WO2013100001A1 - All-solid cell and method for manufacturing same - Google Patents

All-solid cell and method for manufacturing same Download PDF

Info

Publication number
WO2013100001A1
WO2013100001A1 PCT/JP2012/083768 JP2012083768W WO2013100001A1 WO 2013100001 A1 WO2013100001 A1 WO 2013100001A1 JP 2012083768 W JP2012083768 W JP 2012083768W WO 2013100001 A1 WO2013100001 A1 WO 2013100001A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
battery
resin
solid
electrode layer
Prior art date
Application number
PCT/JP2012/083768
Other languages
French (fr)
Japanese (ja)
Inventor
倍太 尾内
充 吉岡
剛司 林
彰佑 伊藤
武郎 石倉
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2013100001A1 publication Critical patent/WO2013100001A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid battery and a method for manufacturing the same.
  • the battery having the above configuration has a risk of leakage of the electrolyte.
  • the organic solvent etc. which are used for electrolyte solution are combustible substances. For this reason, it is required to further increase the safety of the battery.
  • Patent Document 1 discloses a configuration of an all-solid battery, and the all-solid battery includes a power generation element including a positive electrode layer, a solid electrolyte layer, and a negative electrode layer. And a current collector, and an exterior body that covers the periphery of the single battery.
  • Patent Document 1 describes that an insulating material such as an epoxy resin or a polybutadiene resin can be used as a material of the exterior body.
  • Patent Document 2 discloses the configuration of an all-solid battery, and this all-solid battery is formed on a substrate and the substrate by sputtering or the like.
  • a single battery (battery body) composed of a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, a negative electrode current collector layer and a protective layer, and a plurality of single cells are stacked, It is provided with a sealing material made of an insulating material such as glass or ceramics.
  • Patent Document 1 or Patent Document 2 even if the battery body of an all-solid-state battery is sealed with an exterior body or a sealing material made of an insulating material, moisture in the atmosphere can be blocked. Inability to do so causes problems such as deterioration of battery characteristics of all solid state batteries. In particular, when the battery body is composed of a sulfide or a fired body, the sulfide or the fired body reacts with moisture in the atmosphere, and the battery characteristics of the all-solid battery are deteriorated.
  • the battery body when the battery body is composed of a fired body, the fired body has high hardness, but has low toughness and is brittle. Therefore, if the fired body is cracked by vibration or impact, the battery of an all-solid battery is used. There are problems such as significant loss of properties.
  • an object of the present invention is to provide an all-solid battery capable of preventing moisture in the atmosphere from entering the battery body and reinforcing the mechanical strength of the battery body, and a method for manufacturing the same. It is to be.
  • an intervening layer is provided between the battery element body and the insulating layer, thereby preventing moisture in the atmosphere from entering the battery element body. It has been found that the mechanical strength of the battery body can be reinforced. Based on such knowledge of the inventors, the present invention has the following features.
  • An all-solid battery according to the present invention includes a battery element including at least one of a positive electrode layer or a negative electrode layer and a solid electrolyte layer, an insulating layer covering the battery element and including a resin, a battery An intervening layer interposed between the element body and the insulating layer and in contact with both the battery element body and the insulating layer is provided.
  • the intervening layer includes a component constituting the battery element body and a resin component constituting the insulating layer.
  • the battery body preferably includes a current collector layer.
  • the battery body is composed of a fired body.
  • the intervening layer includes a fired body and a resin component present in the voids of the fired body.
  • the resin includes at least one selected from the group consisting of a thermosetting resin, a thermoplastic resin, and a photocurable resin.
  • the all solid state battery of the present invention further includes an exterior member that covers the insulating layer.
  • the manufacturing method of an all-solid battery according to one aspect of the present invention includes the following steps.
  • the manufacturing method of an all-solid battery according to another aspect of the present invention includes the following steps.
  • the present invention it is possible to prevent moisture in the atmosphere from entering the battery element body and to reinforce the mechanical strength of the battery element body, thereby improving cycle characteristics.
  • FIG. 1 is a perspective view schematically showing a battery body of an all solid state battery as one embodiment of the present invention. It is a top view which shows typically an all-solid-state battery as one embodiment of this invention. It is a photograph which shows the torn surface of the resin coating body in the all-solid-state battery produced in the Example of this invention. It is a scanning electron microscope (SEM) photograph which shows the area
  • SEM scanning electron microscope
  • a plurality of unit cell structures 5 each including a positive electrode layer 2, a solid electrolyte layer 3, and a negative electrode layer 4 are provided.
  • two are connected in series via the current collector layer 6.
  • the current collector layer 6 disposed inside the laminate 1 of the all-solid battery is provided between the positive electrode layer 2 and the negative electrode layer 4.
  • the structure of the laminated body may be a single battery structure including a pair of positive electrode layer and negative electrode layer, or may be a structure in which a plurality of single battery structures are connected in series as described above.
  • a structure in which battery structures are connected in parallel and stacked may be used, or a structure in which a plurality of unit cell structures are connected in combination of series and parallel may be used.
  • the battery body to be described later includes at least one electrode layer of the positive electrode layer 2 or the negative electrode layer 4 and the solid electrolyte layer 3, and may include the current collector layer 6.
  • Each of the positive electrode layer 2 and the negative electrode layer 4 includes a solid electrolyte and an electrode active material, and the solid electrolyte layer 3 includes a solid electrolyte.
  • Each of the positive electrode layer 2 and the negative electrode layer 4 may contain carbon, a metal, etc. as an electron conductive material.
  • the laminate 1 (the positive electrode layer 2, the solid electrolyte layer 3, the negative electrode layer 4, and the current collector layer 6) is configured in the form of a compression molded body (sulfide or the like), a fired body (oxide or the like), or a thin film.
  • the positive electrode layer 2, the solid electrolyte layer 3, the negative electrode layer 4, and the current collector layer 6 may be integrally fired, or the positive electrode layer 2,
  • the solid electrolyte layer 3, the negative electrode layer 4, and the current collector layer 6 may be separately fired and the fired layers may be laminated.
  • terminal layers 22 are formed on both sides of the battery body 11 as necessary.
  • the battery body 11 is composed of, for example, the laminate 1 shown in FIG.
  • the terminal layer 22 is provided with positive and negative terminals 23.
  • An insulating layer 32 containing a resin is formed outside the battery element 21. Thereby, the insulating layer 32 containing resin is formed so as to cover the battery body 11.
  • An intervening layer (not shown) is formed between the battery body 11 and the insulating layer 32.
  • the intervening layer includes a component constituting the battery body 11 and a resin component constituting the insulating layer 32. In this way, the resin coating 31 of the battery body 11 is formed.
  • the battery body 11 When the battery body 11 is configured in the form of a compression molded body (sulfide or the like), a component such as sulfide and a resin component react to form an intervening layer. Thus, by forming the intervening layer from the reactant, the mechanical strength of the battery body 11 can be effectively reinforced, and as a result, the strength of the all-solid battery can be improved.
  • the battery body 11 is configured in the form of a fired body (oxide or the like), the above-described effects can be obtained even when the intervening layer is formed from a mixture of a component such as an oxide and a resin component. Can do.
  • the low toughness of the fired body is reinforced by a resin having higher toughness than the fired body, and furthermore, firing with low toughness that constitutes the battery body 11, which is originally a substance that is difficult to bond.
  • the strength of the resin can be effectively reinforced to the fired body. Because.
  • a stable capacity can be charged or discharged by suppressing cracking of the fired body due to vibration or impact.
  • the electrode active material contained in the fired body expands or contracts with charge or discharge, and the expansion and contraction are repeated, whereby the fired body is cracked or fine cracks are generated inside the fired body.
  • the electron conduction path or ion conduction path essential for charging or discharging is destroyed, and the capacity is reduced. It is estimated that such a decrease in capacity can be suppressed by improving the mechanical strength of the all-solid-state battery.
  • the intervening layer is preferably formed from the fired body and a resin component present in the voids of the fired body.
  • the intervening layer is preferably formed from the fired body and a resin component present in the voids of the fired body.
  • the thickness of the insulating layer 32 is not particularly limited, but is preferably 5 ⁇ m or more, and more preferably 20 ⁇ m or more in order to ensure the mechanical strength of the insulating layer 32. If the insulating layer 32 becomes too thick, the volume energy density of the all-solid-state battery decreases, so 20 to 100 ⁇ m is most preferable.
  • the thickness of the intervening layer is not particularly limited, but if the intervening layer is too thin, it is difficult to obtain an effect of closely bonding the fired body and the insulating layer 32. Therefore, the thickness of the intervening layer is preferably 1 ⁇ m or more. More preferably. Further, when the fired body is thin, the resin exists in a wide range from the surface of the fired body to the center, or the fired body itself may be an intervening layer, but even in this case, the above-described effects can be obtained. .
  • the porosity of the surface of the fired body is not particularly limited, but is preferably 5% or more in order for the intervening layer to be formed from the fired body and the resin component present in the voids of the fired body, % Or more is more preferable.
  • thermosetting resin one kind selected from a thermosetting resin, a thermoplastic resin, and a photocurable resin, or a mixture containing two or more kinds
  • the type of the resin is not particularly limited, and can be appropriately selected from the viewpoints of insulation, adhesion to the fired body, and potential window width (or difficulty in oxidation / reduction).
  • thermosetting resin is not particularly limited, but epoxy resin, phenol resin, urea resin (urea resin), melamine resin, unsaturated polyester resin, polyimide resin, diallyl phthalate resin, silicon resin, polyaminobismaleimide resin, casein resin , A furan resin, a polyurethane resin, and a mixture containing at least one selected from alkyd resins or two or more thereof can be used.
  • thermoplastic resin is not particularly limited, but polyethylene resin, polystyrene resin, polypropylene resin, polyphenylene sulfide resin, polyparaxylylene resin, liquid crystal polymer, vinyl chloride resin, polyvinyl alcohol resin, polymethyl methacrylate (methacrylic resin), Polyphenylene oxide resin, polyurethane resin, ionomer resin, polyacetal resin (polyoxymethylene), polyamide resin, vinylidene chloride resin, polyethylene terephthalate, polyether ether ketone resin, polyether imide resin, polyether sulfone resin, and fluorine resin ( It is possible to use at least one selected from polytetrafluoroethylene) or a mixture containing two or more.
  • the type of the photo-curable resin is not particularly limited, but at least one selected from silicone resins, acrylic resins, and vinyl ester resins, or a mixture containing two or more types can be used.
  • the all-solid-state battery 41 includes an exterior member 42 that covers the insulating layer 32 of the resin coating 31 shown in FIG.
  • the exterior member 42 that suppresses water vapor intrusion outside the insulating layer 32 the mechanical strength of the fired body is reinforced by the insulating layer 32 and the intervening layer. Exposure to moisture can be suppressed.
  • insulating layer 32 itself as an exterior member which suppresses water vapor permeation.
  • the laminate 1 shown in FIG. 1 is configured in the form of a compression molded body, the following materials are used.
  • the positive electrode layer 2 includes, for example, Li 2 FeS 2 , Li 2.33 Fe 0.67 S 2 or the like as a positive electrode active material, and Li 7 P 3 S 11 that is an ion conductive compound as a solid electrolyte.
  • the negative electrode layer 4 includes, for example, a carbon material as a negative electrode active material and Li 7 P 3 S 11 which is an ion conductive compound as a solid electrolyte.
  • the solid electrolyte layer 3 sandwiched between the positive electrode layer 2 and the negative electrode layer 4 includes, for example, Li 7 P 3 S 11 that is an ion conductive compound as the solid electrolyte.
  • the positive electrode layer 2, the negative electrode layer 4, and the solid electrolyte layer 3 are each produced by compression molding raw material powder.
  • the solid electrolyte only needs to contain at least lithium and sulfur as constituent elements, and examples of such a compound include compounds such as Li 2 S—B 2 S 3 .
  • the solid electrolyte preferably further contains phosphorus. Examples of such compounds include Li 7 P 3 S 11 , Li 3 PS 4 and their anions. Examples thereof include those partially oxygen-substituted.
  • the composition ratio of the elements constituting the solid electrolyte is not limited to the above-described ratio.
  • the positive electrode active material only needs to contain lithium, iron, and sulfur as constituent elements, and examples of such compounds include compounds such as Li 2 FeS 2 and Li 2.33 Fe 0.67 S 2 . Further, other positive electrode active materials include compounds such as lithium titanium sulfide and lithium vanadium sulfide.
  • the composition ratio of the elements constituting the positive electrode active material is not limited to the above-described ratio.
  • 1 is configured in the form of a fired body, the following materials are used.
  • Lithium-containing phosphoric acid compound having a NASICON-type structure the chemical formula Li x M y (PO 4) 3 ( Formula, x 1 ⁇ x ⁇ 2, y is a number in the range of 1 ⁇ y ⁇ 2, M Includes one or more elements selected from the group consisting of Ti, Ge, Al, Ga and Zr), for example, Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 .
  • part of P in the above chemical formula may be substituted with B, Si, or the like.
