WO2013097732A1 - 一体交互式扭矩传感器电机 - Google Patents

一体交互式扭矩传感器电机 Download PDF

Info

Publication number
WO2013097732A1
WO2013097732A1 PCT/CN2012/087597 CN2012087597W WO2013097732A1 WO 2013097732 A1 WO2013097732 A1 WO 2013097732A1 CN 2012087597 W CN2012087597 W CN 2012087597W WO 2013097732 A1 WO2013097732 A1 WO 2013097732A1
Authority
WO
WIPO (PCT)
Prior art keywords
slip ring
torque sensor
disposed
torsion
motor
Prior art date
Application number
PCT/CN2012/087597
Other languages
English (en)
French (fr)
Inventor
王欢
Original Assignee
无锡尚格工业设计有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡尚格工业设计有限公司 filed Critical 无锡尚格工业设计有限公司
Publication of WO2013097732A1 publication Critical patent/WO2013097732A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M7/00Motorcycles characterised by position of motor or engine
    • B62M7/12Motorcycles characterised by position of motor or engine with the engine beside or within the driven wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/24Devices for sensing torque, or actuated thereby

Definitions

  • the invention relates to the field of electric power transmission of vehicles, and in particular to a structure of a bicycle electric assist sensor motor.
  • Chinese Patent Application No. 201110125438.9 discloses a structure of an electric power assisting sensor that cooperates with a bicycle rear fork, and a groove is provided at a bottom of one side of the bicycle rear fork.
  • the groove further accommodating a sensor assembly on the rear axle that is movable through the long slot hole at the bottom of the groove, a permanent magnet disposed on the sensor assembly and the
  • the Hall element on the circuit board is magnetically inductively coupled; since the rear axle is defined to move within the long slot of the bottom of the recess, when the rear axle is moved, between the permanent magnet and the Hall element that are relatively fixed to the rear axle
  • the magnetic induction changes, and outputs an electric signal to control the forcing rotation of the bicycle motor;
  • the Hall sensor of the structure adopts a mechanical setting manner, and the working principle is that the acceleration obtained by the Hall sensor obtained separately from the motor generates acceleration when riding the vehicle.
  • the power is converted into an electrical signal for driving the motor to force the driving; obviously, the motor given by the structure is separated from the Hall sensor.
  • the setting relatively speaking, reduces the reliability of the sensing signal, and the production process is more, the production cost is increased, and the scope of use thereof is limited. Therefore, it is urgent to design a new type of motor combining the motor and the Hall sensor. To meet the various needs of the market.
  • An integrated interactive torque sensor motor includes a motor shaft and a motor housing disposed on the motor shaft, wherein: a torque sensing seat is disposed, and the torsion sensing seat is provided with a ratchet flywheel; A hollow cavity formed by an annular protrusion is disposed on one side of the casing, and the hollow cavity is disposed with a movable torque sensing slip ring assembly with magnetic steel and is closed by the torsion sensing seat.
  • the annular protrusion is provided with an annular groove
  • the annular groove is provided with a column
  • the column is placed on the torsion sensing seat
  • One end of the positioning groove is disposed, and the positioning groove is further provided with a spring adapted to the shape of the annular groove, that is, the spring surface is in close contact with the annular groove, one end of the spring body is in contact with the column, and the spring body is further One end is placed at the other end of the positioning groove; so that the torsion sensing seat reciprocates around the motor shaft on the annular protrusion to drive the torque sensing slip ring assembly to move; the motor shaft is provided with a Hall element. Magnet torque induced on said slip ring assembly with the magnetic induction of the Hall element, thereby outputting an electric signal energizing the rotation control of the vehicle.
  • the pedal When the rider accelerates forward, the pedal is applied to force the flywheel to transmit the force to the torsion sensing seat, thereby driving the torque sensing slip ring to be horizontally displaced relative to the torsion sensing seat, and the magnetic steel on the torsion sensing slip ring assembly
  • the Hall element on the motor shaft generates an electrical signal due to the relative displacement, and after being processed by the sensor central processor, a corresponding driving command is issued to enable the vehicle to drive; when the vehicle is decelerating or descending.
