WO2013102342A1 - Film bulk acoustic resonator, communication device and radio frequency module - Google Patents

Film bulk acoustic resonator, communication device and radio frequency module Download PDF

Info

Publication number
WO2013102342A1
WO2013102342A1 PCT/CN2012/078036 CN2012078036W WO2013102342A1 WO 2013102342 A1 WO2013102342 A1 WO 2013102342A1 CN 2012078036 W CN2012078036 W CN 2012078036W WO 2013102342 A1 WO2013102342 A1 WO 2013102342A1
Authority
WO
WIPO (PCT)
Prior art keywords
bulk acoustic
film bulk
fbar
air gap
acoustic resonator
Prior art date
Application number
PCT/CN2012/078036
Other languages
French (fr)
Chinese (zh)
Inventor
王建
张宗民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013102342A1 publication Critical patent/WO2013102342A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02149Means for compensation or elimination of undesirable effects of ageing changes of characteristics, e.g. electro-acousto-migration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/582Multiple crystal filters implemented with thin-film techniques
    • H03H9/586Means for mounting to a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/587Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers

Definitions

  • via holes may be disposed between the air gaps 15 formed on the substrate 11, and specifically, as shown in FIG. 2B, the barriers 151 between the adjacent air gaps 15 may be opened.
  • a via 152 such that the adjacent two air gaps 15 are turned on, so that during the FBAR fabrication process, the etching gas or liquid can be easily flowed between the air gaps in the etching process, wherein the via holes 152 can be in the middle of the barrier 151, and the width of the via can be 1/5-1/3 of the length of the barrier, avoiding excessive via size and affecting the performance of the FBAR.
  • the signal received from the antenna 40 can be processed by the duplexer 10 and the radio frequency receiving circuit 20, and then transmitted to the corresponding base station signal processor;
  • the signal sent by the base station signal processing unit can be transmitted from the antenna 40 after being processed by the radio frequency transmitting circuit 30 and the duplexer 10.
  • the resonator in the duplexer 10 described above can use the FBAR provided by the above embodiment of the present invention.
  • the duplexer 10 is composed of a transmit link 110, a receive link 120, an antenna terminal 130, and a quarter transmission line 140, wherein the transmit link 110 and the receive link 120 are both
  • the FBAR 140 provided by the embodiment of the invention is connected in series and in parallel.
  • each FBAR can be constructed as a T-type, Ji-type, r-type or network cross-type structure circuit as needed to achieve the required band pass or band stop characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Provided are a film bulk acoustic resonator (FBAR), communication device and radio frequency module, the FBAR comprising a substrate, and the substrate having a lower electrode layer, a piezoelectric film and an upper electrode layer sequentially disposed thereon; the substrate and the lower electrode layer are laminated with two or more air gaps therebetween. The FBAR provided in an embodiment of the present invention has higher power capacity, stable structure and smaller size, and is suitable for applications requiring high power capacity.

