WO2013097602A1 - 锂-液流电池联合储能电站的实时功率分配方法及系统 - Google Patents

锂-液流电池联合储能电站的实时功率分配方法及系统 Download PDF

Info

Publication number
WO2013097602A1
WO2013097602A1 PCT/CN2012/086375 CN2012086375W WO2013097602A1 WO 2013097602 A1 WO2013097602 A1 WO 2013097602A1 CN 2012086375 W CN2012086375 W CN 2012086375W WO 2013097602 A1 WO2013097602 A1 WO 2013097602A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
battery energy
power
storage unit
substation
Prior art date
Application number
PCT/CN2012/086375
Other languages
English (en)
French (fr)
Inventor
李相俊
惠东
贾学翠
来小康
王银明
朱斯
Original Assignee
国网新源张家口风光储示范电站有限公司
中国电力科学研究院
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网新源张家口风光储示范电站有限公司, 中国电力科学研究院, 国家电网公司 filed Critical 国网新源张家口风光储示范电站有限公司
Priority to US14/370,032 priority Critical patent/US10036778B2/en
Publication of WO2013097602A1 publication Critical patent/WO2013097602A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the field of smart grid and energy storage and conversion technology, and particularly relates to a real-time power distribution method and system based on a high-power large-capacity megawatt lithium-liquid battery combined energy storage power station, which is especially suitable for large-scale wind and light storage joints. Battery power and battery energy management methods for multi-type large-scale battery energy storage power plants in power generation systems. Background technique
  • the National Scenery Storage and Loss Demonstration Project is the first pilot project of the State Grid Corporation to build a strong smart grid, aiming at achieving "grid-friendly" new energy generation to reflect "advanced technology, technological innovation, project demonstration, and economic rationality.” "Characteristically, it is the world's largest renewable energy demonstration project integrating wind power, photovoltaic power generation, energy storage and transmission engineering. Among them, the National Landscape Storage and Demonstration Project (Phase I) plans to build a wind power 100 liter, a photovoltaic power generation 40 MW and an energy storage device 20 ⁇ (including 14 lithium iron phosphate battery energy storage system, 2 Liquan vanadium flow battery energy storage system, 4 Li Na sulfur battery energy storage system).
  • lithium-ion batteries flow batteries, sodium-sulfur batteries and their integration technologies
  • lithium-liquid battery combined with energy storage power plants to achieve smooth wind power output, tracking planned power generation, participation in system frequency modulation, peaking and valley filling
  • Various applications such as transient active output emergency response and transient voltage emergency support have become a feasible solution.
  • One of the key issues is to master the integrated integration and control technology of large-scale multi-type battery energy storage power stations.
  • one of the objects of the present invention is to provide a real-time power control method for a lithium-liquid flow battery energy storage power station that is easy to operate and easy to implement.
  • a real-time power allocation method for a lithium-liquid flow battery combined energy storage power plant comprising the following steps:
  • step B Calculate the active power command value of the lithium battery energy storage substation and the liquid battery energy storage substation in the battery energy storage power station according to the real active power demand value and the real time data read in step A;
  • the relevant operational data of the battery energy storage power station includes: a controllable state, a state of charge state, and a maximum of each lithium battery energy storage unit and each liquid battery energy storage unit in the battery energy storage power station Allowable discharge power and maximum allowable charging power, etc.
  • step B includes the following steps:
  • step B2 After the step B1 is filtered, the remaining part of the power except the low-frequency part power is the active power command value of the flow battery storage substation;
  • step B5 If the active power command value of the lithium battery energy storage substation or the flow battery storage energy substation violates the constraint condition, step B5 is performed, otherwise the judgment is ended;
  • the maximum allowable discharge power of the lithium battery energy storage substation is the sum of the maximum allowable discharge powers of all the controllable lithium battery energy storage units, and the maximum allowable discharge power of the liquid flow battery energy storage substation is all controllable liquid flow.
  • the sum of the maximum allowable discharge power of the battery energy storage unit, the maximum allowable charging power of the lithium battery energy storage substation is the sum of the maximum allowable charging powers of all the controllable lithium battery energy storage units, and the flow battery storage energy
  • the maximum allowable charging power of the station is the maximum allowable charging power of all controllable flow battery storage units.
  • the maximum allowable discharge power of the controllable lithium battery energy storage unit is the product of the maximum allowable discharge power of the lithium battery energy storage unit and its controllable state
  • the maximum allowable discharge power of the controllable liquid flow battery energy storage unit is the energy storage of the liquid flow battery.
  • the maximum allowable charging power of the controllable lithium battery energy storage unit is the product of the maximum allowable charging power of the lithium battery energy storage unit and its controllable state.
  • the controllable liquid flow battery energy storage unit The maximum allowable charging power is the product of the maximum allowable charging power of the flow battery storage unit and its controllable state.
  • the active power command value of the lithium battery energy storage substation is greater than zero, the active power command value of the lithium battery energy storage substation is less than or equal to the maximum allowable discharge power of the lithium battery energy storage substation;
  • the absolute value of the active power command value of the lithium battery energy storage substation is less than or equal to the absolute value of the maximum allowable charging power of the lithium battery energy storage substation;
  • the active power command value of the flow battery storage substation is greater than zero, the active power command value of the flow battery storage substation is less than or equal to the maximum allowable discharge power of the flow battery storage substation;
  • the absolute value of the active power command value of the flow battery storage substation is less than or equal to the absolute value of the maximum allowable charging power of the flow battery storage substation.
  • the method for recalculating the active power command value of the lithium battery energy storage substation or the liquid battery energy storage substation in the step B4 that violates the constraint condition includes:
  • the maximum allowable discharge power through the lithium battery or the liquid storage battery energy storage substation accounts for the maximum allowable discharge power of the lithium battery energy storage substation and the liquid storage battery energy storage device.
  • the ratio of the maximum allowable discharge power of the station, multiplied by the real-time demand value of the total active power of the battery energy storage terminal, respectively, obtains the active power command values of the lithium battery energy storage substation and the liquid battery energy storage substation;
  • the maximum allowable charging power through the lithium battery or the liquid storage battery energy storage substation accounts for the maximum allowable charging power of the lithium battery energy storage substation and the liquid storage battery energy storage device.
  • step C first, the active power command values of the lithium battery energy storage substation and the liquid battery energy storage substation calculated in step B are respectively redistributed, and each lithium battery energy storage unit and each are directly calculated.
  • the active power command value of the flow battery energy storage unit during the redistribution process, it is determined whether there is a violation of the maximum allowable charge and discharge power limit of each lithium battery energy storage unit and each liquid flow battery energy storage unit, if Yes, the online correction is performed based on the greedy algorithm, and the active power command values of each lithium battery energy storage unit and each liquid battery energy storage unit are recalculated; otherwise, the judgment is ended.
  • step C includes:
  • Step C1 when the active power request of the lithium battery energy storage substation is iF ⁇ , it indicates that the lithium battery energy storage substation will discharge 4 State, the method for calculating the active power command value of each lithium battery energy storage unit includes:
  • C11 Set the number of lithium battery energy storage units limited to the maximum allowable discharge power in the lithium battery energy storage substation to M, and initialize the variable M; the state of charge of the energy storage unit through the controllable lithium battery accounts for lithium Calculating the active power command value of all lithium battery energy storage units by calculating the ratio of the sum of the state of charge of all controllable lithium battery energy storage units in the battery energy storage substation, and multiplying by the active power demand of the lithium battery energy storage substation;
  • the state of charge of the controllable lithium battery energy storage unit is the product of the state of charge of the unit and its controllable state;
  • C14 Select the lithium battery energy storage unit with the highest discharge power characteristic value from each lithium battery energy storage unit that violates the maximum allowable discharge power constraint condition. If more than one energy storage unit meets the condition, then select a state of charge from the lithium battery energy storage unit. The lithium battery energy storage unit with the largest value is then used as the active power command value of the maximum allowable discharge power of the unit; and the remaining power of each lithium battery energy storage unit not limited to the maximum allowable discharge power value is recalculated by the following formula; After the power command value, go to step C12;
  • Step C2 When the active power demand of the lithium battery energy storage substation is negative, indicating that the lithium battery energy storage substation is in a charging state, the method for calculating the active power command value of each lithium battery energy storage unit includes:
  • C21 setting the number of lithium battery energy storage units limited to the maximum allowable charging power in the lithium battery energy storage substation to N, and initializing the variable N; discharging the lithium battery through the discharge state of the controllable lithium battery energy storage unit Calculating the active power command value of all lithium battery energy storage units by calculating the ratio of the sum of the discharge states of all the controllable lithium battery energy storage units in the energy storage substation, and multiplying by the active power demand of the lithium battery energy storage substation;
  • the discharge state of the controllable lithium battery energy storage unit is the discharge of the unit The product of the electrical state and its controllable state;
  • Step C3 when the active power demand of the lithium battery energy storage substation is zero, indicating that the lithium battery energy storage substation will be in a zero power state, then the active power command value of all the lithium battery energy storage units is set to 0;
  • Step C4 When the active power demand of the flow battery storage substation is positive, indicating that the flow battery storage substation is in a discharge state, the method for calculating the active power command value of each flow battery storage unit includes :
  • C41 setting the number of flow battery storage units limited to the maximum allowable discharge power in the flow battery storage substation to M', and initializing the variable M'; passing the controllable flow battery storage unit
  • the state of charge accounts for the ratio of the sum of the state of charge of all controllable flow battery storage units in the flow battery storage substation, and multiplies the active power requirement of the flow battery storage substation to calculate all flow batteries.
  • the active power command value of the energy storage unit; the state of charge of the controllable liquid battery energy storage unit is the product of the state of charge of the unit and its controllable state;
  • Step C5 When the active power demand of the flow battery storage substation is negative, indicating that the flow battery storage substation is in a charging state, the method for calculating the active power command value of each flow battery storage unit includes :
  • C51 Set the number of flow battery storage units limited to the maximum allowable charging power in the flow battery storage substation to ⁇ ', and initialize the variable N'; pass the controllable flow battery storage unit
  • the discharge state accounts for the ratio of the sum of the discharge states of all the controllable liquid battery storage units in the flow battery storage substation, and multiplies the active power demand of the flow battery storage substation to calculate all the flow battery storage units.
  • the active power command value; the discharge state of the controllable flow battery energy storage unit is the product of the discharge state of the unit and its controllable state;
  • Step C6 when the active power demand of the flow battery storage substation is zero, indicating that the flow battery storage substation will be in a zero-power hot standby state, then calculating the active power command of each flow battery storage unit Value methods include:
  • each liquid battery storage unit is processed accordingly:
  • the active power command value of the flow battery storage unit is zero, and the grid side power supply is used to supply the The power consumption of the flow battery storage unit; if it is not allowed to take power from the grid side to the liquid battery storage unit to maintain the zero-power hot standby operation state, the active power command value of the flow battery storage unit Zero, and the shutdown of the flow battery storage unit.
  • 3 ⁇ 4 . M liquid flow.
  • ⁇ large allowable discharge and / ⁇ Large allowable charging is the maximum allowable discharge power and maximum allowable charging power of the i-type lithium battery energy storage unit
  • /3 ⁇ 4 ⁇ and 3 ⁇ 4 3 ⁇ 43 ⁇ 4 are the active power command values of the lithium battery and the flow battery storage substation
  • L, R are The total number of lithium batteries and liquid energy storage units
  • ⁇ J is the power consumption value of the liquid flow battery energy storage unit, which is obtained by the look-up table method.
  • the maximum allowable discharge power constraint condition in the step C12 is: the active power command value of the lithium battery energy storage unit is less than or equal to the maximum allowable discharge power of the unit; the maximum allowable charging power constraint condition in the step C22 is: lithium battery The absolute value of the active power command value of the energy storage unit is less than or equal to the absolute value of the maximum allowable charging power of the unit; the energy supply and demand balance constraints of the lithium battery energy storage substation in the steps C15 and C25 are: The sum of the power command values is equal to the active power demand of the current lithium battery energy storage substation; the maximum allowable discharge power constraint condition in the step C42 is: The active power command value of the flow battery energy storage unit is less than or equal to the maximum allowable discharge power of the unit.
  • the maximum allowable charging power constraint condition in the step C52 is: the absolute value of the active power command value of the flow battery storage unit is less than or equal to the absolute value of the maximum allowable charging power of the unit; the liquid battery storage in the steps C45 and C55
  • the energy supply and demand balance constraints of the energy substation are as follows: The sum of the rate command values is equal to the active power demand of the current flow battery energy storage substation; the maximum allowable discharge power constraint condition in the step C62 is: the active power command value of each flow battery storage unit is less than or equal to the flow battery storage The maximum allowable discharge power of the unit.
  • step D the power command values of each lithium battery energy storage unit and each liquid battery energy storage unit calculated in step C are summarized and output to a battery energy storage power station to perform energy storage for each lithium battery.
  • Another object of the present invention is to provide a real-time power distribution system for a lithium-liquid flow battery combined energy storage power plant, the system comprising:
  • a communication module configured to read real-time demand value of the total active power of the battery energy storage power station and relevant operation data of the power station in real time, and output the active power command value of each lithium battery energy storage unit and each liquid battery energy storage unit to a battery energy storage power station for realizing power distribution of each battery energy storage unit in the battery energy storage power station;
  • the data storage and management module is configured to store the real-time demand value and real-time data of the total active power read by the communication module, and the active power of each lithium battery energy storage unit and each liquid battery energy storage unit that returns the real-time power distributor
  • the command values are summarized and passed to the communication module
  • a total power coordination control module for real-time calculation of active power command values of a lithium battery energy storage substation and a flow battery energy storage substation in a battery energy storage power station;
  • Real-time power splitter for real-time distribution of active power command values of lithium battery energy storage substation and liquid battery energy storage substation to determine the active power of each lithium battery energy storage unit and each liquid battery energy storage unit Power command value.
  • the real-time power distribution method and system of the lithium-liquid flow battery combined energy storage power station have the advantages of convenient operation, easy realization and mastering in practical application, and the method and system are mainly combined with real-time battery energy storage unit
  • the allowable charge and discharge capability of the power characteristics ie, the maximum allowable discharge power of each lithium battery energy storage unit and each flow battery energy storage unit, the maximum allowable charging of each lithium battery energy storage device and each liquid battery energy storage device) Power, etc.
  • the state of charge of the energy storage characteristic soc based on the greedy algorithm and the system power consumption of the liquid battery storage unit, online real-time demand value of the total active power of the lithium-liquid battery combined energy storage power station is realized, thereby realizing real-time While allocating the total active power demand of the lithium-liquid battery energy storage power station, it also realizes the energy management and real-time control of the large-scale battery energy storage power station for grid connection.
  • the method and system consider the power consumption of the flow battery energy storage system into the real-time power distribution method, not only can meet the real-time distribution requirement of the total active power of the lithium-liquid flow battery combined energy storage power station, but also solve the real-time supervision of the stored energy.
  • the problem is wide.
  • FIG. 1 is a schematic structural view of an embodiment of a lithium-liquid flow battery combined energy storage power plant of the present invention
  • FIG. 2 is a structural block diagram of an embodiment of a real-time power distribution system of a lithium-liquid flow battery combined energy storage power plant of the present invention
  • FIG. 3 is a block diagram of an embodiment of a real-time power distribution method for a lithium-liquid flow battery combined energy storage power plant of the present invention
  • Figure 4 is a graph showing the correspondence between the charge and discharge power and the system power consumption of an embodiment of a 175 kW flow battery energy storage unit.
  • the real-time system power consumption value of the unit can be obtained by looking up the chart based on the look-up table method.
  • the lithium-liquid battery combined energy storage power station includes a lithium battery energy storage substation and a liquid battery energy storage substation, wherein the lithium battery energy storage substation includes a bidirectional converter and a plurality of lithium battery storage.
  • the energy storage battery energy storage sub-station includes a bidirectional converter and a plurality of flow battery storage units, and the bidirectional converter can perform start-stop control and charging of each lithium battery and each flow battery storage unit. Discharge power command, etc.
  • FIG. 2 is a block diagram showing the structure of an embodiment of a real-time power distribution control system for a lithium-liquid flow battery combined energy storage power plant. As shown in FIG. 2, the present invention is implemented by a communication module 10, a data storage and management module 20, a total power coordination controller module 30, and a real-time power divider module 40 disposed in a remote server.
  • the communication module 10 and the battery combined energy storage power station in the control system are connected through a wired or wireless network to complete data interaction and communication between the control system and the lithium-liquid battery combined energy storage power station, thereby realizing lithium- Power distribution of each lithium battery energy storage unit and each liquid battery energy storage unit in the flow battery combined energy storage power station, and real-time power monitoring of the lithium-liquid flow battery combined energy storage power station, wherein the communication module 10 is used for Receiving the real-time demand value of the total active power of the lithium-liquid battery combined energy storage power station and the relevant operational data of the battery energy storage power station, and the active power command value output to be allocated to each lithium battery energy storage unit and each liquid battery energy storage unit To lithium-liquid battery energy storage power station.
  • the data storage and management module 20 is configured to store and manage real-time data and historical data of the lithium-liquid flow battery combined energy storage power station operation; and is responsible for calculating the lithium battery energy storage unit and each liquid flow battery energy storage unit. Power command value
  • the rows are summarized and assigned to the relevant interface variables for the remote server to call through the communication module.
  • the total power coordination control module 30 is configured to calculate an active power command value of the lithium battery energy storage substation and the liquid battery energy storage substation in the battery energy storage power station in real time;
  • the real-time power splitter module 40 is configured to real-time allocate the active power command values of the lithium battery energy storage substation and the liquid battery energy storage substation to determine the respective to be allocated to the lithium-liquid flow battery combined energy storage power station The active power command value of the lithium battery energy storage unit and each liquid battery energy storage unit.
  • the total power coordination control module includes a filtering module, a first execution module, and a second execution module: the filtering module performs filtering processing on a total active power requirement of the battery energy storage power station: the filtered low frequency part power is set to lithium The active power command value of the battery energy storage substation, and determining the power command value of the lithium battery energy storage substation by the first execution module; the remaining power after the filtering process is set as the active power command value of the liquid battery energy storage substation And determining, by the second execution module, a power command value of the flow battery storage substation.
  • the first execution module includes:
  • the first determining sub-module is configured to determine a charging and discharging state of the lithium battery energy storage sub-station: when the active power command value of the lithium battery energy storage sub-station is positive, indicating that the lithium battery energy storage sub-station is in a discharging state, And determining, by the second determining submodule, a power command value of the lithium battery energy storage substation; when the active power command value of the lithium battery energy storage substation is a negative value, indicating that the battery energy storage power station is in a charging state, The third determining sub-module determines the power command value of the lithium battery energy storage substation; when the active power command value of the lithium battery energy storage substation is zero, indicating that the lithium battery energy storage power station is in the zero power state, the first calculation is performed The submodule sets the power command value of each lithium battery energy storage unit; the first calculation submodule is configured to set the power command value of the lithium battery energy storage substation when the active power command value of the lithium battery energy storage substation is zero zero.
  • a second determining sub-module configured to set a maximum allowable discharge power constraint condition of the lithium battery energy storage substation, and determine an active power command value of the lithium battery energy storage sub-station according to the constraint condition, if the constraint condition is violated,
  • the second calculation sub-module recalculates the power command value of the lithium battery energy storage substation that violates the constraint condition; the second calculation submodule is used to calculate the lithium battery energy storage substation that violates the maximum allowable discharge power constraint condition of the lithium battery energy storage substation Power command value;
  • a third determining sub-module configured to set a maximum allowable charging power constraint condition of the lithium battery energy storage sub-station, and determine an active power command value of the lithium battery energy storage sub-station according to the constraint condition, if the constraint condition is violated,
  • the third calculation sub-module recalculates the power command value of the lithium battery energy storage substation that violates the constraint condition; the third calculation submodule is used to calculate the lithium battery energy storage substation that violates the maximum allowable charging power constraint condition of the lithium battery energy storage substation Power command value;
  • the second execution module includes:
  • the fourth determining sub-module is configured to determine the charging and discharging state of the liquid storage battery energy storage sub-station: when the active power command value of the liquid flow battery energy storage sub-station is positive, it indicates that the liquid storage battery energy storage sub-station will be in In the discharge state, the power of the liquid storage battery energy storage substation is determined by the fifth judgment sub-module: when the active power of the flow battery energy storage sub-station is ⁇ , It is indicated that the battery energy storage power station is in a charging state, and the power command value of the liquid battery energy storage substation is determined by the sixth determining submodule; when the active power command value of the liquid battery energy storage substation is zero, indicating The flow battery storage substation will be in a zero power state, and the power command value of each flow battery energy storage unit is set by the fourth calculation submodule; the fourth calculation submodule is used for the flow battery storage substation When the active power command value is zero, the power command value of the flow battery storage substation is calculated; the fifth judgment submodule is configured to set
  • the power command value of the flow battery storage substation that violates the constraint condition is recalculated by the fifth calculation submodule; the fifth calculation submodule, a power command value for calculating a flow battery storage substation that violates a maximum allowable discharge power constraint condition of the flow battery storage substation; and a sixth determination sub-module
  • the maximum allowable charging power constraint condition of the flow battery storage substation is set, and the active power command value of the flow battery storage substation is judged according to the constraint condition, and if the constraint condition is violated, the sixth calculation submodule is recalculated The power command value of the flow battery storage substation that violates the constraint condition; the sixth calculation submodule, which is used to calculate the power command of the flow battery storage substation that violates the maximum allowable charging power constraint condition of the flow battery storage substation
  • the real-time power splitter module includes:
  • the seventh determining sub-module is configured to determine the charging and discharging state of the lithium battery energy storage sub-station: when the active power command value of the lithium battery energy storage sub-station is positive, calculate the lithium battery energy storage unit through the third execution module The power command value; when the active power command value of the lithium battery energy storage substation is negative, indicating that the lithium battery energy storage substation is in a charging state, the power command of each lithium battery energy storage unit is calculated by the fourth execution module. Value; when the active power command value of the lithium battery energy storage substation is zero, indicating that the lithium battery energy storage substation will be in a zero power state, the power command value of each lithium battery energy storage unit is set by the fifth execution module;
  • a third execution module when the active power command value of the lithium battery energy storage substation is positive, calculating a power command value of each lithium battery energy storage unit;
  • a fourth execution module configured to calculate a power command value of each lithium battery energy storage unit when the active power command value of the lithium battery energy storage substation is a negative value
  • the fifth execution module is configured to directly set the power command value of all the lithium battery energy storage units to zero.
  • the third execution module includes:
  • the seventh calculating submodule when the active power command value of the lithium battery energy storage substation is positive, preliminary calculating the power command value of each lithium battery energy storage unit;
  • the eighth determining sub-module is configured to set a maximum allowable discharge power constraint condition of the lithium battery energy storage unit, and determine the active power command value of the lithium battery energy storage unit according to the constraint condition, and if the constraint condition is violated, the eighth calculation is performed.
  • the sub-module recalculates the power command value of the lithium battery energy storage unit that violates the constraint condition, and then continues to judge through the sub-module, and the power of all the lithium battery energy storage devices of the first leather is all full ⁇ maximum allowable discharge power About acres of spare parts when the acres Judge
  • An eighth calculation sub-module configured to calculate a discharge power characteristic value of each battery energy storage unit that violates a maximum allowable discharge power constraint condition; and select one of each battery energy storage unit that violates a maximum allowable discharge power constraint condition based on a greedy algorithm
  • the battery energy storage unit uses the maximum allowable discharge power of the unit as its power command value, and recalculates the power command values of the remaining battery energy storage units that are not limited to the maximum allowable discharge power;
  • the ninth determining sub-module when the active power command value of the lithium battery energy storage substation is positive, setting a constraint condition for the active power supply and demand balance of the lithium battery energy storage substation, and storing the lithium battery according to the constraint condition
  • the sum of the power command values of the unit can be judged, and if the constraint condition is violated, the power command value of each lithium battery energy storage unit is re-determined by the ninth calculation sub-module;
  • the ninth calculation sub-module is configured to calculate power command values of the remaining lithium battery energy storage units that are not limited to the maximum allowable discharge power, to finally determine the power command value of each lithium battery energy storage unit.
  • the fourth execution module includes:
  • the tenth calculation submodule when the active power command value of the lithium battery energy storage substation is negative, preliminary calculating the power command value of each lithium battery energy storage unit;
  • the tenth determining sub-module is configured to set a maximum allowable charging power constraint condition of the lithium battery energy storage unit, and determine the active power command value of the lithium battery energy storage unit according to the constraint condition, and if the constraint condition is violated, pass the eleventh
  • the calculation sub-module recalculates the power command value of the lithium battery energy storage unit that violates the constraint condition, and then continues to judge through the sub-module until all the power command values of the lithium battery energy storage unit satisfy the maximum allowable charging power constraint condition. End judgment
  • An eleventh calculation sub-module configured to calculate a charging power characteristic value of each lithium battery energy storage unit that violates a maximum allowable charging power constraint condition; and a lithium battery energy storage unit that violates a maximum allowable charging power constraint condition based on a greedy algorithm Selecting a battery energy storage unit, using the maximum allowable charging power of the unit as its power command value, and recalculating the power command values of the remaining lithium battery energy storage units that are not limited to the maximum allowable charging power;
  • the eleventh judging sub-module when the active power command value of the lithium battery energy storage substation is a negative value, setting a constraint condition for the active power supply and demand balance of the lithium battery energy storage substation, and according to the constraint condition, each lithium battery The sum of the power command values of the energy storage unit is judged, and if the constraint condition is violated, the power command value of each lithium battery energy storage unit is re-determined by the twelfth calculation submodule;
  • the twelfth calculation sub-module is configured to calculate power command values of the remaining lithium battery energy storage units that are not limited to the maximum allowable charging power, to finally determine the power command value of each lithium battery energy storage unit.
  • the real-time power splitter module includes:
  • the second + second judgment ⁇ with the dry judgment of the flow and discharge of the energy storage sub-station of the substation: when the flow battery storage substations When the active power command value is positive, the power command value of each liquid battery energy storage unit is calculated by the sixth execution module; when the active power command value of the liquid battery energy storage sub station is negative, it indicates the flow battery The energy storage substation will be in a state of charge, and the power command value of each liquid battery storage unit is calculated by the seventh execution module; when the active power command value of the flow battery storage substation is zero, the flow battery is indicated The energy storage substation will be in a zero power state, and the power command value of each liquid battery energy storage unit is calculated by the eighth execution module;
  • a sixth execution module wherein when the active power command value of the flow battery storage substation is positive, calculating a power command value of each flow battery storage unit;
  • a seventh execution module configured to calculate a power command value of each liquid battery energy storage unit when the active power command value of the flow battery storage substation is a negative value
  • the eighth execution module calculates the power command value of each liquid battery energy storage unit when the active power command value of the flow battery storage substation is zero.
  • the sixth execution module includes:
  • the thirteenth calculation sub-module when the active power command value of the flow battery storage sub-station is positive, preliminary calculating the power command value of each liquid storage battery energy storage unit;
  • the thirteenth judgment sub-module is configured to set a maximum allowable discharge power constraint condition of the flow battery storage unit, and judge the active power command value of the flow battery storage unit according to the constraint condition, if the constraint condition is violated,
  • the fourteenth calculation sub-module recalculates the power command value of the flow battery energy storage unit that violates the constraint condition, and then continues to judge through the sub-module until all the power command values of the flow battery storage unit meet the maximum allowable value. End the judgment when the power constraint condition is discharged;
  • a fourteenth calculation sub-module configured to calculate a discharge power characteristic value of each flow battery energy storage unit that violates a maximum allowable discharge power constraint condition; and an energy storage battery of each flow battery that violates a maximum allowable discharge power constraint condition based on a greedy algorithm
  • a battery energy storage unit is selected in the unit, and the maximum allowable discharge power of the unit is used as its power command value, and the power command values of the remaining liquid battery energy storage units that are not limited to the maximum allowable discharge power are recalculated;
  • the fourteenth determining sub-module when the active power command value of the flow battery storage sub-station is positive, setting a constraint condition for the active power supply and demand balance of the liquid storage battery energy storage sub-station, and according to the constraint condition, The sum of the power command values of the flow battery energy storage unit is judged, and if the constraint condition is violated, the power command value of each liquid battery energy storage unit is re-determined by the fifteenth calculation sub-module;
  • the fifteenth calculation sub-module is configured to calculate power command values of the remaining flow battery storage units that are not limited to the maximum allowable discharge power, to finally determine the power command value of each flow battery storage unit.
  • the seventh execution module includes:
  • the sixteenth judging sub-module is configured to set a maximum allowable charging power constraint condition of the flow battery storage unit, and judge the active power command value of the liquid battery storage unit according to the constraint condition, if the constraint condition is violated,
  • the seventeenth calculation sub-module recalculates the power command value of the flow battery energy storage unit that violates the constraint condition, and then continues to judge through the sub-module until all the power command values of the flow battery storage unit meet the maximum allowable value. End the judgment when charging power constraints;
  • a seventeenth calculation sub-module configured to calculate a charging power characteristic value of each flow battery energy storage unit that violates a maximum allowable charging power constraint condition; and an energy storage battery of each flow battery that violates a maximum allowable charging power constraint condition based on a greedy algorithm
  • a battery energy storage unit is selected in the unit, and the maximum allowable charging power of the unit is taken as its power command value, and the power command values of the remaining liquid battery energy storage units that are not limited to the maximum allowable charging power are recalculated;
  • the seventeenth judging submodule when the active power command value of the flow battery storage substation is a negative value, setting a constraint condition for the active power supply and demand balance of the flow battery storage substation, and according to the constraint condition, The sum of the power command values of the flow battery energy storage unit is judged, and if the constraint condition is violated, the power command value of each liquid battery energy storage unit is re-determined by the eighteenth calculation sub-module;
  • the eighteenth calculation sub-module is configured to calculate power command values of the remaining flow battery energy storage units that are not limited to the maximum allowable charging power, to finally determine the power command value of each flow battery energy storage unit.
  • the eighth execution module includes:
  • the nineteenth calculation sub-module configured to calculate a power command value of each liquid battery energy storage unit when the zero-power hot standby state is calculated
  • the eighteenth determining sub-module is configured to set a maximum allowable charging power constraint condition of the flow battery storage unit, and determine the active power command value of the flow battery storage unit according to the constraint condition, if the constraint condition is violated, Performing a ninth execution module;
  • the ninth execution module includes:
  • the nineteenth judgment sub-module is configured to set a constraint condition of the power supply of the power grid, and judge the power supply condition of the power grid according to the constraint condition, if it is allowed to take power from the power grid side to the liquid storage battery energy storage unit to maintain zero power hot standby In the running state, the tenth execution module is executed, otherwise the eleventh execution module is executed; the tenth execution module is configured to set the power command value of each liquid battery storage unit to be zero, and use the grid side power supply to supply Flow battery energy storage unit power consumption;
  • FIG. 3 is a block diagram showing a real-time power control algorithm of a lithium-liquid flow battery combined energy storage power station based on the greedy algorithm of the present invention. Under The embodiment is described in detail in conjunction with specific implementation steps, and the method includes the following steps:
  • Step A: Reading data through the communication module 10 is reading the real-time demand value of the total active power of the lithium-liquid flow battery combined energy storage power station and the real-time data of the battery energy storage power system operation, mainly including: battery energy storage The real-time demand value of the total active power of the power station, the controllable signal of each lithium battery energy storage unit in the battery energy storage power station, the controllable signal of each liquid battery energy storage unit, the lithium battery energy storage unit and the liquid flow battery energy storage unit The SOC value signal and the maximum allowable discharge power and maximum allowable charging power of each lithium battery energy storage unit and the flow battery storage unit are then transmitted to the data storage and management module 20 for storage and management.
  • Step B calculating, according to the total power coordination control module, the active power command value of the lithium battery energy storage substation and the liquid battery energy storage substation in the energy storage power station;
  • Step C Real-time distribution of power command values of the lithium battery energy storage substation and the liquid battery energy storage substation based on the real-time power distribution module to determine the lithium battery energy storage unit and each liquid battery energy storage unit The active power command value;
  • Step D The active power command values of each lithium battery energy storage unit and each liquid battery energy storage unit calculated in step C are summarized in the data storage and management module, and then output through the communication module.
  • step B the calculation method of the active power command value of the lithium battery energy storage substation and the liquid battery energy storage substation is as follows:
  • B1 Filtering based on the real-time demand value of the total active power of the battery energy storage power station based on the filtering algorithm.
  • a control scheme such as a weighted moving average filter or a low pass filter may be employed.
  • the low-frequency part of the filtered power of ⁇ can be shared by the lithium battery energy storage substation. That is, the active power command value of the lithium battery energy storage substation is calculated as shown in the following equation.
  • ⁇ 3 ⁇ 4 substation ⁇ filter energy storage station) (1) ie: p - f (p ) Hi p - P energy storage station ( 2
  • ⁇ Liquid substation P energy storage station _ ⁇ Filtering Energy storage station) (3)
  • WMA represents the weighted moving average, indicating the first-order filter constant.
  • Lithium station ⁇ R Lithium station (4) Lithium station ⁇ Maximum allowable charging
  • step B4 If the power command value of the lithium battery energy storage substation or the flow battery storage substation of the above-mentioned anti-binding conditions (4)-(7) is violated, the following step B5 is performed, otherwise it ends.
  • the liquid substation is the maximum allowable charging power of the flow battery storage substation.
  • step c the calculation method of the active power command value of the lithium battery energy storage unit is as follows:
  • Step C1 when the active power demand of the lithium battery energy storage substation is positive, indicating that the lithium battery energy storage substation will be in a discharged state, based on the state of charge of each lithium battery energy storage unit (State of Charge: SOC) And the maximum allowable discharge power value, calculate the active power command value of each lithium battery energy storage unit by the following steps: ⁇ :
  • the greedy algorithm is applied to select a battery energy storage unit from the energy storage unit that violates the maximum allowable discharge power constraint.
  • the specific implementation method is as follows: First, look for the corresponding unit that violates the maximum allowable discharge power constraint. The battery energy storage unit A having the largest discharge characteristic value. If there are several energy storage units that meet the conditions, the SOC et is the largest lithium battery energy storage unit from the conditional energy storage unit.
  • the active power command value of the selected flow battery energy storage unit A is calculated as follows: r k
  • the power command values of the remaining lithium battery energy storage units that are not limited to the maximum allowable discharge power are recalculated based on the following formula:
  • Step C2 When the active power demand of the lithium battery energy storage substation is negative, indicating that the lithium battery energy storage substation is in a charging state, based on the discharge state and the maximum allowable charging power value of each lithium battery energy storage unit, By the following steps Calculate the active power command value of each lithium battery energy storage unit ⁇ :
  • N N+l, perform the following step C23; otherwise, go to step C25.
  • the greedy algorithm is used to select a battery energy storage unit from the lithium battery energy storage unit that violates the maximum allowable charging power constraint.
  • the specific implementation method is as follows: First, the energy storage unit that violates the maximum allowable charging power constraint condition Find the lithium battery energy storage unit A with the largest charging power characteristic value. If there are several units that meet the condition, select one SOC et the smallest lithium battery energy storage unit from the conditional unit.
  • the active power command value of the selected lithium battery energy storage unit A is calculated as follows:
  • active power command values of lithium battery energy storage units that are not limited to the maximum allowable charging power are calculated as follows:
  • the controllable state of the lithium battery energy storage unit is read by the step ⁇ .
  • the state value is 1, other values 0;
  • the state of charge SOC ft is the number of lithium storage unit;
  • SO number is a lithium battery discharged state of the energy storage unit;
  • N is the number of lithium battery energy storage units.
  • Step C3 When the active power demand of the lithium battery energy storage substation is zero, indicating that the lithium battery energy storage substation is in a zero power state, the active power command values of all the lithium battery energy storage units are directly set to zero.
  • the calculation method of the active power command value of the flow battery storage unit is as follows:
  • Step C4 when the active power demand of the flow battery storage substation is positive, indicating that the flow battery storage substation will be in a discharge state, based on the state of charge of each flow battery storage unit (State of Charge) : SOC ) and the maximum allowable discharge power value, calculate the active power command value of each flow battery energy storage unit by the following steps:
  • C42 is determined for each active flow battery energy storage 3 ⁇ 4 of unit i if the maximum power allowed to be discharged following constraints active flow battery energy storage unit is satisfied: 3 ⁇ 4 ⁇ . ⁇ ⁇ 3 ⁇ 4 ⁇ 3 ⁇ 43 ⁇ 4 (28)
  • a greedy algorithm is used to select a flow battery energy storage unit from a flow battery energy storage unit that violates the maximum allowable discharge power constraints.
  • the specific implementation method is as follows: First, find the characteristics of the discharge power The largest value of the flow battery storage unit. If there are several conditional flow battery energy storage units, select SOC 3 ⁇ 43 ⁇ 4 from the conditional energy storage unit. It is the largest flow battery energy storage unit i.
  • the active power command value of the selected flow battery energy storage unit is calculated as follows:
  • 3 ⁇ 4 is the power command value of the M' flow battery energy storage unit that is limited to the maximum allowable discharge power value.
  • Step C5 When the active power demand of the flow battery storage substation is negative, indicating that the flow battery storage substation is in a charging state, based on the discharge state and the maximum allowable charging power of each flow battery storage unit Value, calculate the active power command value of each flow battery storage unit by the following steps:
  • a greedy algorithm is used to select a flow battery energy storage unit from an energy storage unit that violates the maximum allowable charging power constraints.
  • the specific implementation method is as follows: Firstly, a liquid battery storage unit with the largest charging power characteristic value is found out from the energy storage unit that violates the maximum allowable charging power constraint condition. If there are several units that meet the condition, select one SOC 3 ⁇ 43 ⁇ 4 from the conditional unit to be the smallest flow battery storage unit i.
  • the active power command value of the selected flow battery energy storage unit is calculated as follows:
  • the power command values of the remaining liquid battery storage units that are not limited to the maximum allowable charging power are recalculated based on the following formula: 4 5 )
  • Step C6 When the active power command value of the flow battery storage substation is zero, it indicates that the flow battery storage substation will be in a hot standby state of zero power. If it can be judged that the duration of this state is not very long, in order to keep the active power value of the AC battery storage unit on the grid side of the flow battery, the following steps are used to calculate the active power command value of each flow battery storage unit ⁇ 3 ⁇ 4 :
  • the other is zero, and the grid-side power supply is used to supply the flow battery energy storage unit power consumption.
  • M 3 ⁇ 4f is the controllable state of the battery flow storage unit, which is read by step A. Take, when the remotely controllable flow battery energy storage unit, the status value is 1, the other is 0; SOc 3 ⁇ 4 of the state of charge flow battery energy storage unit number; flow battery energy storage unit is the number of Discharge state; ⁇ ? ⁇ is the maximum allowable discharge power of the liquid flow battery energy storage unit; the maximum allowable charging power of the i-type flow battery energy storage unit; R is the liquid flow battery energy storage unit of the liquid flow battery energy storage substation The total number of P;, ⁇ 3 ⁇ 4 is the system power consumption value of the No. and No. J flow battery energy storage unit, and the power consumption value of the system is obtained by the look-up table method.
  • the power consumption values mentioned in the above formulas belong to the system power consumption value.
  • the experimental method can be used to determine the system power consumption value and charge and discharge power of different flow battery energy storage units. Correspondence chart.
  • the specific steps of the experimental method are as follows: Firstly, by manually setting the charging and discharging power of the liquid storage battery energy storage unit, respectively, in the offline comprehensive experiment, respectively, the liquid storage battery energy storage unit is charged or discharged under different charging and discharging states. The correspondence between the power value and the system power consumption value and the system power consumption value of the flow battery energy storage unit in the zero power state. Then, based on these test data, a chart of different flow battery storage units can be determined.
  • the above experimental method is used to test a 175 kW flow battery energy storage unit, and the corresponding relationship between the charging and discharging power and the system power consumption shown in Fig. 4 is obtained.
  • the real-time system power consumption value of the unit can be used. Look up the relationship diagram of Figure 4 to get the system power consumption value.
  • the system power consumption value of the above formula (32) is used as an example.
  • the power value in the right brace of the upper equal sign is obtained (where 3 ⁇ 4 is obtained in equation (30)), and then 4, find the ordinate value corresponding to the power value (abscissa), the ordinate value is the system power consumption value of a 175 kW flow battery energy storage unit, and the system power consumption values of the remaining units are also obtained according to the look-up table method. , will not repeat them here.
  • the ordinate is the system power consumption value of the unit
  • the abscissa is the charging and discharging power value of a 175 kW flow battery energy storage unit.
  • the abscissa of 0 means that the 175 KW flow battery storage unit is at zero power.
  • the hot standby state; the positive value of the abscissa indicates that the 175KW flow battery storage unit is in the discharge state; the negative value on the abscissa indicates that the 175KW flow battery storage unit is in the charging state.
  • the method and system of the invention complete the real-time power distribution method of the lithium-liquid flow battery combined energy storage power station through the industrial computer and the communication platform, and can realize the effective control and distribution purpose of the real-time power of the lithium-liquid flow battery combined energy storage power station.
  • the invention has the functions of real-time distribution of total active power demand of lithium-liquid flow battery combined energy storage power station, real-time monitoring of SOC value, etc., thereby realizing accurate, convenient and efficient implementation of lithium-liquid flow battery combined energy storage power station Real-time power control.
  • the battery energy storage unit power may occur. If the command value exceeds the upper and lower limits of the allowable charge and discharge power (depth), when such an overrun condition occurs, if the adaptive correction and online processing are not performed in time, the power command value will exceed the working capacity of the device. Battery storage unit allocation The power error becomes large, and there is a drawback that it is difficult to meet the total power requirement of the entire battery energy storage power station; due to the invention, the lithium is determined by the filtering method and the lithium and liquid battery energy storage substation allowing charging and discharging power constraints.
  • the power command value of the flow battery storage substation determines the state of the lithium and liquid flow battery storage power station according to the power command values of the lithium and liquid battery storage substations, and adopt corresponding control strategies and greedy algorithms.
  • the maximum allowable discharge power of the flow battery storage unit, the maximum allowable charging power of each lithium and liquid battery storage unit, and the system power consumption of each flow battery storage unit to the control algorithm and system.
  • each flow battery energy storage unit produces better online distribution and real-time monitoring effects, which is easier to apply and implement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Fuel Cell (AREA)

Abstract

一种锂-液流电池联合储能电站的实时功率分配方法和系统。该系统包括通讯模块(10)、数据存储与管理模块(20)、总功率协调控制模块(30)和实时功率分配模块(40)。该方法包括:A)读取并存储电池储能电站总有功功率实时需求值及该电站运行时的实时数据;B)计算电池储能电站中锂电池储能子站和液流电池储能子站的有功功率命令值;C)分别计算待分配给各锂电池储能机组和各液流电池储能机组的有功功率命令值;D)对待分配给各锂电池储能机组和各液流电池储能机组的有功功率命令值进行汇总后输出电池储能电站。该方法和系统不仅能够完成对电池储能电站中各储能机组的实时功率分配,还可实现对锂-液流电池联合储能电站实时功率的有效控制和分配目的。

Description

锂-液流电池联合储能电站的实时功率分配方法及系统 技术领域
本发明属于智能电网以及能量存储与转换技术领域, 具体涉及一种基于大功率大容量兆 瓦级锂 -液流电池联合储能电站的实时功率分配方法及系统,尤其适用于大规模风光储联合发 电系统中多类型大规模电池储能电站的电池功率及电池能量管理方法。 背景技术
国家风光储输示范工程是国家电网公司建设坚强智能电网首批试点工程, 以实现 "电网 友好型"新能源发电为目标, 以体现 "技术先进性、 科技创新性、 项目示范性、 经济合理性" 为特点, 是目前世界上规模最大、 集风电、 光伏发电、 储能及输电工程四位一体的可再生能 源综合示范工程。 其中, 国家风光储输示范工程 (一期)拟建设风电 100丽、 光伏发电 40MW和 储能装置 20丽 (包含 14丽磷酸铁锂电池储能系统、 2丽全钒液流电池储能系统、 4丽钠硫电 池储能系统)。
随着锂离子电池、 液流电池、钠硫电池及其集成技术的不断发展, 应用锂-液流电池联合 储能电站去实现平滑风光功率输出、 跟踪计划发电、 参与系统调频、 削峰填谷、 暂态有功出 力紧急响应、 暂态电压紧急支撑等多种应用, 已成为了一种可行方案。 其中关键问题之一, 是掌握大规模多类型电池储能电站的综合集成与控制技术。
从电池储能的角度来说, 过度的充电和过度的放电都会对电池的寿命造成影响。 因此, 监控好电池荷电状态、 在储能电站内部合理分配好总功率需求, 并将电池的荷电状态控制在 一定范围内是必要的。 大功率液流电池储能系统中, 液流电池储能系统的内部功率损耗 (以 下简称功耗) 是必须考虑的实际问题。 以某 175千瓦液流电池储能机组为例, 当处于系统热 备状态时, 为了维持液流电池储能机组的正常工作, 约有 11%的系统功耗, 并通过由电网侧 供电来补偿。 而且, 随着交流并网侧充放电功率的变化, 系统功耗也随之改变。
在锂-液流电池联合储能电站中, 如何进行实时功率与存储能量的分配是核心问题。 目前 有关锂-液流电池储能电站的总功率实时控制及能量管理方面的专利、文献、技术报告等非常 少, 需要深入研究和探索大规模多类型电池储能电站综合控制和并网运行的核心技术, 解决 大规模电池储能电站协调控制及能量管理的关键问题。 发明内容 针对上述问题, 本发明的目的之一在于提供一种操作方便、 易于实现的锂-液流电池储能 电站的实时功率控制方法。
本发明的控制方法是通过下述技术方案实现的:
一种锂 -液流电池联合储能电站的实时功率分配方法, 其包括以下步骤:
A、 读取并存储电池储能电站总有功功率实时需求值及该电站的相关运行数据;
B、 根据步骤 A读取的总有功功率实时需求值和实时数据, 计算出电池储能电站中锂电 池储能子站和液流电池储能子站的有功功率命令值;
C、 对锂电池储能子站和液流电池储能子站的有功功率命令值进行再分配后, 分别确定 各锂电池储能机组和各液流电池储能机组的有功功率命令值;
D、 对各锂电池储能机组和各液流电池储能机组的有功功率命令值进行汇总后输出至电 池储能电站。
进一步地, 在步骤 A中, 所述电池储能电站的相关运行数据包括: 电池储能电站中各锂 电池储能机组和各液流电池储能机组的可控状态、 荷电状态值、 最大允许放电功率和最大允 许充电功率等等。
进一步地, 所述步骤 B包括如下步骤:
B1 ) 对电池储能电站总有功功率实时需求值进行滤波处理, 滤波后的低频部分功率即为 锂电池储能子站的有功功率命令值;
B2) 经过步骤 B1 滤波后, 除了低频部分功率以外的剩余部分功率即为液流电池储能子 站的有功功率命令值;
B3 ) 分别判断锂电池储能子站和液流电池储能子站的有功功率命令值是否满足相应子站 的最大允许放电功率和最大允许充电功率约束条件;
B4) 如果有锂电池储能子站或液流电池储能子站的有功功率命令值违反约束条件的, 则 执行步骤 B5, 否则结束判断;
B5 ) 通过电池储能电站总有功功率实时需求值、 锂电池储能子站和液流电池储能子站的 最大允许放电功率以及锂电池储能子站和液流电池储能子站的最大允许充电功率重新计算步 骤 B4中违反约束条件的锂电池储能子站或液流电池储能子站的有功功率命令值;
所述锂电池储能子站的最大允许放电功率为所有可控锂电池储能机组的最大允许放电功 率之和, 所述液流电池储能子站的最大允许放电功率为所有可控液流电池储能机组的最大允 许放电功率之和, 所述锂电池储能子站的最大允许充电功率为所有可控锂电池储能机组的最 大允许充电功率之和, 所述液流电池储能子站的最大允许充电功率为所有可控液流电池储能 机銪的最大允许充电功率 和。 其中, 可控锂电池储能机组的最大允许放电功率为锂电池储能机组最大允许放电功率与 其可控状态的乘积, 可控液流电池储能机组的最大允许放电功率为液流电池储能机组最大允 许放电功率与其可控状态的乘积, 可控锂电池储能机组的最大允许充电功率为锂电池储能机 组最大允许充电功率与其可控状态的乘积, 可控液流电池储能机组的最大允许充电功率为液 流电池储能机组最大允许充电功率与其可控状态的乘积。
进一步地, 所述步骤 B3中的约束条件为:
当锂电池储能子站的有功功率命令值大于零时, 则锂电池储能子站的有功功率命令值小 于等于锂电池储能子站的最大允许放电功率;
当锂电池储能子站的有功功率命令值小于零时, 则锂电池储能子站的有功功率命令值的 绝对值小于等于锂电池储能子站的最大允许充电功率的绝对值;
当液流电池储能子站的有功功率命令值大于零时, 则液流电池储能子站的有功功率命令 值小于等于液流电池储能子站的最大允许放电功率;
当液流电池储能子站的有功功率命令值小于零时, 则液流电池储能子站的有功功率命令 值的绝对值小于等于液流电池储能子站的最大允许充电功率的绝对值。
进一步地, 所述步骤 B5中, 重新计算步骤 B4中违反约束条件的锂电池储能子站或液流 电池储能子站的有功功率命令值的方法包括:
当电池储能电站总有功功率实时需求值为正值时, 通过锂电池或液流电池储能子站的最 大允许放电功率占锂电池储能子站最大允许放电功率与液流电池储能子站最大允许放电功率 总和的比例值、 再乘以电池储能总站总有功功率实时需求值, 分别得到锂电池储能子站和液 流电池储能子站的有功功率命令值;
当电池储能电站总有功功率实时需求值为负值时, 通过锂电池或液流电池储能子站的最 大允许充电功率占锂电池储能子站最大允许充电功率与液流电池储能子站最大允许充电功率 总和的比例值、 再乘以电池储能总站总有功功率实时需求值, 分别得到锂电池储能子站和液 流电池储能子站的有功功率命令值。
进一步地, 在步骤 C中, 首先对步骤 B计算出的锂电池储能子站和液流电池储能子站的 有功功率命令值分别进行再分配, 直接计算出各锂电池储能机组和各液流电池储能机组的有 功功率命令值; 在进行再分配过程中, 判断是否有违反各锂电池储能机组和各液流电池储能 机组的最大允许充、 放电功率限制的情况发生, 如果有, 则基于贪婪算法进行在线修正、 并 对各锂电池储能机组和各液流电池储能机组的有功功率命令值进行再计算; 否则结束判断。
进一步地, 步骤 C的具体步骤包括:
步骤 Cl、 当锂电池储能子站有功功率霄求为 iF倌时, 表示该锂电池储能子站将 4卜干放电 状态, 则计算各锂电池储能机组有功功率命令值的方法包括:
C11 ) 设定锂电池储能子站中被限制在最大允许放电功率的锂电池储能机组数量为 M, 并对该变量 M进行初始化;通过可控锂电池储能机组的荷电状态占锂电池储能子站中所有可 控锂电池储能机组的荷电状态总和的比例值、 再乘以锂电池储能子站有功功率需求, 来计算 所有锂电池储能机组的有功功率命令值;所述可控锂电池储能机组的荷电状态为该机组的 荷电状态与其可控状态的乘积;
C12) 判断所有锂电池储能机组的有功功率命令值是否满足最大允许放电功率约束条件, 如果有锂电池储能机组违反该约束条件时, 则进行 M=M+1, 并执行步骤 C13 ; 否则跳转至步 骤 C15;
C13 ) 通过计算违反最大允许放电功率约束条件的锂电池储能机组有功功率命令值占该 机组最大允许放电功率的比例值, 分别求得违反最大允许放电功率约束条件的各锂电池储能 机组的放电功率特征值;
C14) 从违反最大允许放电功率约束条件的各锂电池储能机组中挑选放电功率特征值 最大的锂电池储能机组, 如果有一个以上的储能机组满足条件时, 再从中选取一个荷电 状态值最大的锂电池储能机组,然后将该机组的最大允许放电功率作为其有功功率命令 值; 并通过下式重新计算其余没有被限制在最大允许放电功率值的各锂电池储能机组的有 功功率命令值后, 跳转至步骤 C12;
Figure imgf000006_0001
C15 ) 判断上述步骤计算得出的各锂电池储能机组的功率命令值的和是否满足锂电 池储能子站有功功率供需平衡的约束条件, 如果不满足判断条件, 则重新计算其余没有 被限制在最大允许放电 的各锂电池储能机组的功率命令值:
Figure imgf000006_0002
步骤 C2、 当锂电池储能子站有功功率需求为负值时, 表示该锂电池储能子站将处于充电 状态, 则计算各锂电池储能机组的有功功率命令值的方法包括:
C21 )设定锂电池储能子站中被限制在最大允许充电功率的锂电池储能机组数量为 N,并 对该变量 N进行初始化; 通过可控锂电池储能机组的放电状态占锂电池储能子站中所有可控 锂电池储能机组的放电状态总和的比例值、 再乘以锂电池储能子站有功功率需求, 来计算所 有锂电池储能机组的有功功率命令值;所述可控锂电池储能机组的放电状态为该机组的放 电状态与其可控状态的乘积;
C22) 判断所有锂电池储能机组的有功功率命令值是否满足最大允许充电功率约束条件, 如果有锂电池储能机组违反该约束条件时, 则进行 N=N+1, 并执行步骤 C23 ; 否则跳转至步 骤 C25;
C23 ) 通过计算违反最大允许充电功率约束条件的锂电池储能机组有功功率命令值占该 机组最大允许充电功率的比例值, 分别求得违反最大允许充电功率约束条件的各锂电池储能 机组的充电功率特征值;
C24) 从违反最大允许充电功率约束条件的各锂电池储能机组中挑选充电功率特征值 最大的锂电池储能机组, 如果有一个以上的储能机组满足条件时, 再从中选取一个荷电 状态值最小的锂电池储能机组,然后将该机组的最大允许充电功率作为其有功功率命令 值; 并通过下式重新计算其余没有被限制在最大允许充电功率值的各锂电池储能机组的有 功功率命令值后, 跳转至步骤 C22;
Figure imgf000007_0001
C25 ) 判断上述步骤计算得出的各锂电池储能机组的功率命令值的和是否满足锂电池储 能子站有功功率供需平衡的约束条件, 如果不满足判断条件, 则重新计算其余没有被限制在 最大允许充电功率的各锂电池储能机组的功率命令值:
Figure imgf000007_0002
步骤 C3、 当锂电池储能子站有功功率需求为零时, 表示该锂电池储能子站将处于零功率 状态, 则设置所有锂电池储能机组的有功功率命令值为 0;
步骤 C4、 当液流电池储能子站有功功率需求为正值时, 表示该液流电池储能子站将处于 放电状态, 则计算各液流电池储能机组的有功功率命令值的方法包括:
C41 ) 设定液流电池储能子站中被限制在最大允许放电功率的液流电池储能机组数量为 M', 并对该变量 M'进行初始化; 通过可控液流电池储能机组的荷电状态占液流电池储能子 站中所有可控液流电池储能机组的荷电状态总和的比例值、 再乘以液流电池储能子站有功功 率需求, 来计算所有液流电池储能机组的有功功率命令值; 所述可控液流电池储能机组的 荷电状态为该机组的荷电状态与其可控状态的乘积;
C42) 判断所有液流电池储能机组的有功功率命令值是否满足最大允许放电功率约束条 件, 如果有液流电池储能机组违反该约束条件时, 则进行 M'=M'+1, 并执行步骤 C43, 否则 跳转至步骤 C45;
C43 ) 通过计算违反最大允许放电功率约束条件的液流电池储能机组有功功率命令值占 该机组最大允许放电功率的比例值, 分别求得违反最大允许放电功率约束条件的各液流电池 储能机组的放电功率特征值;
C44) 从违反最大允许放电功率约束条件的各液流电池储能机组中挑选放电功率特征 值最大的液流电池储能机组, 如果有一个以上的储能机组满足条件时, 再从中选取一个 荷电状态值最大的液流电池储能机组,然后将该机组的最大允许放电功率作为其有功功 率命令值; 并通过下式重新计算其余没有被限制在最大允许放电功率值的各液流电池储能 机组的有功功率命令值后, 跳转至步骤 C42; p _ um soc ( Ρ _νΓρ /·查表 、,) Ρ功耗
Σ (¾¾ S。C液流】 )
C45 ) 判断上述步骤计算得出的各液流电池储能机组的功率命令值的和是否满足液流电 池储能子站有功功率供需平衡的约束条件, 如果不满足判断条件, 则重新计算其余没有被限 制在最大允许放电功率的各液流电池储能机组的功率命令值:
Figure imgf000008_0001
步骤 C5、 当液流电池储能子站有功功率需求为负值时, 表示该液流电池储能子站将处于 充电状态, 则计算各液流电池储能机组的有功功率命令值的方法包括:
C51 ) 设定液流电池储能子站中被限制在最大允许充电功率的液流电池储能机组数量为 Ν' , 并对该变量 N'进行初始化; 通过可控液流电池储能机组的放电状态占液流电池储能子站 中所有可控液流电池储能机组放电状态总和的比例值、 再乘以液流电池储能子站有功功率需 求, 来计算所有液流电池储能机组的有功功率命令值; 所述可控液流电池储能机组的放电 状态为该机组的放电状态与其可控状态的乘积;
C52) 判断所有液流电池储能机组的有功功率命令值是否满足最大允许充电功率约束条 件, 如果有液流电池储能机组违反该约束条件时, 则进行 Ν'=Ν'+1, 并执行步骤 C53, 否则 跳转至步骤 C55;
C53 ) 通过计算违反最大允许充电功率约束条件的液流电池储能机组有功功率命令值占 该机组最大允许充电功率的比例值, 分别求得违反最大允许充电功率约束条件的各液流电池 储能机组的充电功率特征值;
C54) 从违反最大允许充电功率约束条件的各液流电池储能机组中挑选充电功率特征 值最大的液流电池储能机组, 如果有一个以上的储能机组满足条件时, 再从中选取一个 荷电状态值最小的液流电池储能机组,然后将该机组的最大允许充电功率作为其有功功 率命令值; 并通过下式重新计算其余没有被限制在最大允许充电功率值的各液流电池储能 机组的有功功率命令值后, 跳转至步骤 C52;
p = 流 "液流 J. 耗
子站― Σ 液流 i ) ) I 功
+ ρ¾液 '
C55 ) 判断上述步骤计算得出的各液流电池储能机组的功率命令值的和是否满足液流电 池储能子站有功功率供需平衡的约束条件, 如果不满足判断条件, 则重新计算其余没有被限 制在最大允许充电功率的各液流电池储能机组的功率命令值:
ΛΓ 、
p _ "査表 ic>
液流 J' _∑ v ~ ¾» v ) ) + ^液流 J'
Figure imgf000009_0001
步骤 C6、 当液流电池储能子站的有功功率需求为零时, 表示该液流电池储能子站将处于 零功率的热备用状态, 则计算各液流电池储能机组的有功功率命令值的方法包括:
C61 ) 通过查表法获得各液流电池储能机组的功耗值, 并基于各液流电池储能机组的可 控状态与功耗值计算各液流电池储能机组的有功功率命令值;
C62) 判断各液流电池储能机组的有功功率命令值是否满足最大允许放电功率约束条件, 如果有液流电池储能机组违反该约束条件时, 则执行步骤 C63, 否则结束判断;
C63 ) 基于以下判断条件, 对各液流电池储能机组进行相应处理:
如果允许从电网侧取电给液流电池储能机组, 以维持零功率热备运行状态时, 则另该液 流电池储能机组的有功功率命令值为零,并使用电网侧供电来供给该液流电池储能机组功耗; 如果不允许从电网侧取电给该液流电池储能机组, 以维持零功率热备运行状态时, 则另 该液流电池储能机组的有功功率命令值为零, 并对该液流电池储能机组做停机处理。
式中, ¾.、 M液流.为_ /号锂电池、 液流电池储能机组的可控状态值; SOC裡. 、 SOC液流.为 号锂电池、液流电池储能机组的荷电状态; SOD^和 ^0 .为_ /号锂电池、液流电池储能 机组的放电状态, SOZ¾ = - SOCe., SODm. = 1 - SOC,m. ; ^大允许放电和/ ^大允许充电为 i号锂电池储能机组的最大允许放电功率和最大允许充电功率; /¾^ 和¾ ¾¾为锂电池和液 流电池储能子站的有功功率命令值; L、 R为锂电池、 液流储能机组的总数量; ^J为 号液 流电池储能机组的功耗值, 其通过查表法获得。 进一步地, 所述步骤 C12中最大允许放电功率约束条件为: 锂电池储能机组有功功率命 令值小于等于该机组的最大允许放电功率; 所述步骤 C22中最大允许充电功率约束条件为: 锂电池储能机组有功功率命令值的绝对值小于等于该机组最大允许充电功率的绝对值; 所述 步骤 C15和 C25中锂电池储能子站有功功率供需平衡约束条件为: 各锂电池储能机组的 功率命令值的和等于当前锂电池储能子站的有功功率需求; 所述步骤 C42中最大允许放电 功率约束条件为: 液流电池储能机组有功功率命令值小于等于该机组的最大允许放电功率; 所述步骤 C52中最大允许充电功率约束条件为: 液流电池储能机组有功功率命令值的绝对值 小于等于该机组最大允许充电功率的绝对值; 所述步骤 C45和 C55中液流电池储能子站有 功功率供需平衡约束条件为: 各液流电池储能机组的功率命令值的和等于当前液流电池 储能子站的有功功率需求; 所述步骤 C62中最大允许放电功率约束条件为: 各液流电池储能 机组有功功率命令值小于等于该液流电池储能机组的最大允许放电功率。
所述步骤 D中,对步骤 C中计算出的各锂电池储能机组和各液流电池储能机组的功率命 令值进行汇总, 并输出至电池储能电站, 以执行对各锂电池储能机组和各液流电池储能机组 的功率分配, 同时实现对锂 -液流电池联合储能电站的实时功率控制目标。
本发明的另一目的在于提出一种锂 -液流电池联合储能电站的实时功率分配系统,该系统 包括:
通讯模块, 用于实时读取电池储能电站的总有功功率实时需求值及该电站的相关运行数 据,以及将各锂电池储能机组和各液流电池储能机组的有功功率命令值输出至电池储能电站, 以实现对电池储能电站中的各电池储能机组进行功率分配;
数据存储与管理模块, 用于存储通讯模块所读取的总有功功率实时需求值和实时数据, 以及将实时功率分配器返回的各锂电池储能机组和各液流电池储能机组的有功功率命令值汇 总后传至通讯模块;
总功率协调控制模块, 用于实时计算电池储能电站中锂电池储能子站和液流电池储能子 站的有功功率命令值; 和
实时功率分配器, 用于对锂电池储能子站和液流电池储能子站的有功功率命令值进行实 时分配, 以确定出各锂电池储能机组和各液流电池储能机组的有功功率命令值。
与现有技术相比, 本发明达到的有益效果是:
本发明提供的锂-液流电池联合储能电站的实时功率分配方法及其系统具有操作方便、在 实际应用中易于实现和掌握等优点, 该方法和系统主要是结合可表示电池储能机组实时功率 特性的允许充放电能力(即, 各锂电池储能机组和各液流电池储能机组的最大允许放电功率, 各锂电池储能机銪和各液流电池储能机銪的最大允许充电功率等) 及可表示电池储能机銪存 储能量特性的荷电状态 soc, 并基于贪婪算法和液流电池储能机组的系统功耗, 对锂-液流电 池联合储能电站的总有功功率实时需求值进行在线分配, 从而实现了实时分配锂 -液流电池储 能电站总有功功率需求的同时,也实现了并网用大规模电池储能电站的能量管理及实时控制。 该方法和系统将液流电池储能系统的功耗考虑到实时功率分配方法中, 不但可满足锂-液流电 池联合储能电站总有功功率的实时分配需求, 还解决了存储能量的实时监管问题, 适用范围 广。 附图说明
图 1是本发明锂 -液流电池联合储能电站实施例的结构示意图;
图 2是本发明锂-液流电池联合储能电站的实时功率分配系统实施例的结构框图; 图 3是本发明锂 -液流电池联合储能电站实时功率分配方法实施例的流程框图
图 4是某 175kW液流电池储能机组实施例的充放电功率与系统功耗之间的对应关系图 表, 基于查表法查找该图表即可得到该机组的实时系统功耗值。 具体实施方式
下面结合附图和具体实施例对本发明的实时功率分配方法和系统作进一步的详细说明。 如图 1所示, 锂-液流电池联合储能电站中包括锂电池储能子站和液流电池储能子站, 其 中锂电池储能子站包括双向变流器和多个锂电池储能机组, 液流电池储能子站包括双向变流 器和多个液流电池储能机组, 通过双向变流器可执行对各锂电池和各液流电池储能机组的启 停控制及充放电功率指令等。
图 2示出了锂-液流电池联合储能电站的实时功率分配控制系统实施例的结构框图。如图 2所示, 本发明是通过设置在远程服务器中的通讯模块 10、 数据存储与管理模块 20、 总功率 协调控制器模块 30, 实时功率分配器模块 40实现的。 该控制系统中的通讯模块 10与电池联 合储能电站通过有线或无线网络进行连接,来完成该控制系统与锂 -液流电池联合储能电站之 间的数据交互和通信,从而实现为锂-液流电池联合储能电站中各锂电池储能机组和各液流电 池储能机组进行功率分配, 以及对锂-液流电池联合储能电站进行实时功率监控, 其中, 通讯模块 10, 用于接收锂 -液流电池联合储能电站总有功功率实时需求值和电池储能电 站相关运行数据, 以及将待分配给各锂电池储能机组和各液流电池储能机组的有功功率命令 值输出至锂 -液流电池储能电站。
数据存储与管理模块 20, 用于存储和管理锂-液流电池联合储能电站运行时的实时数据 和历史数据; 而且负责将计算出的各锂电池储能机组和各液流电池储能机组的功率命令值进 行汇总、 并赋值给相关的接口变量, 供远程服务器通过通讯模块进行调用。
总功率协调控制模块 30, 用于实时计算电池储能电站中锂电池储能子站和液流电池储能 子站的有功功率命令值; 和
实时功率分配器模块 40, 用于对锂电池储能子站和液流电池储能子站的有功功率命令值 进行实时分配,以确定出待分配给锂-液流电池联合储能电站中各锂电池储能机组和各液流电 池储能机组的有功功率命令值。
其中, 所述总功率协调控制模块包括滤波模块、 第一执行模块和第二执行模块: 所述滤波模块对电池储能电站的总有功功率需求进行滤波处理: 滤波后的低频部分功率 设置为锂电池储能子站的有功功率命令值, 并通过第一执行模块确定锂电池储能子站的功率 命令值; 滤波处理后的剩余部分功率设置为液流电池储能子站的有功功率命令值, 并通过第 二执行模块确定液流电池储能子站的功率命令值。
其中, 所述第一执行模块包括:
第一判断子模块, 用于判断锂电池储能子站的充放电状态: 当锂电池储能子站的有功功 率命令值为正值时, 表示该锂电池储能子站将处于放电状态, 则通过第二判断子模块判断锂 电池储能子站的功率命令值; 当锂电池储能子站的有功功率命令值为负值时, 表示该电池储 能电站将处于充电状态, 则通过第三判断子模块判断锂电池储能子站的功率命令值; 当锂电 池储能子站的有功功率命令值为零时, 表示该锂电池储能电站将处于零功率状态, 则通过第 一计算子模块设置各锂电池储能机组的功率命令值; 第一计算子模块, 用于当锂电池储能子 站的有功功率命令值为零时, 设置锂电池储能子站的功率命令值为零。
第二判断子模块, 用于设置锂电池储能子站最大允许放电功率约束条件, 并根据该约束 条件对锂电池储能子站的有功功率命令值进行判断, 如果违反约束条件, 则通过第二计算子 模块重新计算违反约束条件的锂电池储能子站的功率命令值; 第二计算子模块, 用于计算违 反锂电池储能子站最大允许放电功率约束条件的锂电池储能子站的功率命令值; 和
第三判断子模块, 用于设置锂电池储能子站最大允许充电功率约束条件, 并根据该约束 条件对锂电池储能子站的有功功率命令值进行判断, 如果违反约束条件, 则通过第三计算子 模块重新计算违反约束条件的锂电池储能子站的功率命令值; 第三计算子模块, 用于计算违 反锂电池储能子站最大允许充电功率约束条件的锂电池储能子站的功率命令值;
其中, 所述第二执行模块包括:
第四判断子模块, 用于判断液流电池储能子站的充放电状态: 当液流电池储能子站的有 功功率命令值为正值时, 表示该液流电池储能子站将处于放电状态, 则通过第五判断子模块 判断液流电池储能子站的功率侖今倌: 当 流电池储能子站的有功功率侖今倌为^倌时, 表 示该电池储能电站将处于充电状态, 则通过第六判断子模块判断液流电池储能子站的功率命 令值; 当液流电池储能子站的有功功率命令值为零时, 表示该液流电池储能子站将处于零功 率状态, 则通过第四计算子模块设置各液流电池储能机组的功率命令值; 第四计算子模块, 用于当液流电池储能子站的有功功率命令值为零时, 计算液流电池储能子站的功率命令值; 第五判断子模块, 用于设置液流电池储能子站最大允许放电功率约束条件, 并根据该约 束条件对液流电池储能子站的有功功率命令值进行判断, 如果违反约束条件, 通过第五计算 子模块重新计算违反约束条件的液流电池储能子站的功率命令值; 第五计算子模块, 用于计 算违反液流电池储能子站最大允许放电功率约束条件的液流电池储能子站的功率命令值; 和 第六判断子模块, 用于设置液流电池储能子站最大允许充电功率约束条件, 并根据该约 束条件对液流电池储能子站的有功功率命令值进行判断, 如果违反约束条件, 则通过第六计 算子模块重新计算违反约束条件的液流电池储能子站的功率命令值; 第六计算子模块, 用于 计算违反液流电池储能子站最大允许充电功率约束条件的液流电池储能子站的功率命令值; 其中, 所述实时功率分配器模块包括:
第七判断子模块, 用于判断锂电池储能子站的充放电状态: 当锂电池储能子站的有功功 率命令值为正值时, 则通过第三执行模块计算各锂电池储能机组的功率命令值; 当锂电池储 能子站的有功功率命令值为负值时, 表示锂电池储能子站将处于充电状态, 则通过第四执行 模块计算各锂电池储能机组的功率命令值; 当锂电池储能子站的有功功率命令值为零时, 表 示该锂电池储能子站将处于零功率状态, 则通过第五执行模块设置各锂电池储能机组的功率 命令值;
第三执行模块, 用于锂电池储能子站的有功功率命令值为正值时, 计算各锂电池储能机 组的功率命令值;
第四执行模块, 用于当锂电池储能子站的有功功率命令值为负值时, 计算各锂电池储能 机组的功率命令值; 和
第五执行模块, 用于直接设置所有锂电池储能机组的功率命令值为零。
其中, 所述第三执行模块包括:
第七计算子模块, 用于锂电池储能子站的有功功率命令值为正值时, 初步计算各锂电池 储能机组的功率命令值;
第八判断子模块, 用于设置锂电池储能机组最大允许放电功率约束条件, 并根据该约束 条件对锂电池储能机组的有功功率命令值进行判断, 如果违反约束条件, 则通过第八计算子 模块重新计算违反约束条件的锂电池储能机组的功率命令值, 然后, 再通过该子模块继续进 行判断, 首革所有锂电池储能机銪的功率 ^今倌全都滿^最大允许放电功率约亩备件时结亩 判断;
第八计算子模块, 用于计算违反最大允许放电功率约束条件的各电池储能机组的放电功 率特征值; 以及基于贪婪算法从违反最大允许放电功率约束条件的各电池储能机组中选出 一个电池储能机组, 将该机组的最大允许放电功率作为其功率命令值, 重新计算其余没 有被限制在最大允许放电功率的各电池储能机组的功率命令值;
第九判断子模块, 用于锂电池储能子站的有功功率命令值为正值时, 设置锂电池储能子 站有功功率供需平衡的约束条件, 并根据该约束条件, 对各锂电池储能机组的功率命令 值的和进行判断, 如果违反约束条件, 通过第九计算子模块重新确定各锂电池储能机组的功 率命令值; 和
第九计算子模块, 用于计算其余没有被限制在最大允许放电功率的各锂电池储能机组的 功率命令值, 以最终确定各锂电池储能机组的功率命令值。
所述第四执行模块包括:
第十计算子模块, 用于锂电池储能子站的有功功率命令值为负值时, 初步计算各锂电池 储能机组的功率命令值;
第十判断子模块, 用于设置锂电池储能机组最大允许充电功率约束条件, 并根据该约束 条件对锂电池储能机组的有功功率命令值进行判断, 如果违反约束条件, 则通过第十一计算 子模块重新计算违反约束条件的锂电池储能机组的功率命令值, 然后, 再通过该子模块继续 进行判断, 直至所有锂电池储能机组的功率命令值全部满足最大允许充电功率约束条件时结 束判断;
第十一计算子模块, 用于计算违反最大允许充电功率约束条件的各锂电池储能机组的充 电功率特征值; 以及基于贪婪算法从违反最大允许充电功率约束条件的各锂电池储能机组 中选出一个电池储能机组, 将该机组的最大允许充电功率作为其功率命令值, 重新计算 其余没有被限制在最大允许充电功率的各锂电池储能机组的功率命令值;
第十一判断子模块, 用于锂电池储能子站的有功功率命令值为负值时, 设置锂电池储能 子站有功功率供需平衡的约束条件, 并根据该约束条件, 对各锂电池储能机组的功率命 令值的和进行判断, 如果违反约束条件, 通过第十二计算子模块重新确定各锂电池储能机组 的功率命令值; 和
第十二计算子模块, 用于计算其余没有被限制在最大允许充电功率的各锂电池储能机组 的功率命令值, 以最终确定各锂电池储能机组的功率命令值。
其中, 所述实时功率分配器模块包括:
第+二判断子樽诀, 用干判断液流电沛储能子站的充放电状杰: 当液流电池储能子站的 有功功率命令值为正值时, 则通过第六执行模块计算各液流电池储能机组的功率命令值; 当 液流电池储能子站的有功功率命令值为负值时, 表示液流电池储能子站将处于充电状态, 则 通过第七执行模块计算各液流电池储能机组的功率命令值; 当液流电池储能子站的有功功率 命令值为零时, 表示该液流电池储能子站将处于零功率状态, 则通过第八执行模块计算各液 流电池储能机组的功率命令值;
第六执行模块, 用于液流电池储能子站的有功功率命令值为正值时, 计算各液流电池储 能机组的功率命令值;
第七执行模块, 用于当液流电池储能子站的有功功率命令值为负值时, 计算各液流电池 储能机组的功率命令值;
第八执行模块, 用于液流电池储能子站的有功功率命令值为零时, 计算各液流电池储能 机组的功率命令值。
其中, 所述第六执行模块包括:
第十三计算子模块, 用于液流电池储能子站的有功功率命令值为正值时, 初步计算各液 流电池储能机组的功率命令值;
第十三判断子模块, 用于设置液流电池储能机组最大允许放电功率约束条件, 并根据该 约束条件对液流电池储能机组的有功功率命令值进行判断, 如果违反约束条件, 则通过第十 四计算子模块重新计算违反约束条件的液流电池储能机组的功率命令值, 然后, 再通过该子 模块继续进行判断, 直至所有液流电池储能机组的功率命令值全部满足最大允许放电功率约 束条件时结束判断;
第十四计算子模块, 用于计算违反最大允许放电功率约束条件的各液流电池储能机组的 放电功率特征值; 以及基于贪婪算法从违反最大允许放电功率约束条件的各液流电池储能 机组中选出一个电池储能机组, 将该机组的最大允许放电功率作为其功率命令值, 重新 计算其余没有被限制在最大允许放电功率的各液流电池储能机组的功率命令值;
第十四判断子模块, 用于液流电池储能子站的有功功率命令值为正值时, 设置液流电池 储能子站有功功率供需平衡的约束条件, 并根据该约束条件, 对各液流电池储能机组的 功率命令值的和进行判断, 如果违反约束条件, 通过第十五计算子模块重新确定各液流电池 储能机组的功率命令值;
第十五计算子模块, 用于计算其余没有被限制在最大允许放电功率的各液流电池储能机 组的功率命令值, 以最终确定各液流电池储能机组的功率命令值。
所述第七执行模块包括:
第+六计筧子樽诀, 用干液流电池储能子站的有功功率侖今倌为^倌时, 初步计筧各液 流电池储能机组的功率命令值;
第十六判断子模块, 用于设置液流电池储能机组最大允许充电功率约束条件, 并根据该 约束条件对液流电池储能机组的有功功率命令值进行判断, 如果违反约束条件, 则通过第十 七计算子模块重新计算违反约束条件的液流电池储能机组的功率命令值, 然后, 再通过该子 模块继续进行判断, 直至所有液流电池储能机组的功率命令值全部满足最大允许充电功率约 束条件时结束判断;
第十七计算子模块, 用于计算违反最大允许充电功率约束条件的各液流电池储能机组的 充电功率特征值; 以及基于贪婪算法从违反最大允许充电功率约束条件的各液流电池储能 机组中选出一个电池储能机组, 将该机组的最大允许充电功率作为其功率命令值, 重新 计算其余没有被限制在最大允许充电功率的各液流电池储能机组的功率命令值;
第十七判断子模块, 用于液流电池储能子站的有功功率命令值为负值时, 设置液流电池 储能子站有功功率供需平衡的约束条件, 并根据该约束条件, 对各液流电池储能机组的 功率命令值的和进行判断, 如果违反约束条件, 通过第十八计算子模块重新确定各液流电池 储能机组的功率命令值;
第十八计算子模块, 用于计算其余没有被限制在最大允许充电功率的各液流电池储能机 组的功率命令值, 以最终确定各液流电池储能机组的功率命令值。
所述第八执行模块包括:
第十九计算子模块, 用于计算零功率的热备用状态时, 各液流电池储能机组的功率命令 值;
第十八判断子模块, 用于设置液流电池储能机组最大允许充电功率约束条件, 并根据该 约束条件对液流电池储能机组的有功功率命令值进行判断, 如果违反约束条件, 则通过执行 第九执行模块;
所述第九执行模块包括:
第十九判断子模块, 用于设置电网供电的约束条件,, 并根据该约束条件对电网供电条件 进行判断, 如果允许从电网侧取电给液流电池储能机组, 以维持零功率热备运行状态时, 则 执行第十执行模块, 否则执行第十一执行模块; 所述第十执行模块, 用于设置各液流电池储 能机组的功率命令值为零, 并使用电网侧供电来供给液流电池储能机组功耗;
所述第十一执行模块, 于设置各液流电池储能机组的功率命令值为零, 并对液流电池储 能机组做停机处理。 图 3示出了本发明基于贪婪算法的锂-液流电池联合储能电站实时功率控制算法框图。下 面结合具体实施步骤, 对实施方式进行详细说明, 该方法包括下述步骤:
步骤 A、通过通讯模块 10读取数据是读取上位机下发的锂-液流电池联合储能电站总有功 功率实时需求值和电池储能电站系统运行的实时数据, 主要包括: 电池储能电站总有功功率 实时需求值、 电池储能电站中各锂电池储能机组的可控信号、 各液流电池储能机组的可控信 号、各锂电池储能机组和液流电池储能机组的 SOC值信号以及各锂电池储能机组和液流电池 储能机组的最大允许放电功率和最大允许充电功率等, 然后将数据传至数据存储与管理模块 20进行存储和管理。
步骤 B、 基于总功率协调控制模块实时计算储能电站中锂电池储能子站和液流电池储能 子站的有功功率命令值;
步骤 C、 基于实时功率分配模块, 对锂电池储能子站和液流电池储能子站的功率命令值 进行实时分配, 以确定出各锂电池储能机组和各液流电池储能机组的有功功率命令值; 步骤 D、 将步骤 C计算出的各锂电池储能机组和各液流电池储能机组的有功功率命令值 在数据存储与管理模块进行汇总后, 通过通讯模块输出。 在步骤 B中, 所述锂电池储能子站和液流电池储能子站的有功功率命令值的计算方法如 下:
B1 ) 基于滤波算法对电池储能电站总有功功率实时需求值 ¾^^进行滤波处理。 例如 可采用加权移动平均滤波器或低通滤波器等控制方案。例如, 对 ^^^滤波后的低频部分功 率可由锂电池储能子站来分担。 即, 锂电池储能子站的有功功率命令值如下式所示计算。
^¾子站 = · 滤波 储能全站 ) (1) 即: p - f (p ) Hi p - P储能全站 (2
^锂子站 — ^ ^^储能全站 "x ½子站— , j_ τ
+ 滤波
B2) 对 ¾^ ^滤波处理后的剩余部分功率由液流电池储能子站来分担。 SP, 液流电池 储能子站的有功功率命令值如下式所示计算。
^液流子站 = P储能全站 _ · 滤波 储能全站 ) (3) 上式 (2)中, WMA表示加权移动平均, 表示一阶滤波常数。
B3 )判断锂电池储能子站和液流电池储能子站的有功功率命令值 ^^^和^^^^, 是否 满足下列锂电池储能子站和液流电池储能子站有功功率的最大允许放电功率和最大允许充电 功率约束条件;
最大允许放电
P.锂子站 ≤ R锂子站 (4) 锂子站 < 最大允许充电
锂子站 (5) 最大允许放电
^液流子站 ^液流子站
Figure imgf000018_0001
液流子站 ≥0
最大允许充电
Figure imgf000018_0002
液流子站 P液流子站 < (7)
B4) 如果有违上述反约束条件 (4)-(7)的锂电池储能子站或液流电池储能子站的功率命令 值, 则执行下列步骤 B5, 否则结束。
B5 ) 所述锂电池储能子站和液流电池储能子站有功功率命令值计算方法如下:
( 1)当电池储能电站总有功功率实时需求值 A¾ i^ 为正值时,
p最大允许放电
^锂子站
锂子站 p最大允许放电 p最大允许放电 ^储能全站 (8)
^ "锂子站 ^液流子站
最大允许放电
液流子站
液流子站 p最大允许放电 最大允许放电 储能全站 (9)
锂子站 液流子站
(2)当电池储能电站总有功功率实时需求值 ^^ ^为负值时,
ρ最大允许充电
锂子站
R锂子站 p最大允许充电 最大允许充电 ^储能全站 (10)
锂子站 液流子站
最大允许充电
液流子站
液流子站 p最大允许充电 p最大允许充电 储能全站 (11)
^锂子站 + ^液流子站
式 (1 ) - ( 11 ) 中, 为锂电池储能子站的最大允许放电功率; 为锂 电池储能子站的最大允许充电功率; 为液流电池储能子站的最大允许放电功率; 最大允许充电
液流子站 为液流电池储能子站的最大允许充电功率。 在步骤 c中, 所述锂电池储能机组有功功率命令值的计算方法如下:
步骤 Cl、 当锂电池储能子站有功功率需求 ¾ 为正值时, 表示该锂电池储能子站将处 于放电状态, 则基于各锂电池储能机组的荷电状态(State of Charge: SOC)和最大允许放电功 率值, 通过下列步骤计算各锂电池储能机组有功功率命令值 Ρ ί
C11 )设定锂电池储能子站中被限制在最大允许放电功率的锂电池储能机组数量为 Μ=0, 并计算各锂电池储能机组 的功率命令值; _ n r ~ ,
Figure imgf000019_0001
C12)判断各锂电池储能机组 的有功功率 ΡΛ是否满足下列锂电池储能机组有功功率的 最大允许放电功率约束条件: .≤ ¾±itW ¾ (13)
如果有违上述反约束条件 (13)的锂电池储能机组, 则M=M+l, 并执行下列步骤 C13; 否 则跳转至步骤 C15;
C13)基于下式计算出违反最大允许放电功率约束条件的各锂电池储能机组 的放电功率 p
放电 _ 厂锂
裡! _ J ^大允许放电 (14)
C14) 基于以下量度标准, 应用贪婪算法, 从违反最大允许放电功率约束条件的储能 机组中选出一个电池储能机组 具体实施方法如下: 首先从违反最大允许放电功率约束 条件的相应机组中找出放电功率特征值最大的电池储能机组 A。 如果有若干个满足条件储能 机组时, 从满足条件储能机组中选取 SOCet为最大的锂电池储能机组
选定的液流电池储能机组 A的有功功率命令值如下列公式计算:
Figure imgf000019_0002
r k
其他没有被限制在最大允许放电功率的锂电池储能机组 的功率命令值如下式计算:
u jSOC, M
Pm L—M, 子站 _∑ 大允许叫 (16)
u jSOC j 跳转至步骤 C12
C15)判断步骤 Cll或 C14计算得出的各锂电池储能机组 i的功率命令值 的和是否满 足下列约束条件; P = P锂子站 (17)
i=l
如果不满足式 (17)所示的判断条件, 则基于下式重新计算其余没有被限制在最大允许放 电功率的各锂电池储能机组 的功率命令值:
7/ p最大允许放电 M
p _ W,
J « Ρ
^锂子站 — j
∑L. ρ最大允许放电
Figure imgf000019_0003
步骤 C2、 当锂电池储能子站有功功率需求 ¾ 为负值时, 表示该锂电池储能子站将处 于充电状态, 则基于各锂电池储能机组的放电状态和最大允许充电功率值, 通过下列步骤计 算各锂电池储能机组有功功率命令值 ^:
C21 ) 设定锂电池储能子站中被限制在最大允许充电功率的锂电池储能机组数量为 N=0, 并计算各锂电池储能机组 的功率命令值;
(19)
Figure imgf000020_0001
C22 )判断各锂电池储能机组 的有功功率 k.是否满足下列储能机组有功功率的最大允 许充电功率约束条件: (20)
Figure imgf000020_0002
如果有违反上述约束条件 (20)的锂电池储能机组时, 则N= N+l, 执行下列步骤 C23 ; 否 则跳转至步骤 C25。
C23 )基于下式计算出违反最大允许充电功率约束条件的各锂电池储能机组 的充电功率
; 充电 _ 锂
最大允许充电
特征值: 锂 (21)
C24 )基于以下量度标准, 应用贪婪算法从违反最大允许充电功率约束条件的锂电池储 能机组中选出一个电池储能机组 具体实施方法如下: 首先从违反最大允许充电功率 约束条件的储能机组中找出充电功率特征值最大的锂电池储能机组 A。 如果有若干个满足条 件机组时, 从满足条件机组中选取一个 SOCet为最小的锂电池储能机组
选定的锂电池储能机组 A的有功功率命令值如下列公式计算:
最大允许充电
【锂^: ― 锂^: (22) 其他没有被限制在最大允许充电功率的锂电池储能机组 的有功功率命令值如下 列公式计算:
(23) 锂子站
Figure imgf000020_0003
, (u jSOD j
SOD% = 1 - SOC% (24) 跳转至步骤 C22。
C25 )判断步骤 C21或 C24计算得出的各锂电池储能机组 i的功率命令值 的和是否满 足下列约束条件; P = P ^ (25) 如果不满足式 (25)所示的判断条件, 则基于下式重新计算其余没有被限制在最大允许充 电功率的各锂电池储能机组 的功率命令值:
M
p最最大大允
_2^ 允许许充充电电 (26)
尸锂 !' '
Figure imgf000021_0001
式 (12 ) - ( 26 ) 中, 为 号锂电池储能机组的可控状态, 该状态通过步骤 Α读取, 当该锂电池储能机组远程可控时, 此状态值为 1, 其他值为 0 ; SOCft为 号锂电池储能机组 的荷电状态; SO ) 为 号锂电池储能机组的放电状态; 7¾^^ ¾为 号锂电池储能机组 的最大允许放电功率; 为 号锂电池储能机组的最大允许充电功率; N为锂电池储 能机组个数。
步骤 C3、 当锂电池储能子站有功功率需求为零时, 表示该锂电池储能子站将处于零功率 状态, 则直接将所有锂电池储能机组的有功功率命令值均设置为 0。 在步骤 C中, 所述液流电池储能机组有功功率命令值的计算方法如下:
步骤 C4、 当液流电池储能子站有功功率需求 为正值时, 表示该液流电池储能子 站将处于放电状态, 则基于各液流电池储能机组的荷电状态(State of Charge: SOC )和最大允 许放电功率值, 通过下列步骤计算各液流电池储能机组有功功率命令值 :
C41 ) 设定液流电池储能子站中被限制在最大允许放电功率的液流电池储能机组数量为 M'=0, 并计算各液流电池储能机组 的功率命令值;
p _ ¾¾! 。C液流,. (27) r ~ ~R ¾流子站 '
∑ (¾*iS。C飾. )
C42 ) 判断各液流电池储能机组 i的有功功率 ¾ 是否满足下列液流电池储能机组有功 功率的最大允许放电功率约束条件: ¾^.≤^^¾^¾¾ (28)
如果有违反上述约束条件的液流电池储能机组, 则 M'=M'+1, 并执行下列步骤 C43 ; 否 则跳转至步骤 C45 ;
C43 )基于下式计算出违反最大允许放电功率约束条件的各液流电池储能机组 i的放电功
^-放电 ― p職 i
率特征值: 液流' — 允许放电 (29)
C44 )基于以下量度标准, 应用贪婪算法, 从违反最大允许放电功率约束条件的液流电 池储能机组中选出一个液流电池储能机组 。 具体实施方法如下: 首先找出放电功率特征 值最大的液流电池储能机组 。 如果有若干个满足条件液流电池储能机组时, 从满足条件储 能机组中选取 SOC¾¾.为最大的液流电池储能机组 i。
选定的液流电池储能机组 的有功功率命令值如下列公式计算:
p _ p最大允许放电
(30) 其他没有被限制在最大允许放电功率的液流电池储能机组 的功率命令值如下列公式计
w液流 ,
(31)
Figure imgf000022_0001
¾流^ 液衡. M' 杳表
力耗 _
«j— 功耗 R- 1 P液流子站― Σ Ρ液流― fx 菌 i (32)
i=\
∑ ¾ .^^C液流 j
7=1
跳转至步骤 C42
C45 ) 判断上述步骤计算得出的各液流电池储能机组 i的功率命令值 P¾¾ii总和是否满足 下列约束条件: £ p»¾ i = ¾« (33)
=1
如果不满足式 (33)所示的判断条件, 则基于下式重新计算其余没有被限制在最大允许放 电功率的各液流电池储能机组 '的功率命令值:
(34)
功耗
液流 (35)
Figure imgf000022_0002
式 (31 ) - ( 35 ) 中, ¾ 为被限制在最大允许放电功率值的 M'个液流电池储能机组的 功率命令值。
步骤 C5、 当液流电池储能子站有功功率需求 为负值时, 表示该液流电池储能子 站将处于充电状态, 则基于各液流电池储能机组的放电状态和最大允许充电功率值, 通过下 列步骤计算各液流电池储能机组有功功率命令值 ¾ :
C.51 ) 设^液流电池储能子姑中祯限制亦最 t允许充电 率的液流电池储能机 教量为 N'=0, 并计算各液流电池储能机组 i的功率命令值;
Figure imgf000023_0001
p功耗 ― 査表
^液流 ― 功耗 (37)
Figure imgf000023_0002
C52 ) 判断各液流电池储能机组 i的有功功率 是否满足下列液流电池储能机组的最 最大允许充电
大允许充电功率约束条件: k液流!' < 液流 (38) 如果有违反上述约束条件的液流电池储能机组时, 则 N'= N'+1, 执行下列步骤 C53 ; 否 则结束。
C53 )基于下式计算出违反最大允许充电功率约束条件的各液流电池储能机组 的充电功
) ^充电 _ 液流 i
Λ液流; ~ 最大允许充电
率特征值: Pt液,流; (39)
C54 ) 基于以下量度标准, 应用贪婪算法从违反最大允许充电功率约束条件的储能机 组中选出一个液流电池储能机组 。 具体实施方法如下: 首先从违反最大允许充电功率约 束条件的储能机组中找出充电功率特征值最大的液流电池储能机组 。如果有若干个满足条件 机组时, 从满足条件机组中选取一个 SOC¾¾.为最小的液流电池储能机组 i。
选定的液流电池储能机组 的有功功率命令值如下列公式计算:
最大允许充电
-液 液¾¾ (40) 其他没有被限制在最大允许充电功率的液流电池储能机组 j 的有功功率命令值如下歹 I /入 式计算:
Figure imgf000023_0003
S0D = 1 ~ soc (43) 跳转至步骤 C52 c C55) 判断上述步骤计算得出的各液流电池储能机组 i的有功功率命令值 P¾¾ii总和是否 满足下列约束条件: p»¾i = ¾ T (44)
=1
如果不满足式 (44)所示的判断条件, 则基于下式重新计算其余没有被限制在最大允许充 电功率的各液流电池储能机组 '的功率命令值: 45)
Figure imgf000024_0001
式 (41) - (46) 中, 为被限制在最大允许充电功率值的 N'个液流电池储能机组的 功率命令值。
步骤 C6、 当液流电池储能子站有功功率命令值 ^ 为零时, 表示该液流电池储能子 站将处于零功率的热备用状态。 如果能判断出这种状态持续时间不是很长, 则为了使液流电 池储能机组交流并网侧的有功功率值保持零, 通过下列步骤计算各液流电池储能机组有功功 率命令值 ^ ¾:
C61) 基于下式计算各液流电池储能机组 的有功功率命令值;
Pmti = "液流!^ ^£ = w液流, ( ) (47)
C62) 判断各液流电池储能机组 i的有功功率命令值 ^ 是否满足下列液流电池储能机 组的最大允许放电功率约束条件;
最大允许放电
p職 i - p職 i (48) 如果有违反上述约束条件的液流电池储能机组时, 执行下列步骤 C63, 否则结束。
C63) 基于以下判断条件, 进行处理:
如果允许从电网侧取电给液流电池储能机组, 以维持零功率热备运行状态时, 另^ g 为 零, 并使用电网侧供电来供给液流电池储能机组功耗。
如果不允许从电网侧取电给液流电池储能机组, 以维持零功率热备运行状态时, 另 P u 为零, 并对液流电池储能机组做停机处理。
式 (27) - (48) 中, M ¾f,为 号液流电池储能机组的可控状态, 该状态通过步骤 A读 取, 当该液流电池储能机组远程可控时, 此状态值为 1, 其他值为 0; SOc ¾ 为 号液流电 池储能机组的荷电状态; 为 号液流电池储能机组的放电状态; ^?^^^^^为 号液 流电池储能机组的最大允许放电功率; 为 i号液流电池储能机组的最大允许充电功 率; R为液流电池储能子站中液流电池储能机组的总数量; P £.、 Ρ ¾分别为 号、 J号液流 电池储能机组的系统功耗值, 该系统功耗值均通过查表法得到。
上面各公式中所提及的功耗值均属于系统功耗值, 在实际实施本专利过程中, 可通过实 验方法来确定不同液流电池储能机组的系统功耗值与充放电功率之间的对应关系图表。 该实 验方法的具体步骤为: 首先、 通过手动设定液流电池储能子单元的充放电功率, 在离线综合 实验中分别确定出液流电池储能机组在充电或放电状态下, 不同充放电功率值与系统功耗值 之间的对应关系以及液流电池储能机组在零功率状态下的系统功耗值。 然后、 基于这些试验 数据, 即可确定出不同液流电池储能机组的图表。
本例中, 采用上述实验方法对某 175kW液流电池储能机组进行实验, 得到如图 4所示充 放电功率与系统功耗之间的对应关系图表, 该机组的实时系统功耗值可采用查表法查找图 4 的关系图表得出系统功耗值。 本例中, 以上述公式 (32)的系统功耗值为例进行说明, 先求得 上式等号右边大括号中的功率值 (其中 ¾在式 (30)中求得), 再到图 4中查找该功率值 (横 坐标) 所对应的纵坐标值, 该纵坐标值即为某 175kW液流电池储能机组的系统功耗值 其余机组的系统功耗值也按照该查表法获得, 在此不再赘述。
图 4中, 纵坐标为该机组的系统功耗值, 横坐标为某 175kW液流电池储能机组的充放电 功率值, 其中横坐标为 0时代表 175KW液流电池储能机组处于零功率的热备用状态; 横坐标 为正值代表 175KW液流电池储能机组处于放电状态; 横坐标为负值代表 175KW液流电池储能 机组处于充电状态。
本发明的方法和系统通过工控机和通信平台完成锂-液流电池联合储能电站的实时功率 分配方法, 可实现对锂-液流电池联合储能电站实时功率的有效控制和分配目的。采用上述技 术方案, 本发明具有实时分配锂-液流电池联合储能电站的总有功功率需求, 实时监控 SOC 值等功能, 从而可以准确、 便捷、 有效的实施锂-液流电池联合储能电站实时功率控制功能。
如果只是根据锂-液流电池联合储能电站总功率需求和各电池储能机组荷电状态 SOC直 接计算电池储能电站中各电池储能机组的功率命令值, 则可能出现电池储能机组功率命令值 超过其允许充、 放电功率 (深度) 上下极限的情况, 当出现这种超限情况时, 如不及时进行 自适应修正和在线处理, 会因下发功率命令值超出设备工作能力而导致各电池储能机组分配 功率误差变大, 并存在难以满足整个电池储能电站总功率需求的弊端; 正由于本发明增加了 "通过滤波方法和锂、 液流电池储能子站允许充放电功率约束条件来确定锂、 液流电池储能 子站的功率命令值, 然后根据锂、 液流电池储能子站的功率命令值来分别判断锂、 液流电池 储能电站的状态, 并通过相应控制策略以及贪婪算法来计算锂、 液流电池储能子站中各电池 储能机组的功率命令值, 同时有效考虑可表示锂、 液流电池储能机组实时功率特性的允许充 放电功率约束条件 (即, 各锂、 液流电池储能机组最大允许放电功率, 各锂、 液流电池储能 机组最大允许充电功率等约束条件) 以及各液流电池储能机组的系统功耗至控制算法和系统 中"等步骤, 所以不仅克服了上述弊端, 还对大规模兆瓦级锂-液流电池联合储能电站的中的 各锂电池储能机组和各液流电池储能机组产生了更好的在线分配和实时监控的效果, 更便于 应用及实现。
最后应该说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限制, 结合上述 实施例对本发明进行了详细说明, 所属领域的普通技术人员应当理解到: 本领域技术人员依 然可以对本发明的具体实施方式进行修改或者等同替换, 但这些修改或变更均在申请待批的 权利要求保护范围之中。

Claims

权 利 要 求
1、 一种锂 -液流电池联合储能电站的实时功率分配方法, 其特征在于, 包括以下步骤:
A、 读取并存储电池储能电站总有功功率实时需求值及该电站的相关运行数据;
B、 根据步骤 A读取的总有功功率实时需求值和实时数据, 计算出电池储能电站中锂电 池储能子站和液流电池储能子站的有功功率命令值;
C、 对锂电池储能子站和液流电池储能子站的有功功率命令值进行再分配后, 分别确定 各锂电池储能机组和各液流电池储能机组的有功功率命令值;
D、 对各锂电池储能机组和各液流电池储能机组的有功功率命令值进行汇总后输出至电 池储能电站。
2、 如权利要求 1所述的实时功率分配方法, 其特征在于, 在步骤 A中, 所述电池储能 电站的相关运行数据包括: 电池储能电站中各锂电池储能机组和各液流电池储能机组的可控 状态、 荷电状态值、 最大允许放电功率以及最大允许充电功率。
3、 如权利要求 1所述的实时功率分配方法, 其特征在于, 所述步骤 B包括如下步骤: B1 ) 对电池储能电站总有功功率实时需求值进行滤波处理, 滤波后的低频部分功率即为 锂电池储能子站的有功功率命令值;
B2) 经过步骤 B1 滤波后, 除了低频部分功率以外的剩余部分功率即为液流电池储能子 站的有功功率命令值;
B3 ) 判断锂电池储能子站的有功功率命令值是否满足相应子站的最大允许放、 充电功率 约束条件以及判断液流电池储能子站的有功功率命令值是否满足相应子站的最大允许放、 充 电功率约束条件;
B4) 如果有锂电池储能子站或液流电池储能子站的有功功率命令值违反约束条件的, 则 执行步骤 B5, 否则结束判断;
B5 ) 通过电池储能电站总有功功率实时需求值、 锂电池储能子站和液流电池储能子站的 最大允许放电功率以及锂电池储能子站和液流电池储能子站的最大允许充电功率重新计算步 骤 B4中违反约束条件的锂电池储能子站或液流电池储能子站的有功功率命令值;
所述锂电池储能子站的最大允许放电功率为各可控锂电池储能机组的最大允许放电功率 之和, 所述液流电池储能子站的最大允许放电功率为各可控液流电池储能机组的最大允许放 电功率之和, 所述锂电池储能子站的最大允许充电功率为各可控锂电池储能机组的最大允许 充电功率之和, 所述液流电池储能子站的最大允许充电功率为各可控液流电池储能机组的最 大允许充电功率之和。
4、如权利要求 3所述的实时功率分配方法, 其特征在于, 所述步骤 B3中的约束条件为: 当锂电池储能子站的有功功率命令值大于零时, 则锂电池储能子站的有功功率命令值小 于等于锂电池储能子站的最大允许放电功率;
当锂电池储能子站的有功功率命令值小于零时, 则锂电池储能子站的有功功率命令值的 绝对值小于等于锂电池储能子站的最大允许充电功率的绝对值;
当液流电池储能子站的有功功率命令值大于零时, 则液流电池储能子站的有功功率命令 值小于等于液流电池储能子站的最大允许放电功率;
当液流电池储能子站的有功功率命令值小于零时, 则液流电池储能子站的有功功率命令 值的绝对值小于等于液流电池储能子站的最大允许充电功率的绝对值。
5、 如权利要求 3所述的实时功率分配方法, 其特征在于, 所述步骤 B5中, 重新计算步 骤 B4中违反约束条件的锂电池储能子站或液流电池储能子站的有功功率命令值的方法包括: 当电池储能电站总有功功率实时需求值为正值时, 通过锂电池或液流电池储能子站的最 大允许放电功率占锂电池储能子站最大允许放电功率与液流电池储能子站最大允许放电功率 总和的比例值、 再乘以电池储能总站总有功功率实时需求值, 分别得到锂电池储能子站和液 流电池储能子站的有功功率命令值;
当电池储能电站总有功功率实时需求值为负值时, 通过锂电池或液流电池储能子站的最 大允许充电功率占锂电池储能子站最大允许充电功率与液流电池储能子站最大允许充电功率 总和的比例值、 再乘以电池储能总站总有功功率实时需求值, 分别得到锂电池储能子站和液 流电池储能子站的有功功率命令值。
6、 如权利要求 1所述的实时功率分配方法, 其特征在于, 在步骤 C中, 首先对步骤 B 计算出的锂电池储能子站和液流电池储能子站的有功功率命令值分别进行再分配, 直接计算 出各锂电池储能机组和各液流电池储能机组的有功功率命令值; 在进行再分配过程中, 判断 是否有违反各锂电池储能机组和各液流电池储能机组的最大允许充、 放电功率限制的情况发 生, 如果有, 则基于贪婪算法进行在线修正、 并对各锂电池储能机组和各液流电池储能机组 的有功功率命令值进行再计算; 否则结束判断。
7、 如权利要求 1或 6所述的实时功率分配方法, 其特征在于, 步骤 C的具体步骤包括: 步骤 Cl、 当锂电池储能子站有功功率需求为正值时, 表示该锂电池储能子站将处于放电 状态, 则计算各锂电池储能机组有功功率命令值的方法包括:
C11 ) 设定锂电池储能子站中被限制在最大允许放电功率的锂电池储能机组数量为 M, 并对该变量 M进行初始化;通过可控锂电池储能机组的荷电状态占锂电池储能子站中所有可 捽锂电池储能机銪的荷电状杰总和的比例佶、 再垂以锂电池储能子站有功功率侖今倌, 夹计 算所有锂电池储能机组的有功功率命令值; 所述可控锂电池储能机组的荷电状态为该机组 的荷电状态与其可控状态的乘积;
C12 ) 判断所有锂电池储能机组的有功功率命令值是否满足最大允许放电功率约束条件, 如果有锂电池储能机组违反该约束条件时, 则进行 M=M+1, 并执行步骤 C13 ; 否则跳转至步 骤 C15 ;
C13 ) 通过计算违反最大允许放电功率约束条件的锂电池储能机组有功功率命令值占该 机组最大允许放电功率的比例值, 分别求得违反最大允许放电功率约束条件的各锂电池储能 机组的放电功率特征值;
C 14 ) 从违反最大允许放电功率约束条件的各锂电池储能机组中挑选放电功率特征值 最大的锂电池储能机组, 如果有一个以上的储能机组满足条件时, 再从中选取一个荷电 状态值最大的锂电池储能机组,然后将该机组的最大允许放电功率设为其有功功率命令 值; 并通过下式重新计算其余没有被限制在最大允许放电功率的各锂电池储能机组的有功 功率命令值后, 跳转至步骤 C12;
Figure imgf000029_0001
C 15 ) 判断上述步骤计算得出的各锂电池储能机组的功率命令值总和是否满足锂电 池储能子站有功功率供需平衡约束条件, 如果不满足判断条件, 则重新计算其余没有被 限制在最大允许放电功率的各锂电池储能机组的有功功率命令值:
P锂, ―
Figure imgf000029_0002
步骤 C2、 当锂电池储能子站有功功率需求为负值时, 表示该锂电池储能子站将处于充电 状态, 则计算各锂电池储能机组的有功功率命令值的方法包括:
C21 )设定锂电池储能子站中被限制在最大允许充电功率的锂电池储能机组数量为 N,并 对该变量 N进行初始化; 通过可控锂电池储能机组的放电状态占锂电池储能子站中所有可控 锂电池储能机组的放电状态总和的比例值、 再乘以锂电池储能子站有功功率需求, 来计算所 有锂电池储能机组的有功功率命令值;所述可控锂电池储能机组的放电状态为该机组的放 电状态与其可控状态的乘积;
C22 ) 判断所有锂电池储能机组的有功功率命令值是否满足最大允许充电功率约束条件, 如果有锂电池储能机组违反该约束条件时, 则进行 N=N+1, 并执行步骤 C23 ; 否则跳转至步 骤 C25;
C23 ) 通过计算违反最大允许充电功率约束条件的锂电池储能机组有功功率命令值占该 机组最大允许充电功率的比例值, 分别求得违反最大允许充电功率约束条件的各锂电池储能 机组的充电功率特征值;
C24) 从违反最大允许充电功率约束条件的各锂电池储能机组中挑选充电功率特征值 最大的锂电池储能机组, 如果有一个以上的储能机组满足条件时, 再从中选取一个荷电 状态值最小的锂电池储能机组,然后将该机组的最大允许充电功率作为其有功功率命令 值; 并通过下式重新计算其余没有被限制在最大允许充电功率的各锂电池储能机组的有功 功率命令值后, 跳转至步骤 C22;
um,SOD,
P ― 最大允许充电
— L-N 锂子站 -∑pi
C25 ) 判断上述步骤计算得出的各锂电池储能机组的功率命令值的和是否满足锂电 池储能子站有功功率供需平衡约束条件, 如果不满足判断条件, 则重新计算其余没有被 限制在最大允许充电功率的各锂电池储能机组的有功功率命令值:
, . p最大允许充电 r M
ujr j
L-M 锂子站 ,
最大允许充电 i=l
Figure imgf000030_0001
j 锂 步骤 C3、 当锂电池储能子站有功功率需求为零时, 表示该锂电池储能子站将处于零功率 状态, 则直接设置所有锂电池储能机组的有功功率命令值为 0;
步骤 C4、 当液流电池储能子站有功功率需求为正值时, 表示该液流电池储能子站将处于 放电状态, 则计算各液流电池储能机组的有功功率命令值的方法包括:
C41 ) 设定液流电池储能子站中被限制在最大允许放电功率的液流电池储能机组数量为 M', 并对该变量 M'进行初始化; 通过可控液流电池储能机组的荷电状态占液流电池储能子 站中所有可控液流电池储能机组的荷电状态总和的比例值、 再乘以液流电池储能子站有功功 率需求, 来计算所有液流电池储能机组的有功功率命令值; 所述可控液流电池储能机组的 荷电状态为该机组的荷电状态与其可控状态的乘积;
C42) 判断所有液流电池储能机组的有功功率命令值是否满足最大允许放电功率约束条 件, 如果有液流电池储能机组违反该约束条件时, 则进行 M'=M'+1, 并执行步骤 C43 ; 否则 跳转至步骤 C45;
C43 ) 通过计算违反最大允许放电功率约束条件的液流电池储能机组有功功率命令值占 该机组最大允许放电功率的比例值, 分别求得违反最大允许放电功率约束条件的各液流电池 储能机组的放电功率特征值;
C44) 从违反最大允许放电功率约束条件的各液流电池储能机组中挑选放电功率特征 值最大的液流电池储能机组, 如果有一个以上的储能机组满足条件时, 再从中选取一个 荷电状态值最大的液流电池储能机组,然后将该机组的最大允许放电功率作为其有功功 率命令值; 并通过下式重新计算其余没有被限制在最大允许放电功率的各液流电池储能机 组的有功功率命令值后, 跳转至步骤 C42;
p
Figure imgf000031_0001
C45 ) 判断上述步骤计算得出的各液流电池储能机组的功率命令值的和是否满足液 流电池储能子站有功功率供需平衡的约束条件, 如果不满足判断条件, 则重新计算其余 没有被限制在最大允许放电功率的各液流电池储能机组的功率命令值:
Figure imgf000031_0002
步骤 C5、 当液流电池储能子站有功功率需求为负值时, 表示该液流电池储能子站将处于 充电状态, 则计算各液流电池储能机组的有功功率命令值的方法包括:
C51 ) 设定液流电池储能子站中被限制在最大允许充电功率的液流电池储能机组数量为 Ν' , 并对该变量 N'进行初始化; 通过可控液流电池储能机组的放电状态占液流电池储能子站 中所有可控液流电池储能机组放电状态总和的比例值、 再乘以液流电池储能子站有功功率需 求, 来计算所有液流电池储能机组的有功功率命令值; 所述可控液流电池储能机组的放电 状态为该机组的放电状态与其可控状态的乘积;
C52) 判断所有液流电池储能机组的有功功率命令值是否满足最大允许充电功率约束条 件, 如果有液流电池储能机组违反该约束条件时, 则进行 Ν'=Ν'+1, 并执行步骤 C53 ; 否则 跳转至步骤 C55;
C53 ) 通过计算违反最大允许充电功率约束条件的液流电池储能机组有功功率命令值占 该机组最大允许充电功率的比例值, 分别求得违反最大允许充电功率约束条件的各液流电池 储能机组的充电功率特征值;
C54) 从违反最大允许充电功率约束条件的各液流电池储能机组中挑选充电功率特征 值最大的液流电池储能机组, 如果有一个以上的储能机组满足条件时, 再从中选取一个 荷电状态倌最小的液流电池储能机组,然后将该机组的最大允许充电功率作为其有功功 率命令值; 并通过下式重新计算其余没有被限制在最大允许充电功率的各液流电池储能机 组的有功功率命令值后, 跳转至步骤 C52; p _ 液流 n流 功耗 液流 j ― R-N' 液流子站—∑( 液流「i 功^耗耗 ·液流 液流
i=\ '
∑ (¾流^ 液流 j
7=1
C55) 判断上述步骤计算得出的各液流电池储能机组的功率命令值的和是否满足液 流电池储能子站有功功率供需平衡的约束条件, 如果不满足判断条件, 则重新计算其余 没有被限制在最大允许充电功率的各液流电池储能机组的功率命令值:
„ p最大允许充电 f Ν'
I ― ―
p _ p _ P _ f査表 P , :功耗
r ,j _ 液流子站 _ J、 液流 !■ _ 功耗 !■ v m 1卞 ¾液流
i=l
Figure imgf000032_0001
步骤 C6、 当液流电池储能子站的有功功率需求为零时, 表示该液流电池储能子站将处于 零功率的热备用状态, 则计算各液流电池储能机组的有功功率命令值的方法包括:
C61) 通过查表法获得各液流电池储能机组的功耗值, 并基于各液流电池储能机组的可 控状态与功耗值计算各液流电池储能机组的有功功率命令值;
C62) 判断各液流电池储能机组的有功功率命令值是否满足最大允许放电功率约束条件, 如果有液流电池储能机组违反该约束条件时, 则执行步骤 C63, 否则结束判断;
C63) 基于以下判断条件, 对各液流电池储能机组进行相应处理:
如果允许从电网侧取电给液流电池储能机组, 以维持零功率热备运行状态时, 则另该液 流电池储能机组的有功功率命令值为零,并使用电网侧供电来供给该液流电池储能机组功耗; 如果不允许从电网侧取电给该液流电池储能机组, 以维持零功率热备运行状态时, 则另 该液流电池储能机组的有功功率命令值为零, 并对该液流电池储能机组做停机处理。
式中, ¾.、 M液流.为 号锂电池、液流电池储能机组的可控状态值; SOC裡. 、 SOC液流.为 号锂电池、液流电池储能机组的荷电状态; SOD^和 ^0 .为_ /号锂电池、液流电池储能 机组的放电状态, SOD =l-SOC , SOD麵 =l-SOC麵 ; 和^ * 为 号锂 电池储能机组的最大允许放电功率和最大允许充电功率; ρβΐ 和 ¾ 为锂电池和液流电池 储能子站的有功功率命令值; 、 R为锂电池、 液流储能机组的总数量; ^J为 J号液流电池 储能机组的功耗值。
8、 如权利要求 7所述的实时功率分配方法, 其特征在于,
所述步骤 C12中最大允许放电功率约束条件为: 锂电池储能机组有功功率命令值小于等 于该机组的最大允许放电功率; 所述步骤 C22中最大允许充电功率约束条件为: 锂电池储能 机组有功功率命令值的绝对值小于等于该机组最大允许充电功率的绝对值; 所述步骤 C15和 C25中锂电池储能子站有功功率供需平衡约束条件为: 各锂电池储能机组的功率命令值 的和等于当前锂电池储能子站的有功功率需求;所述步骤 C42中最大允许放电功率约束条件 为: 液流电池储能机组有功功率命令值小于等于该机组的最大允许放电功率; 所述步骤 C52 中最大允许充电功率约束条件为: 液流电池储能机组有功功率命令值的绝对值小于等于该机 组最大允许充电功率的绝对值; 所述步骤 C45和 C55中液流电池储能子站有功功率供需平 衡约束条件为: 各液流电池储能机组的功率命令值的和等于当前液流电池储能子站的有 功功率需求; 所述步骤 C62中最大允许放电功率约束条件为: 各液流电池储能机组有功功率 命令值小于等于该液流电池储能机组的最大允许放电功率。
9、 一种锂 -液流电池联合储能电站的实时功率分配系统, 其特征在于, 该系统包括: 通讯模块, 用于读取电池储能电站的总有功功率实时需求值及该电站的相关运行数据, 以及将各锂电池储能机组和各液流电池储能机组的有功功率命令值输出至电池储能电站; 数据存储与管理模块, 用于存储通讯模块所读取的总有功功率实时需求值和实时数据, 以及将实时功率分配器返回的各锂电池储能机组和各液流电池储能机组的有功功率命令值汇 总后传至通讯模块;
总功率协调控制模块, 用于实时计算电池储能电站中锂电池储能子站和液流电池储能子 站的有功功率命令值; 和
实时功率分配模块, 用于对锂电池储能子站和液流电池储能子站的有功功率命令值进行 实时分配, 以确定出各锂电池储能机组和各液流电池储能机组的有功功率命令值。
PCT/CN2012/086375 2011-12-31 2012-12-11 锂-液流电池联合储能电站的实时功率分配方法及系统 WO2013097602A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/370,032 US10036778B2 (en) 2011-12-31 2012-12-11 Real-time power distribution method and system for lithium battery and redox flow battery energy storage systems hybrid energy storage power station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110460632.2 2011-12-31
CN201110460632.2A CN103187807B (zh) 2011-12-31 2011-12-31 锂-液流电池联合储能电站的实时功率分配方法及系统

Publications (1)

Publication Number Publication Date
WO2013097602A1 true WO2013097602A1 (zh) 2013-07-04

Family

ID=48678825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086375 WO2013097602A1 (zh) 2011-12-31 2012-12-11 锂-液流电池联合储能电站的实时功率分配方法及系统

Country Status (3)

Country Link
US (1) US10036778B2 (zh)
CN (1) CN103187807B (zh)
WO (1) WO2013097602A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513188A (zh) * 2013-10-15 2014-01-15 清华大学 一种电力系统储能站中电池单体的电量计算方法
CN103647355A (zh) * 2013-12-02 2014-03-19 中国能源建设集团广东省电力设计研究院 用于微电网功率平滑控制的混合储能系统拓扑结构
CN105245018A (zh) * 2015-09-25 2016-01-13 中国电力科学研究院 一种提高光伏电站置信容量的分布式储能系统
US10036778B2 (en) 2011-12-31 2018-07-31 Zhangjiakou Wind And Solar Power Energy Demonstration Station Co., Ltd., State Grid Xin Yuan Company Real-time power distribution method and system for lithium battery and redox flow battery energy storage systems hybrid energy storage power station
CN114912722A (zh) * 2022-07-18 2022-08-16 广东电网有限责任公司佛山供电局 一种电池储能装置的运行安排方法、装置和电子设备

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427429B (zh) * 2013-08-21 2015-04-15 华北电力大学 用户侧分散储能设备的实时功率分配方法
EP3214455B1 (en) * 2014-11-03 2020-04-29 Dalian Rongke Power Co., Ltd. Method and system for monitoring the state of charge (soc) of a flow battery system
CN104993513B (zh) * 2015-06-30 2017-10-20 华北电力科学研究院有限责任公司 支撑光储发电系统黑启动的电池储能电站控制方法及系统
CN105896575B (zh) * 2016-04-28 2021-12-03 中国电力科学研究院 基于自适应动态规划的百兆瓦储能功率控制方法及系统
KR101924520B1 (ko) 2016-06-16 2018-12-03 주식회사 엘지화학 배터리 시스템 관리 장치 및 방법
CN106655526A (zh) * 2017-01-19 2017-05-10 湖南省德沃普储能有限公司 一种大规模全钒液流电池储能电站及其控制方法
JP6596461B2 (ja) * 2017-04-27 2019-10-23 株式会社日立パワーソリューションズ 蓄電池システム、その制御方法および電力安定化システム
CN107390128A (zh) * 2017-07-12 2017-11-24 北京理工大学 一种燃料电池蓄电池混合动力系统能源管理试验平台及方法
CN107240926A (zh) * 2017-07-13 2017-10-10 北京索英电气技术有限公司 一种实时电价下户用储能智能化管理方法
JP6933575B2 (ja) * 2017-12-26 2021-09-08 株式会社日立インダストリアルプロダクツ 蓄電池システムおよび蓄電池システムの制御方法
CN108470220B (zh) * 2018-01-31 2021-11-30 天津大学 考虑功率变化率限制的混合储能系统能量管理优化方法
CN109167404A (zh) * 2018-09-11 2019-01-08 深圳市科陆电子科技股份有限公司 电池箱系统间的soc均衡控制方法
US11329500B2 (en) 2019-01-30 2022-05-10 Industrial Technology Research Institute Charging and discharging device and charging and discharging method
CN109921449B (zh) * 2019-02-14 2021-11-02 中国电力科学研究院有限公司 液流电池储能电站功率分配装置及方法
US20210021134A1 (en) * 2019-07-18 2021-01-21 Save The Planet Co., Ltd. Storage system
CN112737130A (zh) * 2021-01-08 2021-04-30 华能陇东能源有限责任公司 一种液流电池和锂电池混合的储能系统及其工作方法
CN112816892B (zh) * 2021-01-11 2022-10-04 上海理工大学 一种储能电站中电堆性能的测试方法
CN114899855A (zh) * 2022-05-16 2022-08-12 重庆大学 基于自适应滑动平均的混合储能功率分配方法
WO2024046535A1 (en) * 2022-08-29 2024-03-07 Vestas Wind Systems A/S Method of a central controller and a controller of an energy storage system
CN115663871B (zh) * 2022-12-29 2023-04-04 广东运峰电力安装有限公司 一种液流电站控制系统及方法
CN116632945B (zh) * 2023-07-21 2024-01-05 长江三峡集团实业发展(北京)有限公司 一种多能源供给运行控制方法、系统、装置及电子设备
CN117439126B (zh) * 2023-10-24 2024-04-26 上海勘测设计研究院有限公司 一种新能源汇集区域共享储能优化运行方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157985A (zh) * 2011-04-20 2011-08-17 中国电力科学研究院 多类型大容量兆瓦级电池储能电站的电池功率控制方法
CN102208818A (zh) * 2011-06-03 2011-10-05 中国电力科学研究院 基于小波滤波的兆瓦级风光储发电系统出力平滑控制方法
CN102214934A (zh) * 2011-06-03 2011-10-12 中国电力科学研究院 基于兆瓦级电池储能电站的风光发电出力平滑控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4103781B2 (ja) * 2003-11-19 2008-06-18 トヨタ自動車株式会社 負荷駆動回路における異常監視装置
JP4656042B2 (ja) * 2006-10-24 2011-03-23 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、電源システムの制御方法、ならびに電源システムの制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP4656539B2 (ja) * 2007-11-21 2011-03-23 トヨタ自動車株式会社 燃料電池システム
CN102474177B (zh) * 2009-07-10 2014-12-24 丰田自动车株式会社 变换器控制装置
WO2013021476A1 (ja) * 2011-08-10 2013-02-14 トヨタ自動車株式会社 燃料電池システム
CN103187807B (zh) 2011-12-31 2015-02-18 中国电力科学研究院 锂-液流电池联合储能电站的实时功率分配方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157985A (zh) * 2011-04-20 2011-08-17 中国电力科学研究院 多类型大容量兆瓦级电池储能电站的电池功率控制方法
CN102208818A (zh) * 2011-06-03 2011-10-05 中国电力科学研究院 基于小波滤波的兆瓦级风光储发电系统出力平滑控制方法
CN102214934A (zh) * 2011-06-03 2011-10-12 中国电力科学研究院 基于兆瓦级电池储能电站的风光发电出力平滑控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10036778B2 (en) 2011-12-31 2018-07-31 Zhangjiakou Wind And Solar Power Energy Demonstration Station Co., Ltd., State Grid Xin Yuan Company Real-time power distribution method and system for lithium battery and redox flow battery energy storage systems hybrid energy storage power station
CN103513188A (zh) * 2013-10-15 2014-01-15 清华大学 一种电力系统储能站中电池单体的电量计算方法
CN103513188B (zh) * 2013-10-15 2016-02-10 清华大学 一种电力系统储能站中电池单体的电量计算方法
CN103647355A (zh) * 2013-12-02 2014-03-19 中国能源建设集团广东省电力设计研究院 用于微电网功率平滑控制的混合储能系统拓扑结构
CN105245018A (zh) * 2015-09-25 2016-01-13 中国电力科学研究院 一种提高光伏电站置信容量的分布式储能系统
CN114912722A (zh) * 2022-07-18 2022-08-16 广东电网有限责任公司佛山供电局 一种电池储能装置的运行安排方法、装置和电子设备

Also Published As

Publication number Publication date
CN103187807A (zh) 2013-07-03
US20150019149A1 (en) 2015-01-15
CN103187807B (zh) 2015-02-18
US10036778B2 (en) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2013097602A1 (zh) 锂-液流电池联合储能电站的实时功率分配方法及系统
CN102157985B (zh) 多类型大容量兆瓦级电池储能电站的电池功率控制方法
WO2013097489A1 (zh) 兆瓦级电池储能电站实时功率控制方法及其系统
CN103187806B (zh) 用于调频的电池储能电站功率控制方法及其系统
WO2015081740A1 (zh) 电动汽车充放电控制系统及方法
CN110299717B (zh) 一种基于模型预测控制的分布式混合储能系统能量均衡控制策略
CN103187733B (zh) 兆瓦级液流电池储能电站实时功率控制方法及其系统
WO2015014011A1 (zh) 考虑充放电倍率的多类型电池储能电站能量管理方法
CN111049168B (zh) 电池储能系统能量管控方法及系统
CN109119983B (zh) 一种电-氢孤岛直流微电网能量管理方法
WO2015070480A1 (zh) 基于风功率预测的电池储能电站能量管理方法
CN109378846B (zh) 储能电站中储能变流器的电池模块充放电控制方法与装置
CN108832646A (zh) 一种适用于可动态重构电池储能系统的管理系统及其方法
CN103368192B (zh) 基于贪心策略的电池储能电站功率控制方法及其系统
CN111049199B (zh) 一种交直流混联微电网分布式动态经济调度方法
CN110460075B (zh) 一种用于平抑电网峰谷差的混合储能出力控制方法及系统
CN109617103B (zh) 一种储能机组的梯次利用储能电池能量控制方法和系统
CN111555321A (zh) 储能联合火电调频中pcs的功率分配方法及装置
CN103560533A (zh) 基于变化率控制储能电站平滑风光发电波动的方法及系统
CN104253439A (zh) 电池储能电站无功功率分配与控制方法
CN108173286A (zh) 一种智能电池储能系统
CN112467774B (zh) 基于全局能效寻优和soc自适应的储能系统管控方法及装置
CN114254551A (zh) 分布式储能多目标优化配置方法及系统
CN104063596A (zh) 一种电动汽车充放储一体站接入配电网电压分布计算方法
CN108258709A (zh) 一种储能电池的优化管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14370032

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12861253

Country of ref document: EP

Kind code of ref document: A1