  • lithium-containing phosphate compounds having a NASICON type structure such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 are mixed. You may use the mixture.
  • the lithium-containing phosphate compound having a NASICON structure used in the above solid electrolyte includes a crystal phase of a lithium-containing phosphate compound having a NASICON structure, or a lithium-containing phosphate having a NASICON structure by heat treatment You may use the glass which precipitates the crystal phase of a phosphoric acid compound.
  • a material used for said solid electrolyte it is possible to use the material which has ion conductivity and is so small that electronic conductivity can be disregarded other than the lithium-containing phosphate compound which has a NASICON structure.
  • examples of such a material include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof.
  • Li-PO system compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4 ⁇ x N x ) in which nitrogen is mixed with lithium phosphate, and Li—Si—O such as Li 4 SiO 4
  • Li—Si—O such as Li 4 SiO 4
  • Examples thereof include compounds having a lobskite structure, compounds having a garnet structure having Li, La, and Zr.
  • the positive electrode active material examples include a lithium-containing phosphate compound having a NASICON structure such as Li 3 V 2 (PO 4 ) 3 , a lithium-containing phosphate compound having an olivine structure such as LiFePO 4 and LiMnPO 4 , LiCoO 2 , and LiCo. It is possible to use a layered compound such as 1/3 Ni 1/3 Mn 1/3 O 2 or a lithium-containing compound having a spinel type structure such as LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 4 Ti 5 O 12. it can.
  • MOx (M includes at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, x is 0.9 ⁇ x ⁇ 2.0.
  • a compound having a composition represented by the following formula can be used.
  • a mixture in which two or more active materials having a composition represented by MOx containing different elements M such as TiO 2 and SiO 2 may be used.
  • graphite-lithium compounds, lithium alloys such as Li-Al, oxidation of Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12, etc. Thing, etc. can be used.
  • the negative electrode layer 4 may be formed from metallic lithium.
  • the solid electrolyte layer 3 includes a solid electrolyte composed of a lithium-containing phosphate compound having a NASICON structure, and at least one of the positive electrode layer 2 or the negative electrode layer 4 has a NASICON structure. It is preferable that the solid electrolyte which consists of said lithium containing phosphoric acid compound is included.
  • the positive electrode layer 2 or the negative electrode layer 4 is used.
  • An unsintered electrode layer that is at least one of the unsintered bodies and an unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer 3 are prepared (unsintered layer manufacturing step).
  • the produced unfired electrode layer and the unfired solid electrolyte layer are laminated to form a laminate (laminated body forming step).
  • the obtained laminate is fired to produce a battery body 11 composed of the fired body (firing step).
  • the positive electrode layer 2 and / or the negative electrode layer 4 and the solid electrolyte layer 3 are joined by firing.
  • the battery body 11 is covered with resin.
  • the resin is impregnated in the voids of the fired body constituting the battery body 11.
  • the insulating layer 32 including the solidified resin component and the resin component solidified in the gap between the fired body and the fired body are interposed between the battery element body 11 and the insulating layer 32.
  • an intervening layer in contact with both the battery body 11 and the insulating layer 32 is formed.
  • the all-solid-state battery 41 including the intervening layer disposed between the battery element body 11 (fired body) and the insulating layer 32 and in contact with both the battery element body 11 (fired body) and the insulating layer 32 is provided. Can be produced.
  • the intervening layer is not necessarily formed on the entire outer surface of the battery element body 11 (fired body), but is formed on at least a part of the surface of the battery element body 11 (fired body). An effect of suppressing deterioration of battery characteristics on the surface can be expected. Therefore, in the step of covering the battery body 11 with the resin, the surface of the battery body 11 may be partially covered.
  • thermoplastic resin or a thermoplastic resin used as the resin, in addition to extrusion molding and injection molding, for example, a method of applying a liquid or semi-solid resin at a high temperature to the surface of the fired body, high temperature A method of immersing the fired body in a liquid or semi-solid resin, a method of covering the surface of the fired body at a high temperature by melting or solidifying the solid resin powder or debris, etc. it can.
  • the method for coating the surface of the fired body with a photocurable resin is not particularly limited.
  • a solution obtained by dissolving a resin monomer or oligomer together with a photopolymerization initiator is applied to the surface of the fired body or sprayed, and a solvent is used. After vaporizing, a method of solidifying the resin by irradiating ultraviolet rays or the like can be used.
  • the surface of the fired body is coated with resin, and then the fired body is allowed to stand still.
  • the fired body is heat-treated to increase the fluidity of the resin.
  • a method such as arranging in a reduced-pressure atmosphere may also be used.
  • a method of impregnating the resin in the voids on the surface of the sintered body by heat treatment while reducing the pressure is particularly preferable.
  • a metal layer is formed on both side surfaces (the positive electrode layer 2 and the negative electrode layer 4) of the battery body 11.
  • a terminal layer 22 may be formed. Examples of the method for forming the conductive layer include a sputtering method. Alternatively, the metal paste may be applied or dipped and heat-treated.
  • the laminated body forming step it is preferable to laminate the unfired bodies of the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 to form the unfired laminated body of the unit cell structure 5.
  • the laminated body 1 may be formed by laminating a plurality of laminated bodies of the unit cell structure 5 with an unfired body of the current collector layer 6 interposed therebetween.
  • a plurality of laminated bodies of the unit cell structures 5 may be laminated electrically in series or in parallel.
  • the method for forming the green sheet or the printed layer as the unfired electrode layer and the unfired solid electrolyte layer is not particularly limited, but a doctor blade method, a die coater, a comma coater, or the like, or printing to form the green sheet. Screen printing or the like can be used to form the layer.
  • the method for laminating the unfired electrode layer and the unfired solid electrolyte layer is not particularly limited, but hot isostatic pressing (HIP), cold isostatic pressing (CIP), isostatic pressing (WIP), etc.
  • HIP hot isostatic pressing
  • CIP cold isostatic pressing
  • WIP isostatic pressing
  • the slurry for forming the green sheet or the printing layer includes an organic vehicle in which an organic material is dissolved in a solvent, a main material (a positive electrode active material and a solid electrolyte, a negative electrode active material and a solid electrolyte, a solid electrolyte, or a current collector material. ) And wet mixed.
  • Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used.
  • a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
  • the organic material contained in the slurry for forming the green sheet or the printing layer is not particularly limited, and polyvinyl acetal resin, cellulose resin, acrylic resin, urethane resin, and the like can be used.
  • the slurry may contain a plasticizer.
  • plasticizer is not particularly limited, phthalic acid esters such as dioctyl phthalate and diisononyl phthalate may be used.
  • the atmosphere is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material.
  • the firing temperature is preferably 400 ° C. or higher and 1000 ° C. or lower.
  • Example shown below is an example and this invention is not limited to the following Example.
  • Each slurry was prepared by the following method using the above materials.
  • Main materials are solid electrolyte material for solid electrolyte slurry, positive electrode active material for positive electrode slurry, powder mixed with electron conductive material and solid electrolyte material in mass ratio of 45:15:40, negative electrode active material for negative electrode slurry
  • the powder in which the electron conductive material and the solid electrolyte material were mixed at a mass ratio of 45:15:40, and the current collector slurry used was a powder in which the electron conductive material and the calcinable material were mixed at a mass ratio of 10:90. .
  • Each green sheet was produced by the following method using each obtained slurry.
  • the laminated body 1 has a structure in which two unit cell structures 5 are laminated so as to be electrically connected in series. Two unit cell structures 5 are connected in series via a current collector layer 6 made of two current collector green sheets.
  • the unit cell structure 5 includes a positive electrode layer 2 composed of two positive electrode green sheets, a solid electrolyte layer 3 composed of two solid electrolyte green sheets, and a negative electrode layer 4 composed of two negative electrode sheets.
  • the laminate 1 having a plane size of 25 mm ⁇ 25 mm was cut into a size of 10 mm ⁇ 10 mm, sandwiched between two porous setters, and fired in a state where a pressure of 2 kg / cm 2 was applied to the setter.
  • the laminated body 1 is baked at a temperature of 500 ° C. in a nitrogen gas atmosphere containing 1% by volume of oxygen to remove the butyral resin and then baked at a temperature of 700 ° C. in a nitrogen gas atmosphere. went.
  • a battery element 21 shown in FIG. 2 was produced.
  • a metal paste containing silver particles was applied to both surfaces of the battery body (fired body) 11 to form a metal paste layer as the terminal layer 22.
  • the terminal layer 22 is dried on the terminal layer 22 with the stainless steel leads as the positive and negative terminals 23 placed thereon, and the positive and negative terminals 23 are placed on both surfaces of the battery body 11. Stuck.
  • Example 1 As shown in FIG. 2, a resin coating 31 was produced by coating the battery element 21 with an epoxy resin.
  • the battery element 21 is placed in a polytetrafluoroethylene mold, and an epoxy resin liquid sealant (manufactured by Panasonic Electric Works Co., Ltd., model number CV5788) is injected into the mold. Heated at a temperature for 1 hour, impregnated with a liquid sealant in the voids on the surface of the sintered body, and then heated at a temperature of 150 ° C. for 1 hour to cure the epoxy resin to insulate outside the battery element 21 Layer 32 was formed. Next, the polytetrafluoroethylene mold was removed, and the resin coating 31 was taken out.
  • an epoxy resin liquid sealant manufactured by Panasonic Electric Works Co., Ltd., model number CV5788
  • the terminal 23 is partially covered with a polypropylene film 33 in advance as shown in FIG. 3, and the terminal 23 and the insulating layer 32 are made of polypropylene.
  • the film 33 is in close contact with the film 33.
  • the resin coating 31 shown in FIG. 2 was covered with the exterior member 42 as shown in FIG. 3 to produce the all-solid-state battery 41 of Example 1.
  • an aluminum laminate film manufactured by Dai Nippon Printing Co., Ltd., model number D-EL40H
  • the resin-coated body 31 is disposed between two aluminum laminate films cut to a predetermined size, and the aluminum laminate films are bonded together by pressing a flat plate heated to a temperature of 150 ° C. Produced.
  • the terminal 23 is partially covered with a polypropylene film 33 in advance as shown in FIG. 3, and the terminal 23 and the exterior member 42 are made of polypropylene.
  • the film 33 is in close contact with the film 33.
  • Example 2 The resin-coated body 31 shown in FIG. 2 was not covered with the exterior member 42 as shown in FIG.
  • Example 3 As shown in FIG. 2, the resin coating 31 was produced by coating the battery element 21 with a high-density polyethylene resin.
  • a battery element 21 is disposed between two high-density polyethylene resin films cut to a predetermined size, and a flat plate heated to a temperature of 250 ° C. is pressed against the high-density polyethylene resin.
  • the high-density polyethylene resin film was bonded to each other while the resin film was softened and the resin was impregnated in the voids on the surface of the sintered body to form the insulating layer 32 on the outside of the battery element 21.
  • the battery element 21 was not covered with a resin, but was covered with an exterior member 42 to produce an all-solid battery of a comparative example.
  • the process of covering with the exterior member 42 is the same as in the first embodiment.
  • Fig. 4 shows a photograph of the fracture surface of the resin coating.
  • the white layer of the battery body 11 is a solid electrolyte layer, and the black layer corresponds to a layer containing carbon, that is, a positive electrode layer, a negative electrode layer, and a current collector layer. As will be described later, the intervening layer is also included in the black layer. A structure in which the insulating layer 32 covers the outside of the battery body 11 was confirmed.
  • FIG. 5 shows a scanning electron microscope (SEM) photograph of the area surrounded by the broken line in FIG.
  • SEM scanning electron microscope
  • FIG. 6 shows a scanning electron microscope (SEM) photograph in which the layer 61 of FIG. 5 is enlarged.
  • FIG. 7 shows a scanning electron microscope (SEM) photograph in which the layer 62 of FIG. 5 is enlarged.
  • the layer 62 has an uneven cross-sectional structure, and it was confirmed that the positive electrode active material, the conductive agent, and the main material of the solid electrolyte material were fired in a state of including voids. .
  • the layer 61 was confirmed to have a relatively smooth cross-sectional structure because the epoxy resin entered the voids of the positive electrode layer and was cured.
  • the resin coating 31 includes the battery body 11 and the insulating layer between the battery body 11 and the insulating layer 32 containing an epoxy resin that is a thermosetting resin. It was confirmed that the intervening layer 61 in contact with both of them was formed.
  • the intervening layer 61 is a layer in which the components of the battery body 11 and the insulating layer 32 are mixed, and the epoxy resin that forms the insulating layer 32 in the voids of the fired body that forms the battery body 11. It was confirmed to have a structure in which.
  • the battery was charged to a voltage of 6.4 V with a current of 50 ⁇ A in an environment of a temperature of 24 to 26 ° C. and a relative humidity of 60%, and then held at a voltage of 6.4 V for 20 hours. Thereafter, the battery was discharged to a voltage of 0 V with a current of 50 ⁇ A. The above charging / discharging was repeated 50 times.
  • Table 1 shows the discharge capacities in the first and 50th charge / discharge in all solid state batteries of Examples 1 to 3 and the comparative example, and the retention rate of the discharge capacity calculated by the following equation. Indicates.
  • Discharge capacity maintenance rate [%] (50th discharge capacity [ ⁇ Ah] / 1st discharge capacity [ ⁇ Ah]) ⁇ 100
  • the present invention can It is particularly useful for manufacturing.

Abstract

Provided are: an all-solid cell wherein water in an atmosphere can be prevented from entering a cell body, and mechanical strength of the cell body can be reinforced; and a method for manufacturing the all-solid cell. This all-solid cell includes: a cell body (11), which includes a positive electrode layer and/or a negative electrode layer, and a solid electrolyte layer; an insulating layer (32), which covers the cell body (11), and which contains a resin; and an interlayer, which is provided between the cell body (11) and the insulating layer (32), and which is in contact with both the cell body (11) and the insulating layer (32). The interlayer contains a component that constitutes the cell body (11), and the resin component that constitutes the insulating layer (32).

Description

全固体電池およびその製造方法All-solid battery and method for manufacturing the same
 本発明は、全固体電池およびその製造方法に関する。 The present invention relates to an all-solid battery and a method for manufacturing the same.
 近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させるための媒体として有機溶媒等の電解質(電解液)が従来から使用されている。 In recent years, the demand for batteries as a power source for portable electronic devices such as mobile phones and portable personal computers has greatly increased. In a battery used for such an application, an electrolyte (electrolytic solution) such as an organic solvent has been conventionally used as a medium for moving ions.
 しかし、上記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質である。このため、電池の安全性をさらに高めることが求められている。 However, the battery having the above configuration has a risk of leakage of the electrolyte. Moreover, the organic solvent etc. which are used for electrolyte solution are combustible substances. For this reason, it is required to further increase the safety of the battery.
 そこで、電池の安全性を高めるための一つの対策として、電解液に代えて、固体電解質を用いることが提案されている。さらに、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成されている全固体電池の開発が進められている。このような全固体電池の構成要素の全体を覆う絶縁性材料からなる外装体や封止材が全固体電池の構成要素の周囲に配置されている。 Therefore, it has been proposed to use a solid electrolyte instead of the electrolytic solution as one countermeasure for improving the safety of the battery. Furthermore, development of an all-solid battery in which a solid electrolyte is used as an electrolyte and the other constituent elements are also made of solid is being promoted. The exterior body and sealing material which consist of an insulating material which covers the whole component of such all-solid-state battery are arrange | positioned around the component of all-solid-state battery.
 たとえば、特開2011-124084号公報(以下、特許文献1という)には、全固体電池の構成が開示されており、この全固体電池は、正極層、固体電解質層および負極層からなる発電要素と集電体とを含む単電池(電池素体)と、単電池の周囲を覆う外装体とを備えている。特許文献1には、外装体の材料として、エポキシ樹脂、ポリブタジエン樹脂等の絶縁性材料を用いることができると記載されている。 For example, Japanese Patent Application Laid-Open No. 2011-124084 (hereinafter referred to as Patent Document 1) discloses a configuration of an all-solid battery, and the all-solid battery includes a power generation element including a positive electrode layer, a solid electrolyte layer, and a negative electrode layer. And a current collector, and an exterior body that covers the periphery of the single battery. Patent Document 1 describes that an insulating material such as an epoxy resin or a polybutadiene resin can be used as a material of the exterior body.
 また、たとえば、特許第4043296号公報(以下、特許文献2という)には、全固体電池の構成が開示されており、この全固体電池は、基板と、基板の上にスパッタリング等により形成された正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層および保護層からなる単電池(電池素体)と、単電池を複数個積み重ね、全体を樹脂、ガラス、セラミックス等の絶縁性材料からなる封止材と備えている。 Further, for example, Japanese Patent No. 4043296 (hereinafter referred to as Patent Document 2) discloses the configuration of an all-solid battery, and this all-solid battery is formed on a substrate and the substrate by sputtering or the like. A single battery (battery body) composed of a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, a negative electrode current collector layer and a protective layer, and a plurality of single cells are stacked, It is provided with a sealing material made of an insulating material such as glass or ceramics.
特開2011-124084号公報Japanese Unexamined Patent Publication No. 2011-124084 特許第4043296号公報Japanese Patent No. 4043296
 しかしながら、発明者らが、特許文献1と特許文献2に記載されているような全固体電池の構造を種々検討した結果、以下に述べるような問題があることがわかった。 However, as a result of various studies by the inventors on the structure of an all-solid-state battery as described in Patent Document 1 and Patent Document 2, it has been found that there are the following problems.
 特許文献1または特許文献2に開示されているように、全固体電池の電池素体を絶縁性材料からなる外装体または封止材で封止しても、大気中の水分を遮断することができず、全固体電池の電池特性が劣化する等の不具合が起こる。特に、電池素体が硫化物または焼成体で構成される場合には、硫化物または焼成体と大気中の水分とが反応し、全固体電池の電池特性が劣化する。 As disclosed in Patent Document 1 or Patent Document 2, even if the battery body of an all-solid-state battery is sealed with an exterior body or a sealing material made of an insulating material, moisture in the atmosphere can be blocked. Inability to do so causes problems such as deterioration of battery characteristics of all solid state batteries. In particular, when the battery body is composed of a sulfide or a fired body, the sulfide or the fired body reacts with moisture in the atmosphere, and the battery characteristics of the all-solid battery are deteriorated.
 全固体電池の電池特性が水分により劣化する機構は不明であるが、水分が正極または負極の電位により電気分解されること等により、電池素体の材料が腐食されることが原因ではないかと推測される。 The mechanism by which the battery characteristics of all-solid-state batteries deteriorate due to moisture is unknown, but it is assumed that the cause is that the material of the battery body is corroded due to water being electrolyzed by the positive or negative electrode potential. Is done.
 また、電池素体が焼成体で構成される場合には、焼成体は硬度が高いが、靭性が低く、脆いので、振動または衝撃等により焼成体が割れた場合には、全固体電池の電池特性が大きく損なわれる等の問題がある。 Further, when the battery body is composed of a fired body, the fired body has high hardness, but has low toughness and is brittle. Therefore, if the fired body is cracked by vibration or impact, the battery of an all-solid battery is used. There are problems such as significant loss of properties.
 したがって、本発明の目的は、大気中の水分の電池素体への浸入を防止することができるとともに、電池素体の機械的強度を補強することが可能な全固体電池およびその製造方法を提供することである。 Accordingly, an object of the present invention is to provide an all-solid battery capable of preventing moisture in the atmosphere from entering the battery body and reinforcing the mechanical strength of the battery body, and a method for manufacturing the same. It is to be.
 発明者らが上記の課題を解決するために種々検討を重ねた結果、電池素体と絶縁層との間に介在層を設けることにより、大気中の水分の電池素体への浸入を防止することができるとともに、電池素体の機械的強度を補強することが可能になることを見出した。このような発明者らの知見に基づいて、本発明は以下の特徴を備えている。 As a result of various studies conducted by the inventors to solve the above-described problems, an intervening layer is provided between the battery element body and the insulating layer, thereby preventing moisture in the atmosphere from entering the battery element body. It has been found that the mechanical strength of the battery body can be reinforced. Based on such knowledge of the inventors, the present invention has the following features.
 本発明に従った全固体電池は、正極層または負極層の少なくともいずれか一方の電極層と固体電解質層とを含む電池素体と、電池素体を被覆し、樹脂を含む絶縁層と、電池素体と絶縁層の間に介在し、電池素体と絶縁層の両方に接する介在層とを備える。介在層が、電池素体を構成する成分と、絶縁層を構成する樹脂成分とを含む。 An all-solid battery according to the present invention includes a battery element including at least one of a positive electrode layer or a negative electrode layer and a solid electrolyte layer, an insulating layer covering the battery element and including a resin, a battery An intervening layer interposed between the element body and the insulating layer and in contact with both the battery element body and the insulating layer is provided. The intervening layer includes a component constituting the battery element body and a resin component constituting the insulating layer.
 本発明の全固体電池において、電池素体が集電体層を含むことが好ましい。 In the all solid state battery of the present invention, the battery body preferably includes a current collector layer.
 また、本発明の全固体電池において、電池素体が焼成体から構成されることが好ましい。 Further, in the all solid state battery of the present invention, it is preferable that the battery body is composed of a fired body.
 上記の場合、介在層が、焼成体と、焼成体の空隙内に存在する樹脂成分とを含むことが好ましい。 In the above case, it is preferable that the intervening layer includes a fired body and a resin component present in the voids of the fired body.
 本発明の全固体電池において、樹脂が、熱硬化性樹脂、熱可塑性樹脂、および、光硬化性樹脂からなる群より選ばれた少なくとも1種を含むことが好ましい。 In the all solid state battery of the present invention, it is preferable that the resin includes at least one selected from the group consisting of a thermosetting resin, a thermoplastic resin, and a photocurable resin.
 本発明の全固体電池は、絶縁層を被覆する外装部材をさらに備えることが好ましい。 It is preferable that the all solid state battery of the present invention further includes an exterior member that covers the insulating layer.
 本発明の一つの局面に従った全固体電池の製造方法は、以下の工程を備える。 The manufacturing method of an all-solid battery according to one aspect of the present invention includes the following steps.
 (A)正極層または負極層の少なくともいずれか一方の未焼成体である未焼成電極層と、固体電解質層の未焼成体である未焼成固体電解質層とを作製する未焼成層作製工程 (A) An unsintered layer production step of fabricating an unsintered electrode layer that is an unsintered body of at least one of the positive electrode layer and the negative electrode layer, and an unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer.
 (B)未焼成電極層と未焼成固体電解質層とを積層して積層体を形成する積層体形成工程 (B) Laminate forming step of forming a laminate by laminating an unsintered electrode layer and an unsintered solid electrolyte layer
 (C)積層体を焼成して焼成体から構成される電池素体を作製する焼成工程 (C) Firing step of firing the laminated body to produce a battery body composed of the fired body
 (D)樹脂で電池素体を被覆する工程 (D) Step of coating the battery body with resin
 (E)樹脂を固化させることにより、固化した樹脂成分を含む絶縁層と、固化した樹脂成分と焼成体成分とを含み、電池素体と絶縁層の間に介在し、電池素体と絶縁層の両方に接する介在層とを形成する工程 (E) An insulating layer containing a solidified resin component by solidifying a resin, a solidified resin component and a fired body component, and interposed between the battery body and the insulating layer, the battery body and the insulating layer Forming an intervening layer in contact with both
 本発明のもう一つの局面に従った全固体電池の製造方法は、以下の工程を備える。 The manufacturing method of an all-solid battery according to another aspect of the present invention includes the following steps.
 (A)正極層または負極層の少なくともいずれか一方の未焼成体である未焼成電極層と、固体電解質層の未焼成体である未焼成固体電解質層とを作製する未焼成層作製工程 (A) An unsintered layer production step of fabricating an unsintered electrode layer that is an unsintered body of at least one of the positive electrode layer and the negative electrode layer, and an unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer.
 (B)未焼成電極層と未焼成固体電解質層とを積層して積層体を形成する積層体形成工程 (B) Laminate forming step of forming a laminate by laminating an unsintered electrode layer and an unsintered solid electrolyte layer
 (C)積層体を焼成して焼成体から構成される電池素体を作製する焼成工程 (C) Firing step of firing the laminated body to produce a battery body composed of the fired body
 (D)樹脂で電池素体を被覆する工程 (D) Step of coating the battery body with resin
 (F)電池素体を構成する焼成体の空隙内に樹脂を含浸させる工程 (F) A step of impregnating the resin in the voids of the fired body constituting the battery body
 (G)樹脂を固化させることにより、固化した樹脂成分を含む絶縁層と、焼成体と焼成体の空隙内で固化した樹脂成分とを含み、電池素体と絶縁層の間に介在し、電池素体と絶縁層の両方に接する介在層とを形成する工程 (G) an insulating layer containing a solidified resin component by solidifying the resin and a resin component solidified in the gap between the fired body and the fired body, and interposed between the battery element body and the insulating layer; Forming an intervening layer in contact with both the element body and the insulating layer
 本発明によれば、大気中の水分の電池素体への浸入を防止することができるとともに、電池素体の機械的強度を補強することができるので、サイクル特性を改善することができる。 According to the present invention, it is possible to prevent moisture in the atmosphere from entering the battery element body and to reinforce the mechanical strength of the battery element body, thereby improving cycle characteristics.
