WO2013100509A1 - 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템 - Google Patents

유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템 Download PDF

Info

Publication number
WO2013100509A1
WO2013100509A1 PCT/KR2012/011352 KR2012011352W WO2013100509A1 WO 2013100509 A1 WO2013100509 A1 WO 2013100509A1 KR 2012011352 W KR2012011352 W KR 2012011352W WO 2013100509 A1 WO2013100509 A1 WO 2013100509A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
flow rate
command
stall
hydraulic
Prior art date
Application number
PCT/KR2012/011352
Other languages
English (en)
French (fr)
Inventor
정우용
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to JP2014549980A priority Critical patent/JP5890040B2/ja
Priority to BR112014016103-8A priority patent/BR112014016103B1/pt
Priority to EP12862265.1A priority patent/EP2801724B1/en
Priority to CN201280064940.6A priority patent/CN104011391B/zh
Priority to US14/368,430 priority patent/US20150017029A1/en
Publication of WO2013100509A1 publication Critical patent/WO2013100509A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/03Stopping, starting, unloading or idling control by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • F15B11/0423Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling pump output or bypass, other than to maintain constant speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6333Electronic controllers using input signals representing a state of the pressure source, e.g. swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control

Definitions

  • the present invention relates to a pressure overshooting prevention system of an electrohydraulic pump of a hydraulic system. More particularly, the pressure overshooting is performed by controlling a pressure command to the electrohydraulic pump in a hydraulic system when the actuator can no longer operate. A pressure overshooting prevention system of an electrohydraulic pump of a hydraulic system that can be prevented.
  • the hydraulic system discharges the working oil from the electro-hydraulic pump, and the working oil is waiting at the inlet to the main control valve.
  • a plurality of spools are provided inside the main control valve, and a plurality of actuators are connected to the outside.
  • pilot pressure is generated in a flow request unit such as a joystick, a pedal, and the pilot pressure is provided to the main control valve.
  • the main control valve is opened and closed with a specific spool by the pilot pressure, and the operating oil is provided to the actuator associated with the spool by opening and closing the spool.
  • the hydraulic oil discharged from the electromagnetic hydraulic pump by operating the joystick is provided to the actuator via the main control valve, thereby operating the actuator.
  • the actuator is configured to have a piston rod in the cylinder, and the piston rod operates in a direction in which the piston is expanded or contracted by the pressure of the hydraulic oil.
  • a piston rod reaches an end point which can no longer be extended or a situation in which it can no longer be extended or retracted by large external loads.
  • Such a situation where the piston rod is subjected to physical resistance such that it can no longer operate can be defined as a stall.
  • the joystick or the pedal may be continuously operated regardless of whether the operator intends or does not intend it. Since the required flow rate is still required, the electro-hydraulic pump will continue to discharge the flow rate and provide it to the actuator, thereby raising the hydraulic pressure inside the hydraulic system to a dangerous level.
  • a safety relief device has a variable relief valve which opens when a pressure higher than the allowable pressure is set to discharge the hydraulic oil.
  • a hydraulic system including a main control valve with a center bypass line and a pressure-controlled electromagnetic hydraulic pump in the hydraulic system, and in such a hydraulic system, when the actuator is stalled, the swash plate angle of the electromagnetic hydraulic pump is lowered to the minimum flow rate.
  • variable relief valve when the variable relief valve is opened or the swash plate angle is adjusted to the minimum in the stall situation as described above, the hydraulic fluid is discharged in the electrohydraulic pump while the hydraulic pressure is reduced to a safe pressure and stabilized.
  • the pressure peak occurs momentarily. This pressure peak has a problem of weakening the durability of the hydraulic system.
  • FIG. 1 is a view for explaining a hydraulic system equipped with a pressure-controlled electromagnetic hydraulic pump.
  • the hydraulic system comprises a flow rate requesting unit 10 composed of a joystick, a pedal, and the like, an electromagnetic hydraulic pump 50 for discharging hydraulic oil, and an actuator 70 for opening and closing the spool. It is configured to include a main control valve 60 to be provided to.
  • the flow rate request unit 10 generates pilot pressure when an operator operates a joystick or a pedal, and the pilot pressure is provided to the main control valve 60.
  • the main control valve 60 is provided with a plurality of spools therein, the spool is operated by the above-described pilot pressure, passing the hydraulic oil when the spool is opened, and shuts off the flow of the hydraulic oil when the spool is closed.
  • the actuator 70 is provided with a piston rod in the cylinder and is connected to the main control valve 60 described above at the piston head side and the tail side to receive hydraulic oil.
  • the piston rod is stretched or retracted depending on which side the hydraulic oil is provided and discharged. Stall occurs when the piston rod cannot proceed any further. In other words, the actuator 70 is stalled when the piston rod cannot proceed any further.
  • Electro-hydraulic pump 50 discharges the hydraulic oil is formed.
  • the hydraulic pressure of the hydraulic fluid can be determined by the swash plate angle. For example, assuming that the shaft of the electro-hydraulic pump 50 rotates the same rotation speed, the high pressure is formed and the flow rate is increased in the direction in which the swash plate angle is laid down, and the low pressure is formed in the direction in which the swash plate angle is erected. Will be reduced. On the other hand, since the physical dynamic characteristics exist when the swash plate angle is changed, it takes time to set the desired swash plate angle.
  • Electro-hydraulic pump 50 is the swash plate angle is adjusted by the pump regulator 40, the pump regulator 40 is operated by the electromagnetic proportional control valve (30).
  • the electromagnetic proportional control valve 30 is operated by a pressure command, and the pressure command is received from the pump control unit 20.
  • the pump control unit 20 receives the pressure value of the pilot pressure formed in the flow rate request unit 10 and the swash plate angle value of the electromagnetic hydraulic pump 50 to calculate a pressure command.
  • the pressure command from the pump control unit 20 is applied to the electromagnetic proportional control valve 30 as an electric signal, the electromagnetic proportional control valve 30 operates the pump regulator 40, and the pump regulator 40 is an electromagnetic hydraulic pump.
  • the swash plate angle of 50 is adjusted to discharge the hydraulic oil flow rate corresponding to the required flow rate.
  • an allowable pressure can be set in the hydraulic system, and when a pressure higher than the allowable pressure is formed, the variable relief valve 80 is opened so that the hydraulic oil maintains the set pressure.
  • the allowable pressure set in the hydraulic system may be variable and may be set in accordance with the capacity of the hydraulic system.
  • FIG. 2 is a view for explaining the control logic of the pressure-controlled electromagnetic hydraulic pump in a conventional hydraulic system.
  • the pump control unit 20 receives the pressure value of the pilot pressure formed in the flow rate request unit 10 and the swash plate angle value of the electromagnetic hydraulic pump 50 to calculate a pressure command.
  • a pilot pressure is formed, and the pressure value of the pilot pressure can be understood as the required pressure value.
  • the flow rate command generation unit 21 may be data input by the hydraulic system manufacturer in advance. That is, a current signal corresponding to the required pressure value is generated, and the current signal becomes a flow rate command.
  • the current discharge flow rate can be known.
  • the displacement flow rate Delta Q is converted into the pressure command by the flow control unit 24.
  • the pressure command is to control the electromagnetic proportional control valve 30 as described above.
  • FIG. 3 is a diagram illustrating a mapping diagram of pressure and pressure commands in a control logic of a conventional pressure controlled electrohydraulic pump.
  • FIG. 4 is a flow rate change diagram according to a time change for explaining an example in which a peak occurs in a discharge flow rate by a conventional pressure controlled electrohydraulic pump.
  • the actuator 70 performs an operation of expanding or contracting.
  • the change in the flow rate is generated as the displacement flow rate delta Q.
  • the pressure command of the electromagnetic proportional control valve 30 rises to a time t2 at which the swash plate angle is moved to the minimum with a slope of a.
  • the pressure in the pump regulator 40 rapidly rises to a slope of b1 larger than the slope of a to form a peak p, and then descends to a slope of b2 to follow the pressure of the electromagnetic proportional control valve 30.
  • the technical problem to be achieved by the present invention is to reduce the discharge flow rate from the electro-hydraulic pump more quickly when a stall situation that does not receive the hydraulic fluid from the actuator electro-hydraulic pump of the hydraulic system to stabilize the hydraulic system Its purpose is to provide a pressure overshooting prevention system.
  • the pressure overshooting prevention system of the electrohydraulic pump of the hydraulic system for achieving the above technical problem, the flow rate discharge command (+) corresponding to the required pressure, the discharge flow rate discharged from the electromagnetic hydraulic pump 50
  • a flow rate command calculation unit 23 that calculates a displacement flow rate Delta Q by subtracting ( ⁇ );
  • a flow rate controller 24 for generating a first pressure command corresponding to the displacement flow rate Delta Q;
  • a stall determination unit 114 for determining a stall based on a first change rate of the flow rate command and a second change rate of the discharge flow rate;
  • a flow pressure generator 115 for generating a hydraulic oil pressure value corresponding to the discharge flow rate;
  • An inclination limiting unit (116) for generating a limit pressure command to limit an increase in inclination of the hydraulic oil pressure value;
  • a selection unit 117 for setting the limit pressure command as a second pressure command when the stall determination unit 114 determines that the stall is a stall;
  • a minimum pressure setting unit 120 configured to
  • the stall determination unit 114 of the pressure overshooting prevention system of the electrohydraulic pump of the hydraulic system according to the present invention may determine to be a stall when the second change rate is larger than the first change rate.
  • the limit pressure command of the pressure overshooting prevention system of the electrohydraulic pump of the hydraulic system according to the present invention is a time t4 at which the stall is judged to be greater than the first pressure command inclination a1 before the time t4 at which the stall is determined.
  • the second pressure command slope a2 after) may be small.
  • the selection unit 117 of the pressure overshooting prevention system of the electrohydraulic pump of the hydraulic system according to the present invention sets the system pressure command as the second pressure command when the stall determination unit 114 determines that the stall is released. It may be.
  • Pressure overshooting prevention system of the electrohydraulic pump of the hydraulic system according to the present invention made as described above, the swash plate angle in the electrohydraulic pump by changing the pressure command to control the electrohydraulic pump more quickly when the stall situation occurs Can be moved more quickly, thereby significantly reducing the hydraulic oil flow rate overshooting the electrohydraulic pump. That is, the durability of the hydraulic system can be improved by reducing the overshoot hydraulic fluid.
  • FIG. 1 is a view for explaining a hydraulic system equipped with a pressure-controlled electromagnetic hydraulic pump.
  • FIG. 2 is a view for explaining the control logic of the pressure-controlled electromagnetic hydraulic pump in a conventional hydraulic system.
  • FIG. 3 is a view for explaining the mapping diagram of the pressure and the pressure command in the control logic of the conventional pressure-controlled electromagnetic hydraulic pump.
  • FIG. 4 is a flow rate change diagram according to a time change for explaining an example in which a peak occurs in a discharge flow rate by a conventional pressure controlled electrohydraulic pump.
  • FIG. 5 is a view for explaining the control logic of the pressure-controlled electro-hydraulic pump in the pressure overshooting prevention system of the electro-hydraulic pump of the hydraulic system according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining the maximum pressure limiting logic in the pressure overshooting prevention system of the electrohydraulic pump of the hydraulic system according to an embodiment of the present invention.
  • FIG. 7 is a flow rate change diagram according to a time change for explaining an example of preventing the peak in the discharge flow rate in the pressure overshooting prevention system of the electrohydraulic pump of the hydraulic system according to an embodiment of the present invention.
  • first and second flow rate change calculators 114 stall determination unit
  • Stall in the context of the present invention is when the piston rod reaches the end point when the piston rod is extended or contracted to the actuator 70, or when the piston rod can no longer move by an external load Means the phenomenon that the actuator 70 is stopped.
  • overshooting is performed in the electrohydraulic pump 50 for a time that is physically delayed by dynamic characteristics when the pump regulator 40 reacts to a pressure command issued from the electromagnetic proportional control valve 30. It means that the hydraulic oil is discharged.
  • 1 is a view for explaining a hydraulic system equipped with a pressure-controlled electromagnetic hydraulic pump.
  • 5 is a view for explaining the control logic of the pressure-controlled electrohydraulic pump in the pressure overshooting prevention system of the electrohydraulic pump of the hydraulic system according to an embodiment of the present invention.
  • the pump control unit 100 is operated by the control logic of the electrohydraulic pump.
  • the pump control unit 100 controls the electrohydraulic pump 50 to suit the required flow rate by adding or subtracting the required flow rate and the flow rate discharged from the electrohydraulic pump 50.
  • the above-described required flow rate is generated by the operation of the flow rate request unit 10. More specifically, when the flow rate request unit 10 is operated, the required pressure is generated, and the required pressure is determined at the rate set by the flow rate command generation unit 21. The required flow rate is to control the flow rate control unit 24 as a required flow rate command. The flow rate control unit 24 is switched to the pressure command corresponding to the flow rate control to control the electromagnetic proportional control valve 30.
  • the above-described electrohydraulic pump 50 may output a value of the swash plate angle, and the swash plate angle value may be provided to the discharge flow rate calculator 22 to calculate a flow rate currently discharged from the electro-hydraulic pump 50.
  • the flow rate command calculation unit 23 receives the flow rate command and discharge flow rate information described above. When the required command is added (+) in the flow rate command calculation unit 23 and the discharge flow rate is subtracted (-), the displacement flow rate Delta Q of how much the flow rate should be changed is calculated.
  • the displacement flow rate Delta Q is converted into the pressure command by the flow control unit 24.
  • the pressure command is to control the electromagnetic proportional control valve 30 as described above.
  • the hydraulic system according to an embodiment of the present invention further includes a minimum pressure setting unit 120 between the flow rate control unit 24 and the electromagnetic proportional control valve 30.
  • the minimum pressure setting unit 120 receives a pressure command from the maximum pressure limiting unit 110.
  • the minimum pressure setting unit 120 selects a small pressure command from among the first pressure command input from the flow rate control unit 24 and the second pressure command input from the maximum pressure limiting unit 110 described above, thereby providing an electromagnetic proportional control valve. To control (30).
  • FIG. 6 is a view for explaining the maximum pressure limiting logic in the pressure overshooting prevention system of the electrohydraulic pump of the hydraulic system according to an embodiment of the present invention.
  • the maximum pressure limiting unit 110 receives the pump discharge flow rate and the flow rate command to generate a second pressure command.
  • the second pressure command is generated by limiting the slope of the rising pump pressure command along a map of the slope limit 116 to set the maximum pressure in accordance with the current discharge flow rate.
  • the flow rate calculation unit 111 receives a flow rate command and a pump discharge flow rate value, and calculates and demands the flow rate.
  • the required flow rate will be changed according to the operation amount of the flow rate request unit 10, and there is a phenomenon in which the degree of change is suddenly changed or is gradually changed, and the degree of change is calculated by the first flow rate change calculation unit 112 to be required flow rate. Calculate the rate of change.
  • the second flow rate change calculator 113 receives the value of the pump discharge flow rate and calculates a second rate of change of the discharge flow rate actually discharged from the electromagnetic hydraulic pump 50.
  • the stall determination unit 114 compares the first change rate of the flow rate command with the second change rate of the discharge flow rate, and determines whether the stall has occurred in the actuator 70. That is, when the second change rate is larger than the first change rate, the stall state is determined.
  • the stall state is a state in which the piston rod of the actuator 70 does not move even though the driver is operating the joystick. Therefore, although the flow command exists, the flow path of the hydraulic system is blocked because the flow rate of the hydraulic oil is not received by the actuator 70.
  • the swash plate angle of the hydraulic pump 50 is in a state of rapidly decreasing. That is, it is determined that the stall state is when the change value for the difference between the flow rate command and the pump discharge flow rate is larger than the set value and the change value of the discharge flow rate of the electro-hydraulic pump 50 is smaller than the set value.
  • the pump discharge flow rate value is set by the flow pressure pressure generating unit 115 to the hydraulic oil pressure value corresponding to the current pump discharge flow rate.
  • the above-described hydraulic oil pressure value is increased to the inclination value set in the inclination limiting unit 116.
  • the selector 117 receives the limit pressure command set in the above-described inclination value and the system pressure command set in the hydraulic system, and outputs the limit pressure command when the stall determination unit 114 determines that the stall is the stall. If it is not a stall, the system pressure command is output.
  • the pressure command output from the above-described selection unit 117 is set to the above-described second pressure command.
  • the minimum pressure setting unit 120 finally outputs a small pressure command among the first pressure command provided from the flow rate control unit 24 and the second pressure command provided from the above-described selection unit 117.
  • Figure 7 is a flow rate change diagram according to the time change for explaining an example of preventing the peak in the discharge flow rate in the pressure overshooting prevention system of the electro-hydraulic pump of the hydraulic system according to an embodiment of the present invention.
  • the actuator 70 performs an operation of expanding or contracting.
  • the change in the flow rate is generated as the displacement flow rate delta Q.
  • the initial pressure command corresponds to the second pressure command from the time t4 at which the swash plate angle is changed by the first pressure command inclination a1 corresponding to the first pressure command, and the stall determination unit 114 determines that the stall is a stall.
  • the swash plate angle of the second pressure command inclination a2 is changed.
  • the second pressure command has a limited slope as compared with the first pressure command, so that the second pressure command slope a2 is formed lower than the first pressure command slope a1.
  • the 1st actual pressure curve b1 of the initial stage at the time t1 stalled will be a 1st pressure command. Following the slope a1, it is stabilized after being reduced to the second actual pressure curve b2 immediately after the change to the second pressure command slope a2.
  • the pressure overshooting prevention system can significantly lower the flow rate peak p by reducing the pressure command earlier.
  • the time t3 at which the swash plate angle of the electromagnetic hydraulic pump 50 is moved to the minimum can be advanced, and the flow rate (c) discharged while the swash plate angle is moved to the minimum can be reduced.
  • the pressure overshooting prevention system of the electrohydraulic pump of the hydraulic system according to an embodiment of the present invention, the stall by the final output of the small value of the output value of the maximum pressure limiting unit 110 and the flow control unit 24 as a pressure command This can reduce the pressure peak in the state.
  • the pressure overshooting prevention system of the electrohydraulic pump of the hydraulic system changes the pressure command to control the electrohydraulic pump 50 more quickly when a stall situation occurs. It is possible to move the swash plate angle more quickly in the electro-hydraulic pump 50, thereby significantly reducing the hydraulic oil flow rate (c) overshooting the electro-hydraulic pump (50). That is, the durability of the hydraulic system can be improved by reducing the overshoot hydraulic fluid.
  • the pressure overshooting prevention system of the electrohydraulic pump of the hydraulic system according to the present invention can quickly reduce the discharge flow rate of the electrohydraulic pump when a stall situation occurs in which the actuator cannot operate, thereby improving durability of the hydraulic system. It can be used to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Reciprocating Pumps (AREA)