Description

薄膜体声波谐振器、 通信器件和射频模块  Film bulk acoustic resonator, communication device and RF module
技术领域 本发明实施例涉及谐振器技术, 尤其涉及一种薄膜体声波谐振器、 通 信器件和射频模块。 背景技术 TECHNICAL FIELD Embodiments of the present invention relate to resonator technology, and more particularly to a film bulk acoustic resonator, a communication device, and a radio frequency module. Background technique
随着无线通信技术的发展, 集成化和小型化已成为无线射频模块的发 展趋势, 射频模块前端电路中的滤波器的集成化、 小型化和高功率则变得 非常关键。 由于薄膜体声波谐振器( Film Bulk Acoustic Resonator, FBAR ) 具有体积小、 工作频率高以及便于集成等优点, 由薄膜体声波谐振器组成 的滤波器已广泛应用于无线通信装置技术领域中。  With the development of wireless communication technology, integration and miniaturization have become the development trend of wireless RF modules. The integration, miniaturization and high power of the filters in the front-end circuits of RF modules have become critical. Since the Film Bulk Acoustic Resonator (FBAR) has the advantages of small volume, high operating frequency and easy integration, filters composed of film bulk acoustic resonators have been widely used in the field of wireless communication devices.
图 1为现有空气隙结构 FBAR的结构示意图。 如图 1所示, 现有空气 隙结构 FBAR中, 在由上电极 101、 压电薄膜 102、 下电极 103组成的压 电三明治结构中, 该压电三明治结构设置在衬底 104上, 且在衬底 104上 形成有空气隙 105 , FBAR工作时, 可利用空气隙 105对 FBAR进行声波 隔离, 保证 FBAR的工作性能。 由于 FBAR是依靠压电三明治结构的上下 振动进行工作, 在 FBAR工作过程中, 会在空气隙的边缘处产生应力集中 (如图 1虚线所示位置) , 且随着 FBAR的工作的功率越大, 压电薄膜的 振动就越强,应力集中处产生的应力就会越大, 当产生的应力超过下电极、 压电薄膜和上电极的应力承受强度时, 就会导致 FBAR的压电三明治结构 塌陷或破裂, FBAR将无法正常工作。 此外, 现有技术中一般通过增加 FBAR结构中空气隙的面积来增加 FBAR的功率容量 , 但 FBAR中空气隙 面积增大到一定程度后, FBAR结构将变得更加不稳定, FBAR的功率容 量反而不会增加, 还会出现应力下降的趋势。  Figure 1 is a schematic view showing the structure of a conventional air gap structure FBAR. As shown in FIG. 1, in the existing air gap structure FBAR, in the piezoelectric sandwich structure composed of the upper electrode 101, the piezoelectric film 102, and the lower electrode 103, the piezoelectric sandwich structure is disposed on the substrate 104, and An air gap 105 is formed on the substrate 104. When the FBAR is in operation, the FBAR can be acoustically isolated by the air gap 105 to ensure the performance of the FBAR. Since FBAR relies on the up and down vibration of the piezoelectric sandwich structure, during the FBAR operation, stress concentration occurs at the edge of the air gap (as shown by the dotted line in Figure 1), and the power is increased with the operation of the FBAR. The stronger the vibration of the piezoelectric film, the greater the stress generated at the stress concentration. When the stress generated exceeds the stress-bearing strength of the lower electrode, the piezoelectric film and the upper electrode, the piezoelectric sandwich structure of the FBAR is caused. If collapsed or broken, FBAR will not work properly. In addition, in the prior art, the power capacity of the FBAR is generally increased by increasing the area of the air gap in the FBAR structure, but after the air gap area in the FBAR is increased to a certain extent, the FBAR structure will become more unstable, and the power capacity of the FBAR instead There will be no increase, and there will be a tendency for stress to drop.
综上, 现有空气隙结构 FBAR中, 由于空气隙边缘应力集中问题, 导 致 FBAR的功率容量受限, FBAR功率容量较低; 而单纯通过增加 FBAR 结构中的空气隙的面积, 在空气隙面积达到一定程度后, FBAR结构将变 得更加不稳定, FBAR的功率容量反而不会增加, 相反还会出现功率容量 下降的问题。 发明内容 本发明实施例提供一种薄膜体声波谐振器、 通信器件和射频模块, 可 有效克服现有 FBAR结构中存在的空气隙应力过大而导致功率容量较低的 问题,可在提高薄膜体声波谐振器功率容量的基础上,减少应力集中问题。 In summary, in the existing air gap structure FBAR, due to the stress concentration problem at the air gap edge, the power capacity of the FBAR is limited, and the FBAR power capacity is low; and simply by increasing the area of the air gap in the FBAR structure, the air gap area After reaching a certain level, the FBAR structure will become more unstable, and the power capacity of the FBAR will not increase, but the power capacity will decrease. SUMMARY OF THE INVENTION Embodiments of the present invention provide a film bulk acoustic resonator, a communication device, and a radio frequency module, which can effectively overcome the problem that the air gap stress existing in the existing FBAR structure is too large, resulting in a low power capacity, and can improve the film body. Based on the power capacity of the acoustic resonator, the stress concentration problem is reduced.
本发明实施例提供一种薄膜体声波谐振器, 包括: 衬底, 所述衬底上 依次层叠设置有下电极层、 压电薄膜和上电极层;  An embodiment of the present invention provides a film bulk acoustic resonator, comprising: a substrate on which a lower electrode layer, a piezoelectric film, and an upper electrode layer are sequentially stacked;
所述衬底与下电极层之间设置有 2个或 2个以上的空气隙。  Two or more air gaps are provided between the substrate and the lower electrode layer.
本发明实施例提供一种通信器件, 包括上述本发明实施例提供的薄膜 体声波谐振器。  The embodiment of the invention provides a communication device, which comprises the film bulk acoustic resonator provided by the embodiment of the invention.
本发明实施例提供一种射频模块, 包括双工器或多工器, 所述双工器 或多工器中的谐振器为釆用上述本发明实施例提供的薄膜体声波谐振器 本实施例提供的薄膜体声波谐振器、 通信器件和射频模块, 薄膜体声 波谐振器具有多个空气隙结构, 且各空气隙共用相同的上电极层、 压电薄 膜和下电极层, 这样, 薄膜体声波谐振器工作时, 压电薄膜产生的振动就 会分散到各空气隙结构上, 使得每个空气隙结构边缘处产生的应力均较 小, 可有效提高整个薄膜体声波谐振器结构的稳定性和可靠性; 同时, 由 于各空气隙共用上电极层、 压电薄膜下电极层, 薄膜体声波谐振器的功率 就是各空气隙对应的压电薄膜区域产生的功率之和, 使得薄膜体声波谐振 器整体可具有较高的功率容量, 满足大功率需求的薄膜体声波谐振器应用 中; 此外, 相对于传统具有相同功率容量的功率电路, 本实施例提供的薄 膜体声波谐振器具有更小的体积和结构稳定性。 附图说明  The embodiment of the present invention provides a radio frequency module, including a duplexer or a multiplexer, wherein the resonator in the duplexer or the multiplexer is the film bulk acoustic resonator provided by the embodiment of the present invention. Provided by a film bulk acoustic resonator, a communication device and a radio frequency module, the film bulk acoustic resonator has a plurality of air gap structures, and each air gap shares the same upper electrode layer, piezoelectric film and lower electrode layer, thus, the film body acoustic wave When the resonator is working, the vibration generated by the piezoelectric film is dispersed on the air gap structure, so that the stress generated at the edge of each air gap structure is small, which can effectively improve the stability of the entire acoustic bulk acoustic resonator structure. Reliability; At the same time, since each air gap shares the upper electrode layer and the piezoelectric film lower electrode layer, the power of the film bulk acoustic resonator is the sum of the powers generated by the piezoelectric film regions corresponding to the air gaps, so that the film bulk acoustic resonator The whole body can have a higher power capacity, and it can meet the high power demand of the film bulk acoustic wave resonator application; The power circuit has the same power capacity, the present embodiment provides a thin film bulk acoustic resonator having a smaller volume and structural stability. DRAWINGS
实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。 The drawings used in the embodiments or the description of the prior art are briefly described. It is obvious that the drawings in the following description are some embodiments of the present invention, and are not creative to those skilled in the art. Other drawings can also be obtained from these drawings on the premise of labor.
图 1为现有空气隙结构 FBAR的结构示意图; 图 2A为本发明实施例一提供的薄膜体声波谐振器结构示意图; 图 2B为图 2A中 A-A向所示的空气隙的结构示意图; 1 is a schematic structural view of a conventional air gap structure FBAR; 2A is a schematic structural view of a film bulk acoustic resonator according to Embodiment 1 of the present invention; FIG. 2B is a schematic structural view of an air gap shown by AA in FIG. 2A;
图 3为本发明实施例二提供的薄膜体声波谐振器中空气隙的结构示意
Figure imgf000004_0001
图 4为本发明实施例三提供的薄膜体声波谐振器的结构示意图;
FIG. 3 is a schematic structural diagram of an air gap in a film bulk acoustic resonator according to Embodiment 2 of the present invention; FIG.
Figure imgf000004_0001
4 is a schematic structural view of a film bulk acoustic wave resonator according to Embodiment 3 of the present invention;
图 5 A为本发明实施例四提供的射频模块的结构示意图;  5A is a schematic structural diagram of a radio frequency module according to Embodiment 4 of the present invention;
图 5B为图 5A中双工器的结构示意图。 具体实施方式 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合本发明实 施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显 然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动的前提下 所获得的所有其他实施例, 都属于本发明保护的范围。  Figure 5B is a schematic view showing the structure of the duplexer of Figure 5A. The technical solutions in the embodiments of the present invention will be clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. Examples are some embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
图 2A为本发明实施例一提供的薄膜体声波谐振器结构示意图; 图 2B 为图 2A中 A-A向所示的空气隙的结构示意图。 如图 2A所示, 本实施例 FBAR包括衬底 11 , 该衬底 11上依次层叠设置有下电极层 12、 压电薄膜 13和上电极层 14; 在衬底 11与下电极层 12之间还设置有 2个或 2个以 上的空气隙 15。本实施例提供的 FBAR结构中, 多个空气隙共用上电极层 和下电极层, FBAR工作时, 压电薄膜分别在各空气隙处产生振动, 从而 可将压电薄膜振动产生的应力分散到各空气隙的边缘处, 使得每个空气隙 边缘处产生的应力将会非常小,从而可有效提高整个 FBAR结构的稳定性; 同时,多个空气隙共用电极层,空气隙整体面积可以做的更大,使得 FBAR 可工作于更高功率环境下, 可有效提高 FBAR的功率容量。  2A is a schematic structural view of a film bulk acoustic resonator according to Embodiment 1 of the present invention; and FIG. 2B is a schematic structural view of an air gap shown by A-A in FIG. 2A. As shown in FIG. 2A, the FBAR of the present embodiment includes a substrate 11 on which a lower electrode layer 12, a piezoelectric film 13 and an upper electrode layer 14 are sequentially laminated; between the substrate 11 and the lower electrode layer 12 Two or more air gaps 15 are also provided. In the FBAR structure provided by the embodiment, the plurality of air gaps share the upper electrode layer and the lower electrode layer. When the FBAR is in operation, the piezoelectric film generates vibrations at the respective air gaps, thereby dispersing the stress generated by the vibration of the piezoelectric film to At the edge of each air gap, the stress generated at the edge of each air gap will be very small, which can effectively improve the stability of the entire FBAR structure; at the same time, multiple air gaps share the electrode layer, and the overall area of the air gap can be made. Larger, allowing FBAR to operate in higher power environments, effectively increasing the power capacity of FBAR.
本实施例中,如图 2A和图 2B所示,衬底 11上可设置有多个壁障 151 , 从而可通过该多个壁障 151围合形成各空气隙 15。 实际应用中, 可根据需 要,设置合适宽度的壁障,例如可将壁障宽度设置为压电薄膜厚度的 1/3-2 倍之间, 以便形成的 FABR工作时, 在空气隙的边缘处, 可具有更好地应 力承受能力, 增加 FBAR结构的稳定性和可靠性。  In the present embodiment, as shown in Figs. 2A and 2B, a plurality of barriers 151 may be disposed on the substrate 11, so that the air gaps 15 may be formed by the plurality of barriers 151. In practical applications, a barrier of a suitable width can be provided as needed, for example, the barrier width can be set to be between 1/3 and 2 times the thickness of the piezoelectric film, so that the formed FABR is operated at the edge of the air gap. It can have better stress tolerance and increase the stability and reliability of the FBAR structure.
本实施例中, 如图 2A所示, 在下电极层 12与各空气隙 15之间还设 置有支撑层 16, 以便通过该支撑层 16提高整个 FBAR结构的稳定性, 增 加空气隙 15边缘处的机械强度,提高各空气隙 15边缘处的应力承受能力。 In this embodiment, as shown in FIG. 2A, a lower electrode layer 12 and each air gap 15 are further disposed. A support layer 16 is provided to enhance the stability of the entire FBAR structure by the support layer 16, increase the mechanical strength at the edges of the air gap 15, and improve the stress tolerance at the edges of the air gaps 15.
本实施例中, 形成在衬底 11上的空气隙 15可为方形结构, 例如可以 为正方形、 长方形结构。 具体地, 如图 2B所示, 本实施例中的各空气隙 15为长方形结构, 且该长方形结构的宽长比可以为 1 : 1-1 : 1.5之间。  In this embodiment, the air gap 15 formed on the substrate 11 may have a square structure, for example, a square or rectangular structure. Specifically, as shown in FIG. 2B, each air gap 15 in this embodiment has a rectangular structure, and the width to length ratio of the rectangular structure may be between 1:1-1:1.5.
本实施例中, 形成在衬底 11上的各空气隙 15之间还可设置有过孔, 具体地, 如图 2B所示, 在相邻的空气隙 15之间的壁障 151上可开设有过 孔 152,使得相邻的两个空气隙 15之间导通,这样,在 FBAR制作过程中, 可便于刻蚀工艺中刻蚀气体或液体在各空气隙之间流动, 其中, 过孔 152 可为所在壁障 151的中间位置, 且过孔的宽度可为壁障长度的 1/5-1/3 , 避 免过孔尺寸过大而影响 FBAR工作性能。  In this embodiment, via holes may be disposed between the air gaps 15 formed on the substrate 11, and specifically, as shown in FIG. 2B, the barriers 151 between the adjacent air gaps 15 may be opened. There is a via 152, such that the adjacent two air gaps 15 are turned on, so that during the FBAR fabrication process, the etching gas or liquid can be easily flowed between the air gaps in the etching process, wherein the via holes 152 can be in the middle of the barrier 151, and the width of the via can be 1/5-1/3 of the length of the barrier, avoiding excessive via size and affecting the performance of the FBAR.
本领域技术人员可以理解,上述的在衬底 11上层叠设置下电极层 12、 压电薄膜 13和上电极层 14,是指在衬底 11的表面并沿垂直该表面的方向 上, 依次设置下电极层 12、 压电薄膜 13和上电极层 14。  It will be understood by those skilled in the art that the above-described arrangement of the lower electrode layer 12, the piezoelectric film 13 and the upper electrode layer 14 on the substrate 11 means that the surface of the substrate 11 is arranged in the direction perpendicular to the surface. The lower electrode layer 12, the piezoelectric film 13, and the upper electrode layer 14.
本领域技术人员可以理解, 本实施例提供的 FBAR在电路功能上, 可 相当于多个传统 FBAR并联,因此本实施例 FBAR可具有传统 FBAR成本 的功率容量, 使得 FBAR容量得到大幅度提高; 同时, 本实施例提供的 FBAR结构中, 多个空气隙共用上电极层、 压电薄膜和下电极层, 使得 FBAR结构稳定, 相对多个传统 FBAR的功率电路而言, 在达到相同功率 容量的基础上, 可具有更小的体积, 使得使用本实施例 FBAR的通信器件 可具有更小的体积和更高的功率容量。  Those skilled in the art can understand that the FBAR provided in this embodiment can be equivalent to a plurality of conventional FBARs in parallel in circuit function. Therefore, the FBAR of the present embodiment can have the power capacity of the traditional FBAR cost, so that the FBAR capacity is greatly improved; In the FBAR structure provided by the embodiment, the plurality of air gaps share the upper electrode layer, the piezoelectric film and the lower electrode layer, so that the FBAR structure is stable, and the power capacity of the plurality of conventional FBARs is achieved. In this case, it is possible to have a smaller volume, so that the communication device using the FBAR of the present embodiment can have a smaller volume and a higher power capacity.
本实施例提供的薄膜体声波谐振器, 具有多个空气隙结构, 各空气隙 共用相同的上电极层、 压电薄膜和下电极层, 这样, FBAR工作时, 压电 薄膜产生的振动就会分散到各空气隙结构上, 使得每个空气隙结构边缘处 产生的应力均较小,可有效提高整个 FBAR结构的稳定性和可靠性;同时, 由于各空气隙共用上电极层、 压电薄膜下电极层, FBAR的功率就是各空 气隙对应的压电薄膜区域产生的功率之和,使得 FBAR整体可具有较高的 功率容量, 满足大功率需求的 FBAR应用中。  The film bulk acoustic resonator provided in this embodiment has a plurality of air gap structures, and each air gap shares the same upper electrode layer, piezoelectric film and lower electrode layer, so that when the FBAR is operated, the vibration generated by the piezoelectric film is Disperse into each air gap structure, so that the stress generated at the edge of each air gap structure is small, which can effectively improve the stability and reliability of the entire FBAR structure; at the same time, the upper electrode layer and the piezoelectric film are shared by the air gaps. In the lower electrode layer, the power of the FBAR is the sum of the power generated by the piezoelectric film regions corresponding to the air gaps, so that the FBAR as a whole can have a higher power capacity and meet the high power requirement of the FBAR application.
图 3为本发明实施例二提供的薄膜体声波谐振器中空气隙的结构示意 图。 与上述图 2A和图 2B所示实施例技术方案不同的是, 本实施例中形 成在衬底上的空气隙可以为多边形结构, 例如可以为五边形、 六边形, 或 者, 也可为正多边形结构, 具体地, 如图 3所示, 本实施例中空气隙 15 为六边形结构。 3 is a schematic structural view of an air gap in a film bulk acoustic wave resonator according to Embodiment 2 of the present invention. Different from the technical solutions of the embodiment shown in FIG. 2A and FIG. 2B above, the shape of this embodiment is The air gap formed on the substrate may be a polygonal structure, for example, a pentagonal shape, a hexagonal shape, or a regular polygonal structure. Specifically, as shown in FIG. 3, the air gap 15 in this embodiment is Hexagonal structure.
图 4为本发明实施例三提供的薄膜体声波谐振器的结构示意图。 与上 述图 2A所示实施例技术方案不同的是, 本实施例中空气隙可为设置在衬 底上的凹槽结构, 具体地, 如图 4所示, 衬底 11上开设有 2个或 2个以 上的凹槽结构, 该凹槽结构形成空气隙 15。  4 is a schematic structural view of a film bulk acoustic wave resonator according to Embodiment 3 of the present invention. Different from the technical solution of the embodiment shown in FIG. 2A, the air gap in this embodiment may be a groove structure disposed on the substrate. Specifically, as shown in FIG. 4, two substrates are opened on the substrate 11 or More than two groove structures that form an air gap 15.
通过在衬底上设置凹槽的方式来形成所需的空气隙, 可有效提高  By forming a groove on the substrate to form a desired air gap, it can effectively improve
FBAR制作的便利性, 降低制作成本。 The convenience of FBAR production reduces production costs.
本领域技术人员可以理解, 本发明上述各实施例中, 空气隙的结构除 了可以是所说的方形、 多边形等规则结构外, 实际应用中, 也可根据需要 将空气隙设置成为其他不规则的形状, 或者多种形状结合的结构, 对此本 发明实施例并不做限制,  It can be understood by those skilled in the art that in the above embodiments of the present invention, the structure of the air gap can be other irregular structures, such as square, polygonal, etc., in practical applications, the air gap can also be set to other irregularities as needed. A shape, or a combination of a plurality of shapes, is not limited in this embodiment of the present invention.
本发明实施例还提供一种通信器件, 该通信器件可包括上述本发明实 施例提供的 FBAR, 具体地, 该通信器件可以为滤波器、 双工器或振荡器, 可由上述本发明提供的 FBAR通过串联、 并联连接组成, 或者通过串联和 并联结合方式连接而成。 由于组成该通信器件的 FBAR具有更高的功率容 量, 相应的可减少通信器件中谐振器的使用数量, 提高通信器件的功率容 量; 同时, 本实施例通信器件中, FBAR可相当于传统器件中多个并联的 FBAR, 在具有传统多个并联的 FBAR功率容量的基础上, 还可减少整个 通信器件的体积。  The embodiment of the present invention further provides a communication device, which may include the FBAR provided by the embodiment of the present invention. Specifically, the communication device may be a filter, a duplexer or an oscillator, and the FBAR provided by the above invention may be used. It is connected by series connection, parallel connection, or by series connection and parallel connection. Since the FBAR constituting the communication device has a higher power capacity, the number of resonators in the communication device can be reduced correspondingly, and the power capacity of the communication device can be improved. Meanwhile, in the communication device of the embodiment, the FBAR can be equivalent to the conventional device. A plurality of parallel FBARs can reduce the volume of the entire communication device on the basis of having a plurality of conventional parallel FBAR power capacities.
本发明实施例中还提供一种射频模块, 该射频模块包括双工器或多工 器,且双工器或多工器中的谐振器为釆用上述本发明实施例提供的 FB AR。 下面将以无线通信基站中射频模块为例, 对本发明实施例技术方案进行说 明。  In the embodiment of the present invention, a radio frequency module is further provided, and the radio frequency module includes a duplexer or a multiplexer, and the resonator in the duplexer or the multiplexer is the FB AR provided by the embodiment of the present invention. The technical solution of the embodiment of the present invention will be described below by taking a radio frequency module in a radio communication base station as an example.
图 5A为本发明实施例四提供的射频模块的结构示意图; 图 5B为图 5A中双工器的结构示意图。 本实施例射频模块可应用于第三代移动通信 技术 ( 3rd-generation, 3G ) 和长期演进 (Long Term Evolution, LTE)等的 无线基站中, 可满足无线基站的高功率需求, 同时可具有更小的体积, 具 体地, 如图 5A所示, 本实施例射频模块可包括双工器 10, 该双工器 10 分别连接有射频接收电路 20、 射频发射电路 30和天线 40, 接收信号时, 从天线 40接收到的信号可经过双工器 10和射频接收电路 20处理后, 传 输至相应的基站信号处理器;发射信号时,基站信号处理单元发出的信号, 可经过射频发射电路 30和双工器 10处理后, 从天线 40发射出去。 5A is a schematic structural diagram of a radio frequency module according to Embodiment 4 of the present invention; and FIG. 5B is a schematic structural diagram of the duplexer of FIG. 5A. The radio frequency module in this embodiment can be applied to a wireless base station of a third generation mobile communication technology (3rd-generation, 3G) and a long term evolution (LTE), and can meet the high power requirement of the wireless base station, and can have more The small volume, specifically, as shown in FIG. 5A, the radio frequency module of this embodiment may include a duplexer 10, and the duplexer 10 The radio frequency receiving circuit 20, the radio frequency transmitting circuit 30 and the antenna 40 are respectively connected. When receiving the signal, the signal received from the antenna 40 can be processed by the duplexer 10 and the radio frequency receiving circuit 20, and then transmitted to the corresponding base station signal processor; When the signal is transmitted, the signal sent by the base station signal processing unit can be transmitted from the antenna 40 after being processed by the radio frequency transmitting circuit 30 and the duplexer 10.
本实施例中, 如图 5A所示, 上述的射频接收电路 20可包括依次电连 接的接收端衰减器 201、 信号抑制滤波器 202和低噪声放大器 203 , 该低 噪声放大器 203与双工器 10连接, 接收端衰减器 201与基站中的信号处 理器连接; 射频发射电路 30可包括依次电连接的发射端衰减器 301、 第一 功率放大器 302和第二功率放大器 303 , 第二功率放大器 303与双工器 10 连接, 发射端衰减器 301与基站中的信号处理器连接。 本实施例中射频接 收电路和射频发射电路可具有与传统基站中射频模块相同或类似的结构, 本发明实施例并不做限制。  In this embodiment, as shown in FIG. 5A, the radio frequency receiving circuit 20 may include a receiving end attenuator 201, a signal suppressing filter 202, and a low noise amplifier 203, which are sequentially electrically connected, and the low noise amplifier 203 and the duplexer 10 The receiving end attenuator 201 is connected to the signal processor in the base station; the radio frequency transmitting circuit 30 may include a transmitting end attenuator 301, a first power amplifier 302 and a second power amplifier 303, which are sequentially electrically connected, and the second power amplifier 303 and The duplexer 10 is connected, and the transmitter attenuator 301 is connected to a signal processor in the base station. The radio frequency receiving circuit and the radio frequency transmitting circuit in this embodiment may have the same or similar structure as the radio frequency module in the conventional base station, and the embodiment of the present invention is not limited.
本实施例中, 上述的双工器 10中的谐振器可釆用上述本发明实施例 提供的 FBAR。 如图 5B所示, 双工器 10由发射链路 110、 接收链路 120、 天线端子 130和四分之一传输线 140组成, 其中, 发射链路 110和接收链 路 120中的均由上述本发明实施例提供的 FBAR 140串联和并联连接而 成。 实际应用中, 可根据需要将各 FBAR构成 T型、 Ji型、 r型或网络交 叉型结构电路,以实现所需的带通或带阻特性。本领域技术人员可以理解, 本实施例中的双工器可釆用传统电路结构形式, 只是其中的谐振器釆用上 述本发明实施例提供的 FBAR; 此外, 上述的 FBAR可相当于传统多个 FBAR并联而成, 因此根据需要可将本实施例提供的 FBAR代替传统电路 中并联的多个 FBAR, 并可具有相同的功率, 且体积更小。  In this embodiment, the resonator in the duplexer 10 described above can use the FBAR provided by the above embodiment of the present invention. As shown in FIG. 5B, the duplexer 10 is composed of a transmit link 110, a receive link 120, an antenna terminal 130, and a quarter transmission line 140, wherein the transmit link 110 and the receive link 120 are both The FBAR 140 provided by the embodiment of the invention is connected in series and in parallel. In practical applications, each FBAR can be constructed as a T-type, Ji-type, r-type or network cross-type structure circuit as needed to achieve the required band pass or band stop characteristics. It can be understood by those skilled in the art that the duplexer in this embodiment can be in the form of a conventional circuit structure, except that the resonator therein uses the FBAR provided by the above embodiment of the present invention; The FBARs are formed in parallel, so that the FBARs provided in this embodiment can replace the plurality of FBARs connected in parallel in the conventional circuit as needed, and can have the same power and be smaller in size.
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。  It should be noted that the above embodiments are merely illustrative of the technical solutions of the present invention, and are not intended to be limiting; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art The technical solutions described in the foregoing embodiments may be modified, or some or all of the technical features may be equivalently replaced; and the modifications or substitutions do not deviate from the technical solutions of the embodiments of the present invention. range.

Claims

权 利 要 求 书  Claims
I、 一种薄膜体声波谐振器, 其特征在于, 包括: 衬底, 所述衬底上 依次层叠设置有下电极层、 压电薄膜和上电极层; I. A film bulk acoustic wave resonator, comprising: a substrate on which a lower electrode layer, a piezoelectric film and an upper electrode layer are sequentially stacked;
所述衬底与下电极层之间设置有 2个或 2个以上的空气隙。  Two or more air gaps are provided between the substrate and the lower electrode layer.
2、 根据权利要求 1所述的薄膜体声波谐振器, 其特征在于, 所述衬 底与下电极层之间设置有多个壁障, 所述多个壁障围合形成所述各空气 隙。  2. The film bulk acoustic resonator according to claim 1, wherein a plurality of barriers are disposed between the substrate and the lower electrode layer, and the plurality of barriers are enclosed to form the air gaps. .
3、 根据权利要求 1所述的薄膜体声波谐振器, 其特征在于, 所述衬 底上开设有 2个或 2个以上的凹槽结构,所述凹槽结构形成的所述空气隙。  The film bulk acoustic resonator according to claim 1, wherein the substrate is provided with two or more groove structures, and the groove structure forms the air gap.
4、 根据权利要求 2或 3所述的薄膜体声波谐振器, 其特征在于, 各 空气隙之间设置有过孔。  The film bulk acoustic resonator according to claim 2 or 3, wherein a through hole is provided between the air gaps.
5、 根据权利要求 1、 2或 3所述的薄膜体声波谐振器, 其特征在于, 所述空气隙为多边形结构。  The film bulk acoustic resonator according to claim 1, 2 or 3, wherein the air gap has a polygonal structure.
6、 根据权利要求 5所述的薄膜体声波谐振器, 其特征在于, 所述空 气隙为正多边形结构。  The film bulk acoustic resonator according to claim 5, wherein the air gap has a regular polygonal structure.
7、 根据权利要求 1、 2或 3所述的薄膜体声波谐振器, 其特征在于, 所述空气隙为方形结构。  The film bulk acoustic resonator according to claim 1, 2 or 3, wherein the air gap has a square structure.
8、 根据权利要求 7所述的薄膜体声波谐振器, 其特征在于, 所述空 气隙为宽长比为 1 : 1〜1 :5的长方形结构。  The film bulk acoustic resonator according to claim 7, wherein the air gap is a rectangular structure having a width to length ratio of 1:1 to 1:5.
9、 根据权利要求 1、 2或 3所述的薄膜体声波谐振器, 其特征在于, 所述下电极层与各空气隙之间还设置有支撑层。  The film bulk acoustic resonator according to claim 1, 2 or 3, wherein a support layer is further disposed between the lower electrode layer and each air gap.
10、 一种通信器件, 其特征在于, 包括上述权利要求 1 ~ 9任一所述 的薄膜体声波谐振器。  A communication device comprising the film bulk acoustic resonator according to any one of claims 1 to 9.
I I、 根据权利要求 10所述的通信器件, 其特征在于, 所述通信器件 为滤波器、 双工器或振荡器。  I I. The communication device according to claim 10, wherein the communication device is a filter, a duplexer or an oscillator.
12、 一种射频模块, 包括双工器或多工器, 其特征在于, 所述双工器 或多工器中的谐振器为釆用上述权利要求 1-9任一所述的薄膜体声波谐振 器。  12. A radio frequency module, comprising a duplexer or a multiplexer, wherein the resonator in the duplexer or multiplexer is a film bulk acoustic wave according to any one of claims 1-9. Resonator.
PCT/CN2012/078036 2012-01-04 2012-07-02 Film bulk acoustic resonator, communication device and radio frequency module WO2013102342A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210000816.5A CN102545827B (en) 2012-01-04 2012-01-04 Thin film bulk acoustic resonator, communication device and radio-frequency module
CN201210000816.5 2012-01-04

Publications (1)

Publication Number Publication Date
WO2013102342A1 true WO2013102342A1 (en) 2013-07-11

Family

ID=46351912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078036 WO2013102342A1 (en) 2012-01-04 2012-07-02 Film bulk acoustic resonator, communication device and radio frequency module

Country Status (2)

Country Link
CN (1) CN102545827B (en)
WO (1) WO2013102342A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236332A1 (en) * 2022-06-07 2023-12-14 Huawei Technologies Co., Ltd. Plate mode resonator device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571027A (en) * 2012-02-27 2012-07-11 浙江瑞能通信科技有限公司 Film bulk acoustic resonator structure based on all metal Bragg reflection layer
CN103532516B (en) * 2013-08-05 2017-10-24 天津大学 Body wave resonator and its manufacture method
KR101942734B1 (en) * 2017-05-18 2019-01-28 삼성전기 주식회사 Bulk-acoustic wave resonator
CN107071672B (en) * 2017-05-22 2020-08-21 潍坊歌尔微电子有限公司 Piezoelectric microphone
CN107332561B (en) * 2017-07-18 2021-02-26 上海示方科技有限公司 Signal inquiry device and hydrogen atom frequency standard
CN108649920B (en) * 2017-12-29 2021-12-03 苏州汉天下电子有限公司 Piezoelectric acoustic resonator, piezoelectric acoustic wave filter, duplexer, and radio frequency communication module
CN109302158B (en) * 2018-08-01 2021-07-16 广州市艾佛光通科技有限公司 Film bulk acoustic resonator and preparation method thereof
WO2020163973A1 (en) * 2019-02-15 2020-08-20 天津大学 Air-gap type piezoelectric bulk acoustic wave device heterogeneous integration method, and device thereof
CN110166013B (en) * 2019-06-20 2024-05-14 杭州左蓝微电子技术有限公司 Acoustic wave device, preparation method thereof and temperature control method
CN110971209B (en) * 2019-11-04 2023-10-20 天津大学 Method for improving power capacity of bulk acoustic wave filter and filter element
CN112039489B (en) * 2020-01-22 2022-08-05 中芯集成电路(宁波)有限公司 Thin film piezoelectric acoustic wave filter and manufacturing method thereof
CN112039491B (en) * 2020-03-31 2022-08-05 中芯集成电路(宁波)有限公司 Thin film piezoelectric acoustic wave filter and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615605A (en) * 2008-06-23 2009-12-30 恩益禧电子股份有限公司 Semiconductor integrated circuit
CN101764592A (en) * 2009-12-22 2010-06-30 浙江大学 High power capacity FBAR for wireless communication and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298392A (en) * 2002-03-29 2003-10-17 Fujitsu Media Device Kk Filter chip and filter device
ATE515108T1 (en) * 2003-09-12 2011-07-15 Panasonic Corp TUNABLE THIN FILM VOLUME WAVE RESONATOR, PRODUCTION METHOD THEREOF, FILTER, MULTI-LAYER COMPOSITE ELECTRONIC COMPONENT AND COMMUNICATION DEVICE
JP4024741B2 (en) * 2003-10-20 2007-12-19 富士通メディアデバイス株式会社 Piezoelectric thin film resonator and filter
JP4223428B2 (en) * 2004-03-31 2009-02-12 富士通メディアデバイス株式会社 Filter and manufacturing method thereof
JP4586404B2 (en) * 2004-04-28 2010-11-24 ソニー株式会社 Filter device and transceiver
JP4629492B2 (en) * 2005-05-10 2011-02-09 太陽誘電株式会社 Piezoelectric thin film resonator and filter
JP2007221588A (en) * 2006-02-17 2007-08-30 Toshiba Corp Thin film piezoelectric resonator, and method of manufacturing same
JP5191762B2 (en) * 2008-03-06 2013-05-08 太陽誘電株式会社 Piezoelectric thin film resonator, filter, and communication device
JP4944145B2 (en) * 2009-03-19 2012-05-30 太陽誘電株式会社 Piezoelectric thin film resonator, filter, communication module, communication device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615605A (en) * 2008-06-23 2009-12-30 恩益禧电子股份有限公司 Semiconductor integrated circuit
CN101764592A (en) * 2009-12-22 2010-06-30 浙江大学 High power capacity FBAR for wireless communication and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236332A1 (en) * 2022-06-07 2023-12-14 Huawei Technologies Co., Ltd. Plate mode resonator device

Also Published As

Publication number Publication date
CN102545827A (en) 2012-07-04
CN102545827B (en) 2015-09-09

Similar Documents

Publication Publication Date Title
WO2013102342A1 (en) Film bulk acoustic resonator, communication device and radio frequency module
CN108649920B (en) Piezoelectric acoustic resonator, piezoelectric acoustic wave filter, duplexer, and radio frequency communication module
EP2930845B1 (en) Low-insertion-loss piezoelectric acoustic wave band-pass filter and realization method thereof
US8902020B2 (en) Resonator filter with multiple cross-couplings
CN104253592B (en) Duplexer
JP2020053966A (en) Multilayer bulge frame in bulk elastic wave device
US20120313725A1 (en) Filter, duplexer, communication module and communication device
WO2014061448A1 (en) High frequency module
WO2021088477A1 (en) Duplexer and electronic device
JP4836748B2 (en) Bulk acoustic wave resonator, filter device, and communication device
CN102571027A (en) Film bulk acoustic resonator structure based on all metal Bragg reflection layer
US8471651B2 (en) Microelectromechanical filter
CN111010127A (en) Film bulk acoustic resonator and preparation method thereof
CN210405249U (en) Filtering device
US8957745B2 (en) Superlattice crystal resonator and its usage as superlattice crystal filter
WO2019174096A1 (en) Surface acoustic wave filter
CN113659953B (en) Bulk acoustic wave resonator assembly, manufacturing method and communication device
CN212543742U (en) Glass substrate-based hybrid filter structure
CN212627826U (en) Filter and radio frequency communication device
WO2023123465A1 (en) Filter, radio frequency system, and electronic device
EP4222859A1 (en) Cascaded surface acoustic wave devices with apodized interdigital transducers
US20220416765A1 (en) Bulk acoustic wave resonance device and bulk acoustic wave filter
TW202137624A (en) Filter
JP2005160056A (en) Piezoelectric device, antenna duplexer and method of manufacturing piezoelectric resonators used therefor
US20230067985A1 (en) Acoustic wave resonator and device for wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864262

Country of ref document: EP

Kind code of ref document: A1