本発明の一つの実施形態としての全固体電池の電池素体を構成する積層体の断面構造を模式的に示す断面図である。It is sectional drawing which shows typically the cross-section of the laminated body which comprises the battery body of the all-solid-state battery as one embodiment of this invention. 本発明の一つの実施形態として全固体電池の電池素体を模式的に示す斜視図である。1 is a perspective view schematically showing a battery body of an all solid state battery as one embodiment of the present invention. 本発明の一つの実施形態として全固体電池を模式的に示す平面図である。It is a top view which shows typically an all-solid-state battery as one embodiment of this invention. 本発明の実施例で作製された全固体電池において樹脂被覆体の破断面を示す写真である。It is a photograph which shows the torn surface of the resin coating body in the all-solid-state battery produced in the Example of this invention. 図4の破線部で囲まれた領域を示す走査電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph which shows the area | region enclosed by the broken-line part of FIG. 図5において介在層を拡大して示す走査電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph which expands and shows an intervening layer in FIG. 図5において正極層を拡大して示す走査電子顕微鏡(SEM)写真である。6 is a scanning electron microscope (SEM) photograph showing the positive electrode layer in an enlarged manner in FIG. 5.
 図1に示すように、本発明の一つの実施の形態としての全固体電池の積層体1では、正極層2と固体電解質層3と負極層4とから構成される単電池構造5が複数個、たとえば2個、集電体層6を介して直列に接続されている。全固体電池の積層体1の内部に配置される集電体層6は、正極層2と負極層4との間に設けられている。なお、積層体の構造は、一対の正極層と負極層を備えた単電池構造でもよく、上記のように複数個の単電池構造を直列に接続して積層した構造でもよく、複数個の単電池構造を並列に接続して積層した構造でもよく、直列と並列を組み合わせて複数個の単電池構造を接続した構造でもよい。後述する電池素体は、正極層2または負極層4の少なくともいずれか一方の電極層と固体電解質層3とを含み、また集電体層6を含んでもよい。 As shown in FIG. 1, in the all-solid-state battery stack 1 according to one embodiment of the present invention, a plurality of unit cell structures 5 each including a positive electrode layer 2, a solid electrolyte layer 3, and a negative electrode layer 4 are provided. For example, two are connected in series via the current collector layer 6. The current collector layer 6 disposed inside the laminate 1 of the all-solid battery is provided between the positive electrode layer 2 and the negative electrode layer 4. The structure of the laminated body may be a single battery structure including a pair of positive electrode layer and negative electrode layer, or may be a structure in which a plurality of single battery structures are connected in series as described above. A structure in which battery structures are connected in parallel and stacked may be used, or a structure in which a plurality of unit cell structures are connected in combination of series and parallel may be used. The battery body to be described later includes at least one electrode layer of the positive electrode layer 2 or the negative electrode layer 4 and the solid electrolyte layer 3, and may include the current collector layer 6.
 正極層2と負極層4のそれぞれは固体電解質と電極活物質とを含み、固体電解質層3は固体電解質を含む。正極層2と負極層4のそれぞれは、電子伝導材料として、炭素、金属等を含んでもよい。積層体1(正極層2、固体電解質層3、負極層4および集電体層6)は、圧縮成形体(硫化物等)、焼成体(酸化物等)または、薄膜等の形態で構成される。積層体1が焼成体の形態で構成される場合には、正極層2、固体電解質層3、負極層4および集電体層6が一体的に焼成されてもよく、あるいは、正極層2、固体電解質層3、負極層4および集電体層6の各層が別々に焼成されて各焼成層が積層された形態でもよい。 Each of the positive electrode layer 2 and the negative electrode layer 4 includes a solid electrolyte and an electrode active material, and the solid electrolyte layer 3 includes a solid electrolyte. Each of the positive electrode layer 2 and the negative electrode layer 4 may contain carbon, a metal, etc. as an electron conductive material. The laminate 1 (the positive electrode layer 2, the solid electrolyte layer 3, the negative electrode layer 4, and the current collector layer 6) is configured in the form of a compression molded body (sulfide or the like), a fired body (oxide or the like), or a thin film. The When the laminate 1 is configured in the form of a fired body, the positive electrode layer 2, the solid electrolyte layer 3, the negative electrode layer 4, and the current collector layer 6 may be integrally fired, or the positive electrode layer 2, The solid electrolyte layer 3, the negative electrode layer 4, and the current collector layer 6 may be separately fired and the fired layers may be laminated.
 図2に示すように、電池素体11の両側に必要に応じて端子層22が形成されている。電池素体11は、たとえば、図1に示される積層体1からなる。端子層22には正極と負極の端子23が配置されている。このようにして電池要素21が構成される。電池要素21の外側に樹脂を含む絶縁層32が形成されている。これにより、電池素体11を被覆するように樹脂を含む絶縁層32が形成されている。電池素体11と絶縁層32との間には介在層(図示せず)が形成されている。介在層は、電池素体11を構成する成分と、絶縁層32を構成する樹脂成分とを含む。このようにして電池素体11の樹脂被覆体31が形成されている。 As shown in FIG. 2, terminal layers 22 are formed on both sides of the battery body 11 as necessary. The battery body 11 is composed of, for example, the laminate 1 shown in FIG. The terminal layer 22 is provided with positive and negative terminals 23. In this way, the battery element 21 is configured. An insulating layer 32 containing a resin is formed outside the battery element 21. Thereby, the insulating layer 32 containing resin is formed so as to cover the battery body 11. An intervening layer (not shown) is formed between the battery body 11 and the insulating layer 32. The intervening layer includes a component constituting the battery body 11 and a resin component constituting the insulating layer 32. In this way, the resin coating 31 of the battery body 11 is formed.
 電池素体11と絶縁層32との間には介在層が形成されることにより、大気中の水分の電池素体11への浸入を防止することができるとともに、電池素体11の機械的強度を補強することが可能になる。 By forming an intervening layer between the battery element 11 and the insulating layer 32, it is possible to prevent moisture in the atmosphere from entering the battery element 11, and the mechanical strength of the battery element 11. It becomes possible to reinforce.
 電池素体11が圧縮成形体(硫化物等)の形態で構成される場合には、硫化物等の成分と樹脂成分とが反応して介在層が形成される。このように介在層が反応物から形成されることにより、電池素体11の機械的強度を効果的に補強することができ、その結果として全固体電池の強度を向上させることができる。 When the battery body 11 is configured in the form of a compression molded body (sulfide or the like), a component such as sulfide and a resin component react to form an intervening layer. Thus, by forming the intervening layer from the reactant, the mechanical strength of the battery body 11 can be effectively reinforced, and as a result, the strength of the all-solid battery can be improved.
 電池素体11が焼成体(酸化物等)の形態で構成される場合には、介在層が、酸化物等の成分と樹脂成分との混合物から形成されても、上記の作用効果を得ることができる。 When the battery body 11 is configured in the form of a fired body (oxide or the like), the above-described effects can be obtained even when the intervening layer is formed from a mixture of a component such as an oxide and a resin component. Can do.
 この場合、大気中の水分の電池素体11への浸入を防止することができるとともに、全固体電池の機械的強度を改善し、サイクル特性を向上させることができる。これは、焼成体に比べて靱性の高い樹脂により、焼成体の低い靱性が補強されるためであり、さらには、本来、接合し難い物質である、電池素体11を構成する靱性の低い焼成体と、絶縁層32を構成する靱性の高い樹脂とを、両者の混在した介在層を介して密接に接合させることにより、樹脂による強度の補強を焼成体に対して効果的に行うことができるためである。 In this case, it is possible to prevent moisture in the atmosphere from entering the battery body 11, improve the mechanical strength of the all solid state battery, and improve cycle characteristics. This is because the low toughness of the fired body is reinforced by a resin having higher toughness than the fired body, and furthermore, firing with low toughness that constitutes the battery body 11, which is originally a substance that is difficult to bond. By closely bonding the body and the high toughness resin constituting the insulating layer 32 via the intervening layer in which both are mixed, the strength of the resin can be effectively reinforced to the fired body. Because.
 全固体電池の機械的強度を改善することによって、全固体電池のサイクル特性が向上する原因の詳細は不明であるが、次に述べるようなことが考えられる。まず、振動または衝撃等により焼成体が割れることを抑制することにより、安定した容量を充電または放電することができる。また、充電または放電に伴い、焼成体に含まれる電極活物質が体積膨張し、または収縮し、この膨張収縮を繰り返すことにより、焼成体が割れ、または焼成体の内部に微細なクラックが生じる。その結果、充電または放電に必須となる電子伝導経路、またはイオン伝導経路が破壊されて、容量が低下する。全固体電池の機械的強度を改善することによって、このような容量の低下を抑制することができるためと推定される。 Although details of the cause of improving the cycle characteristics of the all-solid-state battery by improving the mechanical strength of the all-solid-state battery are unknown, the following may be considered. First, a stable capacity can be charged or discharged by suppressing cracking of the fired body due to vibration or impact. In addition, the electrode active material contained in the fired body expands or contracts with charge or discharge, and the expansion and contraction are repeated, whereby the fired body is cracked or fine cracks are generated inside the fired body. As a result, the electron conduction path or ion conduction path essential for charging or discharging is destroyed, and the capacity is reduced. It is estimated that such a decrease in capacity can be suppressed by improving the mechanical strength of the all-solid-state battery.
 また、電池素体11が焼成体(酸化物等)の形態で構成される場合には、介在層が、焼成体と、焼成体の空隙内に存在する樹脂成分とから形成されることが好ましい。このように多孔質の焼成体の空隙内に樹脂成分が存在するように介在層が構成されることにより、電池素体11の機械的強度を効果的に補強することができ、その結果として全固体電池の強度を向上させることができる。この場合、焼成体による三次元網目ネットワークの内部に樹脂が分散して存在するため、樹脂による強度の補強を焼成体に対して効果的に行うことができる。 Further, when the battery body 11 is configured in the form of a fired body (oxide or the like), the intervening layer is preferably formed from the fired body and a resin component present in the voids of the fired body. . Thus, by configuring the intervening layer so that the resin component exists in the voids of the porous fired body, the mechanical strength of the battery body 11 can be effectively reinforced, and as a result, The strength of the solid battery can be improved. In this case, since the resin is dispersed inside the three-dimensional network formed by the fired body, the strength of the resin can be effectively reinforced with respect to the fired body.
 絶縁層32の厚みは特に限定されないが、絶縁層32の機械的強度を確保するために、5μm以上であることが好ましく、20μm以上であることがより好ましい。絶縁層32が厚くなり過ぎると、全固体電池の体積エネルギー密度が低下するため、20~100μmが最も好ましい。 The thickness of the insulating layer 32 is not particularly limited, but is preferably 5 μm or more, and more preferably 20 μm or more in order to ensure the mechanical strength of the insulating layer 32. If the insulating layer 32 becomes too thick, the volume energy density of the all-solid-state battery decreases, so 20 to 100 μm is most preferable.
 介在層の厚みは特に限定されないが、介在層が薄すぎると、焼成体と絶縁層32を密接に接合する効果が得られ難くなるため、介在層の厚みは1μm以上であることが好ましく、5μm以上であることがより好ましい。また、焼成体が薄い場合、焼成体の表面から中心に至る広い範囲に樹脂が存在し、または焼成体そのものが介在層となる場合もあるが、その場合でも上記の作用効果を得ることができる。 The thickness of the intervening layer is not particularly limited, but if the intervening layer is too thin, it is difficult to obtain an effect of closely bonding the fired body and the insulating layer 32. Therefore, the thickness of the intervening layer is preferably 1 μm or more. More preferably. Further, when the fired body is thin, the resin exists in a wide range from the surface of the fired body to the center, or the fired body itself may be an intervening layer, but even in this case, the above-described effects can be obtained. .
 焼成体の表面の空隙率は特に限定されないが、介在層が、焼成体と、焼成体の空隙内に存在する樹脂成分とから形成されるためには、5%以上であることが好ましく、20%以上であることがより好ましい。また、焼成体の表面近郊の空隙率を、焼成体の内部に比べて高くし、介在層に占める樹脂の割合を高くして、樹脂による強度の補強を効果的に行うために、予め焼成体の表面部分に多孔質層を設けてもよい。 The porosity of the surface of the fired body is not particularly limited, but is preferably 5% or more in order for the intervening layer to be formed from the fired body and the resin component present in the voids of the fired body, % Or more is more preferable. In addition, in order to effectively reinforce the strength of the resin by increasing the porosity in the vicinity of the surface of the fired body compared to the inside of the fired body and increasing the proportion of the resin in the intervening layer, You may provide a porous layer in the surface part of.
 上記の樹脂としては、熱硬化性樹脂、熱可塑性樹脂、および、光硬化性樹脂から選ばれた1種、または2種以上を含む混合物を用いることができる。樹脂の種類は特に限定されず、絶縁性、焼成体との密着性、電位窓の広さ(または酸化/還元のし難さ)の観点から、適宜選択することができる。 As the above-mentioned resin, one kind selected from a thermosetting resin, a thermoplastic resin, and a photocurable resin, or a mixture containing two or more kinds can be used. The type of the resin is not particularly limited, and can be appropriately selected from the viewpoints of insulation, adhesion to the fired body, and potential window width (or difficulty in oxidation / reduction).
 熱硬化性樹脂の種類は特に限定されないが、エポキシ樹脂、フェノール樹脂、ユリア樹脂(尿素樹脂)、メラミン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ジアリルフタレート樹脂、ケイ素樹脂、ポリアミノビスマレイミド樹脂、カゼイン樹脂、フラン樹脂、ポリウレタン樹脂、および、アルキド樹脂から選ばれた少なくとも1種、または2種以上を含む混合物を用いることができる。 The type of thermosetting resin is not particularly limited, but epoxy resin, phenol resin, urea resin (urea resin), melamine resin, unsaturated polyester resin, polyimide resin, diallyl phthalate resin, silicon resin, polyaminobismaleimide resin, casein resin , A furan resin, a polyurethane resin, and a mixture containing at least one selected from alkyd resins or two or more thereof can be used.
 熱可塑性樹脂の種類は特に限定されないが、ポリエチレン樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、ポリフェニレンサルファイド樹脂、ポリパラキシリレン樹脂、液晶ポリマー、塩化ビニル樹脂、ポリビニルアルコール樹脂、ポリメタクリル酸メチル(メタクリル樹脂)、ポリフェニレンオキシド樹脂、ポリウレタン樹脂、アイオノマー樹脂、ポリアセタール樹脂(ポリオキシメチレン)、ポリアミド樹脂、塩化ビニリデン樹脂、ポリエチレンテレフタレート、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、および、フッ素樹脂(ポリテトラフルオロエチレン)から選ばれた少なくとも1種、または2種以上を含む混合物を用いることができる。 The type of thermoplastic resin is not particularly limited, but polyethylene resin, polystyrene resin, polypropylene resin, polyphenylene sulfide resin, polyparaxylylene resin, liquid crystal polymer, vinyl chloride resin, polyvinyl alcohol resin, polymethyl methacrylate (methacrylic resin), Polyphenylene oxide resin, polyurethane resin, ionomer resin, polyacetal resin (polyoxymethylene), polyamide resin, vinylidene chloride resin, polyethylene terephthalate, polyether ether ketone resin, polyether imide resin, polyether sulfone resin, and fluorine resin ( It is possible to use at least one selected from polytetrafluoroethylene) or a mixture containing two or more.
 光硬化性樹脂の種類は特に限定されないが、シリコーン樹脂、アクリル樹脂、および、ビニルエステル樹脂から選ばれた少なくとも1種、または2種以上を含む混合物を用いることができる。 The type of the photo-curable resin is not particularly limited, but at least one selected from silicone resins, acrylic resins, and vinyl ester resins, or a mixture containing two or more types can be used.
 図3に示すように、全固体電池41は、図2に示す樹脂被覆体31の絶縁層32を被覆する外装部材42を備えている。 As shown in FIG. 3, the all-solid-state battery 41 includes an exterior member 42 that covers the insulating layer 32 of the resin coating 31 shown in FIG.
 このように絶縁層32の外側に、水蒸気浸入を抑制する外装部材42を備えることによって、絶縁層32と介在層とにより、焼成体の機械的強度を補強し、外装部材42により、焼成体が水分に暴露されることを抑制することができる。なお、絶縁層32自体を、水蒸気浸入を抑制する外装部材として用いてもよい。 Thus, by providing the exterior member 42 that suppresses water vapor intrusion outside the insulating layer 32, the mechanical strength of the fired body is reinforced by the insulating layer 32 and the intervening layer. Exposure to moisture can be suppressed. In addition, you may use insulating layer 32 itself as an exterior member which suppresses water vapor permeation.
 図1に示す積層体1が圧縮成形体の形態で構成される場合、以下の材料が用いられる。 When the laminate 1 shown in FIG. 1 is configured in the form of a compression molded body, the following materials are used.
 正極層2は、たとえば、正極活物質としてのLi2FeS2、Li2.33Fe0.672等と、固体電解質としてイオン伝導性化合物であるLi7311とを含む。負極層4は、たとえば、負極活物質としての炭素材料と、固体電解質としてイオン伝導性化合物であるLi7311とを含む。正極層2と負極層4との間に挟まれた固体電解質層3は、たとえば、固体電解質としてイオン伝導性化合物であるLi7311を含む。正極層2と負極層4と固体電解質層3は、それぞれ、原材料粉末を圧縮成形することにより作製されたものである。なお、固体電解質は、構成元素としてリチウムと硫黄とを少なくとも含有すればよく、このような化合物として、たとえば、Li2S‐B23等の化合物をあげることができる。また、固体電解質は、構成元素としてリチウムと硫黄に加えて、好ましくはリンをさらに含有すればよく、このような化合物として、たとえば、Li7311、Li3PS4やこれらのアニオンの一部が酸素置換されたもの等をあげることができる。固体電解質を構成する元素の組成比率は上述した比率に限定されるものではない。また、正極活物質は、構成元素としてリチウムと鉄と硫黄とを含有すればよく、このような化合物として、たとえば、Li2FeS2、Li2.33Fe0.672等の化合物をあげることができる。さらに、その他の正極活物質として硫化リチウムチタン、硫化リチウムバナジウム等の化合物をあげることができる。正極活物質を構成する元素の組成比率は上述した比率に限定されるものではない。 The positive electrode layer 2 includes, for example, Li 2 FeS 2 , Li 2.33 Fe 0.67 S 2 or the like as a positive electrode active material, and Li 7 P 3 S 11 that is an ion conductive compound as a solid electrolyte. The negative electrode layer 4 includes, for example, a carbon material as a negative electrode active material and Li 7 P 3 S 11 which is an ion conductive compound as a solid electrolyte. The solid electrolyte layer 3 sandwiched between the positive electrode layer 2 and the negative electrode layer 4 includes, for example, Li 7 P 3 S 11 that is an ion conductive compound as the solid electrolyte. The positive electrode layer 2, the negative electrode layer 4, and the solid electrolyte layer 3 are each produced by compression molding raw material powder. The solid electrolyte only needs to contain at least lithium and sulfur as constituent elements, and examples of such a compound include compounds such as Li 2 S—B 2 S 3 . In addition to lithium and sulfur as constituent elements, the solid electrolyte preferably further contains phosphorus. Examples of such compounds include Li 7 P 3 S 11 , Li 3 PS 4 and their anions. Examples thereof include those partially oxygen-substituted. The composition ratio of the elements constituting the solid electrolyte is not limited to the above-described ratio. The positive electrode active material only needs to contain lithium, iron, and sulfur as constituent elements, and examples of such compounds include compounds such as Li 2 FeS 2 and Li 2.33 Fe 0.67 S 2 . Further, other positive electrode active materials include compounds such as lithium titanium sulfide and lithium vanadium sulfide. The composition ratio of the elements constituting the positive electrode active material is not limited to the above-described ratio.
 図1に示す積層体1が焼成体の形態で構成される場合、以下の材料が用いられる。 1 is configured in the form of a fired body, the following materials are used.
 固体電解質層3に含まれる固体電解質、または、正極層2または負極層4に含められる固体電解質としては、ナシコン型構造を有するリチウム含有リン酸化合物を用いることができる。ナシコン型構造を有するリチウム含有リン酸化合物は、化学式Lixy(PO43(化学式中、xは1≦x≦2、yは1≦y≦2の範囲内の数値であり、MはTi、Ge、Al、GaおよびZrからなる群より選ばれた1種以上の元素を含む)で表わされ、たとえば、Li1.5Al0.5Ti1.5(PO43等である。この場合、上記化学式においてPの一部をB、Si等で置換してもよい。たとえば、Li1.5Al0.5Ge1.5(PO43とLi1.2Al0.2Ti1.8(PO43等の、ナシコン型構造を有するリチウム含有リン酸化合物の異なる組成を有する2つ以上の化合物を混合した混合物を用いてもよい。 As the solid electrolyte contained in the solid electrolyte layer 3 or the solid electrolyte contained in the positive electrode layer 2 or the negative electrode layer 4, a lithium-containing phosphate compound having a NASICON structure can be used. Lithium-containing phosphoric acid compound having a NASICON-type structure, the chemical formula Li x M y (PO 4) 3 ( Formula, x 1 ≦ x ≦ 2, y is a number in the range of 1 ≦ y ≦ 2, M Includes one or more elements selected from the group consisting of Ti, Ge, Al, Ga and Zr), for example, Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 . In this case, part of P in the above chemical formula may be substituted with B, Si, or the like. For example, two or more compounds having different compositions of lithium-containing phosphate compounds having a NASICON type structure such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 are mixed. You may use the mixture.
 また、上記の固体電解質に用いられるナシコン型構造を有するリチウム含有リン酸化合物としては、ナシコン型構造を有するリチウム含有リン酸化合物の結晶相を含むもの、または、熱処理によりナシコン型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスを用いてもよい。 In addition, the lithium-containing phosphate compound having a NASICON structure used in the above solid electrolyte includes a crystal phase of a lithium-containing phosphate compound having a NASICON structure, or a lithium-containing phosphate having a NASICON structure by heat treatment You may use the glass which precipitates the crystal phase of a phosphoric acid compound.
 なお、上記の固体電解質に用いられる材料としては、ナシコン型構造を有するリチウム含有リン酸化合物以外に、イオン伝導性を有し、電子伝導性が無視できるほど小さい材料を用いることが可能である。このような材料として、たとえば、ハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩、および、これらの誘導体を挙げることができる。また、リン酸リチウム(Li3PO4)等のLi‐P‐O系化合物、リン酸リチウムに窒素を混ぜたLIPON(LiPO4-xx)、Li4SiO4等のLi‐Si‐O系化合物、Li‐P‐Si‐O系化合物、Li‐V‐Si‐O系化合物、La0.51Li0.35TiO2.94、La0.55Li0.35TiO3、Li3xLa2/3-xTiO3等のぺロブスカイト型構造を有する化合物、Li、La、Zrを有するガーネット型構造を有する化合物、等を挙げることができる。 In addition, as a material used for said solid electrolyte, it is possible to use the material which has ion conductivity and is so small that electronic conductivity can be disregarded other than the lithium-containing phosphate compound which has a NASICON structure. Examples of such a material include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof. In addition, Li-PO system compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4−x N x ) in which nitrogen is mixed with lithium phosphate, and Li—Si—O such as Li 4 SiO 4 Such as La-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3 Examples thereof include compounds having a lobskite structure, compounds having a garnet structure having Li, La, and Zr.
 正極活物質としては、Li32(PO43等のナシコン型構造を有するリチウム含有リン酸化合物、LiFePO4、LiMnPO4等のオリビン型構造を有するリチウム含有リン酸化合物、LiCoO2、LiCo1/3Ni1/3Mn1/32等の層状化合物、LiMn24、LiNi0.5Mn1.54、Li4Ti512等のスピネル型構造を有するリチウム含有化合物を用いることができる。 Examples of the positive electrode active material include a lithium-containing phosphate compound having a NASICON structure such as Li 3 V 2 (PO 4 ) 3 , a lithium-containing phosphate compound having an olivine structure such as LiFePO 4 and LiMnPO 4 , LiCoO 2 , and LiCo. It is possible to use a layered compound such as 1/3 Ni 1/3 Mn 1/3 O 2 or a lithium-containing compound having a spinel type structure such as LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 4 Ti 5 O 12. it can.
 負極活物質としては、MOx(MはTi、Si、Sn、Cr、Fe、NbおよびMoからなる群より選ばれた少なくとも1種以上の元素を含む、xは0.9≦x≦2.0の範囲内の数値である)で表わされる組成を有する化合物を用いることができる。たとえば、TiO2とSiO2、等の異なる元素Mを含むMOxで表わされる組成を有する2つ以上の活物質を混合した混合物を用いてもよい。また、負極活物質としては、黒鉛-リチウム化合物、Li‐Al等のリチウム合金、Li32(PO43、Li3Fe2(PO43、Li4Ti512等の酸化物、等を用いることができる。なお、負極層4は、金属リチウムから形成されてもよい。 As the negative electrode active material, MOx (M includes at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, x is 0.9 ≦ x ≦ 2.0. A compound having a composition represented by the following formula can be used. For example, a mixture in which two or more active materials having a composition represented by MOx containing different elements M such as TiO 2 and SiO 2 may be used. As the negative electrode active material, graphite-lithium compounds, lithium alloys such as Li-Al, oxidation of Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12, etc. Thing, etc. can be used. The negative electrode layer 4 may be formed from metallic lithium.
 本発明の全固体電池の積層体1においては、固体電解質層3が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含み、正極層2または負極層4の少なくとも一方が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含むことが好ましい。 In the all-solid-state battery laminate 1 of the present invention, the solid electrolyte layer 3 includes a solid electrolyte composed of a lithium-containing phosphate compound having a NASICON structure, and at least one of the positive electrode layer 2 or the negative electrode layer 4 has a NASICON structure. It is preferable that the solid electrolyte which consists of said lithium containing phosphoric acid compound is included.
 固体電解質と電極活物質が焼成体の形態で構成される場合、上述のように構成された全固体電池の積層体1を製造するために、本発明では、まず、正極層2または負極層4の少なくともいずれか一方の未焼成体である未焼成電極層と、固体電解質層3の未焼成体である未焼成固体電解質層とを作製する(未焼成層作製工程)。その後、作製された未焼成電極層と未焼成固体電解質層とを積層して積層体を形成する(積層体形成工程)。そして、得られた積層体を焼成して焼成体から構成される電池素体11を作製する(焼成工程)。焼成により、正極層2および/または負極層4と固体電解質層3とが接合される。 In the case where the solid electrolyte and the electrode active material are configured in the form of a fired body, in order to manufacture the all-solid battery laminate 1 configured as described above, in the present invention, first, the positive electrode layer 2 or the negative electrode layer 4 is used. An unsintered electrode layer that is at least one of the unsintered bodies and an unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer 3 are prepared (unsintered layer manufacturing step). Thereafter, the produced unfired electrode layer and the unfired solid electrolyte layer are laminated to form a laminate (laminated body forming step). Then, the obtained laminate is fired to produce a battery body 11 composed of the fired body (firing step). The positive electrode layer 2 and / or the negative electrode layer 4 and the solid electrolyte layer 3 are joined by firing.
 次に、樹脂で電池素体11を被覆する。そして、電池素体11を構成する焼成体の空隙内に樹脂を含浸させる。さらに、樹脂を固化させることにより、固化した樹脂成分を含む絶縁層32と、焼成体と焼成体の空隙内で固化した樹脂成分とを含み、電池素体11と絶縁層32の間に介在し、電池素体11と絶縁層32の両方に接する介在層とを形成する。 Next, the battery body 11 is covered with resin. Then, the resin is impregnated in the voids of the fired body constituting the battery body 11. Further, by solidifying the resin, the insulating layer 32 including the solidified resin component and the resin component solidified in the gap between the fired body and the fired body are interposed between the battery element body 11 and the insulating layer 32. Then, an intervening layer in contact with both the battery body 11 and the insulating layer 32 is formed.
 このようにして、電池素体11(焼成体)と絶縁層32の間に配置され、電池素体11(焼成体)と絶縁層32の両方に接した介在層を備えた全固体電池41を作製することができる。 In this way, the all-solid-state battery 41 including the intervening layer disposed between the battery element body 11 (fired body) and the insulating layer 32 and in contact with both the battery element body 11 (fired body) and the insulating layer 32 is provided. Can be produced.