Abstract

본 발명은 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템에 관한 것으로, 유량지령을 가산(+)하고, 토출유량을 감산(-)하여 변위 유량(Delta Q)을 연산하여, 변위 유량(Delta Q)에 상응하는 제1 압력 지령을 생성하고, 토출유량에 상응하는 작동유 압력 값을 생성하며, 작동유 압력 값의 증가 기울기를 제한하도록 제한압력지령을 발생시키고, 유량지령의 제1변화율과 토출유량의 제2변화율에 근거하여 스톨(stall)을 판단하며, 스톨로 판단되면 제한압력지령을 제2 압력 지령으로 설정하고, 제1 압력지령과 제2 압력지령 중에 작은 값을 최종 압력지령으로 선택하여 전자비례제어 밸브를 제어하도록 하여 전자유압펌프의 오버슈팅을 저감하도록 하는 것이다.

Description

유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템
본 발명은 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템에 관한 것으로, 더욱 상세하게는 액추에이터가 더 이상 작동할 수 없는 상태일 때에 유압시스템에서 전자유압펌프에 압력 지령을 제어하여 압력 오버슈팅을 방지할 수 있도록 하는 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템에 관한 것이다.
일반적으로 유압 시스템은 전자유압펌프에서 작동유를 토출하고, 작동유는 메인컨트롤 밸브에 입구에 대기한다. 메인 컨트롤 밸브의 내부에는 복수의 스풀이 구비되고, 외부에는 복수의 액추에이터가 연결된다. 또한 조이스틱, 페달 등의 유량 요구 유닛에서 파일럿 압력이 발생되고, 파일럿 압력은 메인컨트롤 밸브에 제공된다. 메인컨트롤 밸브는 파일럿 압력에 의해 특정한 스풀이 개폐되고, 해당 스풀의 개폐작동에 의해 작동유가 해당 스풀과 연계된 액추에이터에 제공된다.
즉, 조이스틱을 조작함으로써 전자유압펌프에서 토출된 작동유가 메인컨트롤밸브를 경유하여 액추에이터에 제공되고, 이로써 액추에이터가 작동하게 된다.
액추에이터는 실린더에 피스톤 로드가 구비된 구성이고, 피스톤 로드는 작동유의 압력에 의해 확장되거나 수축되는 방향으로 작동한다. 피스톤 로드가 더 이상 확장될 수 없는 끝 지점까지 도달하거나 외부의 큰 부하에 의해 더 이상 확장되거나 수축될 수 없는 상황에 도달하는 경우가 있다. 이와 같은, 피스톤 로드가 더 이상 작동할 수 없도록 물리적인 저항을 받는 상황은 스톨(stall)이라고 정의할 수 있다.
상술한 바와 같이 스톨이 발생할 때에 작업자가 의도하던 의도하지 않던 상관없이 조이스틱 또는 페달 등을 계속 조작하는 경우가 있다. 요구 유량이 계속 요구되는 상황이므로 전자유압펌프는 유량을 계속 토출하여 액추에이터에 제공할 것이고, 이로써 유압시스템에 내부에 유압 압력이 위험수준으로 높아질 우려가 있다.
상술한 위험을 대비하여 유압시스템에는 안전장치가 마련되어 있고, 안전장치의 예를 들면, 허용압력보다 높은 압력이 설정되면 개방되어 작동유를 배출시키도록 하는 가변 릴리프 밸브가 있다.
또한, 유압시스템 중에 센터 바이패스 라인이 차단된 메인 컨트롤 밸브와 압력 제어형 전자유압펌프를 구비한은 유압시스템이 있고, 이러한 유압시스템에서는 액추에이터가가 스톨 되면 전자유압펌프의 사판각을 최저로 내려 유량을 감소시키도록 하는 기술이 있다.
그러나 상술한 바와 같은 스톨 상황에서에 가변 릴리프 밸브를 개방하든지, 사판각을 최저로 조절하든지 유압이 안전한 압력으로 내려가 안정화되는 동안에도 전자유압펌프에서는 작동유는 토출이 진행되는 상황이고, 이때 토출되는 유량으로 인하여 압력 피크가 순간적으로 발생한다. 이러한 압력 피크는 유압 시스템의 내구성을 약화시키는 문제점이 있다.
이하, 첨부 도면 도 1을 참조하여 전자유압펌프가 구비된 유압시스템을 설명한다.
첨부도면 도 1은 압력제어형 전자유압펌프가 구비된 유압시스템을 설명하기 위한 도면이다.
도 1에 나타낸 바와 같이, 유압시스템은 조이스틱, 페달 등으로 구성되는 유량 요구 유닛(10)과, 작동유를 토출하는 전자유압펌프(50)와, 스풀의 개폐에 의해 상술한 작동유를 액추에이터(70)에 제공하도록 하는 메인컨트롤 밸브(60)를 포함하여 구성된다.
유량요구 유닛(10)은 작업자가 조이스틱 또는 페달을 조작하면 파일럿 압력이 생성되고, 파일럿 압력은 메인컨트롤 밸브(60)에 제공된다.
메인컨트롤밸브(60)는 내부에 복수의 스풀을 구비하고, 스풀은 상술한 파일럿 압력에 의해 작동되며, 스풀이 개방되면 작동유를 통과시키고, 스풀이 폐쇄되면 작동유의 흐름을 차단한다.
액추에이터(70)는 실린더에 피스톤 로드가 구비된 구성으로서 피스톤 헤드 쪽과 테일 쪽에는 상술한 메인컨트롤 밸브(60)와 연결되어 작동유를 제공받는다. 작동유가 제공되는 쪽과 배출되는 쪽에 따라서 피스톤 로드가 신장되거나 수축된다. 피스톤 로드가 더 이상 진행될 수 없는 경우에 스톨이 발생한다. 즉, 피스톤 로드가 더 이상 진행될 수 없는 경우에 액추에이터(70)는 스톨 되는 것이다.
전자유압펌프(50)는 유압이 형성된 작동유을 토출한다. 작동유의 유압은 사판 각도에 의해 결정될 수 있다. 예를 들면, 전자유압펌프(50)의 샤프트가 동일한 회전수를 회전한다고 가정할 때에 사판 각도가 눕혀지는 방향일수록 고압이 형성되고 유량이 증가되며, 사판 각도가 세워지는 방향일수록 저압이 형성되고 유량이 감소되는 것이다. 한편, 사판 각도가 변경될 때에는 물리적인 동특성이 존재하므로 소망하는 사판각을 설정할 때에는 시간이 소요된다.
전자유압펌프(50)는 펌프 레귤레이터(40)에 의해 사판각도가 조절되고, 펌프 레귤레이터(40)는 전자비례제어 밸브(30)에 의해 작동된다.
전자비례제어 밸브(30)는 압력지령에 의해 작동되는데, 압력지령은 펌프 제어부(20)로부터 받는다.
펌프 제어부(20)는 유량 요구 유닛(10)에서 형성된 파일럿 압력의 압력 값과 전자유압펌프(50)의 사판 각도 값을 입력받아 압력 지령을 연산한다.
펌프 제어부(20)에서 압력 지령은 전기신호로 전자비례제어 밸브(30)에 인가되고, 전자비례제어 밸브(30)는 펌프 레귤레이터(40)를 작동시키는 것이고, 펌프 레귤레이터(40)는 전자유압펌프(50)의 사판각도를 조절하여 요구유량에 대응하는 작동유 유량을 토출하게 된다.
한편, 유압시스템에는 허용 압력이 설정될 수 있고, 그러한 허용압력보다 높은 압력이 형성되는 경우에는 가변 릴리프 밸브(80)가 개방되어 작동유가 설정된 압력을 유지하도록 한다. 또한, 유압시스템에서 설정된 허용 압력은 가변될 수 있는 것으로 유압시스템의 용량에 따라 가변시켜 설정할 수 있다.
펌프 제어부(20)의 작동은 첨부도면 도 2를 참조하여 좀 더 상세하게 설명한다.
첨부도면 도 2는 종래의 유압시스템에서 압력제어형 전자유압펌프의 제어 로직을 설명하기 위한 도면이다.
펌프 제어부(20)는 유량 요구 유닛(10)에서 형성된 파일럿 압력의 압력 값과 전자유압펌프(50)의 사판 각도 값을 입력받아 압력 지령을 연산한다.
유량 요구 유닛(10)을 조작하면 파일럿 압력이 형성되고, 파일럿 압력의 압력 값은 요구 압력 값으로 이해할 수 있다.
요구 압력 값을 입력 받으면, 유량지령 발생부(21)에 설정된 비율로 유량지령이 발생한다. 유량지령 발생부(21)는 사전에 유압시스템 제조사에서 입력해 놓은 데이터일 수 있다. 즉 요구 압력 값에 상응하는 전류 신호가 발생하고, 그 전류신호가 유량지령이 되는 것이다.
전자유압펌프(50)의 사판각도 값을 알면 현재 토출 유량을 알 수 있다.
유량지령 연산부(23)에서 유량지령은 가산(+)하고, 토출유량은 감산(-)하면, 변위 유량(Delta Q)이 계산된다.
변위 유량(Delta Q)은 유량 제어부(24)에서 압력 지령으로 변환된다. 압력 지령은 상술한 바와 같이 전자비례제어 밸브(30)를 제어하는 것이다.
압력 지령이 바뀌면 그에 따른 압력이 바뀌는데, 이는 도 3을 참조하여 설명한다.
첨부도면 도 3은 종래의 압력제어형 전자유압펌프의 제어 로직에서 압력과 압력지령의 매핑 선도를 설명하기 위한 도면이다.
도 3에 나타낸 바와 같이, 압력지령 2차압(Px)이 변하면 작동유의 압력은 변위 압력(Delta P)만큼 변하게 된다.
즉, 전자비례제어 밸브(30)에서 압력 지령이 변하면, 펌프 레귤레이터(40)의 에 전달되는 압력은 전자비레제어 밸브(30)의 압력 지령에 추종하여 변하게 된다. 이때 물리적인 동특성이 존재하므로 전자비례제어 밸브(30)가 작동하고 실제로 펌프 레귤레이터(40)의 압력이 추종하여 변화될 때까지는 시간차이가 발생한다.
상술한 시간차이로 인하여 유량변화가 지연되어 변화되는데 스톨 되는 상황에서는 비정상적인 피크(P)가 발생하고, 이는 첨부도면 도 4를 참조하여 설명한다.
첨부도면 도 4는 종래의 압력제어형 전자유압펌프에 의해 토출 유량에서 피크가 발생하는 예를 설명하기 위한 시간변화에 따른 유량 변화 선도이다.
도 4에 나타낸 바와 같이, 유량 요구 유닛(10)의 조이스틱을 조작하면, 조이스틱 조작 시점(t0)부터 요구 유량과 요구 유압이 증가된다. 이때 펌프 압력 지령도 증가되어 전자유압펌프(50)의 작동유 토출 유량이 증가한다.
조이스틱을 계속하여 조작한 상태를 유지하면 액추에이터(70)는 확장되거나 수축되는 작동을 수행한다.
어느 순간에 액추에이터(70)에 스톨이 발생하는 시점(t1)에 도달하면 액추에이터(70)의 피스톤 로드는 더 이상 이동되지 못하고, 이때부터는 액추에이터(70)에서는 작동유를 더 이상 받아들이지 않으므로 유압시스템의 작동유에는 압력 상승한다.
또한, 스톨이 발생하는 시점(t1)에서부터는 유량의 변화가 변위 유량(delta Q)으로 발생한다.
압력이 상승하면 펌프 압력 지령(pump pressure command)에서는 전자비례제어 밸브(30)의 압력 지령은 a의 기울기로 사판각이 최저로 이동 완료되는 시점(t2)까지 상승한다. 아울러 펌프 레귤레이터(40)에서 압력은 a의 기울기보다 큰 b1의 기울기로 급격하게 상승하여 피크(p)를 이루고 이후 b2 기울기로 하강하여 전자비례제어 밸브(30)의 압력을 추종하게 된다.
즉, 스톨 상황에서 전자유압펌프(50)에서 실질적으로 토출되는 작동유의 유량은 도 4에서 c영역으로 표시한 면적만큼 오버되어 토출되는 것이다. 이렇게 오버 슈팅(overshooting)된 작동유는 유압시스템의 내구성을 저하시키는 문제점이 있다.
따라서 본 발명이 이루고자 하는 기술적 과제는 액추에이터에서 작동유를 받아들이지 않는 스톨(stall) 상황이 발생할 때, 좀 더 신속하게 전자유압펌프에서 토출 유량을 감소시켜 유압시스템을 안정화시키도록 하는 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템을 제공하는데 그 목적이 있다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제는 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템은, 요구 압력에 상응하는 유량지령을 가산(+)하고, 전자유압펌프(50)에서 토출되는 토출유량을 감산(-)하여 변위 유량(Delta Q)을 연산하는 유량지령 연산부(23); 상기 변위 유량(Delta Q)에 상응하는 제1 압력 지령을 생성하는 유량 제어부(24); 상기 유량지령의 제1변화율과 상기 토출유량의 제2변화율에 근거하여 스톨(stall)을 판단하는 스톨 판단부(114); 상기 토출유량에 상응하는 작동유 압력 값을 생성하는 유량압력 생성부(115); 상기 작동유 압력 값의 증가 기울기를 제한하도록 제한압력지령을 발생시키는 기울기 제한부(116); 상기 스톨 판단부(114)에서 스톨로 판단되면 상기 제한압력지령을 제2 압력 지령으로 설정하는 선택부(117); 및 상기 제1 압력지령과 상기 제2 압력지령 중에 작은 값을 최종 압력지령으로 선택하여 전자비례제어 밸브(30)를 제어하도록 하는 최소 압력 설정부(120);를 포함한다.
본 발명에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템의 상기 스톨 판단부(114)는, 상기 제1변화율보다 제2변화율이 더 크게 변할 때에 스톨로 판단하는 것일 수 있다.
본 발명에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템의 상기 제한압력지령은, 스톨이 판단되는 시점(t4)의 이전의 제1 압력지령 기울기(a1)보다 스톨이 판단되는 시점(t4)의 이후의 제2 압력지령 기울기(a2)가 작은 것일 수 있다.
본 발명에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템의 상기 선택부(117)는, 상기 스톨 판단부(114)에서 스톨 해제로 판단되면 시스템 압력지령을 상기 제2 압력지령으로 설정하는 것일 수 있다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
상기한 바와 같이 이루어진 본 발명에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템은, 스톨 상황이 발생하면 전자유압펌프를 제어하도록 하는 압력지령을 좀 더 신속하게 가변시켜 전자유압펌프에서 사판각을 좀 더 신속하게 이동시킬 수 있도록 하고, 이로써 전자유압펌프에서 오버슈팅 되는 작동유 유량을 현저하게 감소시킬 수 있다. 즉 오버슈팅 작동유를 감소시킴으로써 유압시스템의 내구성을 향상시킬 수 있다.
도 1은 압력제어형 전자유압펌프가 구비된 유압시스템을 설명하기 위한 도면이다.
도 2는 종래의 유압시스템에서 압력제어형 전자유압펌프의 제어 로직을 설명하기 위한 도면이다.
도 3은 종래의 압력제어형 전자유압펌프의 제어 로직에서 압력과 압력지령의 매핑 선도를 설명하기 위한 도면이다.
도 4는 종래의 압력제어형 전자유압펌프에 의해 토출 유량에서 피크가 발생하는 예를 설명하기 위한 시간변화에 따른 유량 변화 선도이다.
도 5는 본 발명의 일 실시예에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템에서 압력제어형 전자유압펌프의 제어 로직을 설명하기 위한 도면이다.
도 6는 본 발명의 일 실시예에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템에서 최대 압력 제한부 로직을 설명하기 위한 도면이다.
도 7는 본 발명의 일 실시예에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템에서 토출 유량에서 피크를 방지하는 예를 설명하기 위한 시간변화에 따른 유량 변화 선도이다.
[부호의 설명]
10: 유량 요구 유닛 20, 100: 펌프 제어부
21: 유량지령 발생부 22: 토출유량 연산부
23: 유량 지령 연산부 24: 유량 제어부
30: 전자비례제어 밸브 40: 펌프 레귤레이터
50: 전자유압펌프 60: 메인컨트롤 밸브
70: 액추에이터 80: 가변 릴리프 밸브
110: 최대 압력 제한부 111: 유량 연산부
112, 113: 제1, 제2 유량 변화 연산부 114: 스톨 판단부
115: 유량압력 설정부 116: 기울기 제한부
117: 유량 선택부 120: 최소 압력 설정부
t0: 조이스틱 조작 시점
t0 ~ t1: 액추에이터 작동(이동)구간
t1: 스톨(stall)되는 시점
t2: 종래 기술에서 펌프 사판각이 최저로 이동 완료된 시점
t3: 펌프 사판각이 최저로 이동 완료된 시점
t4: 스톨이 판단된 시점
a1, a2: 제1, 제2 압력지령 기울기
b1, b2: 제1, 제2 실제압력 선도
c: 토출 유량
p: 피크 포인트
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭하고, 종래의 기술과 동일한 구성요소에 대하여 동일한 부호를 부여하고 그에 따른 상세한 설명은 생략한다.
한편, 후술되는 용어들은 본 발명에서의 기능을 고려하여 설정된 용어들로서 이는 생산자의 의도 또는 관례에 따라 달라질 수 있으므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명의 명세서에서 스톨(stall)은 액추에이터(70)에 피스톤 로드가 신장 또는 수축될 때에 피스톤 로드가 끝 지점(end point)에 도달하거나, 피스톤 로드가 외부의 부하에 의해 더 이상 이동할 수 없을 때 액추에이터(70)가 멈추는 현상을 의미한다.
또한, 본 발명의 명세서에서 오버슈팅(overshooting)은 전자비례제어 밸브(30)에서 내려지는 압력 지령에 펌프 레귤레이터(40)가 반응할 때에 동특성에 의해 물리적으로 지연되는 시간동안 전자유압펌프(50)에서 작동유가 토출되는 것을 의미한다.
이하, 도 1 및 도 5를 참조하여 본 발명의 일 실시예에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템과 압력제어형 전자유압펌프의 제어 로직을 설명한다.
첨부도면 도 1은 압력제어형 전자유압펌프가 구비된 유압시스템을 설명하기 위한 도면이다. 첨부도면 도 5는 본 발명의 일 실시예에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템에서 압력제어형 전자유압펌프의 제어 로직을 설명하기 위한 도면이다.
도 5에 나타낸 바와 같이, 펌프 제어부(100)는 전자유압펌프의 제어로직에 의해 작동된다.
펌프 제어부(100)는 요구되고 있는 요구 유량과 전자유압펌프(50)에서 토출하고 있는 유량을 가감 계산하여 요구되는 유량에 적합하도록 전자유압펌프(50)를 제어하는 것이다.
상술한 요구 유량은 유량 요구 유닛(10)의 조작에 의해 발생하는 것이다. 좀 더 상세하게는 유량 요구 유닛(10)을 조작하면 요구 압력이 생성되고, 요구 압력은 유량지령 발생부(21)에서 설정된 비율로 요구 유량이 결정된다. 요구 유량은 요구 유량 지령으로서 유량제어부(24)를 제어하도록 한 것이다. 유량제어부(24)는 유량 제어에 해당하는 압력 지령으로 전환되어 전자비례제어 밸브(30)를 제어하게 된다.
상술한 전자유압펌프(50)는 사판 각도의 값을 출력할 수 있고, 사판 각도 값은 토출유량 연산부(22)에 제공되어 전자유압펌프(50)에서 현재 토출하는 유량을 계산할 수 있는 것이다.
유량지령 연산부(23)는 상술한 유량지령과 토출유량 정보가 입력받는다. 유량지령 연산부(23)에서 요구 지령은 가산(+)하고, 토출유량은 감산(-)하면, 어느 정도로 유량이 변하게 되어야 할지의 변위 유량(Delta Q)이 계산된다.
변위 유량(Delta Q)은 유량 제어부(24)에서 압력 지령으로 변환된다. 압력 지령은 상술한 바와 같이 전자비례제어 밸브(30)를 제어하는 것이다.
본 발명의 일실시예에 따른 유압시스템은 유량제어부(24)와 전자비례제어 밸브(30)의 사이에 최소압력 설정부(120)를 더 포함한다.
또한, 최소 압력 설정부(120)는 최대 압력 제한부(110)로부터 압력 지령을 받는다.
즉, 최소 압력 설정부(120)는 유량제어부(24)로부터 입력되는 제1압력지령과 상술한 최대 압력 제한부(110)로부터 입력되는 제2 압력지령 중에 작은 압력 지령을 선택하여 전자비례제어 밸브(30)을 제어하도록 한다.
상술한 최대압력제한부(110)는 도 6을 참조하여 설명한다.
첨부도면 도 6는 본 발명의 일 실시예에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템에서 최대 압력 제한부 로직을 설명하기 위한 도면이다.
도 6에 나타낸 바와 같이, 최대 압력 제한부(110)는 펌프 토출 유량과 유량 지령을 입력받아서 제2 압력 지령을 생성한다.
제2 압력 지령은 현재 토출 유량에 따라 최대 압력을 설정하도록 하는 기울기 제한(116)의 맵(map)을 따라 상승 펌프 압력 지령의 기울기를 제한하여 생성된다.
이에 대하여 부연 설명하면 다음과 같다.
유량 연산부(111)에서 유량 지령과 펌프 토출 유량 값을 입력받아 가감하여 요구 유량을 연산한다. 요구 유량은 유량 요구 유닛(10)의 조작량에 따라 변화될 것이고, 변화정도가 급격하게 변하는지, 완만하게 변하는지의 현상이 있으며, 이러한 변화정도는 제1 유량 변화 연산부(112)에서 연산되어 요구 유량 변화율을 연산한다.
또한, 제2 유량 변화 연산부(113)에서는 펌프 토출 유량의 값을 입력받아 전자유압펌프(50)에서 실제로 토출되고 있는 토출유량의 제2변화율을 연산한다.
스톨 판단부(114)에서는 상술한 유량지령의 제1변화율과 토출유량의 제2변화율을 비교하여 액추에이터(70)에서 스톨이 발생하였는지를 판단한다. 즉, 제1변화율에 비교하여 제2변화율이 더 크면 스톨 상황으로 판단하는 것이다.
스톨 상태에 대하여 부연 설명한다. 스톨상태는 운전자가 조이스틱을 조작하고 있음에도 액추에이터(70)의 피스톤 로드가 움직이지 않고 있는 상태이므로, 유량지령은 존재하지만 액추에이터(70)에서 작동유의 유량을 받아들이지 않는 것으로써 유압시스템의 유로가 막혀 전자유압펌프(50)의 사판 각도가 빠르게 감소하는 상태가 된다. 즉, 유량 지령과 펌프 토출 유량의 차이에 대한 변화 값이 설정 값보다 크고, 전자유압펌프(50)의 토출 유량의 변화 값이 설정 값보다 작을 때를 스톨 상태라고 판단하는 것이다.
또한, 펌프 토출 유량 값은 유량압력 생성부(115)에 의해 현재 펌프 토출 유량에 해당하는 작동유 압력 값이 설정된다. 상술한 작동유 압력 값은 기울기 제한부(116)에서 설정된 기울기 값으로 증가된다.
한편, 선택부(117)는 상술한 기울기 값에서 설정되는 제한압력 지령과 유압시스템에서 설정된 시스템압력 지령을 입력받고, 상술한 스톨 판단부(114)에서 스톨이라고 판단하였을 때에는 제한압력 지령을 출력하고, 스톨이 아닌 경우에는 시스템 압력지령을 출력한다.
즉, 스톨 상황이 해제되면 선택부(117)에서 제한압력 지령의 선택이 해제되어 시스템압력 지령이 출력되는 것이다.
상술한 선택부(117)에서 출력되는 압력지령은 상술한 제2 압력 지령으로 설정된다.
이후, 최소 압력 설정부(120)에서는 유량제어부(24)로부터 제공되는 제1 압력 지령과 상술한 선택부(117)로부터 제공되는 제2 압력 지령 중에 작은 압력 지령을 최종적으로 출력한다.
이로써, 스톨 상태에서는 제한된 기울기를 가지는 압력 지령을 압력전자비례제어 밸브(30)에 제공함으로써 전자유압펌프(50)에서 작동유를 토출하는 유량을 좀 더 신속하게 감소시킬 수 있게 되어, 작동유가 오버슈팅 되는 문제를 해소할 수 있게 된다.
본 발명의 일실시예에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템에 의하여 작동유의 토출 피크가 감소되는 작용을 도 7을 참조하여 설명한다.
첨부도면 도 7는 본 발명의 일 실시예에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템에서 토출 유량에서 피크를 방지하는 예를 설명하기 위한 시간변화에 따른 유량 변화 선도이다.
도 7에 나타낸 바와 같이, 유량 요구 유닛(10)의 조이스틱을 조작하면, 조이스틱 조작 시점(t0)부터 요구 유량과 요구 유압이 증가된다. 이때 펌프 압력 지령도 증가되어 전자유압펌프(50)의 작동유 토출 유량이 증가한다.
조이스틱을 계속하여 조작한 상태를 유지하면 액추에이터(70)는 확장되거나 수축되는 작동을 수행한다.
어느 순간에 액추에이터(70)에 스톨이 발생하는 시점(t1)에 도달하면 액추에이터(70)의 피스톤 로드는 더 이상 이동되지 못하고, 이때부터는 액추에이터(70)에서는 작동유를 더 이상 받아들이지 않으므로 유압시스템의 작동유에는 압력 상승한다.
또한, 스톨이 발생하는 시점(t1)에서부터는 유량의 변화가 변위 유량(delta Q)으로 발생한다.
압력이 상승하면 펌프 압력 지령(pump pressure command)에서는 전자비례제어 밸브(30)의 압력 지령은 변화하게 된다. 초기의 압력지령은 제1 압력 지령에 해당하는 제1 압력지령 기울기(a1)로 사판각이 변화되고, 스톨 판단부(114)에서 스톨이라고 판단되는 시점(t4)부터 제2 압력 지령에 해당하는 제2 압력지령 기울기(a2)의 사판각이 변화된다.
상술한 바와 같이 제1 압력 지령에 비교하여 제2 압력 지령은 제한된 기울기 를 가짐으로써 제1 압력지령 기울기(a1)에 비교하여 제2 압력지령 기울기(a2)가 낮게 형성된다.
한편, 제1 압력지령에서 제2 압력지령으로 변화될 때에, 전자유압펌프(50)는 압력 지령을 추종하므로 스톨 되는 시점(t1)에서 초기의 제1 실제압력 선도(b1)는 제1 압력지령 기울기(a1)를 추종하다가 제2 압력지령 기울기(a2)로 변화된 직후에 제2 실제압력 선도(b2)로 감소된 후에 안정화된다.
즉, 본 발명의 일실시예에 따른 압력 오버슈팅 방지 시스템은 압력지령을 좀 더 일찍 감소시킴으로써 유량 피크(p)를 현저하게 낮출 수 있게 된다.
이로써 전자유압펌프(50)의 사판각도를 최저로 이동완료 되는 시점(t3)을 앞당길 수 있고, 스톨 상황이 발생하여 사판각도를 최저로 이동하는 동안에 토출되는 유량(c)을 감소시킬 수 있는 것이다.
따라서 본 발명의 일실시예에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템은, 최대 압력 제한부(110)와 유량 제어부(24)의 출력 값 중에 작은 값을 압력 지령으로 최종 출력함으로써 스톨 상태에서 압력 피크를 줄일 수 있는 것이다.
상술한 바와 같이, 본 발명의 일실시예에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템은, 스톨 상황이 발생하면 전자유압펌프(50)를 제어하도록 하는 압력지령을 좀 더 신속하게 가변시켜 전자유압펌프(50)에서 사판각을 좀 더 신속하게 이동시킬 수 있도록 하고, 이로써 전자유압펌프(50)에서 오버슈팅 되는 작동유 유량(c)을 현저하게 감소시킬 수 있다. 즉 오버슈팅 작동유를 감소시킴으로써 유압시스템의 내구성을 향상시킬 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명에 따른 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템은 액추에이터가 작동할 수 없는 스톨 상황이 발생하였을 때에 전자유압펌프의 토출유량을 신속하게 감소시키도록 하여 유압시스템의 내구성을 향상시키도록 하는 데에 이용될 수 있다.

Claims (4)

  1. 요구 압력에 상응하는 유량지령을 가산(+)하고, 전자유압펌프(50)에서 토출되는 토출유량을 감산(-)하여 변위 유량(Delta Q)을 연산하는 유량지령 연산부(23);
    상기 변위 유량(Delta Q)에 상응하는 제1 압력 지령을 생성하는 유량 제어부(24);
    상기 유량지령의 제1변화율과 상기 토출유량의 제2변화율에 근거하여 스톨(stall)을 판단하는 스톨 판단부(114);
    상기 토출유량에 상응하는 작동유 압력 값을 생성하는 유량압력 생성부(115);
    상기 작동유 압력 값의 증가 기울기를 제한하도록 제한압력지령을 발생시키는 기울기 제한부(116);
    상기 스톨 판단부(114)에서 스톨로 판단되면 상기 제한압력지령을 제2 압력 지령으로 설정하는 선택부(117); 및
    상기 제1 압력지령과 상기 제2 압력지령 중에 작은 값을 최종 압력지령으로 선택하여 전자비례제어 밸브(30)를 제어하도록 하는 최소 압력 설정부(120);
    를 포함하는 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템.
  2. 제 1항에 있어서,
    상기 스톨 판단부(114)는, 상기 제1변화율보다 제2변화율이 더 크게 변할 때에 스톨로 판단하는 것을 특징으로 하는 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템.
  3. 제 1항에 있어서,
    상기 제한압력지령은,
    스톨이 판단되는 시점(t4)의 이전의 제1 압력지령 기울기(a1)보다 스톨이 판단되는 시점(t4)의 이후의 제2 압력지령 기울기(a2)가 작은 것을 특징으로 하는 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템.
  4. 제 1항에 있어서,
    상기 선택부(117)는,
    상기 스톨 판단부(114)에서 스톨 해제로 판단되면 시스템 압력지령을 상기 제2 압력지령으로 설정하는 것을 특징으로 하는 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템.
PCT/KR2012/011352 2011-12-27 2012-12-24 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템 WO2013100509A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014549980A JP5890040B2 (ja) 2011-12-27 2012-12-24 油圧システムにおける電子油圧ポンプの圧力オーバーシュート防止システム
BR112014016103-8A BR112014016103B1 (pt) 2011-12-27 2012-12-24 Sistema de prevenção de sobrepressâo para uma bomba hidráulica eletrônica em um ststema hidráulico
EP12862265.1A EP2801724B1 (en) 2011-12-27 2012-12-24 Pressure overshooting prevention system for electronic hydraulic pump in hydraulic system
CN201280064940.6A CN104011391B (zh) 2011-12-27 2012-12-24 液压系统的电子液压泵的压力过剩防止系统
US14/368,430 US20150017029A1 (en) 2011-12-27 2012-12-24 Pressure overshooting prevention system for electronic hydraulic pump in hydraulic system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0142928 2011-12-27
KR20110142928 2011-12-27
KR1020120147434A KR101958489B1 (ko) 2011-12-27 2012-12-17 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템
KR10-2012-0147434 2012-12-17

Publications (1)

Publication Number Publication Date
WO2013100509A1 true WO2013100509A1 (ko) 2013-07-04

Family

ID=48989491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011352 WO2013100509A1 (ko) 2011-12-27 2012-12-24 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템

Country Status (7)

Country Link
US (1) US20150017029A1 (ko)
EP (1) EP2801724B1 (ko)
JP (1) JP5890040B2 (ko)
KR (1) KR101958489B1 (ko)
CN (1) CN104011391B (ko)
BR (1) BR112014016103B1 (ko)
WO (1) WO2013100509A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644027B2 (en) * 2014-03-20 2023-05-09 Danfoss Power Solutions Inc. Electronic torque and pressure control for load sensing pumps

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195164A (ja) * 2000-12-27 2002-07-10 Tokimec Inc 吐出流量制御装置
JP2005265002A (ja) * 2004-03-17 2005-09-29 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御回路
JP2009144505A (ja) * 2007-12-17 2009-07-02 Volvo Construction Equipment Ab 小旋回式掘削機のブーム衝撃緩和装置及びその制御方法
KR20100072482A (ko) * 2008-12-22 2010-07-01 두산인프라코어 주식회사 중장비에 이용되는 유압 펌프의 유량 제어 장치
KR20110073082A (ko) * 2009-12-23 2011-06-29 두산인프라코어 주식회사 건설기계의 유압펌프 제어장치 및 제어방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886422A (en) * 1987-07-09 1989-12-12 Tokyo Keiki Company Ltd. Control apparatus of variable delivery pump
JPH01110884A (ja) * 1987-07-09 1989-04-27 Tokyo Keiki Co Ltd 可変吐出量ポンプの流量圧力制御装置
JPH0599121A (ja) * 1991-10-09 1993-04-20 Tokimec Inc 可変容量形油圧ポンプによる流量・圧力制御装置
MX9300781A (es) * 1992-02-13 1993-09-30 Johnson Service Co Posicionador piloto electronico.
US5758499A (en) * 1995-03-03 1998-06-02 Hitachi Construction Machinery Co., Ltd. Hydraulic control system
JP3926892B2 (ja) * 1997-07-29 2007-06-06 日立建機株式会社 油圧ポンプのカットオフ装置
JP4434159B2 (ja) * 2006-03-02 2010-03-17 コベルコ建機株式会社 作業機械の油圧制御装置
JP2008222353A (ja) * 2007-03-12 2008-09-25 Mitsubishi Electric Corp エレベータドアの安全装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195164A (ja) * 2000-12-27 2002-07-10 Tokimec Inc 吐出流量制御装置
JP2005265002A (ja) * 2004-03-17 2005-09-29 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御回路
JP2009144505A (ja) * 2007-12-17 2009-07-02 Volvo Construction Equipment Ab 小旋回式掘削機のブーム衝撃緩和装置及びその制御方法
KR20100072482A (ko) * 2008-12-22 2010-07-01 두산인프라코어 주식회사 중장비에 이용되는 유압 펌프의 유량 제어 장치
KR20110073082A (ko) * 2009-12-23 2011-06-29 두산인프라코어 주식회사 건설기계의 유압펌프 제어장치 및 제어방법

Also Published As

Publication number Publication date
EP2801724A4 (en) 2015-12-02
JP5890040B2 (ja) 2016-03-22
KR101958489B1 (ko) 2019-03-14
KR20130075659A (ko) 2013-07-05
BR112014016103A8 (pt) 2017-07-04
EP2801724B1 (en) 2017-03-01
US20150017029A1 (en) 2015-01-15
BR112014016103B1 (pt) 2021-04-27
CN104011391B (zh) 2016-02-03
EP2801724A1 (en) 2014-11-12
BR112014016103A2 (pt) 2017-06-13
JP2015507717A (ja) 2015-03-12
CN104011391A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
WO2018190615A1 (ko) 건설 기계의 유압 시스템
WO2014148855A1 (ko) 건설기계 유압시스템의 제어방법
WO2011078578A2 (ko) 건설기계의 동력제어장치 및 동력제어방법
WO2013022132A1 (ko) 건설기계의 압력 제어시스템
WO2018048291A1 (ko) 건설기계의 제어 시스템 및 건설기계의 제어 방법
WO2014112668A1 (ko) 건설기계의 유량 제어장치 및 제어방법
WO2014157988A1 (ko) 건설기계 유압펌프 제어 장치 및 방법
WO2014163362A1 (ko) 건설기계의 스풀 변위 가변 제어장치 및 제어방법
WO2013022131A1 (ko) 건설기계의 유압 제어시스템
WO2014157902A1 (ko) 건설기계의 유압시스템 및 제어방법
WO2013062156A1 (ko) 액츄에이터 충격 감소시스템이 구비된 하이브리드 굴삭기
WO2016072535A1 (ko) 건설기계용 주행직진장치 및 그 제어방법
WO2018117626A1 (ko) 건설 기계
WO2016043365A1 (ko) 건설기계용 유압회로
WO2012096526A2 (ko) 휠로더의 유압 펌프 제어 방법
KR20090113872A (ko) 유압 작업 기계의 안전 장치
WO2014148808A1 (ko) 건설기계 유압시스템 및 이의 제어방법
WO2011145892A2 (ko) 중장비 작업기의 상승속도 제어장치
WO2010140815A2 (ko) 건설기계의 선회제어장치 및 선회제어방법
WO2014069702A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
WO2013100509A1 (ko) 유압시스템의 전자유압펌프의 압력 오버슈팅 방지 시스템
WO2018044099A1 (ko) 건설기계의 제어 시스템 및 건설기계의 제어 방법
WO2015099440A1 (ko) 건설기계의 메인컨트롤밸브의 제어 방법 및 제어 장치
WO2016200123A1 (ko) 건설기계의 제어장치 및 제어방법
WO2016204309A1 (ko) 건설기계용 아암 재생장치 및 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14368430

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014549980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012862265

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012862265

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014016103

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014016103

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140627