WO2013100675A1 - 유기 전계 발광 소자 및 그 제조 방법 - Google Patents
유기 전계 발광 소자 및 그 제조 방법 Download PDFInfo
- Publication number
- WO2013100675A1 WO2013100675A1 PCT/KR2012/011661 KR2012011661W WO2013100675A1 WO 2013100675 A1 WO2013100675 A1 WO 2013100675A1 KR 2012011661 W KR2012011661 W KR 2012011661W WO 2013100675 A1 WO2013100675 A1 WO 2013100675A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- thin film
- film layer
- light emitting
- organic
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 24
- 239000010410 layer Substances 0.000 claims abstract description 141
- 239000000758 substrate Substances 0.000 claims abstract description 135
- 239000010409 thin film Substances 0.000 claims abstract description 128
- 238000000034 method Methods 0.000 claims abstract description 43
- 238000005538 encapsulation Methods 0.000 claims abstract description 38
- 125000003277 amino group Chemical group 0.000 claims abstract description 26
- 239000012790 adhesive layer Substances 0.000 claims abstract description 25
- 125000003700 epoxy group Chemical group 0.000 claims abstract description 24
- 239000003999 initiator Substances 0.000 claims abstract description 18
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 18
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims abstract description 10
- 229920002454 poly(glycidyl methacrylate) polymer Polymers 0.000 claims description 9
- 229920000083 poly(allylamine) Polymers 0.000 claims description 6
- UWRZIZXBOLBCON-UHFFFAOYSA-N 2-phenylethenamine Chemical compound NC=CC1=CC=CC=C1 UWRZIZXBOLBCON-UHFFFAOYSA-N 0.000 claims description 4
- 229920002401 polyacrylamide Polymers 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 abstract description 28
- 230000008569 process Effects 0.000 abstract description 22
- 239000010408 film Substances 0.000 description 14
- 239000000178 monomer Substances 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- 150000001412 amines Chemical class 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000002861 polymer material Substances 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920000123 polythiophene Polymers 0.000 description 3
- 238000007142 ring opening reaction Methods 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000012685 gas phase polymerization Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005019 vapor deposition process Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000013086 organic photovoltaic Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920002382 photo conductive polymer Polymers 0.000 description 1
- -1 poly (p-phenylenvinylene) Polymers 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/04—Sealing arrangements, e.g. against humidity
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
Definitions
- the present invention relates to an organic electroluminescent device and a method of manufacturing the same, and more particularly, a device substrate and an encapsulation substrate on which a plurality of organic electroluminescent devices are formed are separately manufactured, and then bonded to each other to encapsulate the organic electroluminescent device.
- the present invention relates to an organic electroluminescent device capable of preventing damage to the device and increasing adhesion performance to extend the life of a device sensitive to moisture, and a method of manufacturing the same.
- OLEDs Organic Light Emitting Diodes
- LCD Liquid Crystal Display
- OLEDs Organic Light Emitting Diodes
- the principle is that when a voltage is applied, electrons and holes are injected from the cathode and the anode into the organic compound layer, which is a light emitting layer, respectively, so that the excited exciton in the organic compound layer falls from the excited state to the ground state and emits light. It has a structure to do
- the flat panel display device particularly the organic light emitting device, included in the flat panel display device is deteriorated due to internal factors such as deterioration of the light emitting layer by oxygen from indium tin oxide (ITO) used as an electrode, and deterioration due to the reaction between the light emitting layer and the interface.
- ITO indium tin oxide
- deterioration is easily caused by external factors such as external moisture, oxygen, ultraviolet rays, and fabrication conditions of the device.
- external oxygen and moisture have a fatal effect on the life of the device, the encapsulation process of the organic light emitting device is very important.
- encapsulation processes have been developed, and two types are mainly used.
- One is a cover method of attaching a moisture absorbent in a cover of glass or metal and then attaching it to the organic light emitting device by using an adhesive, and the other is stacking various kinds of organic-inorganic protective films and attaching it to the organic light emitting device, or It is a thin film method which deposits such a layered prevention film directly on an electroluminescent element.
- the encapsulation encapsulation process has a thickness of at least 3 mm or more and requires a gap between the cover glass and the organic electroluminescent element, so that the light emitted from the organic electroluminescent element is subjected to interference or internal reflection, thereby increasing the efficiency of the element.
- the thin film type encapsulation process can reduce total internal reflection and can be applied to a flexible display.
- organic or inorganic thin films must be deposited at least 10 times on the organic EL device, the organic EL device is substantially manufactured. It is more complex than the process and the process cost is expensive.
- high energy such as plasma (plasma) may damage the organic EL device during the thin film encapsulation process.
- Korean Patent Laid-Open Publication No. 2005-0121940 discloses a technique for sealing an organic electroluminescent device which eliminates water loss in the organic film by improving the adhesion ability of the metal can and sealant used in the organic electroluminescent device.
- an indium tin oxide (ITO) 11, an organic layer 12, and a cathode 13, which are anode materials are sequentially formed on a substrate 10, and a functional film 15 is formed therein.
- the metal can 14, on which the organic substance is deposited is sealed by the sealant 16.
- the sealing is not performed normally, that is, when the adhesion between the functional film 15 and the sealant 16 drops, external moisture may flow into the device, thereby degrading the organic device.
- Korean Patent Laid-Open Publication No. 2009-0053332 discloses a technique for encapsulating an organic light emitting device using a multilayer thin film.
- the organic electroluminescent (EL) device the first electrode 21, the organic emission layer 22, and the second electrode 23 are sequentially formed in a predetermined region on the substrate 20, and the upper part of the entire structure.
- the first thin film layer 24, the second thin film layer 25, and the third thin film layer 26 are deposited to form a multi-layered encapsulation layer.
- the plasma is used to form the first thin film layer 24, the organic light emitting part is damaged, and thus, the atomic layer deposition (ALD) is a deposition method that does not use the plasma.
- ALD atomic layer deposition
- the thin film layer needs to be formed in a multilayer, not only the thickness of the thin film layer is thick, but also a plurality of thin film processes are required, and the thin film forming conditions are different.
- An object of the present invention is to prevent damage to the device resulting from depositing an encapsulation film directly on top of the organic electroluminescent device.
- Another object of the present invention is to simplify the process of forming an encapsulation film of an organic EL device which is to be performed in an atmosphere free of oxygen and moisture.
- Another object of the present invention is to reduce the manufacturing cost of the additional encapsulation film according to the mass production of the organic EL device.
- Still another object of the present invention is to form an encapsulation film of an organic EL device without using an organic solvent.
- the organic electroluminescent device comprises: a first substrate; At least one light emitting element formed on the first substrate; A first thin film layer formed on the entire upper surface of the first substrate on which the light emitting device is formed and which is a polymer thin film layer including an epoxy group; An adhesive layer formed on the entire upper surface of the first thin film layer; A second thin film layer formed on the entire upper surface of the adhesive layer and being a polymer thin film layer including an amine group; And a second substrate formed on the second thin film layer, wherein the adhesive layer includes an epoxy group of the first thin film layer and an amine group of the second thin film layer formed by chemical bonding.
- the light emitting device may include a first electrode, an organic emission layer, and a second electrode.
- the first thin film layer is preferably poly glycidyl methacrylate
- the second thin film layer is selected from poly allylamine, poly aminostyrene, and poly acrylamide. Either is preferred.
- a method of manufacturing an organic electroluminescent device includes the steps of forming at least one light emitting device on a first substrate; Forming a first thin film layer including an epoxy group by a chemical vapor deposition method using an initiator on an entire top surface of the first substrate on which at least one light emitting device is formed; Preparing a second substrate separately from the first substrate; Forming a second thin film layer including an amine group on the entire upper surface of the second substrate by plasma polymerization; And bonding the first substrate and the second substrate to each other so that the first thin film layer and the second thin film layer face each other.
- the first and second substrates are bonded to each other by applying a pressure of 0.5 to 1.5 Pa
- the first thin film layer and the second thin film layer are heated by heating at a temperature of 50 to 150 ° C. for 1 to 5 hours.
- the adhesive layer of the electroluminescent element is formed.
- the encapsulation film of the organic EL device does not have to be formed directly on the device, damage to the organic EL device can be prevented.
- the encapsulation film forming step of the organic electroluminescent device does not need to proceed in an oxygen-free and anhydrous atmosphere so that the conditions for the encapsulation process are not complicated.
- 1 is a sealing structure of an organic EL device according to the prior art.
- FIG. 2 is a schematic structure of another organic light emitting device according to the related art.
- 3 is an organic electroluminescent device according to an embodiment of the present invention.
- FIG. 4 (a) is a view schematically showing a method of manufacturing a device substrate in the method of manufacturing an organic electroluminescent device according to an embodiment of the present invention
- (b) is an organic electroluminescence according to an embodiment of the present invention
- the manufacturing method of the device a diagram schematically showing a manufacturing method of the encapsulation substrate.
- FIG. 5 is a view showing a method of bonding the device substrate and the encapsulation substrate in the method of manufacturing an organic electroluminescent device according to an embodiment of the present invention.
- the organic electroluminescent device comprises: a first substrate; At least one light emitting element formed on the first substrate; A first thin film layer formed on the entire upper surface of the first substrate on which the light emitting device is formed and which is a polymer thin film layer including an epoxy group; An adhesive layer formed on the entire upper surface of the first thin film layer; A second thin film layer formed on the entire upper surface of the adhesive layer and being a polymer thin film layer including an amine group; And a second substrate formed on the second thin film layer, wherein the adhesive layer includes an epoxy group of the first thin film layer and an amine group of the second thin film layer formed by chemical bonding.
- the light emitting device may include a first electrode, an organic emission layer, and a second electrode.
- the first thin film layer is preferably poly glycidyl methacrylate
- the second thin film layer is selected from poly allylamine, poly aminostyrene, and poly acrylamide. Either is preferred.
- a method of manufacturing an organic electroluminescent device includes the steps of forming at least one light emitting device on a first substrate; Forming a first thin film layer including an epoxy group by a chemical vapor deposition method using an initiator on an entire top surface of the first substrate on which at least one light emitting device is formed; Preparing a second substrate separately from the first substrate; Forming a second thin film layer including an amine group on the entire upper surface of the second substrate by plasma polymerization; And bonding the first substrate and the second substrate to each other so that the first thin film layer and the second thin film layer face each other.
- the first and second substrates are bonded to each other by applying a pressure of 0.5 to 1.5 Pa
- the first thin film layer and the second thin film layer are heated by heating at a temperature of 50 to 150 ° C. for 1 to 5 hours.
- the adhesive layer of the electroluminescent element is formed.
- 3 is an organic electroluminescent device according to an embodiment of the present invention.
- the organic electroluminescent device 300 may include a device substrate 310, an adhesive layer 330, and an encapsulation substrate 320.
- the device substrate 310 may include a first substrate 311; At least one light emitting element 315 formed on the first substrate 311; The light emitting device 315 may be formed on an upper front surface of the first substrate 311, and may include a first thin film layer 316, which is a polymer thin film layer including an epoxy group.
- the encapsulation substrate 320 may include a second substrate 321 facing the first substrate 311; It may be configured to include a second thin film layer 322 which is a polymer thin film layer containing an amine group.
- first and second substrates 311 and 321 implement a silicon substrate, a glass substrate, or a flexible display
- plastic substrates PE, PES, PET, PEN, etc.
- the light emitting device 315 formed on the first substrate 311 may be formed by sequentially depositing the first electrode 312, the organic emission layer 313, and the second electrode 314.
- the first electrode 312 is an anode electrode for hole injection, and has a high work function and uses a transparent metal oxide, for example, indium tin oxide, to emit light emitted from the device. It can be formed to a thickness of 150 nm. Indium-tin-oxide has the advantage of optical transparency, while chemically-doping conjugates including polythiophene, etc., which have advantages in terms of stability due to the disadvantage of being difficult to control. Conjugated polymers may be used as the anode electrode.
- the organic light emitting layer 313 is a monomolecular organic EL material such as tris (8-hydroxyquinolinato) aluminum (Alq 3, Tris (8-hydroxyquinolinato) aluminium), anthracene, and poly (p-phenylenevinyl).
- Polymer organic electroluminescent materials such as ethylene (PPV, poly (p-phenylenvinylene)), polythiophene (PT), and derivatives thereof are used, and the organic light emitting layer 313 is 100 nm for charge emission at low driving voltage. It is preferable to form in the thickness of the grade.
- a hole injecting layer and a hole transporting layer may be further formed between the first electrode 312 and the organic light emitting layer 313, and between the organic light emitting layer and the second electrode.
- An electron transporting layer may be further formed.
- the hole injection layer is formed using 2T-NATA, and the hole transport layer is N, N ⁇ -diphenyl-N, N ⁇ -bis- (3-menylphenyl) -1,1 ⁇ -biphenyl which is a diamine derivative.
- the electron injection layer may be formed using an oxadizole derivative (etc.).
- the combination of the transport layers may increase photons out per charge injected, and carriers may be injected through a two-step injection process through the transport layer instead of directly injecting the carriers, thereby lowering the driving voltage.
- the electrons and holes injected into the organic light emitting layer move to the opposite electrode through the organic light emitting layer, it is possible to control recombination by blocking the opposite transport layer. This can improve the luminous efficiency.
- the second electrode 314 is a cathode electrode which is an electron injection electrode, and the second electrode 314 uses calcium (Ca), magnesium (Mg), aluminum (Al), or the like, which is a metal having a low work function. To form.
- the reason why the metal having the low work function is used as the second electrode 314 is to lower the barrier formed between the second electrode 314 and the organic light emitting layer 313 to achieve high current density in electron injection. Because you can get. This can increase the luminous efficiency of the device.
- An adhesive layer 330 is provided between the device substrate 310 on which the light emitting device 315 is formed and the encapsulation substrate 320 facing the device substrate 310 to bond the two substrates together.
- 330 may be formed by a chemical bond through a ring-opening crosslinking reaction between an epoxy (CH 2 OCH 2-) group of the first thin film layer 316 and an amine (amine NH 2) group of the second thin film layer 322. have.
- the two substrates 310 and 320 may be adhered to each other by the adhesive layer 330, and the encapsulation layer may protect the light emitting device 315 from oxygen or moisture.
- FIG. 4 (a) is a view schematically showing a method of manufacturing a device substrate in the method of manufacturing an organic electroluminescent device according to an embodiment of the present invention
- (b) is an organic electroluminescence according to an embodiment of the present invention
- the manufacturing method of the device a diagram schematically showing a manufacturing method of the encapsulation substrate.
- At least one device substrate 310 is formed by sequentially depositing a first electrode 312, an organic emission layer 313, and a second electrode 314 on the first substrate 311.
- the light emitting device 315 is formed, and the first thin film layer 316 is formed on the entire upper surface of the first substrate 311 on which the light emitting device 315 is formed.
- the first thin film layer 316 is an epoxy with a polymer thin film (epoxy, CH 2 0CH 2 - ) if the polymer material comprising a not particularly limited, and polyglycidyl methacrylate (Poly glycidyl methacrylate, PGMA) The desirable.
- a polymer thin film may be formed on the entire upper surface of the first substrate on which the light emitting device is formed by vaporizing a volatile monomer to perform a gas phase polymerization reaction for simultaneously performing a polymerization reaction and a deposition process of a polymer.
- the first thin film layer 316 may be deposited on the entire upper surface of the first substrate by chemical vapor deposition (iCVD) using an initiator.
- iCVD chemical vapor deposition
- an initiator a chain polymerization reaction using free radicals is generally used.
- a chain polymerization reaction causes a polymerization reaction in a liquid phase by dissolving an initiator and a monomer in an organic solvent.
- a chemical vapor deposition process using an initiator is a process of depositing a polymer thin film on the surface of a substrate by vaporizing an initiator and a monomer to perform a polymerization reaction in a gaseous phase.
- the vapor deposition method using an initiator is capable of depositing a polymer thin film without damaging the substrate, and the process can be performed at low power because only heat applied to the filament is required to operate the process.
- iCVD an initiator
- the first thin film layer 316 is formed on the first substrate 311, an organic solvent is not used, and there is no need to worry about the addition of impurities by the organic solvent. Since the process of vaporization itself acts like distillation, it is possible to form a polymer thin film layer with a higher purity reactant.
- the monomer may be evaporated under reduced pressure and elevated temperature, and is not particularly limited as long as it is a monomer capable of forming a polymer material including an epoxy group by a polymerization reaction.
- glycidyl methacrylate (GMA) is preferable.
- the initiator is preferably an oxidizing agent, and a peroxide such as tert-butyl peroxide (TBPO) is mainly used.
- a peroxide such as tert-butyl peroxide (TBPO)
- TBPO tert-butyl peroxide
- the tert-butyl peroxide (TBPO) is a volatile substance having a boiling point of about 110 ° C., and thermally decomposes around 150 ° C. Maintaining the temperature of the filament used in the vapor deposition mainly around 200 to 250 °C can easily induce a gas phase polymerization reaction.
- the temperature of the filament is high enough to thermally decompose the tert-butyl peroxide (TBPO), but most organic materials including monomers do not thermally decompose and thus do not damage the monomers on the first substrate. It is possible to deposit a polymer thin film.
- the addition amount of the initiator may be added in an amount known in the art in an amount required for a conventional polymerization reaction, for example, 0.5 to 5 mol% of the monomer, but is not limited to these ranges but is less than the above range There can be many.
- the encapsulation substrate 320 has a structure in which a second thin film layer 322 is formed on the entire upper surface of the second substrate 321.
- the second thin film layer 322 is not particularly limited as long as it is a polymer material including an amine (amine, NH 2- ) group, and poly allylamine (PAAm), poly aminostyrene, polyacryl Any one of amides (poly acrylamide) is preferred.
- the second substrate 321 may be a silicon substrate, a glass substrate, and a plastic substrate (PE, PES, PET, PEN, etc.).
- the second thin film layer including the amine group may be formed on the second substrate 321 by using chemical vapor deposition (iCVD) using the above-described initiator.
- iCVD chemical vapor deposition
- a polymer film including an amine group may be formed on the entire upper surface of the second substrate 321 using a plasma polymerization reaction. It may be.
- Plasma is a gas that is separated into electrons with negative charges and positively charged ions at high temperatures, and has a high degree of charge separation but is neutral because of the same number of positive and positive charges.
- the gas separates into electrons and atomic nuclei into a plasma state.
- Each object that makes up the plasma has electricity, so it is very different from the neutral gas, has a high electrical conductivity, and the current flows only on the surface like a metal conductor. Therefore, almost no current flows inside, and when electric and magnetic fields are applied from the outside, they are directly affected by the force as electric charges, but as the charge density increases, the group motion differs from the individual motions.
- the high temperature and active chemical properties of the plasma provide a polar environment which is difficult to obtain by conventional methods, and is used to give new physical and chemical properties to the body by changing the properties of the synthesis of new materials and the surface of metals or polymers.
- FIG. 5 is a view showing a method of bonding the device substrate and the encapsulation substrate in the method of manufacturing an organic electroluminescent device according to an embodiment of the present invention.
- the first thin film layer 316 of the device substrate 310 and the second thin film layer 322 of the encapsulation substrate 320 face each other, and then the encapsulation substrate 320 is placed on the device substrate 310.
- the two substrates are bonded to each other by applying a pressure of 0.5 to 1.5 Pa to the side.
- epoxy of the first thin film layer 316 may be epoxy (CH 2 0CH 2 ⁇ ).
- an epoxy polymer thin film layer and an amine polymer thin film layer are formed by vapor deposition, and the two polymer thin film layers are bonded to each other to form a nano-thick adhesive layer through a ring-opening crosslinking reaction between an epoxy group and an amine group.
- the organic electroluminescent device can be encapsulated by forming an adhesive layer between the two substrates only by heat treatment at 50 ° C. to 150 ° C. without irradiating ultraviolet rays, and there is no additional volatile byproduct. Does not damage.
- an oxygen plasma treatment is performed on the first substrate 311 on which the light emitting device 315 is deposited at a power of 100 W in an oxygen atmosphere of 50 m torr for 60 seconds, and then a first susceptor is placed on a susceptor. 311) is put in a vacuum chamber (chamber).
- the vaporized monomer and initiator is flowed into a chamber of 1.75 to 2.95 sccm (cm 3 / min).
- the polymerization reaction is initiated by tungsten filaments heated to 220 ° C. During the polymerization reaction, a pressure of 200 m torr is maintained.
- a first thin film layer 316 of poly glycidyl methacrylate (PGMA) is formed on the first substrate 311 at a thickness of 200 nm.
- the second substrate 321 is subjected to oxygen plasma treatment at 100 W in an oxygen atmosphere of 50 m torr for 60 seconds, and then the second substrate is placed on a susceptor of the plasma polymerization reactor. 321 is mounted and placed between both electrodes in the vacuum chamber, and the chamber is vacuumed. Allylamine is introduced into the chamber and plasma polymerized with 5 W of 13.56 MHz power source under continuous RF discharge. The pressure in the process is 100 m torr. After about 10 minutes, the plasma polymerized poly allylamine is deposited to a thickness of 100 nm to form a second thin film layer 322 on the second substrate 321.
- the device substrate 310 and the encapsulation substrate 320 are bonded to each other by applying a pressure of 1 Pa.
- the epoxy group and the amine group between the two thin films 316 and 322 crosslink to generate strong adhesive force.
- the first electrode 312, the organic light emitting layer 313 and the second electrode 314 on the first substrate 311 first A plurality of organic light emitting portions are formed.
- radicals are generated by pyrolysis by high temperature filament using an oxidizing agent such as tert-butyl peroxide (TBPO) as an initiator.
- the radicals are chain polymerized with the vaporized monomer to generate a polymer material, and a polymer material including an epoxy group is deposited on the entire upper surface of the first substrate 311 on which the organic light emitting part is formed to form a first thin film layer 316. .
- the second thin film layer 322 is formed on the second substrate 321 by depositing a polymer material including an amine group by a plasma polymerization method. (S630).
- the second thin film layer including the amine group may be formed using chemical vapor deposition (iCVD).
- first thin film layer 316 and the second thin film layer 322 face each other, and then the second substrate 321 is bonded to the first substrate 311 by applying a pressure of 0.5 to 1.5 Pa. Heat is applied at a temperature of 50 ° C. to 150 ° C. for 1 to 5 hours to crosslink the first and second thin film layers 316 and 322 to form an adhesive layer 330.
- the first and second thin film layers 316 and 322 are crosslinked with an epoxy group and an amine group to generate strong adhesive force, and the first and second thin film layers 316 and 322 serve to encapsulate an organic electroluminescent device, thereby preventing moisture and oxygen. The device can be protected.
- the encapsulation method according to the present invention is not limited to OLED products but is also applied to various types of organic electronic products such as organic photovoltaic cells (oPVs) and organic thin film transistors (oTFTs). It is possible to apply.
- organic electronic products such as organic photovoltaic cells (oPVs) and organic thin film transistors (oTFTs). It is possible to apply.
- OPVs organic photovoltaic cells
- oTFTs organic thin film transistors
- the present invention relates to an organic electroluminescent device and a method of manufacturing the same.
- the organic electroluminescent device according to an embodiment of the present invention includes a first substrate; At least one light emitting element formed on the first substrate; A first thin film layer formed on the entire upper surface of the first substrate on which the light emitting device is formed and including an epoxy group; An adhesive layer formed on the entire upper surface of the first thin film layer; A second thin film layer formed on the entire upper surface of the adhesive layer and including an amine group; And a second substrate formed on the second thin film layer, wherein the adhesive layer is formed by chemically bonding an epoxy group of the first thin film layer and an amine group of the second thin film layer.
- a polymer thin film layer including an epoxy group is formed on a top surface of the first substrate on which a plurality of light emitting devices are formed by a chemical vapor deposition using an initiator, and an amine group is formed on a top surface of the second substrate by a plasma polymerization method.
- a polymer thin film layer is formed to separately manufacture an element substrate and an encapsulation substrate. Thereafter, the device substrate and the encapsulation substrate may be bonded to each other so that the polymer thin film layer including the epoxy group and the polymer thin film layer including the amine group may be crosslinked with each other to encapsulate the light emitting device. Accordingly, damage to the device generated during the encapsulation process of the organic electroluminescent device can be prevented, and a nano-thick encapsulation layer can be manufactured to provide a thin film organic electroluminescent device.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
본 발명은 유기 전계 발광 소자 및 그 제조 방법에 관한 것으로, 본 발명의 일실시예에 따른 유기 전계 발광 소자는 제1 기판과; 상기 제1 기판 상에 형성되는 적어도 하나 이상의 발광소자와; 상기 발광 소자가 형성된 상기 제1 기판의 상부 전면에 형성되고, 에폭시기를 포함하는 제1 박막층과; 상기 제1 박막층의 상부 전면에 형성되는 접착제층과; 상기 접착제층의 상부 전면에 형성되고, 아민기를 포함하는 제2 박막층과; 상기 제2 박막층 상에 형성되는 제2 기판을 포함하며, 상기 접착제층은 상기 제1 박막층의 에폭시기와 상기 제2 박막층의 아민기가 화학 결합하여 형성된다. 또한, 다수의 발광 소자가 형성되는 상기 제1 기판의 상부 전면에 개시제를 이용한 화학 기상 증착법으로 에폭시기를 포함하는 고분자 박막층을 형성하고, 상기 제2 기판의 상부 전면에 플라즈마 중합법으로 아민기를 포함하는 고분자 박막층을 형성하여 소자 기판과 봉지 기판을 별도로 제조한다. 그 후, 소자 기판과 봉지 기판을 서로 합착하여 에폭시기를 포함하는 고분자 박막층과 아민기를 포함하는 고분자 박막층이 서로 가교 결합함으로써 발광 소자를 봉지할 수 있다. 이에 따라, 유기 전계 발광 소자의 봉지 공정시 발생하는 소자의 손상을 방지할 수 있게 되며, 나노(nano) 두께 봉지층으로 제조할 수 있어 박막의 유기 전계 발광 장치를 제공할 수 있다.
Description
본 발명은 유기 전계 발광 소자 및 그 제조 방법에 관한 것으로, 더욱 상세하게는 다수의 유기 전계 발광 소자가 형성된 소자 기판과 봉지 기판을 별도로 제작한 후 서로 합착하여 유기 전계 발광 소자를 봉지함으로써 봉지 공정시 소자의 손상을 방지할 수 있고, 접착 성능을 높여 수분에 민감한 소자의 수명을 연장시킬 수 있는 유기 전계 발광 소자 및 그 제조 방법에 관한 것이다.
디스플레이 장치의 발전은 과거 브라운관의 형식에서 대표적으로 액정 디스플레이(Liquid Crystal Display: LCD)로 발전하여 평판형의 두께가 얇고 적은 전력으로 고화질의 영상을 볼 수 있게 되었다. 최근 차세대 디스플레이로 각광받고 있는 유기 전계 발광 소자(Organic Light Emitting Diode: OLED)는 기존의 액정표시장치(LCD)와는 달리 발광을 위한 별도의 광원을 필요로 하지 않으므로 두께가 얇고 무게를 가볍게 할 수 있는 장점을 가지고 있다. 그 원리는 전압이 인가되면 음극(cathode)과 양극(anode)으로부터 각각 전자와 정공이 발광층인 유기화합물층으로 주입되어 유기화합물층에서 이들이 결합한 여기자(exciton)가 여기상태로부터 기저상태로 떨어지면서 발광을 하도록 하는 구조를 가지고 있다.
평판 디스플레이 장치에 구비되는 평판 표시 소자, 특히 유기 발광 소자는 전극으로 사용되는 인듐-틴-옥사이드(ITO)로부터의 산소에 의한 발광층의 열화, 발광층-계면간의 반응에 의한 열화 등 내적 요인에 의한 열화가 있는 동시에 외부의 수분, 산소, 자외선 및 소자의 제작 조건 등 외적 요인에 의해 쉽게 열화가 일어나는 단점을 가지고 있다. 특히 외부의 산소와 수분은 소자의 수명에 치명적인 영향을 주므로 유기 발광 소자의 봉지 공정이 매우 중요하다.
현재까지 다양한 형태의 봉지 공정이 개발되었는데, 크게 두 종류의 방식이 주로 사용되고 있다. 하나는 유리나 금속의 덮개 내에 흡습제를 부착하고 이를 다시 유기 전계 발광 소자에 접착제를 이용하여 부착하는 덮개 방식, 다른 하나는 유-무기의 여러 종류의 방지막을 적층하여 이를 유기 전계 발광 소자에 부착하거나 유기 전계 발광 소자 위에 직접 이러한 적층형 방지막을 증착하는 박막 방식이다. 덮개 방식의 봉지 공정은 두께가 최소한 3 mm 이상으로 두껍고, 덮개 유리와 유기 전계 발광 소자 사이에 틈이 필요하기 때문에 유기 전계 발광 소자로부터 방출되는 빛이 간섭현상을 받거나 내부 반사에 의해 소자의 효율이 감소하는 단점이 있다. 또한, 덮개를 부착하기 위해 필연적으로 기판 위에 추가적인 면적이 필요하며 플렉시블 디스플레이에 적용도 어렵다. 박막 방식의 봉지 공정은 내부 전반사를 줄일 수 있고, 플렉시블 디스플레이에 적용이 가능하다는 장점을 갖고 있으나, 유기 전계 발광 소자 위에서 10회 이상의 유-무기 박막의 증착이 이루어져야 하므로 실질적으로 유기 전계 발광 소자의 제작 공정보다 더 복잡하고, 공정 비용도 고가이다. 또한 이러한 봉지막의 증착 공정 중 무기물의 증착 공정은 필연적으로 플라즈마(plasma)와 같은 고에너지가 기판에도 가해지기 때문에 박막 방식의 봉지 공정 중 유기 전계 발광 소자가 손상을 받을 수 있다.
한편, 한국 공개특허 제2005-0121940호에는 유기 전계 발광 소자에서 사용되는 금속 캔과 실런트의 접착 능력을 향상시켜 유기막 내에 수분 감소를 배제하는 유기 전계 발광 소자의 실링 방법에 관한 기술이 기재되어 있다. 도 1을 참조하면, 유기 전계 발광 소자는 기판(10) 위에 양극 물질인 ITO(Indium Tin Oxide)(11), 유기층(12) 및 캐소드(13)가 순차적으로 형성되고, 내부에 기능성막(15)인 유기물이 증착된 금속 캔(14)이 실런트(16)에 의해 소자를 실링하는 구조이다. 그러나 실링이 정상적으로 이루어지지 않을 경우, 즉 기능성막(15)과 실런트(16)의 접착력이 떨어질 경우 외부 수분이 소자 내로 유입되어 유기 소자가 열화될 소지가 있다.
또한, 한국 공개특허 제2009-0053332호에는 다층의 박막을 이용하여 유기 발광 소자를 봉지하는 기술이 기재되어 있다. 도 2을 참조하면, 유기 EL(electroluminescent) 소자는 기판(20) 상부의 소정 영역에 제1 전극(21), 유기 발광층(22) 및 제2 전극(23)이 순차적으롤 형성되고, 전체 구조 상부에 제1 박막층(24), 제2 박막층(25) 및 제3 박막층(26)이 증착되어 다층 구조의 봉지층이 형성된다. 이 때, 상기 제1 박막층(24)을 형성하기 위해 플라즈마를 이용하게 되면 유기 발광부를 손상시키게 되므로, 제1 박막층(24)을 플라즈마를 이용하지 않는 증착 방법인 원자층 증착(Atomic Layer Deposition: ALD), 화학 기상 증착(Chemical Vapor Deposition: CVD) 또는 이온 빔 증착, 스퍼터링을 포함하는 물리 기상 증착(Physical Vapor Deposition: PVD) 방법에 의해 형성하게 된다. 하지만, 다층의 박막을 형성해야 하므로 박막층의 두께가 두꺼워질 뿐만 아니라 다수의 박막 공정이 요구되며, 박막 형성 조건이 각각 다르므로 공정이 다소 복잡해진다는 문제점이 있다.
본 발명의 목적은 유기 전계 발광 소자의 상부에 직접 봉지막을 증착하는 데 따르는 소자의 손상을 방지하고자 하는 것이다.
본 발명의 다른 목적은 산소 및 수분이 없는 분위기에서 진행되어야 하는 유기 전계 발광 소자의 봉지막 형성 공정을 단순화 시키고자 하는 것이다.
본 발명의 또 다른 목적은 유기 전계 발광 소자의 대량 생산에 따른 추가적인 봉지막의 제작 비용을 절감하도록 하는 것이다.
본 발명의 또 다른 목적은 유기 용매를 사용하지 않고 유기 전계 발광 소자의 봉지막을 형성하도록 하는 것이다.
상기 목적을 달성하기 위하여 본 발명에 따른 유기 전계 발광 소자는 제1 기판과; 상기 제1 기판 상에 형성되는 적어도 하나 이상의 발광소자와; 상기 발광 소자가 형성된 상기 제1 기판의 상부 전면에 형성되고, 에폭시기를 포함하는 고분자 박막층인 제1 박막층과; 상기 제1 박막층의 상부 전면에 형성되는 접착제층과; 상기 접착제층의 상부 전면에 형성되고, 아민기를 포함하는 고분자 박막층인 제2 박막층과; 상기 제2 박막층 상에 형성되는 제2 기판을 포함하며, 상기 접착제층은 상기 제1 박막층의 에폭시기와 상기 제2 박막층의 아민기가 화학 결합하여 형성되는 것을 포함한다.
상기 발광 소자는 제1 전극, 유기 발광층 및 제2 전극을 포함할 수 있다.
상기 제1 박막층은 폴리 글리시딜 메타크릴레이트(poly glycidyl methacrylate)가 바람직하며, 상기 제2 박막층은 폴리 알릴아민(poly allylamine), 폴리 아미노스티렌(poly aminostyrene), 폴리 아크릴아마이드(poly acrylamide) 중 어느 하나가 바람직하다.
본 발명에 따른 유기 전계 발광 소자의 제조 방법은 제1 기판 상에 적어도 하나 이상의 발광 소자를 형성하는 단계와; 적어도 하나 이상의 상기 발광 소자가 형성된 상기 제1 기판 상부 전면에 개시제를 이용한 화학 기상 증착법으로 에폭시기를 포함하는 제1 박막층을 형성하는 단계와; 상기 제1 기판과는 별도로 제2 기판을 준비하는 단계와; 상기 제2 기판 상부 전면에 플라즈마 중합법으로 아민기를 포함하는 제2 박막층을 형성하는 단계와; 상기 제1 박막층과 상기 제2 박막층을 서로 마주보도록 한 후 상기 제1 기판과 상기 제2 기판을 합착하는 단계를 포함한다.
상기 제1 기판과 상기 제2 기판을 0.5 내지 1.5 Pa의 압력을 가하여 서로 합착한 후, 상기 제1 박막층과 상기 제2 박막층을 50 내지 150 ℃의 온도에서 1 내지 5시간 동안 열을 가함으로써 유기 전게 발광 소자의 접착제층을 형성한다.
본 발명에 의하면 유기 전계 발광 소자의 봉지막을 소자의 상부에 직접 형성하지 않아도 되므로 유기 전계 발광 소자의 손상을 방지할 수 있게 된다.
또한, 본 발명에 의하면 유기 전계 발광 소자의 봉지막 형성 공정이 무산소 및 무수분 분위기에서 진행될 필요가 없으므로 봉지 공정을 진행하는 조건이 복잡하지 않게 된다.
또한, 본 발명에 의하면 한꺼번에 대량의 봉지막을 별도로 제작할 수 있어 대량 생산에 따른 추가적인 제작 비용을 절감할 수 있게 된다.
또한, 본 발명에 의하면 유기용매를 사용하지 않고 고분자의 단량체와 개시제를 기화하여 중합시킴으로써 유기 전계 발광 소자 상에 안정적으로 나노(nano) 두께의 고분자 박막을 증착할 수 있어 박막의 유기 전계 발광 소자를 제공할 수 있다.
도 1은 종래기술에 따른 유기 전계 발광 소자의 실링 구조이다.
도 2는 다른 종래기술에 따른 유기 발광 소자의 개략적인 구조이다.
도 3은 본 발명의 일실시예에 따른 유기 전계 발광 소자이다.
도 4의 (a)는 본 발명의 일실시예에 따른 유기 전계 발광 소자의 제조 방법에서 소자 기판의 제조 방법을 개략적으로 나타낸 도면이며, (b)는 본 발명의 일실시예에 따른 유기 전계 발광 소자의 제조 방법에서 봉지 기판의 제조 방법을 개략적으로 나타낸 도면이다.
도 5는 본 발명의 일실시예에 따른 유기 전계 발광 소자의 제조 방법에서 소자 기판과 봉지 기판을 합착하는 방법을 나타낸 도면이다.
상기 목적을 달성하기 위하여 본 발명에 따른 유기 전계 발광 소자는 제1 기판과; 상기 제1 기판 상에 형성되는 적어도 하나 이상의 발광소자와; 상기 발광 소자가 형성된 상기 제1 기판의 상부 전면에 형성되고, 에폭시기를 포함하는 고분자 박막층인 제1 박막층과; 상기 제1 박막층의 상부 전면에 형성되는 접착제층과; 상기 접착제층의 상부 전면에 형성되고, 아민기를 포함하는 고분자 박막층인 제2 박막층과; 상기 제2 박막층 상에 형성되는 제2 기판을 포함하며, 상기 접착제층은 상기 제1 박막층의 에폭시기와 상기 제2 박막층의 아민기가 화학 결합하여 형성되는 것을 포함한다.
상기 발광 소자는 제1 전극, 유기 발광층 및 제2 전극을 포함할 수 있다.
상기 제1 박막층은 폴리 글리시딜 메타크릴레이트(poly glycidyl methacrylate)가 바람직하며, 상기 제2 박막층은 폴리 알릴아민(poly allylamine), 폴리 아미노스티렌(poly aminostyrene), 폴리 아크릴아마이드(poly acrylamide) 중 어느 하나가 바람직하다.
본 발명에 따른 유기 전계 발광 소자의 제조 방법은 제1 기판 상에 적어도 하나 이상의 발광 소자를 형성하는 단계와; 적어도 하나 이상의 상기 발광 소자가 형성된 상기 제1 기판 상부 전면에 개시제를 이용한 화학 기상 증착법으로 에폭시기를 포함하는 제1 박막층을 형성하는 단계와; 상기 제1 기판과는 별도로 제2 기판을 준비하는 단계와; 상기 제2 기판 상부 전면에 플라즈마 중합법으로 아민기를 포함하는 제2 박막층을 형성하는 단계와; 상기 제1 박막층과 상기 제2 박막층을 서로 마주보도록 한 후 상기 제1 기판과 상기 제2 기판을 합착하는 단계를 포함한다.
상기 제1 기판과 상기 제2 기판을 0.5 내지 1.5 Pa의 압력을 가하여 서로 합착한 후, 상기 제1 박막층과 상기 제2 박막층을 50 내지 150 ℃의 온도에서 1 내지 5시간 동안 열을 가함으로써 유기 전게 발광 소자의 접착제층을 형성한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
이하, 첨부된 도면을 참조하여 본 발명의 일실시예를 상세히 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 일실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 일실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭하도록 하였다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상부에", 또는 "위에" 있다고 표현되는 경우는 각 부분이 다른 부분의 "바로 상부" 또는 "바로 위에" 있는 경우뿐만 아니라 각 부분과 다른 부분 사이에 또 다른 부분이 있는 경우도 포함한다.
도 3은 본 발명의 일실시예에 따른 유기 전계 발광 소자이다.
도 3에서 볼 수 있듯이, 본 발명의 일실시예에 따른 유기 전계 발광 소자(300)는 소자 기판(310), 접착제층(330) 및 봉지 기판(320)을 포함하여 구성할 수 있다.
상기 소자 기판(310)은 제1 기판(311)과; 상기 제1 기판(311) 상에 형성되는 적어도 하나 이상의 발광 소자(315)와; 상기 발광 소자(315)가 형성된 상기 제1 기판(311)의 상부 전면에 형성되고, 에폭시기를 포함하는 고분자 박막층인 제1 박막층(316)을 포함하여 구성될 수 있다.
상기 봉지 기판(320)은 상기 제1 기판(311)에 대향하는 제2 기판(321)과; 아민기를 포함하는 고분자 박막층인 제2 박막층(322)을 포함하여 구성될 수 있다.
제1 및 제2 기판(311,321)은 실리콘 기판, 유리 기판 또는 플렉서블 디스플레이를 구현하는 경우에는 플라스틱 기판(PE, PES, PET, PEN 등)이 사용될 수 있다.
상기 제1 기판(311) 상에 형성되는 발광 소자(315)는 제1 전극(312), 유기 발광층(313) 및 제2 전극(314)을 순차적으로 증착하여 형성할 수 있다.
상기 제1 전극(312)은 홀 주입을 위한 애노드(anode) 전극으로서 일함수가 높고 발광된 광이 소자 밖으로 나올 수 있도록 투명 금속 산화물, 예컨데 인듐-틴-옥사이드(indium tin oxide)를 이용하여 약 150 nm 두께로 형성될 수 있다. 인듐-틴-옥사이드는 광학 투명도에 대한 장점을 가지는 반면, 조절(control)이 쉽지 않다는 단점을 가져 안정성 면에서 장점을 보이는 폴리티오펜(polythiophen) 등을 포함한 화학적으로 도핑(chemically-doping)된 공액 고분자(conjugated polymer)들이 애노드 전극으로 사용될 수도 있다.
상기 유기 발광층(313)은 트리스(8-히드록시퀴놀리나토)알루미늄(Alq3, Tris(8-hydroxyquinolinato)aluminium), 안트라센(anthracene) 등의 단분자 유기 EL 물질과 폴리(p-페닐렌비닐렌(PPV, poly(p-phenylenvinylene)), 폴리씨오펜(PT, polythiophene) 등과 그들의 유도체들인 고분자 유기 전계 발광 물질들이 사용되며, 낮은 구동 전압에서의 전하 방출을 위해 유기 발광층(313)은 100 nm 정도의 두께로 형성하는 것이 바람직하다.
한편, 상기 제1 전극(312)과 상기 유기 발광층(313)의 사이에 홀 주입층(hole injecting layer) 및 홀 수송층(hole transporting layer)이 더 형성될 수 있으며, 유기 발광층과 제2 전극 사이에 전자 수송층(electron transporting layer)이 더 형성될 수 있다. 여기서, 홀 주입층은 2T-NATA를 이용하여 형성하고, 홀 수송층은 디아민 유도체인 N,N`-디페닐-N,N`-비스-(3-메닐페닐)-1,1`-바이페닐-4,4`-디아민(TPD, N,N`-diphenyl-N,N`-bis-(3-methylphenyl)-1,1`-biphenyl-4,4`-diamine), 광전도성 고분자인 폴리(9-비닐카바졸)(poly(9-vinylcarbazole)) 이용하여 형성하며, 전자 주입층은 옥사디아졸(oxadizole) 유도체 등을 이용하여 형성할 수 있다. 이러한 수송층의 조합을 통해 양자효율(photons out per charge injected)을 높이고, 캐리어(carrier)들이 직접 주입되지 않고 수송층을 통과하는 2단계 주입과정을 통해 주입되어 구동 전압을 낮출 수 있다. 또한, 유기 발광층에 주입된 전자와 홀이 유기 발광층을 거쳐 반대편 전극으로 이동시 반대편 수송층에 막힘으로써 재결합 조절이 가능하다. 이를 통해 발광 효율을 향상시킬 수 있게 된다.
상기 제2 전극(314)은 전자 주입 전극인 캐소드(cathode) 전극으로서, 제2 전극(314)은 낮은 일함수를 갖는 금속인 칼슘(Ca), 마그네슘(Mg), 알루미늄(Al) 등을 이용하여 형성한다. 이러한 일함수가 낮은 금속을 제2 전극(314)으로 사용하는 이유는 상기 제2 전극(314)과 상기 유기 발광층(313) 사이에 형성되는 장벽(barrier)을 낮추어 전자 주입에 있어 높은 전류 밀도를 얻을 수 있기 때문이다. 이를 통해 소자의 발광 효율을 증가시킬 수 있다.
상기 발광 소자(315)가 형성된 소자 기판(310)과 상기 소자 기판(310)에 대향하는 상기 봉지 기판(320) 사이에는 두 기판을 합착할 수 있도록 접착제층(330)이 구비되는데, 상기 접착제층(330)은 상기 제1 박막층(316)의 에폭시(epoxy, CH2OCH2-)기와 상기 제2 박막층(322)의 아민(amine, NH2-)기 사이에 개환 가교 반응을 통해 화학 결합에 의해 형성될 수 있다. 상기 접착제층(330)에 의해 상기 두 기판(310, 320)을 접착할 수 있고, 발광 소자(315)를 산소나 수분으로부터 보호하는 봉지 역할을 한다.
도 4의 (a)는 본 발명의 일실시예에 따른 유기 전계 발광 소자의 제조 방법에서 소자 기판의 제조 방법을 개략적으로 나타낸 도면이며, (b)는 본 발명의 일실시예에 따른 유기 전계 발광 소자의 제조 방법에서 봉지 기판의 제조 방법을 개략적으로 나타낸 도면이다.
도 4(a)를 참조하면, 소자 기판(310)은 제1 기판(311)의 상부에 제1 전극(312), 유기 발광층(313) 및 제2 전극(314)이 순차적으로 증착되어 적어도 하나 이상의 발광 소자(315)가 형성되며, 상기 발광 소자(315)가 형성된 제1 기판(311)의 상부 전면에 제1 박막층(316)이 형성되어 있는 구조이다. 이 때, 상기 제1 박막층(316)은 고분자 박막으로 에폭시(epoxy, CH20CH2-)기를 포함하는 고분자 물질이라면 특별히 한정되지 않으며, 폴리 글리시딜 메타크릴레이트(Poly glycidyl methacrylate, PGMA)가 바람직하다.
대부분의 액상 접착제는 공정의 편의성을 위해 유기 용매에 용해되어 사용되는데, 이러한 액상 접착제로 유기 전계 발광 소자를 봉지하게 될 경우, 유기용매가 소자에 손상을 주게 된다. 또한, 기상 증착 공정을 통해 유기 용매를 사용하지 않고 무기물로 매우 높은 순도를 가진 박막을 얻을 수 있는데, 고분자 물질을 분자량이 큰 비휘발성 물질이기 때문에 이러한 일반적인 기상 증착 공정을 적용할 수가 없다. 따라서 본 발명에서는 휘발성을 가진 단량체를 기화하여 고분자의 중합 반응과 성막 공정을 동시에 진행하는 기상 중합 반응을 함으로써, 발광소자가 형성된 제1 기판의 상부 전면에 고분자 박막을 형성할 수 있다.
상기 제1 박막층(316)은 개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, iCVD)에 의해 상기 제1 기판 상부 전면에 증착할 수 있다. 개시제를 이용한 화학 기상 증착 공정에서는 유리 라디칼(free radical)을 이용한 연쇄 중합 반응을 이용하는데, 일반적으로 연쇄 중합 반응은 개시제(initiator)와 단량체(monomer)를 유기 용매에 용해시켜 액상에서 중합 반응을 일으킨다. 그러나, 개시제를 이용한 화학 기상 증착 공정은 개시제(initiator)와 단량체(monomer)를 기화하여 기상에서 중합 반응이 이루어지게 함으로써 기판의 표면에 고분자 박막을 증착하는 공정이다.
개시제를 이용한 기상 증착 방법(iCVD)은 기판의 손상 없이 고분자 박막을 증착할 수 있으며, 공정을 작동하는 데에는 필라멘트에 가해주는 열만 필요하므로 낮은 전력으로 공정을 진행할 수 있다는 장점이 있다. 또한 상기 제1 기판(311) 상에 상기 제1 박막층(316)을 형성할 때, 유기 용매가 사용되지 않아 유기 용매에 의한 불순물 첨가를 염려할 필요가 없고, 개시제와 단량체를 기화하는 공정이기 때문에 기화하는 과정 자체가 증류와 같은 역할을 하기 때문에 보다 높은 순도의 반응물로 고분자 박막층을 형성할 수 있다.
상기 단량체로는 감압 및 승온 상태에서 기화될 수 있으며, 중합 반응에 의해 에폭시기를 포함하는 고분자 물질을 형성할 수 있는 단량체라면 특별히 한정되지 않는다. 본 발명에서는 글리시딜 메타크릴레이트(Glycidyl methacrylate, GMA)가 바람직하다.
상기 개시제로는 산화제가 바람직하며, 털트-부틸 과산화물(tert-butyl peroxide, TBPO)와 같은 과산화물(peroxide)이 주로 사용된다. 털트-부틸 과산화물(tert-butyl peroxide, TBPO)는 110 ℃ 정도의 끓는점을 갖는 휘발성 물질로서 약 150 ℃ 전후에서 열분해를 하게 된다. 기상 증착에 사용되는 필라멘트의 온도는 주로 200 내지 250 ℃ 전후로 유지하면 손 쉽게 기상 중합 반응을 유도할 수 있다. 이러한 필라멘트의 온도는 상기 털트-부틸 과산화물(tert-butyl peroxide, TBPO)를 열분해 하기에 충분히 높은 온도이지만, 단량체(monomer)를 포함한 대부분의 유기물들은 열분해 되지 않아 단량체의 화학적 손상 없이 상기 제1 기판 상에 고분자 박막을 증착할 수 있다. 상기 개시제의 부가량은 통상의 중합 반응에 필요한 양으로 당업계에 공지되어 있는 양으로, 예를 들어 단량체의 0.5 내지 5 mol%로 첨가될 수 있지만, 이들 범위에 한정되지 않고 상기 범위보다 적거나 많을 수 있다.
도 4(b)를 참조하면, 봉지 기판(320)은 제2 기판(321)의 상부 전면에 제2 박막층(322)이 형성되어 있는 구조이다. 이 때, 상기 제2 박막층(322)은 아민(amine, NH2-)기를 포함하는 고분자 물질이라면 특별히 한정되지 않으며, 폴리 알릴아민(poly allylamine, PAAm), 폴리 아미노스티렌(poly aminostyrene), 폴리 아크릴아마이드(poly acrylamide) 중 어느 하나가 바람직하다.
상기 제2 기판(321)은 상기 제1 기판(311)과 마찬가지로 실리콘 기판, 유리 기판 및 플라스틱 기판(PE, PES, PET, PEN 등)이 사용될 수 있다.
상기 제2 기판(321) 상에는 앞서 설명한 개시제를 이용한 화학기상증착(iCVD)법을 이용하여 아민기를 포함하는 제2 박막층을 형성할 수 있다. 또한, 상기 제2 기판(321) 상에는 상기 제1 기판과는 달리 발광 소자가 형성되어 있지 않으므로, 상기 제2 기판(321)의 상부 전면에 플라즈마 중합 반응을 이용하여 아민기를 포함하는 고분자막을 형성할 수도 있다.
플라즈마(plasma)는 고온에서 음전하를 가진 전자와 양전하를 띤 이온으로 분리된 기체상태로 전하 분리도가 상당히 높으면서도 전체적으로는 음과 양의 전하 수가 같아서 중성을 띠는 기체이다. 물체는 온도를 차차 높여가며 거의 모든 물체가 고체로부터 액체 그리고 기체 상태로 변화하고, 수만 ℃ 도에서 기체는 전자와 원자핵으로 분리되어 플라즈마 상태가 된다. 플라즈마를 이루는 각 개체가 전기를 띠고 있어서 중성 기체와는 성격이 판이하고 전기 전도도가 크고 금속 전도체와 같이 전류가 표면에만 국한되어 흐르게 된다. 따라서 내부에는 전류가 거의 흐르지 않으며 밖에서 전기장과 자기장을 가하면 전하로서 힘을 직접 받아서 쉽게 영향을 받지만 전하 밀도가 커짐에 따라 개개의 운동과는 다른 집단 운동을 한다. 이처럼 플라즈마의 고온과 활발한 화학적 성질은 종래의 방법으로는 얻기 어려운 극환 환경을 제공하여 신물질의 합성, 금속이나 고분자의 표면의 성질을 바꾸어 본체와는 다른 물리적, 화학적 성질을 주는 데 이용된다.
도 5는 본 발명의 일실시예에 따른 유기 전계 발광 소자의 제조 방법에서 소자 기판과 봉지 기판을 합착하는 방법을 나타낸 도면이다.
상기한 바와 같이, 소자 기판(310)의 제1 박막층(316)과 봉지 기판(320)의 제2 박막층(322)을 서로 마주보도록 한 후, 상기 봉지 기판(320)을 상기 소자 기판(310) 쪽으로 0.5 내지 1.5 Pa의 압력을 가하여 두 기판을 서로 합착시킨다. 서로 접촉된 상기 제1 박막층(316)과 상기 제2 박막층(322)에 1 내지 5 시간 동안 50 ℃ 내지 150 ℃의 열을 가하면 상기 제1 박막층(316)의 에폭시(epoxy, CH20CH2-)기와 상기 제2 박막층(322)의 아민(amine, NH2-)기 사이에 개환 가교 반응(ring-opening curing reaction)을 일으켜 화학 결합을 하여 접착력이 생기게 된다.
이처럼 증착에 의해 에폭시 고분자 박막층과 아민 고분자 박막층을 형성하고, 상기 두 고분자 박막층을 합착시킴으로써 에폭시기와 아민기 사이의 개환 가교 반응을 통해 나노(nano) 두께의 접착층을 형성할 수 있다. 또한 두 기판을 접착하는 공정에 있어서, 자외선을 조사하는 일 없이 50 ℃ 내지 150 ℃의 열처리 공정만으로 두 기판 사이에 접착층을 형성하여 유기 전계 발광 소자를 봉지할 수 있고, 추가적인 휘발성 부산물이 없으므로 소자에 손상을 주지 않는다.
이하에서는 본 발명의 바람직한 일실시예를 통하여 본 발명을 보다 상세히 설명할 것이다. 그러나 이하의 실시예는 단지 예시를 위한 것이므로 본 발명의 범위를 국한시키는 것으로 이해되어서는 안 될 것이다.
<실시예 >
먼저, 발광 소자(315)가 증착된 상기 제1 기판(311)을 60초 동안 50m torr 의 산소 분위기에서 100 W의 전력으로 산소 플라즈마 처리를 행한 후, 서셉터(susceptor)에 상기 제1 기판(311)을 장착한 상태로 진공 챔버(chamber)에 투입한다. 기화된 단량체 및 개시제를 1.75 내지 2.95 sccm(cm3/min)의 챔버 내에 흘려 보낸다. 220 ℃로 가열된 텅스텐 필라멘트에 의해 중합 반응이 개시된다. 중합 반응시 200 m torr의 압력을 유지한다. 상기 중합 반응에 의해 상기 제1 기판(311) 상에 200 nm의 두께로 폴리 글리시딜 메타크릴레이트(Poly glycidyl methacrylate, PGMA)인 제1 박막층(316)이 형성된다.
상기 제1 기판(311)과는 별도로 상기 제2 기판(321)을 60초 동안 50m torr 의 산소 분위기에서 100 W의 전력으로 산소 플라즈마 처리를 행한 후, 플라즈마 중합 반응기의 서셉터에 상기 제2 기판(321)을 장착한 상태로 진공 챔버 내의 양 전극 사이에 투입하고 챔버를 진공상태로 만든다. 상기 챔버 내에 알릴아민(allylamine)을 투입하고, 연속적인 RF 방전 하에서 13.56 MHz의 파워 소스의 5 W로 플라즈마 중합한다. 공정시 압력은 100 m torr이다. 10분 정도가 지나면 플라즈마 중합된 폴리 알릴아민(poly allylamine)이 100 nm 의 두께로 증착되어 상기 제2 기판(321) 상에 제2 박막층(322)이 형성된다.
상기 제1 박막층(316)과 상기 제2 박막층(322)을 서로 마주보도록 한 후, 1 Pa 의 압력을 가하여 상기 소자 기판(310)과 상기 봉지 기판(320)을 서로 합착한다. 상기 두 박막층(316,322)이 서로 접촉한 상태에서 70 ℃의 온도에서 1 내지 2 시간 동안 가열하면 두 박막(316,322) 사이의 에폭시기와 아민기가 가교 결합을 하여 강력한 접착력이 생기게 된다.
본 발명의 일실시예에 따른 유기 전계 발광 소자의 봉지 방법에 있어서, 가장 먼저 제1 기판(311) 상에 제1 전극(312), 유기 발광층(313) 및 제2 전극(314)을 포함하는 다수의 유기 발광부를 형성한다.
그리고 tert-butyl peroxide(TBPO)와 같은 산화제를 개시제로 사용하여 고온 필라멘트에 의해 열분해 함으로써 라디칼을 생성한다. 상기 라디칼은 기화된 단량체와 연쇄 중합하여 고분자 물질을 생성하고, 상기 유기 발광부가 형성된 상기 제1 기판(311)의 상부 전면에 에폭시기를 포함하는 고분자 물질을 증착하여 제1 박막층(316)을 형성한다.
한편, 제2 기판(321) 상에는 플라즈마 중합 방법에 의해 아민기를 포함하는 고분자 물질을 증착하여 제2 박막층(322)을 형성한다. (S630). 이 때에도 앞서 설명한 바와 같이, 화학기상증착(iCVD)법을 이용하여 아민기를 포함하는 제2 박막층을 형성할 수도 있다.
마지막으로 상기 제1 박막층(316)과 상기 제2 박막층(322)을 서로 마주보게 한 후, 상기 제2 기판(321)을 상기 제1 기판(311) 쪽으로 0.5 내지 1.5 Pa의 압력을 가하여 합착하고, 50 ℃ 내지 150 ℃의 온도에서 1 내지 5 시간 동안 열을 가하여 상기 제1 및 제2 박막층(316,322)을 가교 결합하여 접착제층(330)을 형성한다.
상기 제1 및 제2 박막층(316,322)은 에폭시기와 아민기가 서로 가교 결합됨으로써 강력한 접착력이 생기게 되며, 상기 제1 및 제2 박막층(316,322)은 유기 전계 발광 소자를 봉지하는 역할을 하여 수분 및 산소로부터 소자를 보호할 수 있다.
본 발명에 따른 봉지 방법은 OLED 제품에만 국한되어 적용되는 것이 아니라, 유기 태양 전지(Organic Photovoltaic Cells: oPVs)나 유기 박막트랜지스터(Organic Thin Film Transistors: oTFTs) 등과 같이 다른 형태의 다양한 유기 전자 제품에도 동일하게 적용이 가능하다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
본 발명은 유기 전계 발광 소자 및 그 제조 방법에 관한 것으로, 본 발명의 일실시예에 따른 유기 전계 발광 소자는 제1 기판과; 상기 제1 기판 상에 형성되는 적어도 하나 이상의 발광소자와; 상기 발광 소자가 형성된 상기 제1 기판의 상부 전면에 형성되고, 에폭시기를 포함하는 제1 박막층과; 상기 제1 박막층의 상부 전면에 형성되는 접착제층과; 상기 접착제층의 상부 전면에 형성되고, 아민기를 포함하는 제2 박막층과; 상기 제2 박막층 상에 형성되는 제2 기판을 포함하며, 상기 접착제층은 상기 제1 박막층의 에폭시기와 상기 제2 박막층의 아민기가 화학 결합하여 형성된다.
또한, 다수의 발광 소자가 형성되는 상기 제1 기판의 상부 전면에 개시제를 이용한 화학 기상 증착법으로 에폭시기를 포함하는 고분자 박막층을 형성하고, 상기 제2 기판의 상부 전면에 플라즈마 중합법으로 아민기를 포함하는 고분자 박막층을 형성하여 소자 기판과 봉지 기판을 별도로 제조한다. 그 후, 소자 기판과 봉지 기판을 서로 합착하여 에폭시기를 포함하는 고분자 박막층과 아민기를 포함하는 고분자 박막층이 서로 가교 결합함으로써 발광 소자를 봉지할 수 있다. 이에 따라, 유기 전계 발광 소자의 봉지 공정시 발생하는 소자의 손상을 방지할 수 있게 되며, 나노(nano) 두께 봉지층으로 제조할 수 있어 박막의 유기 전계 발광 장치를 제공할 수 있다.
Claims (6)
- 제1 기판;상기 제1 기판 상에 형성되는 적어도 하나 이상의 발광 소자;상기 발광 소자가 형성된 상기 제1 기판의 상부 전면에 형성되고, 에폭시기를 포함하는 제1 박막층;상기 제1 박막층의 상부 전면에 형성되는 접착제층;상기 접착제층의 상부 전면에 형성되고, 아민기를 포함하는 제2 박막층;상기 제2 박막층 상에 형성되는 제2 기판을 포함하고,상기 접착제층은 상기 제1 박막층의 에폭시기와 상기 제2 박막층의 아민기가 화학 결합하여 형성되는 것을 포함하는 유기 전계 발광 소자.
- 제1항에 있어서,상기 제1 박막층은 폴리 글리시딜 메타크릴레이트(poly glycidyl methacrylate)를 포함하는 유기 전계 발광 소자.
- 제1항에 있어서,상기 제2 박막층은 폴리 알릴아민(poly allylamine), 폴리 아미노스티렌(poly aminostyrene), 폴리 아크릴아마이드(poly acrylamide) 중 어느 하나를 포함하는 유기 전계 발광 소자.
- 제1 기판 상에 적어도 하나 이상의 발광 소자를 형성하는 단계;적어도 하나 이상의 상기 발광 소자가 형성된 상기 제1 기판 상부 전면에 개시제를 이용한 화학 기상 증착법으로 에폭시기를 포함하는 제1 박막층을 형성하는 단계;상기 제1 기판과는 별도로 제2 기판을 준비하는 단계;상기 제2 기판 상부 전면에 플라즈마 중합법으로 아민기를 포함하는 제2 박막층을 형성하는 단계;상기 제1 박막층과 상기 제2 박막층을 서로 마주보도록 한 후 상기 제1 기판과 상기 제2 기판을 합착하여 접착제층을 형성하는 단계를 포함하는 유기 전계 발광 소자의 봉지 방법.
- 제1 기판 상에 적어도 하나 이상의 발광 소자를 형성하는 단계;적어도 하나 이상의 상기 발광 소자가 형성된 상기 제1 기판 상부 전면에 개시제를 이용한 화학 기상 증착법으로 에폭시기를 포함하는 제1 박막층을 형성하는 단계;상기 제1 기판과는 별도로 제2 기판을 준비하는 단계;상기 제2 기판 상부 전면에 화학 기상 증착법으로 아민기를 포함하는 제2 박막층을 형성하는 단계;상기 제1 박막층과 상기 제2 박막층을 서로 마주보도록 한 후 상기 제1 기판과 상기 제2 기판을 합착하여 접착제층을 형성하는 단계를 포함하는 유기 전계 발광 소자의 봉지 방법.
- 제4항 또는 제5항에 있어서,상기 합착은 1 내지 5시간 동안, 0.5 내지 1.5 Pa의 압력과 50 내지 150 ℃의 온도에서 이루어지는 유기 전계 발광 소자의 봉지 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0146849 | 2011-12-30 | ||
KR1020110146849A KR101218651B1 (ko) | 2011-12-30 | 2011-12-30 | 유기 전계 발광 소자 및 그 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013100675A1 true WO2013100675A1 (ko) | 2013-07-04 |
Family
ID=47841199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/011661 WO2013100675A1 (ko) | 2011-12-30 | 2012-12-28 | 유기 전계 발광 소자 및 그 제조 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101218651B1 (ko) |
WO (1) | WO2013100675A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104966792A (zh) * | 2015-07-17 | 2015-10-07 | 京东方科技集团股份有限公司 | 一种复合薄膜及制备方法、有机发光二极管及封装方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9831468B2 (en) | 2013-02-14 | 2017-11-28 | Samsung Display Co., Ltd. | Organic electroluminescent device having thin film encapsulation structure and method of fabricating the same |
KR101996436B1 (ko) * | 2013-02-14 | 2019-07-05 | 삼성디스플레이 주식회사 | 박막 봉지 구조를 갖는 유기 전계 발광 소자 및 그 제조 방법 |
CN106450015B (zh) * | 2016-10-11 | 2018-07-10 | 武汉华星光电技术有限公司 | 透明oled显示器及其制作方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000010172A (ko) * | 1998-07-30 | 2000-02-15 | 손욱 | 유기 전자 발광 소자 및 그 제조방법 |
JP2001076871A (ja) * | 1999-06-29 | 2001-03-23 | Nitto Denko Corp | 有機エレクトロルミネセンス素子およびその製造方法 |
JP2008249839A (ja) * | 2007-03-29 | 2008-10-16 | Fujifilm Corp | 有機elパネルおよびその製造方法 |
JP2011081944A (ja) * | 2009-10-05 | 2011-04-21 | Mitsubishi Electric Corp | 有機elパネル、パネル接合型発光装置、有機elパネルの製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100500607B1 (ko) * | 2001-11-21 | 2005-07-11 | 주식회사 비스톰 | 전계발광소자의 봉지용 접착성 필름 및 이를 이용한봉지방법 |
KR20040039607A (ko) * | 2002-11-04 | 2004-05-12 | 주식회사 엘리아테크 | 유기 전계 발광 표시 소자의 봉지 방법 |
KR100683674B1 (ko) * | 2004-06-29 | 2007-02-20 | 삼성에스디아이 주식회사 | 유기 전계 발광 소자 및 이의 제조 방법 |
-
2011
- 2011-12-30 KR KR1020110146849A patent/KR101218651B1/ko active IP Right Grant
-
2012
- 2012-12-28 WO PCT/KR2012/011661 patent/WO2013100675A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000010172A (ko) * | 1998-07-30 | 2000-02-15 | 손욱 | 유기 전자 발광 소자 및 그 제조방법 |
JP2001076871A (ja) * | 1999-06-29 | 2001-03-23 | Nitto Denko Corp | 有機エレクトロルミネセンス素子およびその製造方法 |
JP2008249839A (ja) * | 2007-03-29 | 2008-10-16 | Fujifilm Corp | 有機elパネルおよびその製造方法 |
JP2011081944A (ja) * | 2009-10-05 | 2011-04-21 | Mitsubishi Electric Corp | 有機elパネル、パネル接合型発光装置、有機elパネルの製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104966792A (zh) * | 2015-07-17 | 2015-10-07 | 京东方科技集团股份有限公司 | 一种复合薄膜及制备方法、有机发光二极管及封装方法 |
US9774002B2 (en) | 2015-07-17 | 2017-09-26 | Boe Technology Group Co., Ltd. | Composite film and method for manufacturing the same, and organic light-emitting diode and method for packaging the same |
Also Published As
Publication number | Publication date |
---|---|
KR101218651B1 (ko) | 2013-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9515288B2 (en) | Organic electroluminescent device | |
US8350470B2 (en) | Encapsulation structures of organic electroluminescence devices | |
CN101933174B (zh) | 用于制造电子器件的方法和电子器件 | |
US10411221B2 (en) | Organic electronic device and fabrication method thereof | |
KR101134778B1 (ko) | 접착 촉진제, 이를 포함하는 전기활성 층 및 전기 활성장치, 및 이의 제조 방법 | |
JP5532557B2 (ja) | ガスバリア性シート、ガスバリア性シートの製造方法、封止体、及び有機elディスプレイ | |
US20080105370A1 (en) | Composite articles having diffusion barriers and devices incorporating the same | |
CN104521323A (zh) | 有机电致发光显示装置及其制造方法 | |
CN101331628A (zh) | 电活性器件用电极层叠体及其制造方法 | |
US20020153523A1 (en) | Organic light emitting diodes on plastic substrates | |
WO2013100675A1 (ko) | 유기 전계 발광 소자 및 그 제조 방법 | |
KR20130015142A (ko) | 광추출 구조가 개선된 가요성 유기 발광 표시 장치의 제조 방법 및 그 제조 장치 | |
CN1828968A (zh) | 有机发光装置及其制造方法 | |
KR101253529B1 (ko) | 봉지막 및 이를 포함하는 유기전자소자 | |
KR101103488B1 (ko) | 전기발광소자 및 그 제조방법 | |
WO2012063445A1 (ja) | 有機el表示装置およびその製造方法 | |
JP2013187019A (ja) | 有機el表示装置およびその製造方法 | |
WO2016084791A1 (ja) | 封止フィルム、機能素子及び封止フィルムの製造方法 | |
JP5542072B2 (ja) | ガスバリアフィルムとそれを用いた有機デバイス | |
WO2017003101A1 (ko) | 유기발광소자 제조방법 | |
KR101015887B1 (ko) | 유기 발광 디스플레이 장치 | |
WO2012093467A1 (ja) | 有機el表示装置およびその製造方法 | |
US20060223208A1 (en) | Optical device | |
JP2006294485A (ja) | 有機エレクトロルミネッセンス素子、その製造方法及び表示装置 | |
US20110301293A1 (en) | Silicon composition and organic light emitting device including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12862053 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12862053 Country of ref document: EP Kind code of ref document: A1 |