 介在層は、必ずしも電池素体11(焼成体)のすべての外表面に形成される必要はなく、電池素体11(焼成体)の少なくとも一部の表面に形成されることによって、当該一部表面における電池特性の劣化を抑制する効果を期待することができる。したがって、樹脂で電池素体11を被覆する工程では、電池素体11の表面を部分的に被覆すればよい。 The intervening layer is not necessarily formed on the entire outer surface of the battery element body 11 (fired body), but is formed on at least a part of the surface of the battery element body 11 (fired body). An effect of suppressing deterioration of battery characteristics on the surface can be expected. Therefore, in the step of covering the battery body 11 with the resin, the surface of the battery body 11 may be partially covered.
 電池素体11(焼成体)の表面を樹脂で被覆する方法、焼成体の空隙内に樹脂を含浸させる方法、樹脂を固化させて、絶縁層32と介在層を形成する方法は特に限定されない。樹脂として熱可塑性樹脂、または熱可塑性樹脂を用いた場合には、押出成形、射出成型に加え、たとえば、高温にして液体状または半固体状にした樹脂を焼成体の表面に塗布する方法、高温にして液体状または半固体状とした樹脂に焼成体を浸漬する方法、高温にした焼成体の表面で固体状の樹脂の粉末または破片を溶融または固化させて被覆する方法、等を用いることができる。 There are no particular limitations on the method of coating the surface of the battery body 11 (fired body) with resin, the method of impregnating the resin in the voids of the fired body, and the method of solidifying the resin to form the insulating layer 32 and the intervening layer. When a thermoplastic resin or a thermoplastic resin is used as the resin, in addition to extrusion molding and injection molding, for example, a method of applying a liquid or semi-solid resin at a high temperature to the surface of the fired body, high temperature A method of immersing the fired body in a liquid or semi-solid resin, a method of covering the surface of the fired body at a high temperature by melting or solidifying the solid resin powder or debris, etc. it can.
 焼成体の表面を光硬化性樹脂で被覆する方法は特に限定されないが、たとえば、樹脂のモノマーまたはオリゴマーを光重合開始剤とともに溶解した溶液を、焼成体の表面に塗布し、または噴霧し、溶剤を気化させた後、紫外線等を照射して樹脂を固化させる方法、等を用いることができる。 The method for coating the surface of the fired body with a photocurable resin is not particularly limited. For example, a solution obtained by dissolving a resin monomer or oligomer together with a photopolymerization initiator is applied to the surface of the fired body or sprayed, and a solvent is used. After vaporizing, a method of solidifying the resin by irradiating ultraviolet rays or the like can be used.
 焼成体の空隙内に樹脂を含浸させるために、樹脂で焼成体の表面を被覆した後に焼成体を静置する、焼成体を加熱処理して樹脂の流動性を高める、焼成体を大気圧から減圧した雰囲気に配置する、等の方法を用いてもよい。ペースト状の樹脂で焼結体の表面を被覆した状態で、減圧しつつ加熱処理して、焼結体表面の空隙内に樹脂を含浸させる方法が特に好ましい。 In order to impregnate the resin in the voids of the fired body, the surface of the fired body is coated with resin, and then the fired body is allowed to stand still. The fired body is heat-treated to increase the fluidity of the resin. A method such as arranging in a reduced-pressure atmosphere may also be used. In a state where the surface of the sintered body is covered with a paste-like resin, a method of impregnating the resin in the voids on the surface of the sintered body by heat treatment while reducing the pressure is particularly preferable.
 なお、図2に示すように、正極層2と負極層4(図1)から効率的に電流を引き出すため、電池素体11の両側面(正極層2と負極層4)の上に金属層等の端子層22(導電層)を形成してもよい。導電層の形成方法は、たとえば、スパッタリング法が挙げられる。また、金属ペーストを塗布またはディップして、この金属ペーストを熱処理してもよい。 In addition, as shown in FIG. 2, in order to draw an electric current efficiently from the positive electrode layer 2 and the negative electrode layer 4 (FIG. 1), a metal layer is formed on both side surfaces (the positive electrode layer 2 and the negative electrode layer 4) of the battery body 11. A terminal layer 22 (conductive layer) may be formed. Examples of the method for forming the conductive layer include a sputtering method. Alternatively, the metal paste may be applied or dipped and heat-treated.
 積層体形成工程では、正極層2、固体電解質層3、および、負極層4の未焼成体を積層して単電池構造5の未焼成積層体を形成することが好ましい。さらに、積層体形成工程において、集電体層6の未焼成体を介在させて、上記の単電池構造5の積層体を複数個、積層して積層体1を形成してもよい。この場合、単電池構造5の積層体を複数個、電気的に直列、または並列に積層してもよい。 In the laminated body forming step, it is preferable to laminate the unfired bodies of the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 to form the unfired laminated body of the unit cell structure 5. Further, in the laminated body forming step, the laminated body 1 may be formed by laminating a plurality of laminated bodies of the unit cell structure 5 with an unfired body of the current collector layer 6 interposed therebetween. In this case, a plurality of laminated bodies of the unit cell structures 5 may be laminated electrically in series or in parallel.
 上記の未焼成電極層と未焼成固体電解質層としてのグリーンシートまたは印刷層を形成する方法は特に限定されないが、グリーンシートを形成するためにドクターブレード法、ダイコーター、コンマコーター等、または、印刷層を形成するためにスクリーン印刷等を使用することができる。上記の未焼成電極層と未焼成固体電解質層を積層する方法は特に限定されないが、熱間等方圧プレス(HIP)、冷間等方圧プレス(CIP)、静水圧プレス(WIP)等を使用して未焼成電極層と未焼成固体電解質層を積層することができる。 The method for forming the green sheet or the printed layer as the unfired electrode layer and the unfired solid electrolyte layer is not particularly limited, but a doctor blade method, a die coater, a comma coater, or the like, or printing to form the green sheet. Screen printing or the like can be used to form the layer. The method for laminating the unfired electrode layer and the unfired solid electrolyte layer is not particularly limited, but hot isostatic pressing (HIP), cold isostatic pressing (CIP), isostatic pressing (WIP), etc. The green electrode layer and the green solid electrolyte layer can be laminated by using.
 グリーンシートまたは印刷層を形成するためのスラリーは、有機材料を溶剤に溶解した有機ビヒクルと、主材(正極活物質と固体電解質、負極活物質と固体電解質、固体電解質、または、集電体材料)とを湿式混合することによって作製することができる。湿式混合ではメディアを用いることができ、具体的には、ボールミル法、ビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法、ニーダー分散法等を用いることができる。グリーンシートまたは印刷層を成形するためのスラリーに含まれる有機材料は特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、アクリル樹脂、ウレタン樹脂などを用いることができる。 The slurry for forming the green sheet or the printing layer includes an organic vehicle in which an organic material is dissolved in a solvent, a main material (a positive electrode active material and a solid electrolyte, a negative electrode active material and a solid electrolyte, a solid electrolyte, or a current collector material. ) And wet mixed. Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used. On the other hand, a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used. The organic material contained in the slurry for forming the green sheet or the printing layer is not particularly limited, and polyvinyl acetal resin, cellulose resin, acrylic resin, urethane resin, and the like can be used.
 スラリーは可塑剤を含んでもよい。可塑剤の種類は特に限定されないが、フタル酸ジオクチル、フタル酸ジイソノニル等のフタル酸エステル等を使用してもよい。 The slurry may contain a plasticizer. Although the kind of plasticizer is not particularly limited, phthalic acid esters such as dioctyl phthalate and diisononyl phthalate may be used.
 焼成工程では、雰囲気は特に限定されないが、電極活物質に含まれる遷移金属の価数が変化しない条件で行うことが好ましい。焼成温度は400℃以上1000℃以下であることが好ましい。 In the firing step, the atmosphere is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material. The firing temperature is preferably 400 ° C. or higher and 1000 ° C. or lower.
 次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。 Next, specific examples of the present invention will be described. In addition, the Example shown below is an example and this invention is not limited to the following Example.
 以下、介在層を備えた全固体電池の実施例1~3と介在層を備えていない全固体電池の比較例について説明する。 Hereinafter, examples 1 to 3 of the all solid state battery including the intervening layer and comparative examples of the all solid state battery not including the intervening layer will be described.
 (材料の準備)
 まず、全固体電池を作製するために、固体電解質層、正極層、負極層、および、集電体層の出発原料として以下の材料を準備した。
(Preparation of materials)
First, in order to produce an all-solid battery, the following materials were prepared as starting materials for the solid electrolyte layer, the positive electrode layer, the negative electrode layer, and the current collector layer.
 固体電解質材料としてLi1.5Al0.5Ge1.5(PO43の組成を有するガラス粉末、正極活物質材料としてLi32(PO43の組成を有するナシコン型構造の結晶相を含む粉末、負極活物質材料としてアナターゼ型の結晶構造を持つ二酸化チタン粉末、電子伝導性材料として炭素粉末、焼成性材料としてLi1.0Ge2.0(PO43の組成を有するガラスセラミックス粉末を準備した。 A glass powder having a composition of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 as a solid electrolyte material, a powder containing a crystal phase of NASICON structure having a composition of Li 3 V 2 (PO 4 ) 3 as a positive electrode active material, A titanium dioxide powder having an anatase type crystal structure as a negative electrode active material, a carbon powder as an electron conductive material, and a glass ceramic powder having a composition of Li 1.0 Ge 2.0 (PO 4 ) 3 as a fireable material were prepared.
 上記の材料を用いて、以下の方法で各スラリーを作製した。 Each slurry was prepared by the following method using the above materials.
 (スラリーの作製)
 固体電解質、正極、負極、集電体の原材料として、主材、ブチラール樹脂およびアルコールを、100:15:140の質量比率で、秤量した。そして、ブチラール樹脂をアルコールに溶解した後、主材とメディアとともに容器に封入して容器を回転させた後、容器からメディアを取り出すことにより、固体電解質スラリー、正極スラリー、負極スラリー、集電体スラリーを作製した。
(Preparation of slurry)
As raw materials for the solid electrolyte, positive electrode, negative electrode, and current collector, the main material, butyral resin, and alcohol were weighed at a mass ratio of 100: 15: 140. And after dissolving butyral resin in alcohol, after enclosing in a container together with the main material and media and rotating the container, the medium is taken out from the container, so that the solid electrolyte slurry, the positive electrode slurry, the negative electrode slurry, the current collector slurry Was made.
 主材としては、固体電解質スラリーでは固体電解質材料、正極スラリーでは正極活物質材料、電子伝導性材料および固体電解質材料を45:15:40の質量比率で混合した粉末、負極スラリーでは負極活物質材料、電子伝導性材料および固体電解質材料を45:15:40の質量比率で混合した粉末、集電体スラリーでは電子伝導性材料および焼成性材料を10:90の質量比率で混合した粉末を使用した。 Main materials are solid electrolyte material for solid electrolyte slurry, positive electrode active material for positive electrode slurry, powder mixed with electron conductive material and solid electrolyte material in mass ratio of 45:15:40, negative electrode active material for negative electrode slurry The powder in which the electron conductive material and the solid electrolyte material were mixed at a mass ratio of 45:15:40, and the current collector slurry used was a powder in which the electron conductive material and the calcinable material were mixed at a mass ratio of 10:90. .
 得られた各スラリーを用いて各グリーンシートを以下の方法で作製した。 Each green sheet was produced by the following method using each obtained slurry.
 (未焼成層(グリーンシート)作製工程)
 ドクターブレード法を用いてポリエチレンテレフタレート(PET)フィルムの上に各スラリーを塗工し、40℃の温度に加熱したホットプレートの上で乾燥し、所定の厚みになるようにシート状に成形し、25mm×25mmの大きさに切断してシートを作製した。グリーンシートの厚みは、固体電解質シートでは35μm、正極シートでは25μm、負極シートでは15μm、集電体シートでは15μmとした。
(Unbaked layer (green sheet) production process)
Each slurry was coated on a polyethylene terephthalate (PET) film using a doctor blade method, dried on a hot plate heated to a temperature of 40 ° C., and formed into a sheet shape to a predetermined thickness, A sheet was prepared by cutting into a size of 25 mm × 25 mm. The thickness of the green sheet was 35 μm for the solid electrolyte sheet, 25 μm for the positive electrode sheet, 15 μm for the negative electrode sheet, and 15 μm for the current collector sheet.
 得られた各グリーンシートを用いて、積層体を以下の方法で形成した。 Using each obtained green sheet, a laminate was formed by the following method.
 (積層体形成工程)
 PETフィルムから剥がした各グリーンシートを一枚ずつ重ねるごとに、2枚のステンレス鋼製の平板で挟むことにより、順次、熱圧着した。熱圧着は、ステンレス鋼製の平板を60℃の温度に加熱し、1000kg/cm2の圧力を加えることにより行った。その後、熱圧着されたグリーンシートの積層体をポリエチレン製のフィルム容器に真空状態で封入し、ポリエチレン製のフィルム容器を水中に浸漬して水に圧力を加えた。等方圧プレスにより水に180MPaの圧力を加えた。このようにして、積層体1(図1)を形成した。図1に示すように、積層体1は、2つの単電池構造5を電気的に直列に接続するように積層した構造を有する。2つの単電池構造5が、2枚の集電体グリーンシートからなる集電体層6を介して直列に接続されている。単電池構造5は、2枚の正極グリーンシートからなる正極層2と、2枚の固体電解質グリーンシートからなる固体電解質層3と、2枚の負極シートからなる負極層4とから構成される。
(Laminate formation process)
As each green sheet peeled off from the PET film was stacked one by one, it was thermocompression bonded sequentially by sandwiching it between two stainless steel flat plates. The thermocompression bonding was performed by heating a flat plate made of stainless steel to a temperature of 60 ° C. and applying a pressure of 1000 kg / cm 2 . Then, the laminated body of the green sheet | seat pressure-bonded was sealed in the polyethylene film container in the vacuum state, the polyethylene film container was immersed in water, and the pressure was applied to water. A pressure of 180 MPa was applied to the water by an isotropic pressure press. Thus, the laminated body 1 (FIG. 1) was formed. As shown in FIG. 1, the laminated body 1 has a structure in which two unit cell structures 5 are laminated so as to be electrically connected in series. Two unit cell structures 5 are connected in series via a current collector layer 6 made of two current collector green sheets. The unit cell structure 5 includes a positive electrode layer 2 composed of two positive electrode green sheets, a solid electrolyte layer 3 composed of two solid electrolyte green sheets, and a negative electrode layer 4 composed of two negative electrode sheets.
 (焼成工程)
 平面の大きさが25mm×25mmの積層体1を10mm×10mmの大きさに切断し、2枚の多孔質のセッターで挟持し、2kg/cm2の圧力をセッターに加えた状態で焼成した。積層体1の焼成は、1体積%の酸素を含む窒素ガス雰囲気中で500℃の温度で焼成することにより、ブチラール樹脂を除去した後、窒素ガス雰囲気中で700℃の温度で焼成することによって行った。
(Baking process)
The laminate 1 having a plane size of 25 mm × 25 mm was cut into a size of 10 mm × 10 mm, sandwiched between two porous setters, and fired in a state where a pressure of 2 kg / cm 2 was applied to the setter. The laminated body 1 is baked at a temperature of 500 ° C. in a nitrogen gas atmosphere containing 1% by volume of oxygen to remove the butyral resin and then baked at a temperature of 700 ° C. in a nitrogen gas atmosphere. went.
 (電池要素の作製)
 図2に示す電池要素21を作製した。
(Production of battery elements)
A battery element 21 shown in FIG. 2 was produced.
 具体的には、まず、電池素体(焼成体)11の両面に銀粒子を含む金属ペーストを塗布して端子層22として金属ペースト層を形成した。次に、端子層22の上に、正極と負極の端子23としてのステンレス鋼製のリードを配置した状態で端子層22を乾燥させて、正極と負極の端子23を電池素体11の両面に固着した。 Specifically, first, a metal paste containing silver particles was applied to both surfaces of the battery body (fired body) 11 to form a metal paste layer as the terminal layer 22. Next, the terminal layer 22 is dried on the terminal layer 22 with the stainless steel leads as the positive and negative terminals 23 placed thereon, and the positive and negative terminals 23 are placed on both surfaces of the battery body 11. Stuck.
 このようにして作製された電池要素21を用いて、以下で説明されるように実施例1~3と比較例の全固体電池を作製した。 Using the battery element 21 thus produced, all-solid batteries of Examples 1 to 3 and a comparative example were produced as described below.
 (実施例1)
 図2に示すように、電池要素21をエポキシ樹脂で被覆することにより、樹脂被覆体31を作製した。
Example 1
As shown in FIG. 2, a resin coating 31 was produced by coating the battery element 21 with an epoxy resin.
 具体的には、まず、電池要素21をポリテトラフルオロエチレン製の型内に配置し、エポキシ樹脂の液状封止剤(パナソニック電工株式会社製、型番CV5788)を型内に注入し、100℃の温度で1時間加熱して、焼結体表面の空隙内に液状封止剤を含浸させ、その後、150℃の温度で1時間加熱してエポキシ樹脂を硬化させて、電池要素21の外側に絶縁層32を形成した。次に、ポリテトラフルオロエチレン製の型を外し、樹脂被覆体31を取り出した。 Specifically, first, the battery element 21 is placed in a polytetrafluoroethylene mold, and an epoxy resin liquid sealant (manufactured by Panasonic Electric Works Co., Ltd., model number CV5788) is injected into the mold. Heated at a temperature for 1 hour, impregnated with a liquid sealant in the voids on the surface of the sintered body, and then heated at a temperature of 150 ° C. for 1 hour to cure the epoxy resin to insulate outside the battery element 21 Layer 32 was formed. Next, the polytetrafluoroethylene mold was removed, and the resin coating 31 was taken out.
 上記の工程において、絶縁層32による密閉性を高めるために、端子23は、図3に示すように予めその一部がポリプロピレン製フィルム33で被覆されており、端子23と絶縁層32が、ポリプロピレン製フィルム33を介して密着するようにしている。 In the above process, in order to improve the sealing property by the insulating layer 32, the terminal 23 is partially covered with a polypropylene film 33 in advance as shown in FIG. 3, and the terminal 23 and the insulating layer 32 are made of polypropylene. The film 33 is in close contact with the film 33.
 その後、図2に示される樹脂被覆体31を、図3に示すように外装部材42で被覆して、実施例1の全固体電池41を作製した。外装部材42には、樹脂層、水蒸気遮断層、接着層が一体に積層されたアルミニウムラミネートフィルム(大日本印刷株式会社製、型番D-EL40H)を用いた。所定の寸法に切断した2枚のアルミニウムラミネートフィルムの間に樹脂被覆体31を配置し、150℃の温度に加熱した平板を押し当てることによってアルミニウムラミネートフィルム同士を接着して、全固体電池41を作製した。 Thereafter, the resin coating 31 shown in FIG. 2 was covered with the exterior member 42 as shown in FIG. 3 to produce the all-solid-state battery 41 of Example 1. As the exterior member 42, an aluminum laminate film (manufactured by Dai Nippon Printing Co., Ltd., model number D-EL40H) in which a resin layer, a water vapor blocking layer, and an adhesive layer are integrally laminated was used. The resin-coated body 31 is disposed between two aluminum laminate films cut to a predetermined size, and the aluminum laminate films are bonded together by pressing a flat plate heated to a temperature of 150 ° C. Produced.
 上記の工程において、外装部材42による密閉性を高めるために、端子23は、図3に示すように予めその一部がポリプロピレン製フィルム33で被覆されており、端子23と外装部材42が、ポリプロピレン製フィルム33を介して密着するようにしている。 In the above process, in order to improve the sealing performance by the exterior member 42, the terminal 23 is partially covered with a polypropylene film 33 in advance as shown in FIG. 3, and the terminal 23 and the exterior member 42 are made of polypropylene. The film 33 is in close contact with the film 33.
 (実施例2)
 図2に示される樹脂被覆体31を、図3に示すように外装部材42で被覆しないで、そのままの状態で実施例2の全固体電池とした。
(Example 2)
The resin-coated body 31 shown in FIG. 2 was not covered with the exterior member 42 as shown in FIG.
 (実施例3)
 図2に示すように、電池要素21を高密度ポリエチレン樹脂で被覆することにより、樹脂被覆体31を作製した。
(Example 3)
As shown in FIG. 2, the resin coating 31 was produced by coating the battery element 21 with a high-density polyethylene resin.
 具体的には、まず、所定の寸法に切断した2枚の高密度ポリエチレン樹脂製フィルムの間に電池要素21を配置し、250℃の温度に加熱した平板を押し当てることによって、高密度ポリエチレン樹脂製フィルムを軟化させて焼結体表面の空隙内に樹脂を含浸させつつ、高密度ポリエチレン樹脂製フィルム同士を接着して、電池要素21の外側に絶縁層32を形成した。 Specifically, first, a battery element 21 is disposed between two high-density polyethylene resin films cut to a predetermined size, and a flat plate heated to a temperature of 250 ° C. is pressed against the high-density polyethylene resin. The high-density polyethylene resin film was bonded to each other while the resin film was softened and the resin was impregnated in the voids on the surface of the sintered body to form the insulating layer 32 on the outside of the battery element 21.
 その後、実施例1と同様にして、樹脂被覆体31を、外装部材42としてのアルミニウムラミネートフィルムで被覆し、実施例3の全固体電池41を作製した。 Thereafter, in the same manner as in Example 1, the resin coating 31 was covered with an aluminum laminate film as the exterior member 42 to produce the all-solid-state battery 41 of Example 3.
 (比較例)
 電池要素21を、樹脂で被覆しないで、外装部材42で被覆して、比較例の全固体電池を作製した。なお、外装部材42で被覆する工程は実施例1と同様である。
(Comparative example)
The battery element 21 was not covered with a resin, but was covered with an exterior member 42 to produce an all-solid battery of a comparative example. The process of covering with the exterior member 42 is the same as in the first embodiment.
 (樹脂被覆体の観察)
 実施例1の全固体電池41において、樹脂被覆体31を観察した。
(Observation of resin coating)
In the all-solid-state battery 41 of Example 1, the resin coating 31 was observed.
 図4に樹脂被覆体の破断面の写真を示す。電池素体11の白色の層は固体電解質層であり、黒色の層は炭素を含む層、すなわち、正極層、負極層、集電体層に相当する。後述するが、介在層も黒色の層に含まれている。電池素体11の外側を絶縁層32が被覆している構造が確認された。 Fig. 4 shows a photograph of the fracture surface of the resin coating. The white layer of the battery body 11 is a solid electrolyte layer, and the black layer corresponds to a layer containing carbon, that is, a positive electrode layer, a negative electrode layer, and a current collector layer. As will be described later, the intervening layer is also included in the black layer. A structure in which the insulating layer 32 covers the outside of the battery body 11 was confirmed.
 図5に、図4の破線部で囲まれた領域の走査電子顕微鏡(SEM)写真を示す。図4の写真と合せて考察すると、図5中の32は絶縁層であり、63は固体電解質層であることが確認された。20μm程度の厚みを有する正極層に相当する層62と、絶縁層32と正極層62との間に20μm程度の厚みを有する介在層に相当する層61が確認された。 FIG. 5 shows a scanning electron microscope (SEM) photograph of the area surrounded by the broken line in FIG. When considered together with the photograph of FIG. 4, it was confirmed that 32 in FIG. 5 is an insulating layer and 63 is a solid electrolyte layer. A layer 62 corresponding to a positive electrode layer having a thickness of about 20 μm and a layer 61 corresponding to an intervening layer having a thickness of about 20 μm were confirmed between the insulating layer 32 and the positive electrode layer 62.
 図6に図5の層61を拡大した走査電子顕微鏡(SEM)写真を示す。図7に図5の層62を拡大した走査電子顕微鏡(SEM)写真を示す。図7に示すように、層62は凹凸の断面構造を有し、正極活物質材料、導電剤、固体電解質材料の主材が空隙を内包した状態で焼成された構造であることが確認された。一方、図6に示すように、層61は正極層の空隙内にエポキシ樹脂が入り込み、硬化したために、比較的平滑な断面構造を有することが確認された。 FIG. 6 shows a scanning electron microscope (SEM) photograph in which the layer 61 of FIG. 5 is enlarged. FIG. 7 shows a scanning electron microscope (SEM) photograph in which the layer 62 of FIG. 5 is enlarged. As shown in FIG. 7, the layer 62 has an uneven cross-sectional structure, and it was confirmed that the positive electrode active material, the conductive agent, and the main material of the solid electrolyte material were fired in a state of including voids. . On the other hand, as shown in FIG. 6, the layer 61 was confirmed to have a relatively smooth cross-sectional structure because the epoxy resin entered the voids of the positive electrode layer and was cured.
 したがって、実施例1の全固体電池41においては、樹脂被覆体31は、電池素体11と、熱硬化性樹脂であるエポキシ樹脂を含む絶縁層32との間に、電池素体11と絶縁層32の両方に接する介在層61が形成されていることが確認された。また、介在層61は、電池素体11の成分と絶縁層32の成分が混在した層であり、かつ、電池素体11を構成する焼成体の空隙内に、絶縁層32を構成するエポキシ樹脂が入り込んだ構造を有することが確認された。 Therefore, in the all-solid-state battery 41 of Example 1, the resin coating 31 includes the battery body 11 and the insulating layer between the battery body 11 and the insulating layer 32 containing an epoxy resin that is a thermosetting resin. It was confirmed that the intervening layer 61 in contact with both of them was formed. The intervening layer 61 is a layer in which the components of the battery body 11 and the insulating layer 32 are mixed, and the epoxy resin that forms the insulating layer 32 in the voids of the fired body that forms the battery body 11. It was confirmed to have a structure in which.
 なお、実施例3の全固体電池41においても、図示していないが、熱可塑性樹脂である高密度ポリエチレン樹脂を用いた樹脂被覆体31についても、上記の方法で観察を行ったところ、実施例1と同様に介在層を備えた構造であることが確認された。 In addition, although not shown in the all-solid-state battery 41 of Example 3, the resin coating 31 using the high-density polyethylene resin that is a thermoplastic resin was also observed by the above method. It was confirmed that the structure was provided with an intervening layer as in 1.
 (充放電試験)
 実施例1~3と比較例の全固体電池を、以下の条件にしたがって充放電試験を行った。
(Charge / discharge test)
The all solid state batteries of Examples 1 to 3 and Comparative Example were subjected to a charge / discharge test according to the following conditions.
 温度24~26℃、相対湿度60%の環境下で、50μAの電流で6.4Vの電圧まで充電した後、6.4Vの電圧で20時間保持した。その後、50μAの電流で0Vの電圧まで放電した。上記の充放電を50回繰り返した。 The battery was charged to a voltage of 6.4 V with a current of 50 μA in an environment of a temperature of 24 to 26 ° C. and a relative humidity of 60%, and then held at a voltage of 6.4 V for 20 hours. Thereafter, the battery was discharged to a voltage of 0 V with a current of 50 μA. The above charging / discharging was repeated 50 times.
 上記の充放電試験の結果として、以下の表1に実施例1~3と比較例の全固体電池において1回目と50回目の充放電における放電容量と、下式で算出した放電容量の維持率を示す。 As a result of the above charge / discharge test, Table 1 below shows the discharge capacities in the first and 50th charge / discharge in all solid state batteries of Examples 1 to 3 and the comparative example, and the retention rate of the discharge capacity calculated by the following equation. Indicates.
 放電容量維持率[%]=(50回目放電容量[μAh]/1回目放電容量[μAh])×100 Discharge capacity maintenance rate [%] = (50th discharge capacity [μAh] / 1st discharge capacity [μAh]) × 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、介在層を備えていない比較例の全固体電池に比べて、実施例1~3の全固体電池では放電容量維持率が高く、サイクル特性に優れることが確認された。さらに、アルミニウムラミネートフィルムの外装部材を備えた実施例1、3の全固体電池では、サイクル特性が特に優れることが確認された。 From Table 1, it was confirmed that the all-solid batteries of Examples 1 to 3 had a higher discharge capacity retention rate and excellent cycle characteristics than the all-solid battery of Comparative Example having no intervening layer. Furthermore, it was confirmed that the all-solid-state batteries of Examples 1 and 3 having an aluminum laminate film exterior member have particularly excellent cycle characteristics.
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the claims.
 大気中の水分の電池素体への浸入を防止することができるとともに、電池素体の機械的強度を補強することができ、サイクル特性を改善することができるので、本発明は全固体電池の製造に特に有用である。 Since it is possible to prevent moisture in the atmosphere from entering the battery body, reinforce the mechanical strength of the battery body, and improve cycle characteristics, the present invention can It is particularly useful for manufacturing.
 1:積層体、2:正極層、3:固体電解質層、4:負極層、5:単電池構造、6:集電体層、11:電池素体、21:電池要素、22:端子層、23:端子、31:樹脂被覆体、32:絶縁層、33:ポリプロピレン製フィルム、41:全固体電池、42:外装部材、61:介在層に相当する層、62:正極層に相当する層、63:固体電解質層に相当する層。
                                                                                
1: laminate, 2: positive electrode layer, 3: solid electrolyte layer, 4: negative electrode layer, 5: single cell structure, 6: current collector layer, 11: battery element body, 21: battery element, 22: terminal layer, 23: Terminal, 31: Resin coating, 32: Insulating layer, 33: Polypropylene film, 41: All solid state battery, 42: Exterior member, 61: Layer corresponding to intervening layer, 62: Layer corresponding to positive electrode layer, 63: A layer corresponding to the solid electrolyte layer.

Claims (8)

  1.  正極層または負極層の少なくともいずれか一方の電極層と固体電解質層とを含む電池素体と、
     前記電池素体を被覆し、樹脂を含む絶縁層と、
     前記電池素体と前記絶縁層の間に介在し、前記電池素体と前記絶縁層の両方に接する介在層と、を備え、
     前記介在層が、前記電池素体を構成する成分と、前記絶縁層を構成する樹脂成分とを含む、全固体電池。
    A battery element body including at least one of a positive electrode layer or a negative electrode layer and a solid electrolyte layer;
    An insulating layer that covers the battery body and includes a resin;
    An intervening layer interposed between the battery element body and the insulating layer and in contact with both the battery element body and the insulating layer;
    The all-solid-state battery in which the said intervening layer contains the component which comprises the said battery element | base_body, and the resin component which comprises the said insulating layer.
  2.  前記電池素体が集電体層を含む、請求項1に記載の全固体電池。 The all-solid-state battery according to claim 1, wherein the battery body includes a current collector layer.
  3.  前記電池素体が焼成体から構成される、請求項1または請求項2に記載の全固体電池。 The all-solid-state battery according to claim 1 or 2, wherein the battery body is composed of a fired body.
  4.  前記介在層が、前記焼成体と、前記焼成体の空隙内に存在する前記樹脂成分とを含む、請求項3に記載の全固体電池。 The all-solid-state battery according to claim 3, wherein the intervening layer includes the fired body and the resin component present in a void of the fired body.
  5.  前記樹脂が、熱硬化性樹脂、熱可塑性樹脂、および、光硬化性樹脂からなる群より選ばれた少なくとも1種を含む、請求項1から請求項4までのいずれか1項に記載の全固体電池。 The all solid according to any one of claims 1 to 4, wherein the resin includes at least one selected from the group consisting of a thermosetting resin, a thermoplastic resin, and a photocurable resin. battery.
  6.  前記絶縁層を被覆する外装部材をさらに備える、請求項1から請求項5までのいずれか1項に記載の全固体電池。 The all-solid-state battery according to any one of claims 1 to 5, further comprising an exterior member that covers the insulating layer.
  7.  正極層または負極層の少なくともいずれか一方の未焼成体である未焼成電極層と、固体電解質層の未焼成体である未焼成固体電解質層とを作製する未焼成層作製工程と、
     前記未焼成電極層と前記未焼成固体電解質層とを積層して積層体を形成する積層体形成工程と、
     前記積層体を焼成して焼成体から構成される電池素体を作製する焼成工程と、
     樹脂で前記電池素体を被覆する工程と、
     前記樹脂を固化させることにより、固化した樹脂成分を含む絶縁層と、固化した樹脂成分と前記焼成体成分を含み、前記電池素体と前記絶縁層の間に介在し、前記電池素体と前記絶縁層の両方に接する介在層とを形成する工程と、を備える、全固体電池の製造方法。
    An unsintered electrode layer that is an unsintered body of at least one of the positive electrode layer and the negative electrode layer and an unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer;
    A laminate forming step of forming a laminate by laminating the unfired electrode layer and the unfired solid electrolyte layer;
    A firing step of firing the laminate to produce a battery body composed of the fired body,
    Coating the battery body with a resin;
    By solidifying the resin, an insulating layer containing a solidified resin component, a solidified resin component and the fired body component are interposed between the battery body and the insulating layer, and the battery body and the And a step of forming an intervening layer in contact with both of the insulating layers.
  8.  正極層または負極層の少なくともいずれか一方の未焼成体である未焼成電極層と、固体電解質層の未焼成体である未焼成固体電解質層とを作製する未焼成層作製工程と、
     前記未焼成電極層と前記未焼成固体電解質層とを積層して積層体を形成する積層体形成工程と、
     前記積層体を焼成して焼成体から構成される電池素体を作製する焼成工程と、
     樹脂で前記電池素体を被覆する工程と、
     前記電池素体を構成する前記焼成体の空隙内に前記樹脂を含浸させる工程と、
     前記樹脂を固化させることにより、固化した樹脂成分を含む絶縁層と、前記焼成体と前記焼成体の空隙内で固化した樹脂成分とを含み、前記電池素体と前記絶縁層の間に介在し、前記電池素体と前記絶縁層の両方に接する介在層とを形成する工程と、を備える、全固体電池の製造方法。

                                                                                    
    An unsintered electrode layer that is an unsintered body of at least one of the positive electrode layer and the negative electrode layer and an unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer;
    A laminate forming step of forming a laminate by laminating the unfired electrode layer and the unfired solid electrolyte layer;
    A firing step of firing the laminate to produce a battery body composed of the fired body,
    Coating the battery body with a resin;
    Impregnating the resin in the voids of the fired body constituting the battery body; and
    By solidifying the resin, an insulating layer containing a solidified resin component, and a resin component solidified in a gap between the fired body and the fired body, are interposed between the battery body and the insulating layer. And a step of forming an intervening layer in contact with both of the battery element body and the insulating layer.

PCT/JP2012/083768 2011-12-28 2012-12-27 All-solid cell and method for manufacturing same WO2013100001A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011287239 2011-12-28
JP2011-287239 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013100001A1 true WO2013100001A1 (en) 2013-07-04

Family

ID=48697480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083768 WO2013100001A1 (en) 2011-12-28 2012-12-27 All-solid cell and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013100001A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106161679A (en) * 2015-03-30 2016-11-23 南昌欧菲光学技术有限公司 Portable terminal device bonnet battery and the preparation method of portable terminal device bonnet battery
CN106688132A (en) * 2014-07-22 2017-05-17 瑞克锐斯株式会社 Silicon secondary battery
JP2019204660A (en) * 2018-05-23 2019-11-28 トヨタ自動車株式会社 All-solid-state battery
WO2020195101A1 (en) 2019-03-25 2020-10-01 パナソニックIpマネジメント株式会社 Power storage device
CN113497299A (en) * 2020-03-18 2021-10-12 丰田自动车株式会社 All-solid-state battery, method for manufacturing battery element, and method for manufacturing all-solid-state battery
CN113497277A (en) * 2020-03-19 2021-10-12 本田技研工业株式会社 Laminated solid-state battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043893A (en) * 1999-07-29 2001-02-16 Kyocera Corp Whole solid secondary battery and its manufacture
JP2008103292A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd All-solid battery for household electric appliance
JP2010205718A (en) * 2009-02-03 2010-09-16 Sony Corp Thin-film solid lithium-ion secondary battery and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043893A (en) * 1999-07-29 2001-02-16 Kyocera Corp Whole solid secondary battery and its manufacture
JP2008103292A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd All-solid battery for household electric appliance
JP2010205718A (en) * 2009-02-03 2010-09-16 Sony Corp Thin-film solid lithium-ion secondary battery and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106688132A (en) * 2014-07-22 2017-05-17 瑞克锐斯株式会社 Silicon secondary battery
JP2017526150A (en) * 2014-07-22 2017-09-07 リクリッス カンパニー リミテッド Silicon secondary battery
CN106688132B (en) * 2014-07-22 2020-09-04 瑞克锐斯株式会社 Silicon secondary battery
US11024875B2 (en) 2014-07-22 2021-06-01 Rekrix Co., Ltd. Silicon secondary battery
CN106161679A (en) * 2015-03-30 2016-11-23 南昌欧菲光学技术有限公司 Portable terminal device bonnet battery and the preparation method of portable terminal device bonnet battery
JP2019204660A (en) * 2018-05-23 2019-11-28 トヨタ自動車株式会社 All-solid-state battery
JP7068630B2 (en) 2018-05-23 2022-05-17 トヨタ自動車株式会社 All solid state battery
WO2020195101A1 (en) 2019-03-25 2020-10-01 パナソニックIpマネジメント株式会社 Power storage device
CN113497299A (en) * 2020-03-18 2021-10-12 丰田自动车株式会社 All-solid-state battery, method for manufacturing battery element, and method for manufacturing all-solid-state battery
CN113497299B (en) * 2020-03-18 2023-04-18 丰田自动车株式会社 All-solid-state battery, method for manufacturing battery element, and method for manufacturing all-solid-state battery
CN113497277A (en) * 2020-03-19 2021-10-12 本田技研工业株式会社 Laminated solid-state battery
JP7433099B2 (en) 2020-03-19 2024-02-19 本田技研工業株式会社 Laminated solid state battery

Similar Documents

Publication Publication Date Title
JP5742940B2 (en) All-solid battery and method for manufacturing the same
JP5741689B2 (en) All-solid battery and method for manufacturing the same
JP5910737B2 (en) All solid battery
WO2012008422A1 (en) All-solid-state battery
WO2013100001A1 (en) All-solid cell and method for manufacturing same
JP2011065982A (en) Lithium battery electrode body and lithium battery
JPWO2013137224A1 (en) All-solid battery and method for manufacturing the same
JP5811191B2 (en) All-solid battery and method for manufacturing the same
JP6262129B2 (en) All-solid battery and method for manufacturing the same
JP5796686B2 (en) All-solid battery and method for manufacturing the same
JP6197495B2 (en) All solid battery
JP6070681B2 (en) Lithium battery electrode body and lithium battery
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
WO2012029641A1 (en) Solid state battery and manufacturing method for same
JP5556969B2 (en) Laminated molded body for all solid state battery, all solid state battery and method for producing the same
WO2012060349A1 (en) All-solid-state battery
JP6192540B2 (en) All-solid battery and method for manufacturing the same
CN113228375A (en) All-solid-state battery
WO2013035526A1 (en) Laminated molded body for all-solid-state battery, all-solid-state battery, and production method therefor
JP6003982B2 (en) All solid battery
US11631890B2 (en) All solid-state lithium-ion battery produced by pressure-aided co-curing
JP7416073B2 (en) Solid state battery manufacturing method and solid state battery
Chiang et al. Controlled porosity in electrodes
JP2022088258A (en) Positive electrode, secondary battery, and manufacturing method thereof
WO2013133394A1 (en) All solid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP