of the interference signal outside the outer shield 22 or the inner ion transfer tube 2. Usually, an inner shield 23 is sufficient to ensure that the ion transfer tube 2 is not inside.
  • the connecting core wire 24 is vibrating to generate noise.
  • the ion transfer tube 2 is provided with a suppression net 25 integrally connected with the edge of the outer shield 22, and the suppression source 25 is located in the ion transfer tube 2 and the first side 211 of the Faraday disk 21. between.
  • the suppression net 25 is integrally connected with the outer shield 22, so that the upper and outer shields 22 are connected with a high voltage having the same voltage value, and the suppression mesh 25 can be the first ion source in the ion transfer tube 2 and the first of the Faraday disk 21.
  • a stepwise increasing or decreasing electric field is formed between the sides 211, which facilitates the ions generated by the ion source to hit the ground 21 of the Farah.
  • At least one resistor preferably two in series, is connected in series between the first power end 51 of the ion transfer tube 2 shown in FIG. 3 and the inner core 410 of the first coaxial cable 41 as shown in FIG.
  • the resistor is the resistor R1 and the resistor R2, and the resistance of each series resistor is 400 ⁇ ⁇ to 600 ⁇ , preferably 500 ⁇ .
  • the resistor has the function of blocking the traffic straight (or spacing straight), so that the ripple voltage outputted by the first power terminal 51 can be prevented from entering the Faraday disk 21 to generate ripple noise, thereby ensuring the accuracy of the detection.
  • the first power end 51 of the ion transfer tube 2 and the inner core 410 of the first coaxial cable 41 and the second outer conductor 412 of the first coaxial cable 41 are shown in FIG. Also with at least one filter capacitor The middle pole is electrically connected, and the other pole of the filter capacitor is grounded.
  • the second outer conductor 412 of the first coaxial cable 41 is connected in parallel with two grounded filter capacitors, C3 and C4, and the filter capacitors C3 and C4 may have a capacitance of 5 nf to 20 nf, preferably 10 nf.
  • the filter capacitor can effectively ground the ripple voltage outputted from the first power terminal 51, thereby filtering out the noise outputted by the first power terminal 51, and further ensuring the stability of the high voltage voltage value on the Faraday disk 21 and the accuracy of the detection.
  • the resistors R1 and R2 and the filter capacitors C3 and C4 are disposed together in the ion transfer tube signal extraction circuit, or only one of the resistors R1 and R2 and the filter capacitors C3 and C4 may be disposed on the ion transfer tube signal. Extract the circuit.
  • the first power supply end 51 and the second power supply end 52 of the ion transfer tube 2 shown in FIG. 3 pass through the two core wires 61 and 62 of the two-core cable 6 and different high voltage power sources, respectively.
  • VI, V2 are electrically connected, and the outer sheath of the two-core cable 6 is grounded.
  • the first power terminal 51 and the second power terminal 52 can be respectively connected to two different voltage outputs of the same high voltage power source (for example, a circuit board) through the two core wires 61 and 62 of the two core cables 6, respectively.
  • Figure 2 shows two different high voltage power supplies VI, V2.
  • the first power terminal 51 and the second power terminal 52 use two core wires 61, 62 of the two-core cable 6 to transmit electrical energy to prevent circuits of different voltages from interfering with each other.
  • the first power terminal 51 and the second power terminal 52 can be electrically connected to different high voltage power sources VI, V2 using two different common cables.
  • the signal terminal Out is electrically connected to the second coaxial cable 42, and the pulsating voltage output from the signal terminal Out is output from the inner core of the second coaxial cable 42, the second coaxial The outer conductor of the cable 42 is grounded.
  • the second coaxial cable 42 can not only introduce the pulsating voltage output from the signal output terminal Out into the pulsating voltage processing circuit 3 shown in Fig. 2, but also the outer conductor can serve as a shielding function to prevent the pulsating voltage from being interfered by other peripheral signals.
  • the first coaxial cable 41 and the second coaxial cable 42 are all triaxial cables as shown in FIG. 4, the first outer conductor 411 is a sheath shield layer of the triaxial cable, and the second outer conductor 412 is The endothelial signal layer of a triax cable.
  • the triaxial cable is preferably made of polytetrafluoroethylene, and the cost of the ordinary triaxial cable is much lower than that of the high voltage cable used in the prior art.
  • the voltage difference between the first outer conductor 411 and the second outer conductor 412 of the first coaxial cable 41 is preferably between 70V and 100V, and the ordinary triaxial cable can withstand 200V, so here Can use ordinary triax cable, at the same time, due to the inner core of a triax cable, sheath shield and endothelial letter
  • the layers are electrically connected to the Faraday disk 21, the outer shield 22 and the inner shield 23 respectively, and can function as three high voltage cables, and a triax cable and the Faraday disk 21, the outer shield 22 and the inner shield 23
  • the connection and the three ordinary high-voltage cables are simpler than the connection of the Faraday disk 21, the outer shield 22 and the inner shield 23, so that the connection can be reduced, so the use of the triax cable can be effectively reduced.
  • first coaxial cable 41 and the second coaxial cable 42 can also be replaced by other coaxial cables other than the triaxial cable, such as a quad-coaxial cable, and only need to be redundant when used.
  • the conductor can be grounded.
  • the ion transfer tube signal extraction circuit is disposed on the circuit board, and the circuit board is potted in the potting glue, and the potting glue is covered with a metal shield 11 grounded as shown in FIG.
  • the ion-migrating tube signal extraction circuit is disposed on the circuit board not only to facilitate mass production using integrated circuit technology, but also to facilitate the handling and replacement of the circuit board.
  • the potting glue itself has good insulation.
  • the potting process is to place the circuit board carrying the circuit in the fluid potting glue. After the potting glue is cured, the circuit board and the circuit board can protect the circuit. Therefore, potting with potting glue can not only ensure good isolation between the non-phase-connected circuits in the ion-migrating tube signal extraction circuit, but also ensure that the circuits in the ion-migrating tube signal extraction circuit are not electrically connected.
  • the position is relatively stable, which enhances the weather resistance and life of the circuit, and the metal shield 11 as shown in FIG. 4 can perform good electromagnetic shielding on the cured potting glue, thereby avoiding the influence of external signals on the signal extraction circuit of the ion transfer tube.
  • the metal shield 11 also has a protective effect on the ion transfer tube signal extraction circuit in the potting compound and the potting compound, thereby further extending the life and weather resistance of the ion transfer tube signal extraction circuit.
  • the devices grounded in the above embodiments in this embodiment can be connected to the same ground or different grounds according to the needs of electrical performance.
  • the ion transport detector in this embodiment is preferably a dual mode ion transport detector having positive and negative ion transport regions.
  • the dual-mode ion transport detector with positive and negative ion migration regions can detect not only positive ions but also negative ions, and is more powerful, and the above technical solutions provided by the present invention are suitably applied.
  • the above technical solution provided by the present invention can also be utilized on a single mode ion transport detector having only one of a positive ion transport region or a negative ion transport region.
  • step S1 the voltage on the Faraday disk 21 in the ion transfer tube 2 is taken out. Then, in step S2, the DC voltage in the voltage drawn from the Faraday disk 21 is removed, and the ripple voltage in the voltage drawn from the Faraday disk 21 is output.
  • the ion transfer tube signal extraction method provided by the embodiment of the present invention can also solve the design and manufacturing difficulty of the pull-out circuit of the Faraday disk in the prior art. Big technical problems.
  • the ion migration tube signal extraction method provided by the embodiment of the present invention can also be implemented by using other circuits than the DC-blocking module 1 shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Radiation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

一种离子迁移管信号提取电路、方法以及离子迁移探测器,其解决了现有技术存在法拉第盘上脉动电压的引出电路的设计以及制造难度比较大的技术问题。该离子迁移管信号提取电路,包括隔直通交模块(1),隔直通交模块(1)用于去除由信号引入端从法拉第盘(21)上引出的电压中的直流电压,并将由信号引入端从法拉第盘(21)上引出的电压中的脉动电压从信号引出端输出。该离子迁移探测器,包括上述离子迁移管信号提取电路。该离子迁移管信号提取方法,包括引出离子迁移管(2)内的法拉第盘(21)上的电压,去除由从法拉第盘(21)上引出的电压中的直流电压,将从法拉第盘(21)上引出的电压中的脉动电压输出。

Description

离子迁移管信号提取电路、 方法以及离子迁移探测器 技术领域
本发明涉及物质检测技术领域, 具体涉及一种离子迁移管信号提取电路、 离子迁 移管信号提取方法以及设置该离子迁移管信号提取电路并应用该离子迁移管信号提取 方法的离子迁移探测器。 背景技术
使用各种新技术检测未知物质的类型与种类具有很大的实用价值, 例如在目前的 安检市场上, 采用离子迁移技术可以检测出危险品 (如爆炸物、 毒品), 进而避免危险 品流入公共场所。
目前, 采用离子迁移技术检测危险品的离子迁移探测器(或称离子迁移谱仪), 根 据其检测的离子极性的不同, 分为检测正离子的正模式离子迁移探测器, 检测负离子 的负模式离子迁移探测器。 上述离子迁移探测器的检测覆盖范围受到了正、 负离子模 式的限制。 但是, 由于大部分的分子都具有特定的电亲和性, 也有少量的分子能同时 产生正、 负两种离子。 为了拓展离子迁移技术的检测范围, 发展出了分别带有正负迁 移区的双模式离子迁移探测器 (或称双极性 IMS)。 这种离子迁移探测器体积庞大、 检 测物覆盖面大、 分辨能力高, 在市场上主要以台式机的形式出现, 其价格较单模式更 加昂贵。
现有的双模式离子迁移探测器主要由离子源、 正离子门、 负离子门、 两个漂移管 (TOF) 以及两个法拉第盘构成, 最简单的构成方式是两个漂移管位于离子源的两侧, 由于正负迁移区的电场方向相同, 因此一般情况下离子源的电位为地电位 (零电位)。 脉冲电压的幅度是由到达法拉第盘的离子团的电量决定的, 一般反映出收集到的离子 数量, 所以可以通过分析脉动电压的变化规律判断出物质的具体类型。 为保证法拉第 盘与离子源之间具有足够的电场强度, 法拉第盘处于几千伏 (通常为 3000V左右) 的 高电位上, 连接于法拉第盘后方的脉动电压 (通常为几毫伏) 的引出电路及脉动电压 的放大电路、 模数转换电路等都悬浮在几千伏的高电位上。
现有技术中一般使用变压器将上千伏的高压变为 0电位, 即将后方放大整形电路 悬浮在上千伏的高压, 在通过隔离器件将放大后的脉冲电信号引出来。 由于几千伏的 高电压对电子器件的抗高压能力要求非常高, 所以变压器所能选择的电子器件的范围 比较窄, 而且变压器内的电路以及与其电连接的外围引出电路也比较复杂, 导致法拉 第盘上脉动电压的引出电路的设计以及制造难度比较大, 进而为脉动电压信号的数字 化以及后继处理都带来了困难。 发明内容
本发明的目的是提出一种离子迁移管信号提取电路、 一种设置该离子迁移管信号 提取电路的离子迁移探测器以及一种离子迁移管信号提取方法。 解决了现有技术中存 在的法拉第盘上脉动电压的引出电路的设计以及制造难度比较大的技术问题。
为实现上述目的, 本发明所提供的离子迁移管信号提取电路, 包括设置有信号引 入端以及信号引出端的隔直通交模块, 其中:
所述信号引入端与离子迁移管内的法拉第盘电连接;
所述隔直通交模块用于去除由所述信号引入端从所述法拉第盘上引出的电压中的 直流电压, 并将由所述信号引入端从所述法拉第盘上引出的电压中的脉动电压从所述 信号引出端输出。
优选地, 所述隔直通交模块包括至少两个电容, 所述电容之间互相串联或并联, 所述信号引入端与所述电容的正极或负极其中之一电连接, 所述信号引出端与所述电 容的正极或负极其中另一电连接。
优选地, 至少两个所述电容互相串联, 每个所述电容的容值为 5 nf ~20nf。
本发明实施例提供的离子迁移探测器, 包括离子迁移管;
上述本发明实施例提供的离子迁移管信号提取电路, 所述离子迁移管信号提取电 路内的所述信号引入端与所述离子迁移管内的法拉第盘电连接;
脉动电压处理电路, 所述脉动电压处理电路与所述信号引出端电连接, 所述脉动 电压处理电路用于将所述信号引出端输出的所述脉动电压进行放大整形和 /或模数转 换。
优选地, 所述离子迁移管内还设置有外屏蔽罩以及内屏蔽罩, 其中:
所述法拉第盘包括位置相反的第一侧以及第二侧, 所述第一侧用于接收离子; 所述外屏蔽罩罩设于所述法拉第盘外, 且所述外屏蔽罩内凹的部分与所述法拉第 盘的第二侧位置相对;
所述法拉第盘通过连接芯线与第一同轴电缆的内芯电连接;
所述内屏蔽罩位于所述外屏蔽罩内, 所述内屏蔽罩的内凹的部分与所述法拉第盘 的第二侧位置相对且罩设于所述连接芯线之外;
所述第一同轴电缆的内芯分别与所述信号引入端以及所述离子迁移管的第一电源 端并联电连接;
所述第一同轴电缆的第一外导体的两端分别与所述外屏蔽罩以及所述离子迁移管 的第二电源端电连接;
所述第一同轴电缆的第二外导体的两端分别与所述内屏蔽罩以及所述第一电源端 电连接。
优选地, 所述离子迁移管的第一电源端与所述第一同轴电缆的内芯之间还串联有 至少一个电阻。
优选地, 所述离子迁移管的第一电源端与所述第一同轴电缆的内芯、 所述第一同 轴电缆的第二外导体之间还与至少一个滤波电容的其中一极电连接, 每个所述滤波电 容的其中另一极接地。
优选地, 所述离子迁移管的第一电源端以及第二电源端分别通过两芯线缆的两条 芯线与不同的高压电源电连接, 所述两芯线缆的外皮屏蔽层接地。
优选地, 所述电阻的阻值为 400ΜΩ〜600ΜΩ。
优选地, 所述信号引出端与第二同轴电缆电连接, 且从所述信号引出端输出的所 述脉动电压从所述第二同轴电缆的内芯输出, 所述第二同轴电缆的外导体接地。
优选地, 所述第一同轴电缆以及所述第二同轴电缆均为三同轴电缆, 所述第一外 导体为三同轴电缆的外皮屏蔽层, 所述第二外导体为三同轴电缆的内皮信号层。
优选地, 所述离子迁移管信号提取电路设置于电路板上, 且其与所述电路板均灌 封于灌封胶内, 所述灌封胶之外还覆盖有接地的金属屏蔽罩。
优选地, 所述离子迁移探测器为具有正负离子迁移区的双模式离子迁移探测器。 本发明实施例提供的离子迁移管信号提取方法, 包括以下步骤:
弓 I出离子迁移管内的法拉第盘上的电压;
去除由从所述法拉第盘上引出的电压中的直流电压, 将从所述法拉第盘上引出的 电压中的脉动电压输出。
上述本发明实施例所提供的任一技术方案, 至少能产生如下技术效果: 由于本发明实施例中将离子迁移管内的法拉第盘上的电压引出法拉第盘之后, 是 通过去除由从法拉第盘上引出的电压中的直流电压, 并将从法拉第盘上引出的电压中 的脉动电压输出的方法最终引出脉动电压的, 这样引出脉动电压的过程中, 无需对法 拉第盘上几千伏的电压进行变压处理, 所以也无需使用内部电路以及外围电路复杂的 变压器, 同时, 要达到去除直流电压引出脉动电压的目的, 使用隔直通交 (或称隔直 走交、 走交隔直) 模块或其他具有隔直通交功能的电路便可以实现, 由于去除直流电 压相对于承受、 变换法拉第盘上几千伏的电压的难度要简单很多, 所以隔直通交模块 的内部电路或其他具有隔直通交功能的电路内部结构上也会更为简单, 无论是设计以 及制造难度均比较小, 进而也使得脉动电压信号的数字化以及后继处理更为容易, 所 以解决了现有技术存在法拉第盘上脉动电压的引出电路的设计以及制造难度比较大的 技术问题。 附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中:
图 1为本发明实施例提供的离子迁移管信号提取电路的内部组成部分之间的连接 关系的示意图;
图 2为本发明实施例提供的离子迁移探测器内的离子迁移管与离子迁移管信号提 取电路以及其他外围电路之间连接关系的示意图;
图 3为本发明实施例提供的离子迁移探测器内的离子迁移管与第一同轴电缆之间 的连接关系的示意图;
图 4为本发明实施例提供的离子迁移管信号提取电路的内部组成部分的优选实施 方式与外围其他电子器件之间的连接关系的示意图;
图 5为本发明实施例提供的离子迁移管信号提取方法的内部流程的示意图。 具体实施方式
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。
本发明实施例提供了一种结构简单、 成本低廉的离子迁移管信号提取电路、 设置 该离子迁移管信号提取电路的离子迁移探测器以及该离子迁移管信号提取电路所使用 的离子迁移管信号提取方法。
如图 1所示, 本发明实施例提供的离子迁移管信号提取电路包括设置有信号引入 端 In以及信号引出端 Out的隔直通交模块 1。 信号引入端 In与如图 2或如图 3所示离子迁移管 2内的法拉第盘 21电连接。 隔直通交模块 1用于去除由信号引入端 In从法拉第盘 21上引出的电压中的直流 电压, 并将由信号引入端 In从法拉第盘 21 上引出的电压中的脉动电压从信号引出端
Out输出。
由于本发明实施例中将如图 2或图 3所示离子迁移管 2内的法拉第盘 21上的电压 引出法拉第盘 21之后, 是通过去除由从法拉第盘 21上引出的电压中的直流电压, 并 将从法拉第盘 21上引出的电压中的脉动电压输出的方法最终引出脉动电压的, 这样引 出脉动电压的过程中, 无需对法拉第盘 21上几千伏的电压进行变压处理, 所以也无需 使用内部电路以及外围电路复杂的变压器, 同时, 要达到去除直流电压引出脉动电压 的目的, 使用隔直通交 (或称隔直走交、 走交隔直) 模块或其他具有隔直通交功能的 电路便可以实现, 由于去除直流电压相对于承受、 变换法拉第盘 21上几千伏的电压的 难度要简单很多, 所以隔直通交模块 1 的内部电路或其他具有隔直通交功能的电路内 部结构上也会更为简单, 无论是设计以及制造难度均比较小, 所以使用过程中出现故 障的概率也较低, 进而也使得脉动电压信号的数字化以及后继处理更为容易, 所以解 决了现有技术存在法拉第盘上脉动电压的引出电路的设计以及制造难度比较大的技术 问题。
如图 4所示, 图 4中隔直通交模块 1采用虚线框表示, 隔直通交模块 1可以为单 独的一个电子器件也可以为由多个电子器件构成的电路。 本实施例中隔直通交模块 1 包括至少两个电容, 电容之间互相串联或并联, 信号引入端 In与电容的正极或负极其 中之一电连接, 信号引出端 Out与电容的正极或负极其中另一电连接。
本实施例中电容优选为无极性电容, 电容具有良好的隔直通交性能, 而且成本低 廉。 多个电容互相串联时, 每个电容上所承受的电压较低, 有利于延长单个电容的寿 命, 进而提高电路的可靠性。 多个电容并联时, 即使选用容量较小的电容也可以保证 整个如图 4所示隔直通交模块 1的容量总和满足要求。
本实施例中至少两个电容互相串联, 优选为如图 4所示两个电容即 Cl、 C2互相 串联, 每个电容的容值为 5nf~20nf, 优选为 10nf。
串联电容太多时, 会增加电路的复杂性以及成本, 而电容太少时, 单个电容上分 担的电压太大,实践证明:两个 5nf~20nf的电容串联能可靠地去除 3000V左右的高压。 当然, 每个电容的容值并不限于上述公开的范围, 其可以根据如图 3所示法拉第盘 21 上电压的大小来决定。 如图 2所示,本发明实施例提供的离子迁移探测器包括如图 3所示离子迁移管 2。 在上述本发明实施例提供的如图 1所示离子迁移管信号提取电路中, 如图 1所示 的离子迁移管信号提取电路内的信号引入端 In与如图 3所示的离子迁移管 2内的法拉 第盘 21电连接;
如图 2所示脉动电压处理电路 3与信号引出端 Out电连接, 脉动电压处理电路 3 用于将信号弓 I出端 Out输出的脉动电压进行放大和 /或模数转换。
由于脉动电压通常只有几毫伏, 所以脉动电压处理电路 3内的脉动信号放大电路 对其进行放大之后, 脉动电压的波动曲线会更容易观察, 根据放大后的脉动电压值的 波动曲线与预先存储的不同类型的物质所对应脉动电压值的波动曲线比对, 便可以判 断出物质的类型。
脉动电压处理电路 3内的数模转换电路用于将脉动电压的波动曲线从模拟量转换 为数字量, 这样, 更容易采用信息处理能力较高的计算机设备进行显示与比对。
预先存储的脉动电压值的波动曲线可以在检测物质之前预先检测并记录下来。 本 实施例中脉动电压处理电路 3可以直接使用现有的脉动电压处理电路。
如图 3所示,本实施例中离子迁移管 2内还设置有外屏蔽罩 22以及内屏蔽罩 23。 法拉第盘 21包括位置相反的第一侧 211以及第二侧 212, 第一侧 211用于接收离 子。
外屏蔽罩 22罩设于法拉第盘 21夕卜, 且外屏蔽罩 22内凹的部分与法拉第盘 21的 第二侧 212位置相对。
法拉第盘 21通过连接芯线 24与第一同轴电缆 41的内芯 410电连接。
内屏蔽罩 23位于外屏蔽罩 22内, 内屏蔽罩 23的内凹的部分与法拉第盘 21的第 二侧 212位置相对且罩设于连接芯线 24之外。
第一同轴电缆 41的内芯 410分别与信号引入端 In以及离子迁移管 2的如图 4所 示第一电源端 51并联电连接。
第一同轴电缆 41的第一外导体 411的两端分别与外屏蔽罩 22以及离子迁移管 2 的如图 4所示第二电源端 52电连接。
第一同轴电缆 41的第二外导体 412的两端分别与内屏蔽罩 23以及第一电源端 51 电连接。
如图 3所示, 连接芯线 24可以为第一同轴电缆 41的内芯 410的一部分, 为也可 以为单独的一根导线, 优选为第一同轴电缆 41的内芯 410延长、 弯折而得到。 第一电源端 51为法拉第盘 21 以及内屏蔽罩 23供应高压电 (高压电电压优选为 3000V), 法拉第盘 21 以及内屏蔽罩 23两者是等电位的, 第二电源端 52为外屏蔽罩 22供应高压电 (高压电电压优选为 2970V;)。
外屏蔽罩 22可以避免离子迁移管 2外的电场或干扰信号干扰法拉第盘 21与离子 源之间的电场, 从而保证检测的准确性。
由于法拉第盘 21与离子迁移管 2内的离子源之间的电场是逐级递减 (对于正模式 离子迁移管而言) 或递增 (对于负模式离子迁移管而言) 的, 所以外屏蔽罩 22与法拉 第盘 21之间存在大约 70V至 100V的压差, 两者之间会产生电力线, 内屏蔽罩 23可 以隔断外屏蔽罩 22与法拉第盘 21之间的电力线, 进而避免在使用离子迁移探测器检 测物质时, 连接芯线 24在颤动状态下会切割隔断外屏蔽罩 22与法拉第盘 21之间的电 力线而产生噪声。
当然, 本实施例中离子迁移管 2的外屏蔽罩 22与连接芯线 24之间还可以再设置 一个乃至多个内屏蔽罩 23, 外屏蔽罩 22之外还可以设置一个乃至多个外屏蔽罩 22。 外屏蔽罩 22以及内屏蔽罩 23的数目根据外屏蔽罩 22或内离子迁移管 2之外干扰信号 的密集程度而定, 通常设置一个内屏蔽罩 23已经足以保证离子迁移管 2内不会因为连 接芯线 24在颤动而产生噪声。
如图 3所示,离子迁移管 2内设置有与外屏蔽罩 22的边沿连为一体的抑制网 25, 抑制网 25位于离子迁移管 2内的离子源与法拉第盘 21的第一侧 211之间。 抑制网 25 与外屏蔽罩 22连为一体, 所以其上与外屏蔽罩 22上均连接有电压值相同的高压, 抑 制网 25可以在离子迁移管 2内的离子源与法拉第盘 21的第一侧 211之间形成逐级递 增或递减的电场, 有利于离子源产生的离子打在法拉地盘上 21。
本实施例中如图 3所示离子迁移管 2的如图 4所示的第一电源端 51与第一同轴电 缆 41的内芯 410之间还串联有至少一个电阻, 优选为串联两个电阻即电阻 R1与电阻 R2, 每个串联的电阻的阻值为 400ΜΩ〜600ΜΩ, 优选为 500ΜΩ。
电阻具有隔交通直(或称隔交走直)的作用, 可以避免第一电源端 51输出的脉动 电压进入法拉第盘 21而产生波纹噪声, 进而可以保证检测的准确率。
串联多个电阻时, 每个电阻分担的电压相对较低, 有利于保证电阻的可靠性以及 寿命。
如图 4所示,本实施例中如图 3所示离子迁移管 2的第一电源端 51与第一同轴电 缆 41的内芯 410、第一同轴电缆 41的第二外导体 412之间还与至少一个滤波电容的其 中一极电连接, 滤波电容的其中另一极接地。
第一同轴电缆 41的第二外导体 412之间优选为并联两个接地的滤波电容即 C3、 C4, 滤波电容 C3、 C4的容值可以为 5nf~20nf, 优选为 10nf。 滤波电容可以有效的将 第一电源端 51输出的脉动电压接地, 从而滤除了由第一电源端 51输出的噪声, 进一 步保证法拉第盘 21上高压电压值的稳定性以及检测的准确性。
电阻 Rl、 R2与滤波电容 C3、 C4两者优选为一起设置于离子迁移管信号提取电 路中, 也可以仅将电阻 Rl、 R2与滤波电容 C3、 C4两者其中之一设置于离子迁移管信 号提取电路中。
本实施例中如图 3所示离子迁移管 2如图 4所示的第一电源端 51以及第二电源端 52分别通过两芯线缆 6的两条芯线 61、 62与不同的高压电源 VI、 V2电连接, 两芯线 缆 6的外皮屏蔽层接地。
第一电源端 51 以及第二电源端 52可以分别通过两芯线缆 6的两条芯线 61、 62 接同一高压电源 (例如一块电路底板) 上不同的两个电压输出端也可以分别接如图 4 所示不同的两个高压电源 VI、 V2。
第一电源端 51以及第二电源端 52使用两芯线缆 6的两条芯线 61、62传输电能可 以避免两条电压不同的电路互相干扰。 当然, 本实施例中第一电源端 51以及第二电源 端 52可以使用不同的两条普通的电缆与不同的高压电源 VI、 V2电连接。
如图 4所示,本实施例中信号引出端 Out与第二同轴电缆 42电连接,且从信号引 出端 Out输出的脉动电压从第二同轴电缆 42的内芯输出, 第二同轴电缆 42的外导体 接地。
第二同轴电缆 42不仅可以将从信号引出端 Out输出的脉动电压引入如图 2所示脉 动电压处理电路 3, 而且其外导体可以起到屏蔽作用, 避免脉动电压受到外围其他信号 的干扰。
本实施例中如图 4所示第一同轴电缆 41以及第二同轴电缆 42均为三同轴电缆, 第一外导体 411为三同轴电缆的外皮屏蔽层, 第二外导体 412为三同轴电缆的内皮信 号层。
三同轴电缆优选为采用聚四氟材质的, 普通三同轴电缆其的成本远低于现有技术 中所使用的高压线缆。本实施例中第一同轴电缆 41的第一外导体 411与第二外导体 412 之间的压差优选为 70V至 100 V之间, 普通的三同轴电缆能耐压 200V, 所以此处可以 使用普通的三同轴电缆, 同时, 由于一条三同轴电缆的内芯、 外皮屏蔽层以及内皮信 号层分别与法拉第盘 21、 外屏蔽罩 22以及内屏蔽罩 23电连接可以起到三条高压线缆 的作用, 而且一条三同轴电缆与法拉第盘 21、 外屏蔽罩 22以及内屏蔽罩 23的连接与 三条普通的高压线缆与法拉第盘 21、 外屏蔽罩 22以及内屏蔽罩 23的连接相比会更为 简单, 故而还可以降低连接的难度, 所以三同轴电缆的使用可以有效的降低本发明离 子迁移管信号提取电路的成本。 当然, 本实施例中第一同轴电缆 41以及第二同轴电缆 42也可以使用三同轴电缆之外的其他同轴电缆例如四同轴电缆来代替, 具体使用时只 需将多余的外导体接地即可。
本实施例中离子迁移管信号提取电路设置于电路板上, 且其与电路板均灌封于灌 封胶内, 灌封胶之外还覆盖有如图 4所示接地的金属屏蔽罩 11。
离子迁移管信号提取电路设置于电路板上不仅方便使用集成电路技术大批量制 造, 而且电路板的搬运、 更换也比较方便。
灌封胶本身具有良好的绝缘性, 灌封工艺是将承载有电路的电路板放置于流体状 的灌封胶内, 待灌封胶固化之后便可以将电路板以及电路板所承载的电路保护起来, 使用灌封胶灌封不仅可以确保离子迁移管信号提取电路内各条不相电连接的电路之间 彼此良好绝缘, 而且可以保证离子迁移管信号提取电路内各条不相电连接的电路的位 置比较稳定, 增强了电路的耐候性以及寿命, 而如图 4所示金属屏蔽罩 11可以对固化 的灌封胶进行良好的电磁屏蔽, 避免外部信号对离子迁移管信号提取电路的影响, 保 证离子迁移管信号提取电路的可靠性以及其所提取的脉动电压的干净。 除此之外, 金 属屏蔽罩 11对灌封胶以及灌封胶内的离子迁移管信号提取电路还具有保护作用, 进而 有利于延长离子迁移管信号提取电路的寿命以及耐侯性。
上述本实施例中各接地的器件可以根据电气性能的需要接相同的地或接不同的 地。
本实施例中离子迁移探测器优选为具有正负离子迁移区的双模式离子迁移探测 器。
具有正负离子迁移区的双模式离子迁移探测器不仅可以检测正离子还可以检测负 离子, 功能更为强大, 适宜应用本发明所提供的上述技术方案。 当然, 上述本发明所 提供的技术方案也可以利用于仅具有正离子迁移区或负离子迁移区其中之一的单模式 离子迁移探测器上。
下面参考图 2和图 5, 描述本发明实施例提供的离子迁移管信号提取方法。 首先, 在步骤 Sl, 引出离子迁移管 2内的法拉第盘 21上的电压。 然后, 在步骤 S2, 去除由从法拉第盘 21上引出的电压中的直流电压, 将从法拉 第盘 21上引出的电压中的脉动电压输出。
与上述本发明实施例提供的离子迁移管信号提取电路同理, 本发明实施例提供的 离子迁移管信号提取方法也可以解决现有技术中法拉第盘上脉动电压的引出电路的设 计以及制造难度比较大的技术问题。 当然, 上述本发明实施例提供的离子迁移管信号 提取方法也可以使用如图 2所示隔直通交模块 1之外的其他电路实现。
最后应当说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限制; 尽 管参照较佳实施例对本发明进行了详细的说明, 所属领域的普通技术人员应当理解: 依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换; 而不 脱离本发明技术方案的精神, 其均应涵盖在本发明请求保护的技术方案范围当中。

Claims

权利要求
1、 一种离子迁移管信号提取电路, 其特征在于: 包括设置有信号引入端以及信 号引出端的隔直通交模块, 其中:
所述信号引入端与离子迁移管内的法拉第盘电连接;
所述隔直通交模块用于去除由所述信号弓 I入端从所述法拉第盘上引出的电压中 的直流电压, 并将由所述信号引入端从所述法拉第盘上引出的电压中的脉动电压从所 述信号引出端输出。
2、 根据权利要求 1所述的离子迁移管信号提取电路, 其特征在于: 所述隔直通 交模块包括至少两个电容, 所述电容之间互相串联或并联, 所述信号引入端与所述电 容的正极或负极其中之一电连接, 所述信号引出端与所述电容的正极或负极其中另一 电连接。
3、根据权利要求 2所述的离子迁移管信号提取电路, 其特征在于:至少两个所述 电容互相串联, 每个所述电容的容值为 5nf ~20nf。
4、一种离子迁移探测器, 其特征在于, 包括:
离子迁移管;
如权利要求 1至 3 中任何一项所述的离子迁移管信号提取电路, 所述离子迁移 管信号提取电路内的所述信号弓 I入端与所述离子迁移管内的法拉第盘电连接;
脉动电压处理电路, 所述脉动电压处理电路与所述信号引出端电连接, 所述脉 动电压处理电路用于将所述信号弓 I出端输出的所述脉动电压进行放大和 /或模数转换。
5、 根据权利要求 4所述的离子迁移探测器, 其特征在于: 所述离子迁移管内还 设置有外屏蔽罩以及内屏蔽罩, 其中:
所述法拉第盘包括位置相反的第一侧以及第二侧, 所述第一侧用于接收离子; 所述外屏蔽罩罩设于所述法拉第盘外, 且所述外屏蔽罩内凹的部分与所述法拉 第盘的第二侧位置相对;
所述法拉第盘通过连接芯线与第一同轴电缆的内芯电连接;
所述内屏蔽罩位于所述外屏蔽罩内, 所述内屏蔽罩的内凹的部分与所述法拉第 盘的第二侧位置相对且罩设于所述连接芯线之外;
所述第一同轴电缆的内芯分别与所述信号引入端以及所述离子迁移管的第一电 源端并联电连接; 所述第一同轴电缆的第一外导体的两端分别与所述外屏蔽罩以及所述离子迁移 管的第二电源端电连接;
所述第一同轴电缆的第二外导体的两端分别与所述内屏蔽罩以及所述第一电源 端电连接。
6、 根据权利要求 5所述的离子迁移探测器, 其特征在于: 所述离子迁移管的第 一电源端与所述第一同轴电缆的内芯之间还串联有至少一个电阻;
和 /或, 所述离子迁移管的第一电源端与所述第一同轴电缆的内芯、 所述第一同 轴电缆的第二外导体之间还与至少一个滤波电容的其中一极电连接, 每个所述滤波电 容的其中另一极接地;
和 /或, 所述离子迁移管的第一电源端以及第二电源端分别通过两芯线缆的两条 芯线与不同的高压电源电连接, 所述两芯线缆的外皮屏蔽层接地。
7、 根据权利要求 6 所述的离子迁移探测器, 其特征在于: 所述电阻的阻值为 400ΜΩ〜600ΜΩ;
和 /或, 所述信号引出端与第二同轴电缆电连接, 且从所述信号引出端输出的所 述脉动电压从所述第二同轴电缆的内芯输出, 所述第二同轴电缆的外导体接地。
8、 根据权利要求 7所述的离子迁移探测器, 其特征在于: 所述第一同轴电缆以 及所述第二同轴电缆均为三同轴电缆, 所述第一外导体为三同轴电缆的外皮屏蔽层, 所述第二外导体为三同轴电缆的内皮信号层。
9、 根据权利要求 4所述的离子迁移探测器, 其特征在于: 所述离子迁移管信号 提取电路设置于电路板上, 且其与所述电路板均灌封于灌封胶内, 所述灌封胶之外还 覆盖有接地的金属屏蔽罩;
和 /或, 所述离子迁移探测器为具有正负离子迁移区的双模式离子迁移探测器。
10、 一种离子迁移管信号提取方法, 其特征在于: 包括以下步骤:
弓 I出离子迁移管内的法拉第盘上的电压;
去除由从所述法拉第盘上引出的电压中的直流电压, 将从所述法拉第盘上引出 的电压中的脉动电压输出。
PCT/CN2012/087863 2012-01-06 2012-12-28 离子迁移管信号提取电路、方法以及离子迁移探测器 WO2013102420A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1409642.4A GB2510543B (en) 2012-01-06 2012-12-28 Signal extraction circuits and methods for ion mobility tube, and ion mobility detectors
US13/983,334 US9429542B2 (en) 2012-01-06 2012-12-28 Signal extraction circuits and methods for ion mobility tube, and ion mobility detectors
DE112012001154.6T DE112012001154B4 (de) 2012-01-06 2012-12-28 Ionenmobilitätsdetektor mit Signalextraktionsschaltung für eine Ionenmobilitätsröhre
CA2858256A CA2858256C (en) 2012-01-06 2012-12-28 Signal extraction circuits and methods for ion mobility tube, and ion mobility detectors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210003936.0A CN102592938B (zh) 2012-01-06 2012-01-06 离子迁移管信号提取电路、方法以及离子迁移探测器
CN201210003936.0 2012-01-06

Publications (1)

Publication Number Publication Date
WO2013102420A1 true WO2013102420A1 (zh) 2013-07-11

Family

ID=46481423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087863 WO2013102420A1 (zh) 2012-01-06 2012-12-28 离子迁移管信号提取电路、方法以及离子迁移探测器

Country Status (6)

Country Link
US (1) US9429542B2 (zh)
CN (1) CN102592938B (zh)
CA (1) CA2858256C (zh)
DE (1) DE112012001154B4 (zh)
GB (1) GB2510543B (zh)
WO (1) WO2013102420A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345621A (zh) * 2019-07-23 2021-02-09 同方威视技术股份有限公司 痕量探测设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592938B (zh) * 2012-01-06 2016-03-30 同方威视技术股份有限公司 离子迁移管信号提取电路、方法以及离子迁移探测器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050109930A1 (en) * 2003-10-14 2005-05-26 Hill Herbert H.Jr. Ion mobility spectrometry method and apparatus
US7838823B1 (en) * 2008-12-16 2010-11-23 Sandia Corporation Ion mobility spectrometer with virtual aperture grid
CN101937823A (zh) * 2009-06-30 2011-01-05 同方威视技术股份有限公司 离子迁移谱仪的离子收集装置和离子迁移谱仪
CN102592938A (zh) * 2012-01-06 2012-07-18 同方威视技术股份有限公司 离子迁移管信号提取电路、方法以及离子迁移探测器
CN202487527U (zh) * 2012-01-06 2012-10-10 同方威视技术股份有限公司 离子迁移管信号提取电路以及离子迁移探测器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148077A (ja) * 1990-10-12 1992-05-21 Mitsubishi Electric Corp イオン電流検出装置
JP4095566B2 (ja) * 2003-09-05 2008-06-04 キヤノン株式会社 光学素子を評価する方法
US7728292B2 (en) * 2006-08-28 2010-06-01 Ionics Mass Spectrometry Group Inc. Method and apparatus for detecting positively charged and negatively charged ionized particles
CN100431057C (zh) * 2006-08-29 2008-11-05 中国科学院等离子体物理研究所 Tokmak放电低杂波功率模式控制方法
JP5323384B2 (ja) * 2008-04-14 2013-10-23 株式会社日立製作所 質量分析計および質量分析方法
CN101752176B (zh) * 2008-12-17 2012-02-08 中国科学院大连化学物理研究所 一种阵列式离子迁移管
JP5027832B2 (ja) * 2009-02-17 2012-09-19 株式会社日立製作所 放射線検出モジュール及び放射線撮像装置
US20120228490A1 (en) * 2011-03-13 2012-09-13 Excellims Corporation Apparatus and method for ion mobility spectrometry and sample introduction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050109930A1 (en) * 2003-10-14 2005-05-26 Hill Herbert H.Jr. Ion mobility spectrometry method and apparatus
US7838823B1 (en) * 2008-12-16 2010-11-23 Sandia Corporation Ion mobility spectrometer with virtual aperture grid
CN101937823A (zh) * 2009-06-30 2011-01-05 同方威视技术股份有限公司 离子迁移谱仪的离子收集装置和离子迁移谱仪
CN102592938A (zh) * 2012-01-06 2012-07-18 同方威视技术股份有限公司 离子迁移管信号提取电路、方法以及离子迁移探测器
CN202487527U (zh) * 2012-01-06 2012-10-10 同方威视技术股份有限公司 离子迁移管信号提取电路以及离子迁移探测器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345621A (zh) * 2019-07-23 2021-02-09 同方威视技术股份有限公司 痕量探测设备
US11346808B2 (en) 2019-07-23 2022-05-31 Nuctech Company Limited Trace detection device

Also Published As

Publication number Publication date
CA2858256C (en) 2017-10-10
CN102592938A (zh) 2012-07-18
DE112012001154B4 (de) 2019-06-19
CN102592938B (zh) 2016-03-30
GB2510543B (en) 2018-08-08
GB201409642D0 (en) 2014-07-16
CA2858256A1 (en) 2013-07-11
US20130313426A1 (en) 2013-11-28
US9429542B2 (en) 2016-08-30
GB2510543A (en) 2014-08-06
DE112012001154T5 (de) 2013-12-12

Similar Documents

Publication Publication Date Title
JPS6016163B2 (ja) ガス絶縁電気機器およびその部分放電検出方法
US10338102B2 (en) Voltage detection device for transforming apparatus
BR112016026330B1 (pt) Dispositivo de detecção de descarga parcial, e, método para adquirir sinais de descarga parcial
JP6060255B2 (ja) 集積化容量性トランスインピーダンス増幅器
CN104903744A (zh) 用于感测离子电流的设备
US8835841B2 (en) Mass spectrometer and mass spectrometry
WO2013102420A1 (zh) 离子迁移管信号提取电路、方法以及离子迁移探测器
US20180350556A1 (en) Detector supplement device for spectroscopy setup
CN104065347B (zh) 用于带电粒子检测的前置放大器
Albrecht et al. The Outer Tracker detector of the HERA-B experiment. Part II: Front-end electronics
Perić et al. Hybrid pixel detector based on capacitive chip to chip signal-transmission
SE427704B (sv) Stralningsdetektoranordning
CN108630516B (zh) 质谱仪器检测器
JP2007139479A (ja) 核医学診断装置および核医学診断方法
CN202487527U (zh) 离子迁移管信号提取电路以及离子迁移探测器
CN113261205A (zh) 电荷前置放大器设备和包括该设备的辐射检测装置
CN111077358A (zh) 一种用于微电流信号的检测装置
CN104833859A (zh) 一种平板试样空间电荷分布压力波法测量装置
KR101990471B1 (ko) 방사선 검출 노이즈 감소 장치
CN105910719B (zh) 一种应用于热释电探测器的测试电路
Wang Longevity studies and Phase 2 electronics upgrade for CMS Cathode Strip Chambers in preparation for HL-LHC
JP7127730B2 (ja) 電圧変成器
JPH04142489A (ja) 放射線検出装置
JPH03138575A (ja) 部分放電検出装置
CN114424436A (zh) 用于质谱仪离子检测器的超低噪声浮置高压电源

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13983334

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012001154

Country of ref document: DE

Ref document number: 1120120011546

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1409642

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20121228

WWE Wipo information: entry into national phase

Ref document number: 1409642.4

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 2858256

Country of ref document: CA

122 Ep: pct application non-entry in european phase

Ref document number: 12864593

Country of ref document: EP

Kind code of ref document: A1