  • the flywheel idling and slipping, the torque sensing slip ring is restored to the homing position, the sensor central processor output signal is cut off, and the motor stops to force to achieve safe driving and energy saving.
  • the torsion sensing seat is semi-closed, and a through hole is disposed on the torsion sensing seat to cooperate with the motor shaft.
  • the motor shaft passes through the through hole and is coaxially transitioned with the torsion sensing slip ring assembly.
  • the torque sensing seat defines the torsion sensing slip ring assembly to move within the hollow cavity, thereby forming a structure in which the outer surface of the motor is relatively fixed and the hollow cavity of the motor is in an active state relative to the motor.
  • the boost signal is output.
  • the integrated interactive torque sensor motor as described above is characterized in that: the bottom of the inner wall of the torsion sensing seat is circumferentially equally distributed with a plurality of steel ball positioning holes, and the torsion induction sliding ring is circumferentially equally divided.
  • the torsion induction slip ring is located on a plurality of steel balls, and the torsion induction slip ring is driven by the tangential force to drive the steel balls to reciprocate on the slope surface of the chute, thereby turning the circumference
  • the force of motion is transformed into the force of axial translation to achieve the purpose of displacement.
  • the integrated interactive torque sensor motor as described above is characterized in that the elastic returning element is located between the bottom of the torsion sensing slip ring and the bottom of the hollow cavity.
  • the torsion sensing slip ring assembly is reset by the restoring force generated by the elastic member being deformed by pressure.
  • the integrated interactive torque sensor motor as described above is characterized in that the motor shaft is provided with a Hall element mounting groove.
  • An integrated interactive torque sensor motor as described above, characterized in that the magnetic steel is concentrically mounted on the torsion sensing slip ring. After the torque sensing slip ring assembly is installed in position, the magnetic steel and the magnetic sensing position of the Hall element are matched to facilitate better magnetic induction effect and improve magnetic induction sensitivity and reliability.
  • the invention cleverly arranges all the Hall sensor components on the motor casing, thereby forming an integrated torque sensor motor, solving the contradiction of occupying space due to function setting, high degree of standardization, wide application range, and obvious magnetic induction effect. Conducive to intensive production, low carbon, environmental protection, and easy installation and maintenance.
  • Figure 1 is an exploded perspective view of an embodiment of the present invention
  • Figure 2 is an enlarged cross-sectional view showing a portion of the torque sensor motor of the present invention
  • FIG. 3 is a schematic exploded view showing the structure of the flywheel and the torque sensing seat of the present invention.
  • Figure 4 is an enlarged plan view showing the structure of the torque sensing slip ring shown in Figure 1;
  • Figure 5 is a schematic view of the combined structure shown in Figure 1.
  • An integral interactive torque sensor motor comprising a motor shaft 2 and a motor housing 1 disposed on the motor shaft 2, a torque sensing seat 6 is disposed, and the torsion sensing seat 6 is provided with a ratchet flywheel 7; 1 , the torque sensing seat 6 is sleeved in the shaft hole 71 of the ratchet flywheel 7 and fixed opposite to the ratchet flywheel 7 .
  • the motor housing 1 is provided with a hollow cavity formed by the annular protrusion 11 .
  • the hollow cavity 12 is disposed with a movable torque sensing slip ring assembly with a magnetic steel 4, and is closed by the torque sensing seat 6, the torque sensing slip ring 5 and the torque in the torque sensing slip ring assembly
  • the annular projections 11 are provided with an annular groove 111.
  • the annular groove 111 is provided with a column 112, and the column 112 is placed on the positioning groove provided on the torque sensing seat 6.
  • a spring 63 is formed in the positioning groove 62 to match the shape of the annular groove 111.
  • the spring 63 is closely attached to the annular groove 111, and one end of the spring 63 is in contact with the column 112.
  • the other end of the spring 63 body is placed at the other end of the positioning groove 62; thereby making the torque sensing seat 6 reciprocatingly rotating around the motor shaft 2 on the annular protrusion 111 to drive the torque sensing slip ring assembly to move; the motor shaft 2 is provided with a Hall element 22, and the magnetic steel 4 on the torque sensing slip ring assembly
  • the Hall element 22 is magnetically inductively coupled to output an electrical signal to control the urging of the vehicle.
  • the torsion-inducing slip ring assembly is composed of an elastic restoring element 3 and a magnetic steel 4 that cooperate with the torsion-inducing slip ring 5 .
  • the elastic restoring element 3 is positioned on the torsion-inducing slip ring 5 , the hollow cavity 12 is adapted. Inside.
  • the torsion sensing base 6 is semi-closed.
  • the torsion sensing base 6 is provided with a through hole 61 for engaging with the motor shaft 2.
  • the motor shaft 2 passes through the through hole 2, and the torque is sensed.
  • the slip ring assembly has a coaxial transition fit.
  • the torque sensing seat 6 defines the torque sensing slip ring assembly to move within the hollow cavity 12 to form a relative motor, the outer surface of the motor is relatively fixed and the hollow cavity 12 of the motor is active.
  • the structure is configured to facilitate the generation of a magnetic induction fit and output a boost signal.
  • a plurality of steel ball positioning holes 64 are circumferentially equally distributed on the bottom of the inner wall of the torsion sensing base 6 , and a plurality of steel ball displacement chutes 51 are disposed on the torsion induction sliding ring 5 in a circumferentially equal manner.
  • the torsion induction slip ring 5 is placed on a plurality of steel balls 52.
  • the torsion induction slip ring 5 is driven by the tangential force to drive the steel ball 52 to reciprocate on the slope surface of the chute 51, thereby converting the circular motion force into the shaft.
  • the force of translation is achieved for the purpose of displacement.
  • the elastic restoring element 3 is located between the bottom of the torsion sensing slip ring 5 and the bottom of the hollow volume 12.
  • the torsion sensing slip ring assembly is reset by the restoring force generated by the elastic returning element 3 after being deformed by pressure; as shown in FIG. 1, the elastic returning element 3 is a wave spring.
  • the motor shaft 2 is provided with a Hall element mounting groove 21.
  • the magnetic steel 4 is concentrically mounted on the torsion sensing slip ring 5. After the torque sensing slip ring assembly is installed in position, the magnetic steel and the magnetic sensing position of the Hall element are matched to facilitate better magnetic induction effect and improve magnetic induction sensitivity and reliability.
  • a folding pedal electric dual-purpose bicycle equipped with the motor of the invention is provided, the motor is mounted on the rear axle of the bicycle, and the display screen of the sensor terminal is disposed on the bicycle faucet, when the rider is forced to drive
  • the torque sensing seat 6 rotates around the motor shaft 2, thereby driving the torque sensing slip ring 5 of the torque sensing slip ring assembly to twist on the steel ball 52 along the slope surface of the chute 51, thereby converting into a torque sensing slip ring.
  • the horizontal displacement stroke of 5 constitutes a cutting magnetic line action, so that the magnetic induction signal on the magnetic induction steel 4 on the torque induction slip ring assembly and the Hall element 22 on the motor shaft 2 is received by the sensor central processor, and the power supply signal of the motor is output.
  • the motor acts as a boosting force; when the bicycle has no pedaling force or decelerates or goes downhill, the torque sensing slip ring assembly is reset by the return spring 63, and at this time, the sensing signals of the Hall element 22 and the magnetic steel 4 are zeroed.
  • the central processor gives a cutoff signal and the motor does not assist; thus, the motor only assists when the bicycle accelerates forward.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种一体交互式扭矩传感器电机,它的扭力感应座(6)上设置有棘齿飞轮(7),电机壳体(1)一侧设置的中空容腔(12)内容置带有磁钢(4)的可动扭力感应滑环组件后用扭力感应座(6)封闭,扭力感应滑环组件中的扭力感应滑环(5)与扭力感应座(6)之间动态配合。构成中空容腔(12)的环状凸起(11)上设置环形凹槽(111)和立柱(112),立柱(112)置于扭力感应座(6)上设置的定位槽(62)的一端,定位槽(62)内还置有与环形凹槽(111)的形状相适配的弹簧(63)。扭力感应座(6)在环状凸起(11)上绕电机轴(2)旋转,带动扭力感应滑环组件移动,使得磁钢(4)与霍尔元件(22)磁感应配合,输出电信号而控制车辆的加力转动。该电机将霍尔元件(22)设置于电机壳体(1)上,解决了因功能设置而占用空间的矛盾,磁感应效果明显。

Description

一体交互式扭矩传感器电机 技术领域
本发明涉及车辆电动助力传动领域,尤其涉及一种自行车电动助力传感器电机的结构。
背景技术
在自行车电动助力传感器领域中,中国发明专利申请201110125438.9公开了一种'与自行车后叉配合的电动助力传感器的结构',在所述自行车后叉的一侧底部设置有一凹槽,凹槽内固定设置一安装有霍尔元件的电路板,凹槽内还容置有一穿过凹槽底部长槽孔呈活动状的后轴上的传感器组件,所述传感器组件上设置的一永磁体与所述电路板上的霍尔元件磁感应配合;因所述后轴被限定在凹槽底部长槽孔内移动,因此,利用后轴移动时,与后轴相对固定的永磁体及与霍尔元件之间的磁感应变化,输出电信号而控制自行车电机的加力转动;该种结构的霍尔传感器采用机械设置的方式,其工作原理是将与电机分开设置的霍尔传感器获得的车辆骑行时产生加速度的力量,转化为电信号,用于驱动电机加力行驶;显而易见,该结构给出的电机与霍尔传感器属对应分开设置,相对来说,降低了传感信号的可靠度,且生产工序较多,提高了生产成本,使得其使用范围受到限制,因而迫切需要设计一种电机与霍尔传感器结合在一起的新型电机以满足市场的各种需求。
发明内容
本发明的目的是提供一种标准化的、适用于各种传感与驱动功能合一的车辆助力用一体交互式扭矩传感器电机。
本发明的技术方案是这样实现的:
提供一种一体交互式扭矩传感器电机,包括电机轴及设置在电机轴上的电机壳体,其特征在于:设置一扭力感应座,所述扭力感应座上设置有一棘齿飞轮;所述电机壳体一侧设置一由环状凸起构成的中空容腔,所述中空容腔内容置一带有磁钢的可动扭力感应滑环组件后用所述扭力感应座封闭,所述扭力感应滑环组件中的扭力感应滑环与扭力感应座之间动态配合;所述环状凸起上设置一环形凹槽,所述环形凹槽上设置有立柱,所述立柱置于扭力感应座上设置的定位槽的一端,所述定位槽内还置有与环形凹槽的形状相适配的弹簧,即所述弹簧外表紧贴环形凹槽,弹簧本体一端与所述立柱接触,弹簧本体另一端置于定位槽的另一端;从而使得扭力感应座在环状凸起上绕电机轴往复旋转动作,带动扭力感应滑环组件移动;所述电机轴上设置有一霍尔元件,所述扭力感应滑环组件上的磁钢与所述霍尔元件磁感应配合,从而输出电信号而控制车辆的加力转动。
采用该技术方案后,可以达到以下的技术效果:
当骑行者向前加速运动时,通过脚踏加力,带动飞轮,传力到扭力感应座,进而带动扭力感应滑环相对于扭力感应座作水平位移,扭力感应滑环组件上的磁钢与电机轴上的霍尔元件因产生相对位移而产生电信号,再经过传感器中央处理器处理后,发出相应的驱动指令,使车辆得以助力行驶;车辆减速或下坡时。飞轮空转打滑,扭力感应滑环复原归位,传感器中央处理器输出信号截止,电机停止加力,以达到安全行驶和节能的目的。
如上所述的一体交互式扭矩传感器电机,其特征在于:所述扭力感应滑环组件由与扭力感应滑环配合的弹性复位元件、磁钢组成,将弹性复位元件定位在扭力感应滑环上后,适配于所述中空容腔内。
所述扭力感应座的一端呈半封闭状,所述扭力感应座上设置有一通孔与所述电机轴配合,所述电机轴从所述通孔穿过,与扭力感应滑环组件同轴过渡配合。所述扭力感应座将所述扭力感应滑环组件限定在所述中空容腔内移动,从而构成一种相对电机而言,电机外表面相对固定而电机的中空容腔内呈活动状态的结构,以利于产生磁感应配合而输出助力信号。
如上所述的一体交互式扭矩传感器电机,其特征在于:所述扭力感应座的内壁底部呈圆周等分分布有多个钢球定位孔,所述扭力感应滑环上则呈圆周等分相对应分布有多个钢球位移斜槽,所述扭力感应滑环落位于多个钢球上,扭力感应滑环受切向力作用而带动钢球在斜槽的斜坡面上往复滚动,进而把圆周运动的力转化为轴向平移的力,达到形成位移之目的。
如上所述的一体交互式扭矩传感器电机,其特征在于:所述弹性复位元件位于扭力感应滑环的底部与所述中空容腔底部之间。依靠所述弹性元件受压形变后所产生的回复力而使扭力感应滑环组件复位。
如上所述的一体交互式扭矩传感器电机,其特征在于:所述电机轴上设置有霍尔元件安装槽。
如上所述的一体交互式扭矩传感器电机,其特征在于:所述磁钢同心镶嵌在所述扭力感应滑环上。所述扭力感应滑环组件安装到位后,磁钢与霍尔元件的磁感应位置相适配,以利于更好地获得磁感应效果,提高磁感应灵敏度和可靠度。
本发明巧妙地将霍尔传感器部件全部设置于电机壳体上,从而构成一体式的扭矩传感器电机,解决了因功能设置而占用空间的矛盾,且标准化程度高,适用面广,磁感应效果明显,利于集约化生产,低碳、环保,且安装维修方便。
附图说明
图1是本发明一种实施例的结构分解图;
图2是本发明所述扭力传感器电机的部分剖面结构放大图;
图3是本发明所述飞轮与扭力感应座的结构分解示意图;
图4是图1中所示扭力感应滑环的结构放大图;
图5是图1所示组合结构示意图。
具体实施方式
下面结合附图对本发明作进一步的说明,但不限于以下实施例:
参见图1至图5:
提供一种一体交互式扭矩传感器电机,包括电机轴2及设置在电机轴2上的电机壳体1,设置一扭力感应座6,所述扭力感应座6上设置有一棘齿飞轮7;参见图1,扭力感应座6套接于棘齿飞轮7的轴孔71内,并与棘齿飞轮7相对固定,所述电机壳体1一侧设置一由环状凸起11构成的中空容腔12,所述中空容腔12内容置一带有磁钢4的可动扭力感应滑环组件后用所述扭力感应座6封闭,所述扭力感应滑环组件中的扭力感应滑环5与扭力感应座6之间动态配合;所述环状凸起11上设置一环形凹槽111,所述环形凹槽111上设置有立柱112,所述立柱112置于扭力感应座6上设置的定位槽62的一端,所述定位槽62内还置有与环形凹槽111的形状相适配的弹簧63,所述弹簧63外表紧贴环形凹槽111,弹簧63本体一端与所述立柱112接触,弹簧63本体另一端置于定位槽62的另一端;从而使得扭力感应座6在环状凸起111上绕电机轴2往复旋转动作,带动扭力感应滑环组件移动;所述电机轴2上设置有一霍尔元件22,所述扭力感应滑环组件上的磁钢4与所述霍尔元件22磁感应配合,从而输出电信号而控制车辆的加力转动。
所述扭力感应滑环组件由与扭力感应滑环5配合的弹性复位元件3、磁钢4组成,将弹性复位元件3定位在扭力感应滑环5上后,适配于所述中空容腔12内。
所述扭力感应座6的一端呈半封闭状,所述扭力感应座6上设置有一通孔61与所述电机轴2配合,所述电机轴2从所述通孔2穿过,与扭力感应滑环组件同轴过渡配合。所述扭力感应座6将所述扭力感应滑环组件限定在所述中空容腔12内移动,从而构成一种相对电机而言,电机外表面相对固定而电机的中空容腔12内呈活动状态的结构,以利于产生磁感应配合而输出助力信号。
所述扭力感应座6的内壁底部呈圆周等分分布有多个钢球定位孔64,所述扭力感应滑环5上则呈圆周等分相对应分布有多个钢球位移斜槽51,所述扭力感应滑环5落位于多个钢球52上,扭力感应滑环5受切向力作用而带动钢球52在斜槽51的斜坡面上往复滚动,进而把圆周运动的力转化为轴向平移的力,达到形成位移之目的。
所述弹性复位元件3位于扭力感应滑环5的底部与所述中空容腔12底部之间。依靠所述弹性复位元件3受压形变后所产生的回复力而使扭力感应滑环组件复位;图1中所示,所述弹性复位元件3为一波形弹圈。
所述电机轴2上设置有霍尔元件安装槽21。
所述磁钢4同心镶嵌在所述扭力感应滑环5上。所述扭力感应滑环组件安装到位后,磁钢与霍尔元件的磁感应位置相适配,以利于更好地获得磁感应效果,提高磁感应灵敏度和可靠度。
提供一种安装有本发明所述电机的折叠式脚踏电动两用自行车,其电机安装在所述自行车后轴上,所述传感器终端显示屏设置在所述自行车龙头上,当骑行者用力带动飞轮7时,扭力感应座6围绕电机轴2旋转,从而带动所述扭力感应滑环组件的扭力感应滑环5在钢球52上沿斜槽51的斜坡面扭转,从而转化为扭力感应滑环5的水平位移行程,构成切割磁力线动作,使得扭力感应滑环组件上的磁钢4与电机轴2上的霍尔元件22产生磁感应信号经传感器中央处理器接收后,输出电机的加电信号,电机起到助力作用;当自行车无踩踏力或者减速、下坡时,在复位弹簧63的作用下,扭力感应滑环组件复位,此时,霍尔元件22与磁钢4的感应信号归零,中央处理器给出截止信号,电机不予助力;这样,电机只在所述自行车加速前进时助力。
上文虽然已示出了本发明的详尽实施例,本领域的技术人员在不违背本发明的前提下,可进行部分修改和变更;上文的描述和附图中提及的内容仅作为说明性的例证,并非是对本发明的限制,具有上述技术特征的一体交互式扭矩传感器电机,均落入本专利保护范围。

Claims (7)

1、一体交互式扭矩传感器电机,包括电机轴及设置在电机轴上的电机壳体,其特征在于:设置一扭力感应座,所述扭力感应座上设置有一棘齿飞轮;所述电机壳体一侧设置一由环状凸起构成的中空容腔,所述中空容腔内容置一带有磁钢的可动扭力感应滑环组件后用所述扭力感应座封闭,所述扭力感应滑环组件中的扭力感应滑环与扭力感应座之间动态配合;所述环状凸起上设置一环形凹槽,所述环形凹槽上设置有立柱,所述立柱置于扭力感应座上设置的定位槽的一端,所述定位槽内还置有与环形凹槽的形状相适配的弹簧,从而使得扭力感应座在环状凸起上绕电机轴往复旋转动作,带动扭力感应滑环组件移动;所述电机轴上设置有一霍尔元件,所述扭力感应滑环组件上的磁钢与所述霍尔元件磁感应配合,从而输出电信号而控制车辆的加力转动。
2、如权利要求1所述的一体交互式扭矩传感器电机,其特征在于:所述弹簧外表紧贴环形凹槽,弹簧本体一端与所述立柱接触,弹簧本体另一端置于定位槽的另一端。
3、如权利要求1所述的一体交互式扭矩传感器电机,其特征在于:所述扭力感应滑环组件由与扭力感应滑环配合的弹性复位元件、磁钢组成,将弹性复位元件定位在扭力感应滑环上后,适配于所述中空容腔内。
4、如权利要求1所述的一体交互式扭矩传感器电机,其特征在于:所述扭力感应座的内壁底部呈圆周等分分布有多个钢球定位孔,所述扭力感应滑环上则呈圆周等分相对应分布有多个钢球位移斜槽,所述扭力感应滑环落位于多个钢球上,扭力感应滑环受切向力作用而带动钢球在斜槽的斜坡面上往复滚动。
5、如权利要求3所述的一体交互式扭矩传感器电机,其特征在于:所述弹性复位元件位于扭力感应滑环的底部与所述中空容腔底部之间。
6、如权利要求1所述的一体交互式扭矩传感器电机,其特征在于:所述电机轴上设置有霍尔元件安装槽。
7、如权利要求1所述的一体交互式扭矩传感器电机,其特征在于:所述磁钢同心镶嵌在所述扭力感应滑环上。
PCT/CN2012/087597 2011-12-29 2012-12-27 一体交互式扭矩传感器电机 WO2013097732A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201120562125.5 2011-12-29
CN2011205621255U CN202455222U (zh) 2011-12-29 2011-12-29 一体交互式扭矩传感器电机

Publications (1)

Publication Number Publication Date
WO2013097732A1 true WO2013097732A1 (zh) 2013-07-04

Family

ID=46871049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087597 WO2013097732A1 (zh) 2011-12-29 2012-12-27 一体交互式扭矩传感器电机

Country Status (2)

Country Link
CN (1) CN202455222U (zh)
WO (1) WO2013097732A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202455222U (zh) * 2011-12-29 2012-09-26 无锡尚格工业设计有限公司 一体交互式扭矩传感器电机
CN102412666B (zh) * 2011-12-29 2013-06-26 无锡尚格工业设计有限公司 一体交互式扭矩传感器电机
WO2018039870A1 (zh) * 2016-08-29 2018-03-08 深圳一哥智行科技有限公司 一种踏力检测装置
CN109572916A (zh) 2019-01-14 2019-04-05 昆山攀登电子科技有限公司 一种电动自行车塔基扭矩速度感应装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001018882A (ja) * 1999-07-12 2001-01-23 Nippon Recycling Syst:Kk 電動補助自転車
DE102004022789A1 (de) * 2004-05-08 2005-12-01 Sram Deutschland Gmbh Regelung der Unterstützungsleistung für Fahrräder mit Gangschaltung und elektrischem Antrieb
CN101817388A (zh) * 2010-05-04 2010-09-01 陈戈平 一种电动助力自行车助力传动机构
CN102412666A (zh) * 2011-12-29 2012-04-11 无锡尚格工业设计有限公司 一体交互式扭矩传感器电机
CN202455222U (zh) * 2011-12-29 2012-09-26 无锡尚格工业设计有限公司 一体交互式扭矩传感器电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001018882A (ja) * 1999-07-12 2001-01-23 Nippon Recycling Syst:Kk 電動補助自転車
DE102004022789A1 (de) * 2004-05-08 2005-12-01 Sram Deutschland Gmbh Regelung der Unterstützungsleistung für Fahrräder mit Gangschaltung und elektrischem Antrieb
CN101817388A (zh) * 2010-05-04 2010-09-01 陈戈平 一种电动助力自行车助力传动机构
CN102412666A (zh) * 2011-12-29 2012-04-11 无锡尚格工业设计有限公司 一体交互式扭矩传感器电机
CN202455222U (zh) * 2011-12-29 2012-09-26 无锡尚格工业设计有限公司 一体交互式扭矩传感器电机

Also Published As

Publication number Publication date
CN202455222U (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
WO2013097733A1 (zh) 一体容置式扭矩传感器电机
WO2013097734A1 (zh) 一体对接式扭矩传感器电机
CN103847921B (zh) 扭力传感齿盘机构
US11873058B2 (en) Intelligent electric wheel hub
WO2013097732A1 (zh) 一体交互式扭矩传感器电机
CN209852516U (zh) 电动助力自行车及其中置电机驱动系统
ES2490617T3 (es) Mecanismo de transmisión de potencia para bicicleta servoasistida eléctrica
US10189528B2 (en) Self-balancing double-wheeled electrical scooter
US20210039744A1 (en) Pedaling sensing device of electric bicycle
US10286971B2 (en) Self-balancing double-wheeled electrical scooter
CN102412665A (zh) 一体容置式扭矩传感器电机
US10312775B2 (en) Integrated container-type torque-driven electric sensor for a vehicle motor
JP3181650U (ja) 電動車の非接触式トルクセンサ機構
CN2542551Y (zh) 带力矩传感系统的电动自行车中轴组件
US7078891B2 (en) Speedometer gear output structure
CN210101921U (zh) 自行车的电动辅助驱动单元
CN102412666B (zh) 一体交互式扭矩传感器电机
CN101782446B (zh) 智能电动自行车后轴套式力矩传感装置
CN201511332U (zh) 一种新型电动螺丝刀
CN115149719A (zh) 中置电机以及电动车
CN102490858B (zh) 一体对接式扭矩传感器电机
CN213831655U (zh) 一种应用于踏板模拟机构内的多级弹性组件
CN107323594A (zh) 电动助力车传动轴中轴扭矩传感器
CN108258842B (zh) 用于助力车的中置驱动电机系统及助力车
CN211954520U (zh) 用于电动自行车轮毂电机的内置力矩传感器装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861566

Country of ref document: EP

Kind code of ref document: A1