WO2012029641A1 - Solid state battery and manufacturing method for same - Google Patents

Solid state battery and manufacturing method for same Download PDF

Info

Publication number
WO2012029641A1
WO2012029641A1 PCT/JP2011/069254 JP2011069254W WO2012029641A1 WO 2012029641 A1 WO2012029641 A1 WO 2012029641A1 JP 2011069254 W JP2011069254 W JP 2011069254W WO 2012029641 A1 WO2012029641 A1 WO 2012029641A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
solid state
state battery
battery
moisture
Prior art date
Application number
PCT/JP2011/069254
Other languages
French (fr)
Japanese (ja)
Inventor
倍太 尾内
充 吉岡
剛司 林
邦雄 西田
渡辺 浩一
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2012029641A1 publication Critical patent/WO2012029641A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention generally relates to a solid battery and a manufacturing method thereof, and more particularly, to a solid battery in which a laminated positive electrode layer, a solid electrolyte layer, and a negative electrode layer are joined by sintering, and a manufacturing method thereof.
  • batteries particularly secondary batteries
  • main power sources for portable electronic devices such as mobile phones and portable personal computers, backup power sources, and hybrid vehicle (HEV) power sources.
  • secondary batteries a lithium ion secondary battery having a high energy density and capable of being charged and discharged is used.
  • an organic electrolyte in which a lithium salt is dissolved in a carbonate ester, an ether organic solvent or the like has been conventionally used as a medium for moving ions.
  • JP 2007-258148 A discloses a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and an internal electrode having a solid electrolyte layer containing a solid electrolyte.
  • An all-solid battery with a body is disclosed.
  • the positive electrode active material, the negative electrode active material, and the solid electrolyte are all phosphoric acid compounds.
  • the internal electrode body is integrated by firing the positive electrode, the negative electrode, and the solid electrolyte layer.
  • the internal electrode body contains moisture.
  • Patent Document 2 JP 2008-243560 A discloses a laminate of a positive electrode, a negative electrode, and an electrolyte layer containing a phosphoric acid compound in at least one of a positive electrode active material, a negative electrode active material, and a solid electrolyte.
  • a method for producing an all-solid-state secondary battery is disclosed in which a body is energized (charged) in the presence of moderate moisture.
  • the power generation element which is an internal electrode body, positively contains moisture
  • the power generation is a laminate of a positive electrode, a negative electrode, and an electrolyte layer.
  • a method is disclosed in which the internal resistance of a solid state battery is reduced by energizing the element after containing moisture.
  • the moisture content of the solid battery of Patent Document 1 is 0.3 to 10% by mass, and the moisture content of the solid battery of Patent Document 2 is 0.5 to 3% by mass. These moisture contents are extremely high compared to the moisture contained in the raw materials, or the amount of moisture taken into the battery when the electrode is manufactured or incorporated into the battery, so the power generation element is stored in the battery housing.
  • the power generation element By energizing the power generation element after sealing the battery casing, moisture may be decomposed and the internal pressure inside the battery casing may increase.
  • the power generation element is energized without sealing the battery housing, the above internal pressure does not increase. However, since it is necessary to perform the sealing work in a low humidity atmosphere so that moisture is not taken into the power generation element after energization, the manufacturing cost may increase.
  • an object of the present invention is to remove moisture taken into the solid battery during the manufacturing process of the solid battery so as to reduce the possibility that the internal pressure inside the exterior member such as the casing will increase. It is providing the manufacturing method of a solid battery, and the solid battery manufactured by the manufacturing method.
  • the method for manufacturing a solid battery according to the present invention includes the following steps.
  • the water removal step is performed in an initial charge step for charging the solid state battery for the first time.
  • the moisture removal step is performed in an initial charging step in which the solid battery is charged for the first time after the sintered body is dried.
  • the initial charging step is performed by charging the solid state battery with a battery voltage of 1.3 V or more.
  • the initial charging step is performed after the sintered body is sealed with the exterior member.
  • the moisture content of the sintered body before the moisture removing step is 0.1% by mass or more and 0.3% by mass or less.
  • the moisture content of the sintered body after the moisture removing step is 0.00001% by mass or more and 0.01% by mass or less.
  • At least one of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer includes a solid electrolyte having a composition of NASICON structure.
  • At least one of the positive electrode layer and the negative electrode layer contains a lithium-containing phosphate compound as an electrode active material.
  • the solid battery of the present invention is manufactured by the above-described manufacturing method.
  • moisture taken into the power generation element in the manufacturing process of the power generation element including the positive electrode layer, the solid electrolyte layer, and the negative electrode layer is removed in advance in the moisture removal process after sintering. For this reason, even if the solid battery is used repeatedly, the decomposition of moisture does not occur, and the possibility that the internal pressure inside the exterior member increases can be reduced.
  • a green body of each of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer is laminated to produce a laminate. Thereafter, the laminate is sintered to produce a sintered body. And the water
  • the water removal is performed in an initial charging process in which the solid battery is charged for the first time.
  • moisture taken into the power generation element in the power generation element manufacturing process is removed in the initial charging process.
  • the same effect as the case where moisture is removed by previously drying the sintered body for a long time can be obtained. Therefore, it is not necessary to perform a step of drying the sintered body for a long time in order to remove moisture, so that the method for manufacturing a solid battery can be simplified.
  • the moisture removal may be performed in an initial charging process in which the solid battery is charged for the first time after the sintered body is dried. In this case, moisture taken into the power generation element in the power generation element manufacturing process can be more effectively removed.
  • Water decomposition usually occurs at about 1.2 V, but depending on the type of material constituting the solid battery, such as an electrode active material or a solid electrolyte, water decomposition occurs at a battery voltage lower than 1.2 V, or 1 Water decomposition may occur at battery voltages higher than 2V. Therefore, the initial charging step is preferably performed by charging the solid state battery with a battery voltage equal to or higher than the water decomposition voltage. It is preferable to carry out by charging the solid battery at a battery voltage of 1.3 V or higher. In this case, moisture taken into the power generation element in the power generation element manufacturing process can be more effectively removed.
  • the moisture can be removed more effectively by providing a state where the battery is held at an arbitrary voltage of 1.3 V or higher for a certain period of time. Can do. In this case, it is preferable to hold at a battery voltage of 1.3V to 4.0V. More preferably, it is held at a battery voltage of 1.3 V or more and 3.0 V or less.
  • the voltage is held for a certain period of time, which is a battery voltage of 4.0 V or more, there is a possibility that the cycle characteristics and the like are deteriorated.
  • the initial charging step is performed after the sintered body is sealed with an exterior member.
  • the sintered body is initially charged after being sealed with an exterior member such as a housing, the power generation element from which moisture has been removed by the initial charging step does not absorb moisture from the surrounding outside air.
  • a solid battery can be manufactured.
  • the moisture content of the sintered body before the moisture removing step is preferably 0.1% by mass or more and 0.3% by mass or less (1000 ppm or more and 3000 ppm or less).
  • the moisture taken into the power generation element depends on the temperature and humidity of the environment in the power generation element manufacturing process, but is 0.1% by mass to 0.3% by mass with respect to the mass of the sintered body. Then, even when the power generation element is stored in an exterior member such as a housing and then the exterior member is sealed and the initial charging process is performed, the pressure inside the exterior member significantly increases through the initial charging process. Thus, moisture can be removed.
  • the moisture content of the sintered body after the moisture removal step is 0.00001 mass% or more and 0.01 mass% or less (0.1 ppm or more and 100 ppm or less). It can be reduced within the range.
  • At least one of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer includes a solid electrolyte having a composition of NASICON structure.
  • a solid electrolyte having a composition of NASICON structure high ion conductivity that is essential for the battery operation of the solid state battery can be obtained.
  • glass or glass ceramics having a composition of NASICON type structure as the solid electrolyte. In this case, a denser sintered body is likely to be obtained due to the viscous flow of the glass phase in the sintering process.
  • the method for producing a solid battery of the present invention it is preferable that at least one of the positive electrode layer and the negative electrode layer contains a lithium-containing phosphate compound as an electrode active material.
  • the high temperature stability of the phosphoric acid skeleton makes it easy to suppress the phase change of the electrode active material or the reaction with the solid electrolyte in the sintering process, so that the capacity of the solid battery can be increased. it can.
  • the solid battery of the present invention is manufactured by the above-described manufacturing method.
  • the solid electrolyte it is possible to use a material that has ionic conductivity and is so small that electron conductivity is negligible.
  • the solid electrolyte include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof.
  • Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4 ⁇ x N x ) in which nitrogen is introduced into lithium phosphate, Li—Si— such as Li 4 SiO 4 O-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3, etc.
  • Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4 ⁇ x N x ) in which nitrogen is introduced into lithium phosphate
  • Li—Si— such as Li 4 SiO 4 O-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3, etc.
  • Examples thereof include compounds having
  • the solid electrolyte it is more preferable to use a compound having a perovskite structure and a compound having a nasicon type structure, and it is particularly preferable to use a compound having a nasicon type structure.
  • Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 or the like can be used.
  • Examples of the solid electrolyte having a composition of NASICON structure include two or more having a composition of different NASICON structures such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3. A mixture in which the solid electrolyte is mixed may be used.
  • solid electrolyte having a composition of NASICON structure a solid electrolyte containing a crystal phase of NASICON structure or glass in which a crystal phase of NASICON structure is deposited by heat treatment may be used.
  • the kind of electrode active material is not particularly limited.
  • an electrode active material a layered compound such as LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , a spinel structure such as LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 4 Ti 5 O 12
  • a phosphoric acid compound such as LiFePO 4 or LiMnPO 4 may be used as the compound having an olivine type structure, and a phosphoric acid compound such as Li 3 V 2 (PO 4 ) 3 may be used as the compound having a nasicon type structure.
  • the method for forming the green sheets of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer is not particularly limited, and a die coater, a comma coater, screen printing, or the like can be used.
  • the slurry for forming the green sheets of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer can be prepared by wet-mixing a polymer material, a positive electrode or negative electrode active material, and a solid electrolyte.
  • Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used.
  • a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
  • the slurry may contain a plasticizer.
  • plasticizer is not particularly limited, phthalic acid esters such as dioctyl phthalate and diisononyl phthalate may be used.
  • the method for laminating the green sheets is not particularly limited, but a hot isostatic press (HIP), a cold isostatic press (CIP), a hydrostatic press (WIP), or the like can be used.
  • HIP hot isostatic press
  • CIP cold isostatic press
  • WIP hydrostatic press
  • Example shown below is an example and this invention is not limited to the following Example.
  • glass powder having a composition of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 was used as the solid electrolyte powder.
  • the electrode active material powder a powder having a crystal phase of Li 3 V 2 (PO 4 ) 3 was used.
  • the solid electrolyte powder as a main material, polyvinyl butyral resin, and alcohol were weighed to a weight ratio of 100: 15: 140.
  • Polyvinyl butyral resin, solid electrolyte powder and alcohol were enclosed in a pot together with media and rotated on a pot rack, and then the media was taken out to produce a solid electrolyte slurry.
  • a mixed powder obtained by mixing 50 parts by weight of a solid electrolyte powder, 45 parts by weight of an electrode active material powder, and 5 parts by weight of carbon powder as a conductive agent in a mortar is used as a main material, and the main material, polyvinyl butyral resin, and alcohol are used.
  • An electrode slurry was prepared in the same manner as the solid electrolyte slurry by weighing to a weight ratio of 100: 15: 140.
  • a solid electrolyte slurry was coated on a polyethylene terephthalate (PET) film, dried on a hot plate heated to a temperature of 40 ° C., and a solid electrolyte green sheet was prepared to a thickness of 50 ⁇ m. .
  • PET polyethylene terephthalate
  • the electrode slurry was coated on a polyethylene terephthalate (PET) film using a doctor blade method and dried on a hot plate heated to a temperature of 40 ° C. to prepare an electrode green sheet having a thickness of 50 ⁇ m.
  • PET polyethylene terephthalate
  • the obtained green sheet laminate was cut into a size of 10 mm ⁇ 10 mm to produce a laminate.
  • the reason why a plurality of the solid electrolyte green sheets are laminated is to provide sufficient mechanical strength to the sintered solid electrolyte layer to facilitate the handling of the solid electrolyte layer in the steps described later. There is no particular problem even if the solid electrolyte layer is formed with a single green sheet without laminating a plurality of solid electrolyte green sheets.
  • the reason why the number of electrode green sheets used for forming the positive electrode layer and the number of electrode green sheets used for forming the negative electrode layer are different is that Li 3 V 2 (PO 4 ) 3 is used as the positive electrode active material.
  • Li 3 V 2 (PO 4 ) 3 differs between the case where Li 3 V 2 (PO 4 ) 3 is used as the negative electrode active material and about 2 times. is there.
  • Each thickness of a positive electrode layer and a negative electrode layer can be suitably changed according to the material of the electrode active material to be used.
  • the laminate of the green sheets was cut to a predetermined size to produce a laminate, but the laminate may be produced by laminating green sheets that have been cut to a predetermined size in advance.
  • the cutting method is not particularly limited, and a die or the like can be used.
  • the obtained laminate was fired at a temperature of 500 ° C. in an air atmosphere to remove the polyvinyl butyral resin, and then sintered at a temperature of 700 ° C. in a nitrogen gas atmosphere to prepare a sintered body. .
  • the sintering temperature and atmosphere can be appropriately changed according to the type of resin, solid electrolyte, and electrode active material used.
  • a platinum (Pt) layer is formed as a current collector layer by sputtering on the outer surface of each of the positive electrode layer and the negative electrode layer of the obtained sintered body. Then, eight power generation elements 1 to 8 having the same specifications were produced.
  • the material for the current collector layer is not particularly limited as long as it has electron conductivity, and the method for forming the current collector layer is not particularly limited.
  • As the material having electron conductivity metal, carbon, conductive oxide, or the like can be used.
  • the current collector layer can be formed by applying or dipping a slurry of an electron conductive material on the outer surface of each of the positive electrode layer and the negative electrode layer in addition to vacuum deposition and chemical vapor deposition (CVD). Then, it may be formed by heat treatment.
  • the entire manufacturing process from (production of green sheet) to (production of power generation element) was performed in an environment where the temperature was 25 ° C. and the relative humidity was 50%.
  • An aluminum laminate film was used for the casing as the exterior member of the solid battery.
  • the power generation elements 1, 2, and 3 produced above were used without being particularly dried.
  • Each of the power generation elements 1 and 2 was surrounded by an aluminum laminate film 20 and sealed to produce solid batteries 1 and 2 like the all-solid secondary battery 1 shown in FIG.
  • the power generation element 10 (FIG. 2) is housed inside an aluminum laminate film 20 as an exterior member and sealed with a sealing portion 21.
  • the positive electrode terminal 11 and the negative electrode terminal 12 are drawn out from the inner side of the aluminum laminate film 20 through the sealing portion 21.
  • the initial charging process was performed by scanning the solid batteries 1 and 2 at a voltage of 0.1 mV / min from the open circuit voltage to 3V. At this time, it is considered that water is electrochemically decomposed and removed by holding the solid state batteries 1 and 2 at a voltage of 1.3 V or higher, which is higher than 1.2 V which is the decomposition voltage of water.
  • the power generation elements 4, 5, and 6 were dried at a temperature of 100 ° C. for 10 hours to remove a part of moisture contained in the power generation elements.
  • the power generation elements 4 and 5 were sealed in the same manner as the solid batteries 1 and 2 like the all-solid secondary battery 1 shown in FIG. Thereafter, the initial charging step was performed in the same manner as the solid batteries 1 and 2 described above.
  • the power generation elements 7 and 8 were used after being allowed to stand in an environment with a temperature of 30 ° C. and a relative humidity of 80% to contain moisture.
  • the power generation element 7 was sealed like the all-solid secondary battery 1 shown in FIG. Thereafter, the initial charging step was performed in the same manner as the solid batteries 1 and 2 described above.
  • FIG. 3 shows the initial charging curves of the solid batteries 1, 4 and 7 obtained in the initial charging step.
  • the solid line indicates the initial charge curve of the solid battery 1
  • the one-dot chain line indicates the solid battery 4
  • the two-dot chain line indicates the initial charge curve of the solid battery 7.
  • a current peak that rises from around 1.2 V and is estimated to be caused by water decomposition was confirmed, but in the solid battery 4, such a current peak was confirmed. Was not.
  • the initial charge curves of the solid battery 1 and the solid battery 4 are substantially the same except for the current peak rising from around 1.2 V, and it can be seen that the initial charge curve of the solid battery 4 is slightly superior to the solid battery 1.
  • the current rose from around 0.5 V, and it was confirmed that the current was generally higher than that of the solid batteries 1 and 4.
  • the swelling of the aluminum laminate film 20 due to the internal pressure increase which was not confirmed before the initial charging process, was confirmed. This swelling is presumed to be due to gas generated by the decomposition of water.
  • the solid batteries 1 and 4 such a change in the aluminum laminate film 20 was not confirmed.
  • the discharge capacity was measured by discharging the solid batteries 1, 4 and 7 from the open circuit voltage to 0 V with a constant current of 2 ⁇ A.
  • Fig. 4 shows the discharge curves of the solid batteries 1, 4 and 7.
  • the solid line indicates the solid battery 1
  • the one-dot chain line indicates the solid battery 4
  • the two-dot chain line indicates the solid battery 7.
  • the shapes of the discharge curves of the solid batteries 1 and 4 are almost the same, and the discharge capacity of the solid battery 4 is slightly higher than that of the solid battery 1, but both the solid batteries 1 and 4 discharge about 40 ⁇ Ah. It was confirmed that capacity was obtained. It was confirmed that the solid battery 7 can only obtain a capacity of about 25 ⁇ Ah.
  • the solid batteries 2 and 5 produced above were disassembled, and the power generation elements 2 and 5 were taken out from the aluminum laminate film 20.
  • the amount of water contained in the power generation elements 2 and 5 taken out after the initial charging step and the power generation elements 3, 6, and 8 produced above was measured.
  • a trace moisture measuring device (CA200 manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was used for the measurement.
  • Table 1 shows the results of moisture content measurement.
  • the disassembly of the solid battery and the water content measurement were promptly performed in an environment with a dew point of ⁇ 60 ° C.
  • the method for manufacturing a solid battery according to the present invention it is possible to reduce the possibility that the internal pressure inside the aluminum laminate film 20 will increase by removing the water taken into the power generation element in the manufacturing process of the solid battery. I understand. Moreover, as a moisture removal process of the present invention, when only the initial charging process is performed (power generation element 2), the power generation element is dried in advance and then the initial charging process is performed (power generation element 5). It can be seen that a moisture removal effect can be obtained.
  • the aluminum laminate film 20 is used as the exterior member, but the periphery of the power generation element is sealed with resin or sealed around the power generation element with an insulating paste.
  • An exterior member such as a housing may be formed by covering with baking or the like and baking.
  • the charging conditions in the initial charging process are not particularly limited. Charge to a specified voltage with a constant current, charge the battery while maintaining the battery voltage at a specified voltage, charge by changing the charging current or charging voltage stepwise, put a pause between charges, or The initial charging process can be performed by charging in combination.
  • a solid battery By energizing the power generation element after the power generation element is stored in an exterior member such as a housing and sealed, moisture decomposition does not occur, and the possibility that the internal pressure inside the exterior member rises can be reduced.
  • a solid battery can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

Provided are a solid state battery manufacturing method in which moisture taken into a solid state battery during the solid state battery manufacturing steps can be removed in order to reduce the possibility of internal pressure rising within a housing or other exterior member; and a solid state battery manufactured by the same. In the solid state battery manufacturing method a laminate is produced by stacking a positive electrode green sheet, a solid electrolyte green sheet and a negative electrode green sheet. Next, a sintered body is formed by sintering the laminate, and the moisture contained in the sintered body is removed.

Description

固体電池およびその製造方法Solid battery and manufacturing method thereof
 本発明は、一般的には固体電池およびその製造方法に関し、特定的には、積層された正極層と固体電解質層と負極層とが焼結によって接合された固体電池およびその製造方法に関する。 The present invention generally relates to a solid battery and a manufacturing method thereof, and more particularly, to a solid battery in which a laminated positive electrode layer, a solid electrolyte layer, and a negative electrode layer are joined by sintering, and a manufacturing method thereof.
 近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の主電源、バックアップ用電源、ハイブリッド自動車(HEV)用電源等として電池、特に二次電池が用いられている。二次電池の中でも、エネルギー密度が高く、充放電可能なリチウムイオン二次電池が用いられている。 In recent years, batteries, particularly secondary batteries, have been used as main power sources for portable electronic devices such as mobile phones and portable personal computers, backup power sources, and hybrid vehicle (HEV) power sources. Among secondary batteries, a lithium ion secondary battery having a high energy density and capable of being charged and discharged is used.
 このようなリチウムイオン二次電池においては、イオンを移動させるための媒体として炭酸エステル、エーテル系の有機溶媒等にリチウム塩を溶解した有機電解質(電解液)が従来から使用されている。 In such a lithium ion secondary battery, an organic electrolyte (electrolytic solution) in which a lithium salt is dissolved in a carbonate ester, an ether organic solvent or the like has been conventionally used as a medium for moving ions.
 しかし、上記の構成のリチウムイオン二次電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質である。このため、電池の安全性をさらに高めることが求められている。 However, there is a risk that the electrolyte solution leaks in the lithium ion secondary battery having the above configuration. Moreover, the organic solvent etc. which are used for electrolyte solution are combustible substances. For this reason, it is required to further increase the safety of the battery.
 そこで、リチウムイオン二次電池の安全性を高めるために、電解質として、有機溶媒系電解液に代えて、固体電解質を用いることが提案され、すべての構成要素を固体で構成した全固体二次電池の開発が進められている。 Therefore, in order to increase the safety of the lithium ion secondary battery, it has been proposed to use a solid electrolyte as the electrolyte instead of the organic solvent electrolyte, and an all-solid secondary battery in which all the constituent elements are made of solid. Development is underway.
 たとえば、特開2007‐258148号公報(以下、特許文献1という)には、正極活物質を含有する正極、負極活物質を含有する負極、および、固体電解質を含有する固体電解質層を有する内部電極体を備えた全固体電池が開示されている。正極活物質、負極活物質、および、固体電解質が、いずれもリン酸化合物である。内部電極体が、正極、負極、および、固体電解質層が焼成されることによって一体化されたものである。内部電極体に水分が含有されている。 For example, JP 2007-258148 A (hereinafter referred to as Patent Document 1) discloses a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and an internal electrode having a solid electrolyte layer containing a solid electrolyte. An all-solid battery with a body is disclosed. The positive electrode active material, the negative electrode active material, and the solid electrolyte are all phosphoric acid compounds. The internal electrode body is integrated by firing the positive electrode, the negative electrode, and the solid electrolyte layer. The internal electrode body contains moisture.
 また、特開2008‐243560号公報(以下、特許文献2という)には、少なくとも正極活物質、負極活物質および固体電解質のいずれかにリン酸化合物を含有した、正極、負極、電解質層の積層体を、適度な水分の存在下で通電(充電)することを特徴とする全固体二次電池の製造方法が開示されている。 JP 2008-243560 A (hereinafter referred to as Patent Document 2) discloses a laminate of a positive electrode, a negative electrode, and an electrolyte layer containing a phosphoric acid compound in at least one of a positive electrode active material, a negative electrode active material, and a solid electrolyte. A method for producing an all-solid-state secondary battery is disclosed in which a body is energized (charged) in the presence of moderate moisture.
特開2007‐258148号公報JP 2007-258148 A 特開2008‐243560号公報JP 2008-243560 A
 特許文献1に記載の固体電池では、内部電極体である発電要素に積極的に水分を含有させることにより、特許文献2に記載の固体電池では、正極、負極、電解質層の積層体である発電要素に水分を含有させた後に通電することにより、固体電池の内部抵抗を低減させる方法が開示されている。 In the solid state battery described in Patent Document 1, the power generation element, which is an internal electrode body, positively contains moisture, and in the solid state battery disclosed in Patent Document 2, the power generation is a laminate of a positive electrode, a negative electrode, and an electrolyte layer. A method is disclosed in which the internal resistance of a solid state battery is reduced by energizing the element after containing moisture.
 特許文献1の固体電池の水分含有量は0.3~10質量%であり、特許文献2の固体電池の水分含有量は0.5~3質量%である。これらの水分含有量は、原料に含有される水分、または、電極の作製、電池への組込みの際に電池内に取り込まれる水分量に比して極めて高いので、発電要素を電池筺体に格納して電池筺体を封止した後で発電要素に通電することによって、水分の分解が起こり、電池筺体内部の内圧が上昇する可能性がある。一方、電池筺体を封止せずに発電要素に通電した場合には上記の内圧上昇は起こらない。しかし、通電後の発電要素に水分が取り込まれないように、封止作業を低湿度雰囲気下で行う必要があるので、製造コストが高くなる恐れがある。 The moisture content of the solid battery of Patent Document 1 is 0.3 to 10% by mass, and the moisture content of the solid battery of Patent Document 2 is 0.5 to 3% by mass. These moisture contents are extremely high compared to the moisture contained in the raw materials, or the amount of moisture taken into the battery when the electrode is manufactured or incorporated into the battery, so the power generation element is stored in the battery housing. By energizing the power generation element after sealing the battery casing, moisture may be decomposed and the internal pressure inside the battery casing may increase. On the other hand, when the power generation element is energized without sealing the battery housing, the above internal pressure does not increase. However, since it is necessary to perform the sealing work in a low humidity atmosphere so that moisture is not taken into the power generation element after energization, the manufacturing cost may increase.
 そこで、本発明の目的は、筺体等の外装部材内部の内圧が上昇する可能性を小さくすることができるように、固体電池の製造工程で固体電池中に取り込まれた水分を除去することが可能な固体電池の製造方法とその製造方法によって製造された固体電池を提供することである。 Accordingly, an object of the present invention is to remove moisture taken into the solid battery during the manufacturing process of the solid battery so as to reduce the possibility that the internal pressure inside the exterior member such as the casing will increase. It is providing the manufacturing method of a solid battery, and the solid battery manufactured by the manufacturing method.
 本発明に従った固体電池の製造方法は、以下の工程を備える。 The method for manufacturing a solid battery according to the present invention includes the following steps.
 (A)正極層、固体電解質層、および、負極層の各々のグリーンシートを積層して積層体を作製する積層工程 (A) Lamination process for producing a laminate by laminating the green sheets of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer.
 (B)積層体を焼結して焼結体を作製する焼結工程 (B) Sintering process in which the laminate is sintered to produce a sintered body
 (C)焼結体に含まれる水分を除去する水分除去工程 (C) Moisture removal step to remove moisture contained in the sintered body
 本発明の固体電池の製造方法において、水分除去工程は、初めて固体電池を充電する初充電工程で行われることが好ましい。 In the method for producing a solid state battery of the present invention, it is preferable that the water removal step is performed in an initial charge step for charging the solid state battery for the first time.
 また、本発明の固体電池の製造方法において、水分除去工程は、焼結体を乾燥させた後、初めて固体電池を充電する初充電工程で行われることが好ましい。 In the method for producing a solid battery of the present invention, it is preferable that the moisture removal step is performed in an initial charging step in which the solid battery is charged for the first time after the sintered body is dried.
 上記の初充電工程が、固体電池を1.3V以上の電池電圧で充電することによって行われることが好ましい。 It is preferable that the initial charging step is performed by charging the solid state battery with a battery voltage of 1.3 V or more.
 また、上記の初充電工程が、焼結体を外装部材で封止した後に行われることが好ましい。 Moreover, it is preferable that the initial charging step is performed after the sintered body is sealed with the exterior member.
 本発明の固体電池の製造方法において、水分除去工程が行われる前の焼結体の水分含有量が、0.1質量%以上0.3質量%以下であることが好ましい。 In the method for producing a solid state battery of the present invention, it is preferable that the moisture content of the sintered body before the moisture removing step is 0.1% by mass or more and 0.3% by mass or less.
 また、本発明の固体電池の製造方法において、水分除去工程が行われた後の焼結体の水分含有量が、0.00001質量%以上0.01質量%以下であることが好ましい。 Moreover, in the method for producing a solid battery of the present invention, it is preferable that the moisture content of the sintered body after the moisture removing step is 0.00001% by mass or more and 0.01% by mass or less.
 さらに、本発明の固体電池の製造方法において、正極層、固体電解質層および負極層の少なくとも一つは、ナシコン型構造の組成を有する固体電解質を含むことが好ましい。 Furthermore, in the method for producing a solid battery of the present invention, it is preferable that at least one of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer includes a solid electrolyte having a composition of NASICON structure.
 さらにまた、本発明の固体電池の製造方法において、正極層および負極層の少なくとも一つは、リチウム含有リン酸化合物を電極活物質として含むことが好ましい。 Furthermore, in the method for producing a solid battery of the present invention, it is preferable that at least one of the positive electrode layer and the negative electrode layer contains a lithium-containing phosphate compound as an electrode active material.
 本発明の固体電池は、上述の製造方法によって製造されたものである。 The solid battery of the present invention is manufactured by the above-described manufacturing method.
 本発明によれば、正極層、固体電解質層および負極層からなる発電要素の製造工程で発電要素中に取り込まれた水分が焼結後の水分除去工程で予め除去される。このため、繰り返し固体電池を使用したとしても、水分の分解が起こることがなく、外装部材内部の内圧が上昇する可能性を小さくすることができる。 According to the present invention, moisture taken into the power generation element in the manufacturing process of the power generation element including the positive electrode layer, the solid electrolyte layer, and the negative electrode layer is removed in advance in the moisture removal process after sintering. For this reason, even if the solid battery is used repeatedly, the decomposition of moisture does not occur, and the possibility that the internal pressure inside the exterior member increases can be reduced.
本発明の実施例で作製された全固体二次電池の外観を模式的に示す平面図である。It is a top view which shows typically the external appearance of the all-solid-state secondary battery produced in the Example of this invention. 図1のII‐II線の方向から見た全固体二次電池の断面を模式的に示す断面図である。It is sectional drawing which shows typically the cross section of the all-solid-state secondary battery seen from the direction of the II-II line | wire of FIG. 本発明の実施例で作製された全固体二次電池の初充電曲線を示す図である。It is a figure which shows the first charge curve of the all-solid-state secondary battery produced in the Example of this invention. 本発明の実施例で作製された全固体二次電池の放電曲線を示す図である。It is a figure which shows the discharge curve of the all-solid-state secondary battery produced in the Example of this invention.
 本発明の固体電池の製造方法では、まず、正極層、固体電解質層、および、負極層の各々のグリーンシートを積層して積層体が作製される。その後、積層体を焼結して焼結体が作製される。そして、焼結体に含まれる水分が除去される。このようにして、正極層、固体電解質層および負極層からなる発電要素の製造工程で発電要素中に取り込まれた水分が焼結後の水分除去工程で予め除去される。このため、繰り返し充放電を行っても、水分の分解が起こることがなく、外装部材内部の内圧が上昇する可能性を小さくすることができる。 In the method for producing a solid battery of the present invention, first, a green body of each of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer is laminated to produce a laminate. Thereafter, the laminate is sintered to produce a sintered body. And the water | moisture content contained in a sintered compact is removed. In this way, moisture taken into the power generation element in the manufacturing process of the power generation element including the positive electrode layer, the solid electrolyte layer, and the negative electrode layer is removed in advance in the moisture removal process after sintering. For this reason, even if charging / discharging is repeated, the decomposition of moisture does not occur, and the possibility that the internal pressure inside the exterior member increases can be reduced.
 上記の水分除去は、初めて固体電池を充電する初充電工程で行われることが好ましい。この場合、発電要素の製造工程で発電要素中に取り込まれた水分が、初充電工程において除去される。このとき、電気化学的に水が分解されているものと推定される。これにより、予め焼結体を長時間乾燥させることによって水分を除去した場合と同じ効果を得ることができる。したがって、水分を除去するために焼結体を長時間にわたって乾燥させる工程を行う必要がないので、固体電池の製造方法を簡略化することができる。 It is preferable that the water removal is performed in an initial charging process in which the solid battery is charged for the first time. In this case, moisture taken into the power generation element in the power generation element manufacturing process is removed in the initial charging process. At this time, it is estimated that water is electrochemically decomposed. Thereby, the same effect as the case where moisture is removed by previously drying the sintered body for a long time can be obtained. Therefore, it is not necessary to perform a step of drying the sintered body for a long time in order to remove moisture, so that the method for manufacturing a solid battery can be simplified.
 また、上記の水分除去は、焼結体を乾燥させた後、初めて固体電池を充電する初充電工程で行われてもよい。この場合、発電要素の製造工程で発電要素中に取り込まれた水分をより効果的に除去することができる。 The moisture removal may be performed in an initial charging process in which the solid battery is charged for the first time after the sintered body is dried. In this case, moisture taken into the power generation element in the power generation element manufacturing process can be more effectively removed.
 水の分解は、通常1.2V程度で生じるが、電極活物質または固体電解質など、固体電池を構成する材料の種類によっては、1.2Vより低い電池電圧で水の分解が起こり、あるいは、1.2Vより高い電池電圧で水の分解が起こる場合もある。従って、上記初充電工程は、固体電池を水の分解電圧以上の電池電圧で充電することによって行われることが好ましい。固体電池を1.3V以上の電池電圧で充電することによって行われることが好ましい。この場合、発電要素の製造工程で発電要素中に取り込まれた水分をより効果的に除去することができる。また、初充電工程時に固体電池を1.3V以上の電池電圧で充電する際、1.3V以上の任意の電圧で一定時間保持する状態を設けることによって、より効果的に、水分を除去することができる。この場合、1.3V以上4.0V以下の電池電圧で保持することが好ましい。1.3V以上3.0V以下の電池電圧で保持することがさらに好ましい。初充電工程において、4.0V以上の電池電圧である一定期間、電圧保持した場合、サイクル特性等の劣化を引き起こす可能性がある。 Water decomposition usually occurs at about 1.2 V, but depending on the type of material constituting the solid battery, such as an electrode active material or a solid electrolyte, water decomposition occurs at a battery voltage lower than 1.2 V, or 1 Water decomposition may occur at battery voltages higher than 2V. Therefore, the initial charging step is preferably performed by charging the solid state battery with a battery voltage equal to or higher than the water decomposition voltage. It is preferable to carry out by charging the solid battery at a battery voltage of 1.3 V or higher. In this case, moisture taken into the power generation element in the power generation element manufacturing process can be more effectively removed. In addition, when charging the solid state battery with a battery voltage of 1.3 V or higher during the initial charging step, the moisture can be removed more effectively by providing a state where the battery is held at an arbitrary voltage of 1.3 V or higher for a certain period of time. Can do. In this case, it is preferable to hold at a battery voltage of 1.3V to 4.0V. More preferably, it is held at a battery voltage of 1.3 V or more and 3.0 V or less. In the initial charging process, when the voltage is held for a certain period of time, which is a battery voltage of 4.0 V or more, there is a possibility that the cycle characteristics and the like are deteriorated.
 また、上記の初充電工程は、焼結体を外装部材で封止した後に行われることが好ましい。この場合、焼結体が筐体等の外装部材で封止された後で初充電されるので、初充電工程により水分が除去された発電要素は、周囲の外気から水分を吸収することがなく、固体電池を製造することができる。 Moreover, it is preferable that the initial charging step is performed after the sintered body is sealed with an exterior member. In this case, since the sintered body is initially charged after being sealed with an exterior member such as a housing, the power generation element from which moisture has been removed by the initial charging step does not absorb moisture from the surrounding outside air. A solid battery can be manufactured.
 本発明の固体電池の製造方法において、水分除去工程が行われる前の焼結体の水分含有量が、0.1質量%以上0.3質量%以下(1000ppm以上3000ppm以下)であることが好ましい。この場合、発電要素中に取り込まれた水分は、発電要素の製造工程における環境の温度と湿度に左右されるが、焼結体の質量に対して0.1質量%以上0.3質量%以下であれば、発電要素を筐体等の外装部材に格納した後、外装部材を封止して初充電工程を行った場合においても、初充電工程を経て外装部材内部の圧力が顕著に上昇する等の不具合がなく、水分を除去することができる。 In the method for producing a solid battery according to the present invention, the moisture content of the sintered body before the moisture removing step is preferably 0.1% by mass or more and 0.3% by mass or less (1000 ppm or more and 3000 ppm or less). . In this case, the moisture taken into the power generation element depends on the temperature and humidity of the environment in the power generation element manufacturing process, but is 0.1% by mass to 0.3% by mass with respect to the mass of the sintered body. Then, even when the power generation element is stored in an exterior member such as a housing and then the exterior member is sealed and the initial charging process is performed, the pressure inside the exterior member significantly increases through the initial charging process. Thus, moisture can be removed.
 なお、本発明の固体電池の製造方法においては、水分除去工程が行われた後の焼結体の水分含有量を0.00001質量%以上0.01質量%以下(0.1ppm以上100ppm以下)の範囲内に低減することができる。 In the solid battery manufacturing method of the present invention, the moisture content of the sintered body after the moisture removal step is 0.00001 mass% or more and 0.01 mass% or less (0.1 ppm or more and 100 ppm or less). It can be reduced within the range.
 さらに、本発明の固体電池の製造方法において、正極層、固体電解質層および負極層の少なくとも一つは、ナシコン型構造の組成を有する固体電解質を含むことが好ましい。この場合、固体電池の電池動作に必須となる高いイオン伝導性を得ることができる。特に、ナシコン型構造の組成を有するガラスまたはガラスセラミックスを固体電解質として用いることが好ましい。この場合、焼結工程においてガラス相の粘性流動により、より緻密な焼結体が得られやすい。 Furthermore, in the method for producing a solid battery of the present invention, it is preferable that at least one of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer includes a solid electrolyte having a composition of NASICON structure. In this case, high ion conductivity that is essential for the battery operation of the solid state battery can be obtained. In particular, it is preferable to use glass or glass ceramics having a composition of NASICON type structure as the solid electrolyte. In this case, a denser sintered body is likely to be obtained due to the viscous flow of the glass phase in the sintering process.
 さらにまた、本発明の固体電池の製造方法において、正極層および負極層の少なくとも一つは、リチウム含有リン酸化合物を電極活物質として含むことが好ましい。この場合、リン酸骨格の高い温度安定性により、焼結工程において、電極活物質が相変化すること、または、固体電解質と反応することを抑制しやすいため、固体電池の容量を高くすることができる。特に、リチウム含有リン酸化合物を含む電極活物質とナシコン型構造の組成を有する固体電解質とを組み合わせて用いることが好ましい。この場合、焼結工程において電極活物質と固体電解質との反応を抑制しつつ、両者の良好な接触を得ることができる。 Furthermore, in the method for producing a solid battery of the present invention, it is preferable that at least one of the positive electrode layer and the negative electrode layer contains a lithium-containing phosphate compound as an electrode active material. In this case, the high temperature stability of the phosphoric acid skeleton makes it easy to suppress the phase change of the electrode active material or the reaction with the solid electrolyte in the sintering process, so that the capacity of the solid battery can be increased. it can. In particular, it is preferable to use a combination of an electrode active material containing a lithium-containing phosphate compound and a solid electrolyte having a NASICON type structure. In this case, it is possible to obtain good contact between the electrode active material and the solid electrolyte while suppressing the reaction in the sintering process.
 なお、本発明の固体電池は、上述の製造方法によって製造されたものである。 The solid battery of the present invention is manufactured by the above-described manufacturing method.
 固体電解質には、イオン伝導性を有し、電子伝導性が無視できるほど小さい材料を用いることが可能である。たとえば、固体電解質として、ハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩、および、これらの誘導体があげられる。また、リン酸リチウム(Li3PO4)等のLi‐P‐O系化合物、リン酸リチウムに窒素が導入されたLIPON(LiPO4-xx)、Li4SiO4等のLi‐Si‐O系化合物、Li‐P‐Si‐O系化合物、Li‐V‐Si‐O系化合物、La0.51Li0.35TiO2.94、La0.55Li0.35TiO3、Li3xLa2/3-xTiO3等のぺロブスカイト型構造の化合物、ナシコン型構造の化合物等があげられる。固体電解質として、ぺロブスカイト型構造の化合物、ナシコン型構造の化合物を用いることがより好ましく、特にナシコン型構造の化合物を用いることが好ましい。 For the solid electrolyte, it is possible to use a material that has ionic conductivity and is so small that electron conductivity is negligible. Examples of the solid electrolyte include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof. In addition, Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4−x N x ) in which nitrogen is introduced into lithium phosphate, Li—Si— such as Li 4 SiO 4 O-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3, etc. Examples thereof include compounds having a perovskite structure and compounds having a nasicon structure. As the solid electrolyte, it is more preferable to use a compound having a perovskite structure and a compound having a nasicon type structure, and it is particularly preferable to use a compound having a nasicon type structure.
 ナシコン型構造の化合物の組成とは、Lixy(PO43[ただし、x=1~2、y=1~2、M=Ti,Ge,Al,Ga,Zrの少なくとも1つを含む]で表わされる組成であり、Pの一部をB,Si等で置換してもよい。たとえば、Li1.5Al0.5Ge1.5(PO43、Li1.2Al0.2Ti1.8(PO43等を使用することができる。 The composition of the compound of the NASICON type structure, Li x M y (PO 4 ) 3 [ however, x = 1 ~ 2, y = 1 ~ 2, M = Ti, Ge, Al, Ga, at least one of Zr And a part of P may be substituted with B, Si, or the like. For example, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 or the like can be used.
 ナシコン型構造の組成を有する固体電解質としては、たとえば、Li1.5Al0.5Ge1.5(PO43とLi1.2Al0.2Ti1.8(PO43等、異なるナシコン型構造の組成を有する2つ以上の固体電解質を混合した混合物を用いてもよい。 Examples of the solid electrolyte having a composition of NASICON structure include two or more having a composition of different NASICON structures such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3. A mixture in which the solid electrolyte is mixed may be used.
 また、ナシコン型構造の組成を有する固体電解質としては、ナシコン型構造の結晶相を含む固体電解質、または、熱処理によりナシコン型構造の結晶相を析出するガラスを用いてもよい。 Further, as the solid electrolyte having a composition of NASICON structure, a solid electrolyte containing a crystal phase of NASICON structure or glass in which a crystal phase of NASICON structure is deposited by heat treatment may be used.
 電極活物質の種類は特に限定されない。電極活物質として、LiCoO2、LiCo1/3Ni1/3Mn1/32等の層状化合物、LiMn24、LiNi0.5Mn1.54、Li4Ti512等のスピネル型構造の化合物、オリビン型構造を有する化合物としてLiFePO4、LiMnPO4等のリン酸化合物、ナシコン型構造を有する化合物としてLi32(PO43等のリン酸化合物を使用してもよい。 The kind of electrode active material is not particularly limited. As an electrode active material, a layered compound such as LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , a spinel structure such as LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 4 Ti 5 O 12 A phosphoric acid compound such as LiFePO 4 or LiMnPO 4 may be used as the compound having an olivine type structure, and a phosphoric acid compound such as Li 3 V 2 (PO 4 ) 3 may be used as the compound having a nasicon type structure.
 正極層、負極層、および、固体電解質層の各々のグリーンシートを成形する方法は特に限定されないが、ダイコーター、コンマコーター、スクリーン印刷等を使用することができる。 The method for forming the green sheets of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer is not particularly limited, and a die coater, a comma coater, screen printing, or the like can be used.
 正極層、負極層、および、固体電解質層の各々のグリーンシートを成形するためのスラリーは、高分子材料と正極もしくは負極の活物質、固体電解質とを湿式混合することによって作製することができる。湿式混合ではメディアを用いることができ、具体的には、ボールミル法、ビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法、ニーダー分散法等を用いることができる。 The slurry for forming the green sheets of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer can be prepared by wet-mixing a polymer material, a positive electrode or negative electrode active material, and a solid electrolyte. Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used. On the other hand, a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
 スラリーは可塑剤を含んでもよい。可塑剤の種類は特に限定されないが、フタル酸ジオクチル、フタル酸ジイソノニル等のフタル酸エステル等を使用してもよい。 The slurry may contain a plasticizer. Although the kind of plasticizer is not particularly limited, phthalic acid esters such as dioctyl phthalate and diisononyl phthalate may be used.
 グリーンシートを積層する方法は特に限定されないが、熱間等方圧プレス(HIP)、 冷間等方圧プレス(CIP)、 静水圧プレス(WIP)等を使用することができる。 The method for laminating the green sheets is not particularly limited, but a hot isostatic press (HIP), a cold isostatic press (CIP), a hydrostatic press (WIP), or the like can be used.
 次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。 Next, specific examples of the present invention will be described. In addition, the Example shown below is an example and this invention is not limited to the following Example.
 以下、本発明の固体電池の製造方法の実施例について説明する。 Hereinafter, examples of the method for producing a solid state battery of the present invention will be described.
 (グリーンシートの作製) (Green sheet production)
 固体電解質粉末として、Li1.5Al0.5Ge1.5(PO43の組成を有するガラス粉末を使用した。 As the solid electrolyte powder, glass powder having a composition of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 was used.
 電極活物質粉末として、Li32(PO43の結晶相を有する粉末を使用した。 As the electrode active material powder, a powder having a crystal phase of Li 3 V 2 (PO 4 ) 3 was used.
 主材としての固体電解質粉末と、ポリビニルブチラール樹脂と、アルコールとを、100:15:140の重量比率になるように秤量した。ポリビニルブチラール樹脂と固体電解質粉末とアルコールをメディアとともにポットに封入してポット架上で回転させた後、メディアを取り出し、固体電解質スラリーを作製した。 The solid electrolyte powder as a main material, polyvinyl butyral resin, and alcohol were weighed to a weight ratio of 100: 15: 140. Polyvinyl butyral resin, solid electrolyte powder and alcohol were enclosed in a pot together with media and rotated on a pot rack, and then the media was taken out to produce a solid electrolyte slurry.
 固体電解質粉末50重量部と、電極活物質粉末45重量部と、導電剤としての炭素粉末5重量部とを乳鉢で混合した混合粉を主材として用い、主材とポリビニルブチラール樹脂とアルコールとを100:15:140の重量比率になるように秤量して、固体電解質スラリーと同じ方法で電極スラリーを作製した。 A mixed powder obtained by mixing 50 parts by weight of a solid electrolyte powder, 45 parts by weight of an electrode active material powder, and 5 parts by weight of carbon powder as a conductive agent in a mortar is used as a main material, and the main material, polyvinyl butyral resin, and alcohol are used. An electrode slurry was prepared in the same manner as the solid electrolyte slurry by weighing to a weight ratio of 100: 15: 140.
 ドクターブレード法を用いてポリエチレンテレフタレート(PET)フィルム上に固体電解質スラリーを塗工し、40℃の温度に加熱したホットプレート上で乾燥し、厚みが50μmになるように固体電解質グリーンシートを作製した。 Using a doctor blade method, a solid electrolyte slurry was coated on a polyethylene terephthalate (PET) film, dried on a hot plate heated to a temperature of 40 ° C., and a solid electrolyte green sheet was prepared to a thickness of 50 μm. .
 ドクターブレード法を用いてポリエチレンテレフタレート(PET)フィルム上に電極スラリーを塗工し、40℃の温度に加熱したホットプレート上で乾燥し、厚みが50μmになるように電極グリーンシートを作製した。 The electrode slurry was coated on a polyethylene terephthalate (PET) film using a doctor blade method and dried on a hot plate heated to a temperature of 40 ° C. to prepare an electrode green sheet having a thickness of 50 μm.
 (積層工程) (Lamination process)
 固体電解質グリーンシートをPETフィルムから剥離した後、この固体電解質グリーンシートを4枚積層し、60℃の温度で加圧して圧着することによって固体電解質層を形成した。電極グリーンシートをPETフィルムから剥離した後、この電極グリーンシートを1枚、上記で形成された固体電解質層の片面に積層し、60℃の温度で加圧して圧着することによって正極層を形成した。上記で形成された固体電解質層の反対側の面に、上記と同様の方法で電極グリーンシートを2枚、積層し、圧着することによって負極層を形成した。 After the solid electrolyte green sheet was peeled from the PET film, four sheets of this solid electrolyte green sheet were laminated, and a solid electrolyte layer was formed by pressurizing and pressure bonding at a temperature of 60 ° C. After the electrode green sheet was peeled from the PET film, one electrode green sheet was laminated on one side of the solid electrolyte layer formed above, and the positive electrode layer was formed by pressurizing and pressing at 60 ° C. . Two electrode green sheets were laminated on the surface opposite to the solid electrolyte layer formed as described above by the same method as described above, and the negative electrode layer was formed by pressure bonding.
 得られたグリーンシートの積層体を10mm×10mmの寸法に切断し、積層体を作製した。 The obtained green sheet laminate was cut into a size of 10 mm × 10 mm to produce a laminate.
 なお、固体電解質グリーンシートを複数枚積層した理由は、焼結後の固体電解質層に十分な機械的強度を与えて、後述する工程における固体電解質層のハンドリングを容易にするためである。固体電解質グリーンシートを複数枚積層することなく、一枚のグリーンシートで固体電解質層を形成しても特に問題はない。また、正極層を形成するために使用する電極グリーンシートの枚数と負極層を形成するために使用する電極グリーンシートの枚数とが異なる理由は、Li32(PO43を正極活物質として用いた場合とLi32(PO43を負極活物質として用いた場合とにおいて、Li32(PO43の単位重量当たりの容量が約2倍異なることを考慮したためである。正極層と負極層の各々の厚みは、使用する電極活物質の材料に応じて適宜変更することができる。 The reason why a plurality of the solid electrolyte green sheets are laminated is to provide sufficient mechanical strength to the sintered solid electrolyte layer to facilitate the handling of the solid electrolyte layer in the steps described later. There is no particular problem even if the solid electrolyte layer is formed with a single green sheet without laminating a plurality of solid electrolyte green sheets. The reason why the number of electrode green sheets used for forming the positive electrode layer and the number of electrode green sheets used for forming the negative electrode layer are different is that Li 3 V 2 (PO 4 ) 3 is used as the positive electrode active material. This is because the capacity per unit weight of Li 3 V 2 (PO 4 ) 3 differs between the case where Li 3 V 2 (PO 4 ) 3 is used as the negative electrode active material and about 2 times. is there. Each thickness of a positive electrode layer and a negative electrode layer can be suitably changed according to the material of the electrode active material to be used.
 また、グリーンシートの積層体を所定の寸法に切断して積層体を作製したが、予め所定の寸法に切断したグリーンシートを積層することによって積層体を作製してもよい。また、切断方法は特に限定されず、ダイス等を用いることができる。 In addition, the laminate of the green sheets was cut to a predetermined size to produce a laminate, but the laminate may be produced by laminating green sheets that have been cut to a predetermined size in advance. The cutting method is not particularly limited, and a die or the like can be used.
 (焼結工程) (Sintering process)
 得られた積層体を空気雰囲気下、500℃の温度で焼成することにより、ポリビニルブチラール樹脂を除去した後、窒素ガス雰囲気下、700℃の温度で焼結することにより、焼結体を作製した。 The obtained laminate was fired at a temperature of 500 ° C. in an air atmosphere to remove the polyvinyl butyral resin, and then sintered at a temperature of 700 ° C. in a nitrogen gas atmosphere to prepare a sintered body. .
 焼結の温度と雰囲気は、使用する樹脂、固体電解質、電極活物質の種類に応じて適宜変更することができる。 The sintering temperature and atmosphere can be appropriately changed according to the type of resin, solid electrolyte, and electrode active material used.
 (発電要素の作製) (Production of power generation elements)
 正極層と負極層の各々から効率的に電流を導き出すために、得られた焼結体の正極層と負極層の各々の外側面にスパッタリングによって、集電体層として白金(Pt)層を形成し、同じ仕様の8個の発電要素1~8を作製した。 In order to efficiently draw current from each of the positive electrode layer and the negative electrode layer, a platinum (Pt) layer is formed as a current collector layer by sputtering on the outer surface of each of the positive electrode layer and the negative electrode layer of the obtained sintered body. Then, eight power generation elements 1 to 8 having the same specifications were produced.
 集電体層の材料は、電子伝導性を有するものであれば特に限定されず、集電体層の形成方法も特に限定されない。電子伝導性を有する材料としては、金属、炭素、導電性酸化物等を使用することができる。また、集電体層の形成方法としては、真空蒸着、化学気相成長(CVD)の他、電子伝導性を有する材料のスラリー等を正極層と負極層の各々の外側面上に塗布またはディップした後、熱処理して形成してもよい。 The material for the current collector layer is not particularly limited as long as it has electron conductivity, and the method for forming the current collector layer is not particularly limited. As the material having electron conductivity, metal, carbon, conductive oxide, or the like can be used. The current collector layer can be formed by applying or dipping a slurry of an electron conductive material on the outer surface of each of the positive electrode layer and the negative electrode layer in addition to vacuum deposition and chemical vapor deposition (CVD). Then, it may be formed by heat treatment.
 なお、(グリーンシートの作製)から(発電要素の作製)までの全製造工程は、温度が25℃、相対湿度が50%の環境下で実施した。 The entire manufacturing process from (production of green sheet) to (production of power generation element) was performed in an environment where the temperature was 25 ° C. and the relative humidity was 50%.
 (固体電池の作製と初充電工程) (Production of solid battery and initial charging process)
 (固体電池の作製) (Production of solid state battery)
 固体電池の外装部材としての筺体にはアルミニウムラミネートフィルムを使用した。 An aluminum laminate film was used for the casing as the exterior member of the solid battery.
 上記で作製された発電要素1,2,3は特に乾燥させることなく使用した。発電要素1,2のそれぞれをアルミニウムラミネートフィルム20で包囲し、封止して、図1に示す全固体二次電池1のように固体電池1,2を作製した。 The power generation elements 1, 2, and 3 produced above were used without being particularly dried. Each of the power generation elements 1 and 2 was surrounded by an aluminum laminate film 20 and sealed to produce solid batteries 1 and 2 like the all-solid secondary battery 1 shown in FIG.
 図1に示す全固体二次電池1では、発電要素10(図2)を外装部材としてのアルミニウムラミネートフィルム20の内側に収納して封止部21で封着した。図1と図2に示すように、正極端子11と負極端子12はアルミニウムラミネートフィルム20の内側から封止部21を通じて外側に引き出されている。発電要素10の正極側と負極側の各々に金属ペーストを介在させて金属板を接着し、金属板の端部をアルミニウムラミネートフィルム20の封止部21から外側に引き出すことによって、全固体二次電池1の正極端子11と負極端子12を形成した。 In the all-solid-state secondary battery 1 shown in FIG. 1, the power generation element 10 (FIG. 2) is housed inside an aluminum laminate film 20 as an exterior member and sealed with a sealing portion 21. As shown in FIGS. 1 and 2, the positive electrode terminal 11 and the negative electrode terminal 12 are drawn out from the inner side of the aluminum laminate film 20 through the sealing portion 21. By attaching a metal plate to each of the positive electrode side and the negative electrode side of the power generation element 10 and bonding a metal plate, and pulling out the end portion of the metal plate from the sealing portion 21 of the aluminum laminate film 20, A positive electrode terminal 11 and a negative electrode terminal 12 of the battery 1 were formed.
 (水分除去工程I:初充電工程のみ) (Moisture removal process I: Initial charging process only)
 固体電池1,2を開回路電圧から3Vまで0.1mV/分で電圧走査することによって、初充電工程を実施した。このとき、水の分解電圧である1.2Vより高い1.3V以上の電圧で固体電池1,2を保持することによって水が電気化学的に分解されて除去されるものと考えられる。 The initial charging process was performed by scanning the solid batteries 1 and 2 at a voltage of 0.1 mV / min from the open circuit voltage to 3V. At this time, it is considered that water is electrochemically decomposed and removed by holding the solid state batteries 1 and 2 at a voltage of 1.3 V or higher, which is higher than 1.2 V which is the decomposition voltage of water.
 (水分除去工程II:乾燥工程+初充電工程) (Moisture removal process II: drying process + initial charging process)
 発電要素4,5,6は、100℃の温度で10時間乾燥させることによって発電要素に含まれる水分の一部を除去した。発電要素4,5を、固体電池1,2と同様にして、図1に示す全固体二次電池1のように封止して、固体電池4,5を作製した。その後、上記の固体電池1、2と同様にして初充電工程を実施した。 The power generation elements 4, 5, and 6 were dried at a temperature of 100 ° C. for 10 hours to remove a part of moisture contained in the power generation elements. The power generation elements 4 and 5 were sealed in the same manner as the solid batteries 1 and 2 like the all-solid secondary battery 1 shown in FIG. Thereafter, the initial charging step was performed in the same manner as the solid batteries 1 and 2 described above.
 (水分含有工程+初充電工程) (Moisture-containing process + initial charge process)
 発電要素7,8は、温度が30℃、相対湿度が80%の環境下に放置し、水分を含有させてから使用した。発電要素7を、固体電池1,2と同様にして、図1に示す全固体二次電池1のように封止して、固体電池7を作製した。その後、上記の固体電池1,2と同様にして初充電工程を実施した。 The power generation elements 7 and 8 were used after being allowed to stand in an environment with a temperature of 30 ° C. and a relative humidity of 80% to contain moisture. The power generation element 7 was sealed like the all-solid secondary battery 1 shown in FIG. Thereafter, the initial charging step was performed in the same manner as the solid batteries 1 and 2 described above.
 (初充電曲線の測定) (Measurement of initial charge curve)
 図3に初充電工程で得られた固体電池1,4,7の初充電曲線を示す。図3において、実線は固体電池1、一点鎖線は固体電池4、二点鎖線は固体電池7の初充電曲線を示す。図3に示すように、固体電池1では、1.2V付近から立ち上がる、水の分解に起因するものと推定される電流ピークが確認されたが、固体電池4では、そのような電流ピークが確認されなかった。また、1.2V付近から立ち上がる電流ピーク以外は、固体電池1と固体電池4の初充電曲線は概ね一致し、固体電池4の初充電曲線が固体電池1に比べてやや優れることがわかる。 FIG. 3 shows the initial charging curves of the solid batteries 1, 4 and 7 obtained in the initial charging step. In FIG. 3, the solid line indicates the initial charge curve of the solid battery 1, the one-dot chain line indicates the solid battery 4, and the two-dot chain line indicates the initial charge curve of the solid battery 7. As shown in FIG. 3, in the solid battery 1, a current peak that rises from around 1.2 V and is estimated to be caused by water decomposition was confirmed, but in the solid battery 4, such a current peak was confirmed. Was not. In addition, the initial charge curves of the solid battery 1 and the solid battery 4 are substantially the same except for the current peak rising from around 1.2 V, and it can be seen that the initial charge curve of the solid battery 4 is slightly superior to the solid battery 1.
 また、固体電池7の初充電曲線は0.5V付近から電流が立ち上がり、固体電池1,4に比べて概ね高い電流が確認された。初充電工程後の固体電池を目視にて確認したところ、固体電池7では、初充電工程前には確認されなかった、内部圧力上昇に起因するアルミニウムラミネートフィルム20のふくらみが確認された。このふくらみは、水の分解により発生したガスによるものと推定される。一方、固体電池1,4では、そのようなアルミニウムラミネートフィルム20の変化は確認されなかった。 In addition, in the initial charge curve of the solid battery 7, the current rose from around 0.5 V, and it was confirmed that the current was generally higher than that of the solid batteries 1 and 4. When the solid battery after the initial charging process was visually confirmed, in the solid battery 7, the swelling of the aluminum laminate film 20 due to the internal pressure increase, which was not confirmed before the initial charging process, was confirmed. This swelling is presumed to be due to gas generated by the decomposition of water. On the other hand, in the solid batteries 1 and 4, such a change in the aluminum laminate film 20 was not confirmed.
 (放電容量の測定) (Measurement of discharge capacity)
 固体電池1,4,7を2μAの定電流で開回路電圧から0Vまで放電することによって、放電容量を測定した。 The discharge capacity was measured by discharging the solid batteries 1, 4 and 7 from the open circuit voltage to 0 V with a constant current of 2 μA.
 図4に固体電池1,4,7の放電曲線を示す。図4において、実線は固体電池1、一点鎖線は固体電池4、二点鎖線は固体電池7の放電曲線を示す。図4に示すように、固体電池1,4の放電曲線の形状はほとんど一致し、固体電池4の放電容量が固体電池1に比べてやや高いものの、固体電池1,4はともに40μAh程度の放電容量が得られることを確認した。固体電池7は25μAh程度の容量しか得られないことを確認した。 Fig. 4 shows the discharge curves of the solid batteries 1, 4 and 7. In FIG. 4, the solid line indicates the solid battery 1, the one-dot chain line indicates the solid battery 4, and the two-dot chain line indicates the solid battery 7. As shown in FIG. 4, the shapes of the discharge curves of the solid batteries 1 and 4 are almost the same, and the discharge capacity of the solid battery 4 is slightly higher than that of the solid battery 1, but both the solid batteries 1 and 4 discharge about 40 μAh. It was confirmed that capacity was obtained. It was confirmed that the solid battery 7 can only obtain a capacity of about 25 μAh.
 (発電要素内の水分量測定) (Measurement of water content in power generation element)
 上記で作製された固体電池2,5を解体し、アルミニウムラミネートフィルム20から発電要素2,5を取り出した。 The solid batteries 2 and 5 produced above were disassembled, and the power generation elements 2 and 5 were taken out from the aluminum laminate film 20.
 上記の初充電工程後に取り出された発電要素2,5と上記で作製された発電要素3,6,8とに含まれる水分量を測定した。測定には微量水分測定装置(株式会社三菱化学アナリテック製CA200)を用いた。 The amount of water contained in the power generation elements 2 and 5 taken out after the initial charging step and the power generation elements 3, 6, and 8 produced above was measured. A trace moisture measuring device (CA200 manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was used for the measurement.
 表1に水分量測定結果を示す。 Table 1 shows the results of moisture content measurement.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、乾燥させずに初充電工程のみを行った場合は、水分量が1315ppm(発電要素3)から15ppm(発電要素2)に減少していることを確認した。予め乾燥させた後に初充電工程を行った場合は、水分量が乾燥後の18ppm(発電要素6)から11ppm(発電要素5)に変化しており、水分量がさらに減少していることを確認した。また、積極的に水分を含有させた発電要素8では、5000ppm以上の水分を含有することを確認した。 From Table 1, it was confirmed that the moisture content was reduced from 1315 ppm (power generation element 3) to 15 ppm (power generation element 2) when only the initial charging step was performed without drying. When the initial charging process was performed after drying in advance, the moisture content changed from 18 ppm (power generation element 6) after drying to 11 ppm (power generation element 5), confirming that the moisture content was further reduced. did. In addition, it was confirmed that the power generation element 8 positively containing moisture contains 5000 ppm or more moisture.
 なお、固体電池の解体と水分量測定は、露点が-60℃の環境下で速やかに行った。 The disassembly of the solid battery and the water content measurement were promptly performed in an environment with a dew point of −60 ° C.
 したがって、本発明による固体電池の製造方法では、固体電池の製造工程で発電要素に取り込まれた水分を除去することにより、アルミニウムラミネートフィルム20の内部の内圧が上昇する可能性を小さくすることができることがわかる。また、本発明の水分除去工程として、初充電工程のみを行った場合(発電要素2)は、予め発電要素を乾燥させた後、初充電工程を行った場合(発電要素5)と同等程度の水分除去効果を得ることができることがわかる。 Therefore, in the method for manufacturing a solid battery according to the present invention, it is possible to reduce the possibility that the internal pressure inside the aluminum laminate film 20 will increase by removing the water taken into the power generation element in the manufacturing process of the solid battery. I understand. Moreover, as a moisture removal process of the present invention, when only the initial charging process is performed (power generation element 2), the power generation element is dried in advance and then the initial charging process is performed (power generation element 5). It can be seen that a moisture removal effect can be obtained.
 なお、上記の実施例では外装部材としてアルミニウムラミネートフィルム20を使用したが、コイン電池用の筺体に封止する、発電要素の周囲を樹脂でシールする、または、発電要素の周囲を絶縁性のペースト等で被覆して焼き付けを行う、等によって、筐体等の外装部材を形成してもよい。 In the above embodiment, the aluminum laminate film 20 is used as the exterior member, but the periphery of the power generation element is sealed with resin or sealed around the power generation element with an insulating paste. An exterior member such as a housing may be formed by covering with baking or the like and baking.
 また、初充電工程の充電条件は特に限定されない。定電流で所定電圧まで充電する、電池電圧を所定電圧に維持して充電する、充電電流もしくは充電電圧を段階的に変化させて充電する、充電と充電の合間に休止を入れる、または、これらを組み合わせて充電する、等によって、初充電工程を行うことができる。 Moreover, the charging conditions in the initial charging process are not particularly limited. Charge to a specified voltage with a constant current, charge the battery while maintaining the battery voltage at a specified voltage, charge by changing the charging current or charging voltage stepwise, put a pause between charges, or The initial charging process can be performed by charging in combination.
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the claims.
 発電要素を筺体等の外装部材に格納して封止した後で発電要素に通電することによって、水分の分解が起こることがなく、外装部材内部の内圧が上昇する可能性を小さくすることが可能な固体電池を提供することができる。 By energizing the power generation element after the power generation element is stored in an exterior member such as a housing and sealed, moisture decomposition does not occur, and the possibility that the internal pressure inside the exterior member rises can be reduced. A solid battery can be provided.
 1:全固体二次電池、10:発電要素、11:正極端子、12:負極端子、20:アルミニウムラミネートフィルム、21:封止部。 1: all-solid secondary battery, 10: power generation element, 11: positive electrode terminal, 12: negative electrode terminal, 20: aluminum laminate film, 21: sealing part.

Claims (10)

  1.  正極層、固体電解質層、および、負極層の各々のグリーンシートを積層して積層体を作製する積層工程と、
     前記積層体を焼結して焼結体を作製する焼結工程と、
     前記焼結体に含まれる水分を除去する水分除去工程と、
    を備えた、固体電池の製造方法。
    A laminating step of laminating each green sheet of a positive electrode layer, a solid electrolyte layer, and a negative electrode layer to produce a laminate;
    A sintering step of sintering the laminate to produce a sintered body;
    A moisture removal step for removing moisture contained in the sintered body;
    A method for producing a solid state battery.
  2.  前記水分除去工程は、初めて固体電池を充電する初充電工程を備える、請求項1に記載の固体電池の製造方法。 The method for producing a solid state battery according to claim 1, wherein the moisture removing step comprises an initial charge step for charging the solid state battery for the first time.
  3.  前記水分除去工程は、前記焼結体を乾燥させ、その後、初めて固体電池を充電する初充電工程を備える、請求項1または請求項2に記載の固体電池の製造方法。 The method for producing a solid battery according to claim 1 or 2, wherein the moisture removing step includes an initial charging step of drying the sintered body and then charging the solid battery for the first time.
  4.  前記初充電工程が、固体電池を1.3V以上の電池電圧で充電することによって行われる、請求項2または請求項3に記載の固体電池の製造方法。 The method for producing a solid state battery according to claim 2 or 3, wherein the initial charging step is performed by charging the solid state battery with a battery voltage of 1.3 V or more.
  5.  前記初充電工程が、前記焼結体を外装部材で封止した後に行われる、請求項2から請求項4までのいずれか1項に記載の固体電池の製造方法。 The method for producing a solid state battery according to any one of claims 2 to 4, wherein the initial charging step is performed after the sintered body is sealed with an exterior member.
  6.  前記水分除去工程が行われる前の前記焼結体の水分含有量が、0.1質量%以上0.3質量%以下である、請求項1から請求項5までのいずれか1項に記載の固体電池の製造方法。 The moisture content of the sintered body before the moisture removal step is performed is according to any one of claims 1 to 5, wherein the sintered body has a moisture content of 0.1 mass% or more and 0.3 mass% or less. A method for producing a solid state battery.
  7.  前記水分除去工程が行われた後の前記焼結体の水分含有量が、0.00001質量%以上0.01質量%以下である、請求項1から請求項6までのいずれか1項に記載の固体電池の製造方法。 The moisture content of the sintered body after the moisture removing step is performed is any one of claims 1 to 6, wherein the moisture content is 0.00001 mass% or more and 0.01 mass% or less. Manufacturing method for a solid battery.
  8.  前記正極層、前記固体電解質層および前記負極層の少なくとも一つは、ナシコン型構造の組成を有する固体電解質を含む、請求項1から請求項7までのいずれか1項に記載の固体電池の製造方法。 8. The manufacturing of a solid state battery according to claim 1, wherein at least one of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer includes a solid electrolyte having a NASICON type composition. Method.
  9.  前記正極層および前記負極層の少なくとも一つは、リチウム含有リン酸化合物を電極活物質として含む、請求項1から請求項8までのいずれか1項に記載の固体電池の製造方法。 The method for producing a solid state battery according to any one of claims 1 to 8, wherein at least one of the positive electrode layer and the negative electrode layer contains a lithium-containing phosphate compound as an electrode active material.
  10.  請求項1から請求項9までのいずれか1項に記載の固体電池の製造方法によって製造された固体電池。 A solid state battery manufactured by the method for manufacturing a solid state battery according to any one of claims 1 to 9.
PCT/JP2011/069254 2010-09-01 2011-08-26 Solid state battery and manufacturing method for same WO2012029641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-195826 2010-09-01
JP2010195826 2010-09-01

Publications (1)

Publication Number Publication Date
WO2012029641A1 true WO2012029641A1 (en) 2012-03-08

Family

ID=45772731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069254 WO2012029641A1 (en) 2010-09-01 2011-08-26 Solid state battery and manufacturing method for same

Country Status (1)

Country Link
WO (1) WO2012029641A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161981A1 (en) * 2012-04-27 2013-10-31 株式会社村田製作所 Method for producing solid-state battery, and solid-state battery
WO2013161982A1 (en) * 2012-04-27 2013-10-31 株式会社村田製作所 Solid-state battery, and method for producing same
WO2013175991A1 (en) * 2012-05-24 2013-11-28 株式会社 村田製作所 All-solid-state battery and method for manufacturing same
WO2013175992A1 (en) * 2012-05-24 2013-11-28 株式会社 村田製作所 All-solid-state battery
JP2016058232A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Method for manufacturing solid electrolyte battery
WO2018026009A1 (en) * 2016-08-04 2018-02-08 Tdk株式会社 Electrochemical element and all-solid-state lithium ion secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181921A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery
JP2009181920A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery
JP2009193888A (en) * 2008-02-15 2009-08-27 Ohara Inc Methods of manufacturing solid electrolyte and lithium battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181921A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery
JP2009181920A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery
JP2009193888A (en) * 2008-02-15 2009-08-27 Ohara Inc Methods of manufacturing solid electrolyte and lithium battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161981A1 (en) * 2012-04-27 2013-10-31 株式会社村田製作所 Method for producing solid-state battery, and solid-state battery
WO2013161982A1 (en) * 2012-04-27 2013-10-31 株式会社村田製作所 Solid-state battery, and method for producing same
WO2013175991A1 (en) * 2012-05-24 2013-11-28 株式会社 村田製作所 All-solid-state battery and method for manufacturing same
WO2013175992A1 (en) * 2012-05-24 2013-11-28 株式会社 村田製作所 All-solid-state battery
JPWO2013175991A1 (en) * 2012-05-24 2016-01-12 株式会社村田製作所 All-solid battery and method for manufacturing the same
JP2016058232A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Method for manufacturing solid electrolyte battery
WO2018026009A1 (en) * 2016-08-04 2018-02-08 Tdk株式会社 Electrochemical element and all-solid-state lithium ion secondary battery
CN109565076A (en) * 2016-08-04 2019-04-02 Tdk株式会社 Electrochemical element and all-solid-state lithium-ion secondary battery
US11374261B2 (en) 2016-08-04 2022-06-28 Tdk Corporation Electrochemical device and solid-state lithium ion rechargeable battery

Similar Documents

Publication Publication Date Title
JP5741689B2 (en) All-solid battery and method for manufacturing the same
US9368828B2 (en) All-solid battery and manufacturing method therefor
JP5910737B2 (en) All solid battery
WO2013137224A1 (en) All solid state cell and method for producing same
US20130273437A1 (en) All solid state battery
JP6183783B2 (en) All solid battery
US11349146B2 (en) All-solid lithium ion secondary battery
JP6262129B2 (en) All-solid battery and method for manufacturing the same
JP5811191B2 (en) All-solid battery and method for manufacturing the same
WO2012029641A1 (en) Solid state battery and manufacturing method for same
CN109792080B (en) All-solid lithium ion secondary battery
JP6197495B2 (en) All solid battery
CN113056835A (en) All-solid-state battery
WO2011111555A1 (en) All-solid secondary cell and method for producing same
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
WO2012060349A1 (en) All-solid-state battery
JP5556969B2 (en) Laminated molded body for all solid state battery, all solid state battery and method for producing the same
WO2012060402A1 (en) All-solid-state battery and method for manufacturing same
JP6192540B2 (en) All-solid battery and method for manufacturing the same
WO2013035526A1 (en) Laminated molded body for all-solid-state battery, all-solid-state battery, and production method therefor
JP6003982B2 (en) All solid battery
WO2013133394A1 (en) All solid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP