WO2013097489A1 - 兆瓦级电池储能电站实时功率控制方法及其系统 - Google Patents

兆瓦级电池储能电站实时功率控制方法及其系统 Download PDF

Info

Publication number
WO2013097489A1
WO2013097489A1 PCT/CN2012/081485 CN2012081485W WO2013097489A1 WO 2013097489 A1 WO2013097489 A1 WO 2013097489A1 CN 2012081485 W CN2012081485 W CN 2012081485W WO 2013097489 A1 WO2013097489 A1 WO 2013097489A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
battery energy
power
subunit
power station
Prior art date
Application number
PCT/CN2012/081485
Other languages
English (en)
French (fr)
Inventor
李相俊
惠东
来小康
闫忠平
雷为民
张亮
李又宁
Original Assignee
中国电力科学研究院
国网新源张家口风光储示范电站有限公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院, 国网新源张家口风光储示范电站有限公司, 国家电网公司 filed Critical 中国电力科学研究院
Publication of WO2013097489A1 publication Critical patent/WO2013097489A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Definitions

  • the present invention relates to the field of smart grid and energy storage and conversion technologies, and particularly relates to a real-time power control method and system for a high-power large-capacity megawatt-scale battery energy storage power station based on rules, and is particularly suitable for large-scale wind and light storage joints. Battery power and battery energy management methods for megawatt battery energy storage power stations in power generation systems. Background technique
  • the National Scenery Storage and Depot Demonstration Project is the first pilot project of the State Grid Corporation to build a strong smart grid. It is characterized by "grid-friendly" new energy generation and is characterized by “advancedness, flexibility, demonstration, and economy".
  • the world's largest renewable energy demonstration project integrating wind power, photovoltaic power generation, energy storage and transmission engineering.
  • the National Landscape Storage and Demonstration Project plans to build wind power 100 Li, photovoltaic power generation 40 Li and energy storage device 20 Li (including 14 lithium iron phosphate battery energy storage system, 2 Liquan vanadium flow battery energy storage system) , 4 Li Na sulfur battery energy storage system).
  • lithium battery energy storage power stations are used to achieve smooth wind power output, tracking planned power generation, participation in system frequency modulation, peak clipping, transient active power emergency response, transient voltage emergency Support and other applications have become a viable solution.
  • One of the key issues is to master the comprehensive control technology of large-scale lithium battery energy storage power stations.
  • one of the objects of the present invention is to provide a real-time power control method for a megawatt-scale battery energy storage power station that is easy to operate and easy to implement, and the method can simultaneously meet the real-time total power demand and large-capacity battery of the energy storage power station. Real-time regulatory requirements for energy storage in energy storage power stations.
  • a real-time power control method for a megawatt battery energy storage power plant includes the following steps:
  • Step A reading the total power demand of the battery energy storage power station and related operation data of the power station in real time, and storing and managing the above total power demand and operation data;
  • Step B judging the state of the battery energy storage power station according to the total power demand of the battery energy storage power station, and obtaining the initial power command value of each battery energy storage subunit in the battery energy storage power station through corresponding preset rules;
  • Step C Perform real-time diagnosis and correction on initial power command values of each battery energy storage subunit to determine power command values to be allocated to each battery energy storage subunit;
  • Step D The power command values assigned to the battery energy storage subunits are summarized and output to the battery energy storage power station to implement power distribution for each battery energy storage subunit and real-time power control of the battery energy storage power station.
  • the relevant operational data of the battery energy storage power station includes: a controllable state value, a state of charge state, a maximum allowable discharge power, a maximum allowable charging power, and a rated power of each battery energy storage subunit in the battery energy storage power station.
  • the step B includes the following steps:
  • the initial power command value of each battery energy storage subunit is obtained by the first preset rule
  • the initial power command value of each battery energy storage subunit is obtained by a second preset rule
  • the power command value of all battery energy storage subunits is directly set to zero.
  • the first preset rule includes:
  • each battery energy storage subunit has a ratio of the maximum allowable discharge power of each controllable battery energy storage subunit of the energy storage power station is greater than or equal to a preset value; / 3 ⁇ 4 , then each battery energy storage subunit
  • the initial power command value is a product of the above ratio value and the maximum allowable discharge power of the corresponding controllable battery energy storage subunit;
  • each battery energy storage device The initial power command value of the unit is a ratio of the state of charge of the corresponding controllable battery energy storage subunit to the sum of the current state of the charge state of all controllable battery energy storage subunits, and multiplied by the total power requirement of the battery energy storage power station;
  • the battery energy storage sub-units are sorted in order of small to large, and the current total power demand of the battery energy storage power station accounts for the maximum allowable discharge power of all current controllable battery energy storage sub-units of the energy storage power station.
  • the ratio of the sum is greater than or equal to the preset value; ⁇ 3 ⁇ 4 is the condition, and the minimum number of battery energy storage sub-units that meet the above conditions are calculated by the exclusion method;
  • the initial power command value of the minimum number of battery energy storage subunits is a ratio of the state of charge of the corresponding controllable battery energy storage subunit to the sum of the current state of charge of the least number of controllable battery energy storage subunits. Then multiply by the current total power demand of the battery energy storage power station; the initial power command values of the remaining battery energy storage subunits are all set to zero.
  • the second preset rule includes:
  • the battery energy storage subunit When the total power demand of the battery energy storage power station accounts for the ratio of the maximum allowable charging power of each controllable battery energy storage subunit of the energy storage power station is greater than or equal to a preset value; ⁇ 3 ⁇ 4 , then the battery energy storage subunit
  • the initial power command value is a product of the above ratio value and the maximum allowable charging power of the corresponding controllable battery energy storage subunit;
  • the initial power command value is a ratio of a discharge state value of the corresponding controllable battery energy storage subunit to a sum of discharge state values of the controllable battery energy storage subunits, and multiplied by a current total power demand of the battery energy storage power station;
  • the battery energy storage sub-units are sorted in order of small to large, and the current total power demand of the battery energy storage power station accounts for the maximum allowable discharge power of the current controllable battery energy storage sub-unit of the energy storage power station.
  • the discharge state value of the corresponding controllable battery energy storage subunit accounts for the ratio of the current minimum number of controllable battery energy storage subunit discharge state values, and is multiplied by the current total power demand of the battery energy storage power plant; the remaining battery energy storage subunits
  • the initial power command value is set to 0;
  • the maximum allowable discharge and charging power of the controllable battery energy storage subunit is the sum of the maximum allowable discharge and charging power of each controllable battery energy storage subunit, and the controllable battery energy storage subunit is charged and discharged.
  • the sum of the state values is the sum of the state of charge and discharge of each controllable battery energy storage subunit.
  • the maximum allowable discharge power of the controllable battery energy storage subunit is the product of the controllable state value of the battery energy storage subunit and the maximum allowable discharge power, and the state of charge of the controllable battery energy storage subunit is the battery energy storage subunit.
  • the product of the controllable state value and its state of charge value, the maximum allowable charging power of the controllable battery energy storage subunit is the product of the controllable state value of the battery energy storage subunit and its maximum allowable charging power
  • the controllable battery energy storage subunit of The discharge state value is the product of the controllable state value of the battery energy storage subunit and its discharge state value.
  • the discharge state value (SOD: State of Discharge) is equal to 1 minus its state of charge (SOC: State of Charge).
  • the controllable state value of the subunit is 1; otherwise, the value is 0.
  • / discharge and charge have a value ranging from 0.7 to 0.9
  • the discharge and electric values are in the range of 0.2 to 0.4
  • the 7c discharge and ⁇ are in the range of 0.7 to 0.9.
  • the step C includes the following steps:
  • each battery energy storage subunit performs real-time diagnosis on the initial power command value of each battery energy storage subunit calculated in step B to see if there is a violation of the maximum allowable discharge power and the maximum allowable charging power limit of each battery energy storage subunit. If so, then Each battery energy storage subunit performs online correction and recalculation; if not, the initial power command value of the battery energy storage subunit calculated in step B is set to its power command value.
  • the method for online correction and recalculation includes the following steps:
  • the initial power command value of any battery energy storage subunit violates the maximum allowable discharge power limit of the subunit (ie, the initial power command of any battery energy storage subunit) If the value is greater than the maximum allowable discharge power of the subunit, the number of battery energy storage subunits satisfying the above conditions is found, and the maximum allowable discharge power of the battery energy storage subunits is set as the power command value, and the remaining The power command value of each battery energy storage subunit is the ratio of the maximum allowable discharge power of the remaining controllable battery energy storage subunits to the sum of the maximum allowable discharge power of the remaining controllable battery energy storage subunits, and multiplied by the battery energy storage. The difference between the current total power demand of the power plant and the sum of the maximum allowable discharge power of each battery energy storage subunit that satisfies the above situation.
  • the initial power command value of any battery energy storage subunit violates its maximum allowable charging power limit (ie, the absolute value of the initial power command value of any battery energy storage subunit) If the value is greater than the absolute value of the maximum allowable charging power of the subunit, the number of battery energy storage subunits satisfying the above conditions is searched, and the maximum allowable charging power of the battery energy storage subunits is set as its power command.
  • the power command value of each remaining battery energy storage subunit is the ratio of the maximum allowable charging power of the remaining controllable battery energy storage subunits to the sum of the maximum allowable charging power of all remaining controllable battery energy storage subunits, and multiplication The difference between the current total power demand of the battery energy storage power station and the sum of the maximum allowable charging power of each battery energy storage subunit that satisfies the above situation.
  • Another object of the present invention is to provide a real-time power control system for a megawatt battery energy storage power station, the system comprising: a communication module for real-time reading of the real-time total power demand of the battery energy storage power station and related operational data of the power station, And outputting the power command value of each battery energy storage subunit to the battery energy storage power station to implement power distribution for each battery energy storage subunit in the battery energy storage power station; a data storage and management module, configured to store and manage the real-time total power demand and related operational data, and summarize the power command values of each battery energy storage sub-unit returned by the real-time adjustment module, and then transmit the power command values to the communication module for output;
  • a total power initial allocation control module configured to determine a state in which the battery energy storage power station is to be in accordance with a total power demand of the battery energy storage power station, and calculate an initial power command value of each battery energy storage subunit by a corresponding preset rule
  • the real-time adjustment module is configured to perform real-time diagnosis and correction on the initial power command values of each battery energy storage subunit to determine the power command value of each battery energy storage subunit.
  • the invention provides a megawatt battery (lithium battery or sodium sulfur battery) real-time power control method for a power storage power station and a system thereof, which have the advantages of convenient operation, easy implementation and mastering in practical applications, and the method and system are mainly combined
  • the allowable charge and discharge capability of the real-time power characteristics of the battery energy storage subunit ie, the maximum allowable discharge power of each battery energy storage subunit, the maximum allowable charging power of each battery energy storage subunit, etc.
  • the storage energy of the battery energy storage subunit Characteristic state of charge
  • FIG. 1 is a schematic diagram of a system of an embodiment of a megawatt lithium ion battery energy storage power station
  • FIG. 2 is a schematic structural view of an embodiment of a real-time power distribution control system for a megawatt-scale lithium ion battery energy storage power station;
  • FIG. 3 is a schematic structural view of an embodiment of a total power initial distribution control module;
  • FIG. 4 is a schematic structural diagram of an embodiment of a real-time adjustment module
  • FIG. 5 is a flow chart of an embodiment of a real-time power control method for a megawatt-scale lithium ion battery energy storage power station. detailed description
  • the control method and system of the present invention can be applied to a lithium ion battery energy storage power station or a sodium sulfur battery energy storage power station.
  • the lithium ion battery is taken as an example and the control method and system of the present invention are further described in detail with reference to the accompanying drawings.
  • the lithium ion battery energy storage power station includes a bidirectional converter and a plurality of lithium ion battery energy storage sub-units, and can perform start-stop control and charging of the lithium ion battery energy storage sub-unit through the bidirectional converter. Discharge power command, etc.
  • FIG. 2 is a block diagram showing the structure of an embodiment of a real-time power distribution control system for a lithium ion battery energy storage power plant.
  • the control system of this example is implemented by a communication module 10, a data storage and management module 20, a total power initial allocation control module 30, and a real-time adjustment module 40 disposed in a remote server.
  • the communication module 10 in the control system is connected with the battery energy storage power station through a wired or wireless network to complete data interaction between the control system and the lithium ion battery energy storage power station. And communication, thereby realizing power distribution for each lithium ion battery energy storage subunit in the battery energy storage power station, and real-time power monitoring of the battery energy storage power station, wherein
  • the communication module 10 is configured to receive a real-time total power demand value of the lithium ion battery energy storage power station and related operation data of the power station, and output a power command value to be allocated to each lithium ion battery energy storage subunit to the battery energy storage power station .
  • the data storage and management module 20 is configured to store and manage the real-time total power demand value and related operational data of the lithium-ion battery energy storage power station (the data may include real-time data and historical data); and is responsible for calculating each lithium ion battery
  • the energy storage subunit power command values are summarized and assigned to relevant interface variables for the remote server to call through the communication module.
  • the total power initial allocation control module 30 is configured to determine an initial power command value of each lithium ion battery energy storage subunit in real time.
  • the real-time adjustment module 40 is configured to calculate and determine a power command value to be allocated to each of the lithium ion battery energy storage subunits. As shown in FIG. 3, the total power initial allocation control module includes:
  • the judging module is configured to judge the state of the battery energy storage power station according to the current total power demand of the battery energy storage power station: when the current total power demand of the battery energy storage power station is positive, indicating that the battery energy storage power station is in a discharging state,
  • the first execution module calculates an initial power command value of each battery energy storage subunit; when the current total power demand of the battery energy storage power station is a negative value, indicating that the battery energy storage power station is in a charging state, the second execution module calculates each The initial power command value of the battery energy storage subunit; when the current total power demand value of the battery energy storage power station is zero, indicating that the battery energy storage power station is in a zero power state, the battery energy storage is directly set through the third execution module.
  • the power command value of the unit when the current total power demand of the battery energy storage power station is positive, indicating that the battery energy storage power station is in a discharging state,
  • the first execution module calculates an initial power command value of each battery energy storage subunit; when
  • a first execution module configured to calculate an initial power command value of each battery energy storage subunit when the battery energy storage power station is to be in a discharged state
  • a second execution module configured to calculate an initial power command value of each battery energy storage subunit when the battery energy storage power station is to be in a charging state
  • the third execution module is configured to directly set the power command value of all the battery energy storage subunits to zero.
  • the first execution module includes:
  • a first execution subunit I when a lithium ion battery for an energy storage plant current total power demand representing the sum of the maximum allowable discharge power ratio of the current value of each of the controlled lithium ion battery energy storage sub-unit of the energy storage station greater than or equal Calculating an initial power command value of each lithium ion battery energy storage subunit;
  • the first execution subunit II is configured to: when the current total power demand of the lithium ion battery energy storage power station accounts for a ratio of the maximum allowable discharge power of the current controllable battery energy storage subunit of the energy storage power station is greater than; 7 3 ⁇ 4 and less than 3 ⁇ 4 Calculating an initial power command value of each lithium ion battery energy storage subunit; and
  • the first execution sub-unit III is used when the current total power demand of the lithium ion battery energy storage power station accounts for the current energy storage power station
  • the ratio of the maximum allowable discharge power of the controlled battery energy storage subunit is less than or equal to; 7 3 ⁇ 4 ,
  • the battery energy storage sub-units are sorted in order of small to large, and the current total power demand of the battery energy storage power station accounts for the maximum allowable discharge power of the current controllable battery energy storage sub-unit of the energy storage power station.
  • the ratio of the sum is greater than or equal to; ⁇ 3 ⁇ 4 is the condition, and the minimum number of battery energy storage subunits is calculated by the exclusion method;
  • the second execution module includes:
  • Second execution subunit I for the current total power demand when the battery energy storage station representing the sum of the maximum permissible charging power value ratio of each of the controllable current of the storage battery energy storage plant subunit or greater; ⁇ 3 ⁇ 4 time, was calculated for each cell The initial power command value of the energy storage subunit;
  • the second execution subunit II is configured to calculate each battery when the current total power demand of the battery energy storage power station accounts for more than 3 ⁇ 4 and less than 3 ⁇ 4 of the total allowable charging power of the current controllable battery energy storage subunit of the energy storage power station. Initial power command value of the energy storage subunit;
  • the second execution sub-unit III is configured to: when the current total power demand of the battery energy storage power station accounts for a ratio of the maximum allowable charging power of the current controllable battery energy storage subunit of the energy storage power station is less than or equal to 3 ⁇ 4 ,
  • the battery energy storage sub-units are sorted in order of small to large, and the current total power demand of the battery energy storage power station accounts for the maximum allowable charging power of the current controllable battery energy storage sub-unit of the energy storage power station.
  • the ratio of the sum is greater than or equal to; ⁇ 3 ⁇ 4 is the condition, and the minimum number of battery energy storage subunits is calculated by the exclusion method;
  • the real-time adjustment module includes:
  • the real-time diagnostic unit is configured to perform real-time diagnosis on the initial power command value of each lithium ion battery energy storage subunit to see whether there is a violation of the maximum allowable discharge power and the maximum allowable charging power limit of each battery energy storage subunit; and calculation The unit is configured to perform online correction and recalculation according to the diagnosis result of the real-time diagnostic unit or directly set the initial power command value of the corresponding battery energy storage subunit to its power command value.
  • the computing unit includes:
  • a first calculation subunit for when a lithium ion battery energy storage power station is to be in a discharged state, if any lithium ion occurs When the initial command value of the battery energy storage subunit is greater than its maximum allowable discharge power, the number of battery energy storage subunits satisfying the above conditions is searched, and the maximum allowable discharge power of the battery energy storage subunits is set to The power command value, and the power command values of the remaining battery energy storage subunits are recalculated;
  • a second calculation subunit configured to: when the lithium ion battery energy storage power station is to be in a charging state, if the initial command value of any of the lithium ion battery energy storage subunits violates its maximum allowable charging power limit, then the search is satisfied
  • the number of battery energy storage subunits in the above case, and the maximum allowable charging power of the battery energy storage subunits is set to its power command value, and the power command values of the remaining battery energy storage subunits are recalculated;
  • FIG. 5 shows a block diagram of the real-time power control method for a rule-based megawatt-scale lithium-ion battery energy storage power station in this example. The following describes the rules and their implementation in detail with reference to specific implementation steps. The method includes the following steps:
  • Step A Reading data through the communication module 10 is to read the total power demand value of the lithium ion battery energy storage power station and the related operation data of the lithium ion battery energy storage power station, and then the above total power demand value and related operation The data is passed to the data storage and management module 20 for storage and management.
  • Step B Based on the total power initial allocation control module, the initial power command value of each lithium ion battery energy storage subunit in the energy storage power station is calculated in real time.
  • Step C Perform real-time diagnosis and correction on initial power command values of each lithium ion battery energy storage subunit based on the real-time adjustment module to determine a power command value to be allocated to each battery energy storage subunit;
  • Step D The power command values to be allocated to the lithium ion battery energy storage subunits calculated in step C are summarized in the data storage and management module, and then output to the lithium ion battery energy storage power station through the communication module.
  • the communication module 10 reads the relevant operational data of the battery energy storage power station, including: the battery energy storage subunit of the battery energy storage power station. Controllable state value, state of charge value, maximum allowable discharge power, maximum allowable charging power, and rated power.
  • step B the initial power command value of each battery energy storage subunit is calculated as follows:
  • the lithium ion battery energy storage subunit i is excluded one by one in the order of /i 3 ⁇ 4 until the number of the minimum energy storage subunits satisfying the following formula (7) is calculated.
  • Lithium-ion battery energy storage subunits have initial power command values set to zero.
  • the minimum number of energy storage subunits satisfying the following formula (16) and the combination thereof are calculated based on the exclusion method. That is, based on the following equation (15), the currently available maximum charging power characteristic value of each lithium ion battery energy storage subunit i /i: p maximum allowable charging
  • the initial power command values of the remaining -zi lithium-ion battery energy storage subunits are set to 0.
  • the controllable state value of the battery energy storage subunit is read by step A.
  • the state value is 1, other values. 0; SOC, the state of charge of the battery energy storage subunit; SOD, the discharge state value of the battery energy storage subunit; the total number of lithium ion battery energy storage subunits, L and ⁇ , ⁇ are the minimum number of battery energy storage sub-units that meet the conditions; the rated power of the i-type lithium-ion battery energy storage sub-unit; the maximum allowable discharge power of the lithium-ion battery energy storage sub-unit; the lithium-ion battery storage The maximum allowable charging power of the energy subunit.
  • the demand accounts for the proportion of the maximum allowable discharge power of the current controllable energy storage subunit of the energy storage power station; ⁇ , electricity, ⁇ ⁇ are the current total power demand of the energy storage power station when the energy storage power station is in the state of charge, the current controllable power storage power station is currently controllable The ratio of the maximum allowable charging power of the energy storage subunit.
  • step C the real-time adjustment module corrects the initial power command value of each battery energy storage subunit in real time by the following method:
  • the power command value of each battery energy storage subunit is determined based on the following formulas (18)-(20):
  • the power storage subunit power command is determined based on the following equations (21)-(23). Value:
  • the invention has the functions of onlinely distributing the total power demand of the lithium ion battery energy storage power station, real-time monitoring of the SOC value, and the like, thereby realizing the real-time power control and the real-time power control of the lithium ion battery energy storage power station accurately, conveniently and effectively.
  • the battery energy storage subunit may appear. If the power command value exceeds the upper and lower limits of the allowable charging and discharging power (depth), when such an overrun condition occurs, if the adaptive correction and online processing are not performed in time, the power command value will exceed the working capacity of the device.
  • the invention has increased the "pre-determination of the state of the battery energy storage power station, and then through the corresponding pre-
  • the rules are respectively used to calculate the initial power command values of the battery energy storage subunits in the battery energy storage power station, and at the same time effectively consider the allowable charge and discharge capacity constraints (ie, the battery energy storage elements) that can represent the real-time power characteristics of the battery energy storage subunits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种兆瓦级电池储能电站实时功率控制方法及其系统,该方法包括:实时读取电池储能电站的总功率需求和电站相关运行数据,对总功率需求和运行数据进行存储和管理;获得电池储能电站中各电池储能子单元的初始功率命令值;对各电池储能子单元的初始功率命令值进行实时诊断和修正,以确定待分配给各电池储能子单元的功率命令值;对各电池储能子单元的功率命令值汇总后输出至电池储能电站,以实现对电池储能电站的实时功率控制。该系统包括通讯模块(10)、数据存储与管理模块(20)、总功率初始分配控制模块(30)和实时调节模块(40)。该方法和系统可方便有效地实现对兆瓦级锂离子电池储能电站实时功率的控制和分配。

Description

兆瓦级电池储能电站实时功率控制方法及其系统
技术领域 本发明属于智能电网以及能量存储与转换技术领域, 具体涉及一种基于规则的大功率大 容量兆瓦级电池储能电站的实时功率控制方法及其系统, 尤其适用于大规模风光储联合发电 系统中兆瓦级电池储能电站的电池功率及电池能量管理方法。 背景技术
国家风光储输示范工程是国家电网公司建设坚强智能电网首批试点工程, 以 "电网友好 型"新能源发电为目标, 以 "先进性、 灵活性、 示范性、 经济性"为特点, 是目前世界上规 模最大、 集风电、 光伏发电、 储能及输电工程四位一体的可再生能源综合示范工程。 其中, 国家风光储输示范工程(一期)拟建设风电 100丽、 光伏发电 40丽和储能装置 20丽 (包含 14丽 磷酸铁锂电池储能系统、 2丽全钒液流电池储能系统、 4丽钠硫电池储能系统)。
随着锂离子电池及其集成技术的不断发展, 应用锂电池储能电站去实现平滑风光功率输 出、 跟踪计划发电、 参与系统调频、 削峰填谷、 暂态有功出力紧急响应、 暂态电压紧急支撑 等多种应用, 已成为了一种可行方案。 其中关键问题之一, 是掌握大规模锂电池储能电站综 合控制技术。
从电池储能的角度来说, 过度的充电和过度的放电都会对电池的寿命造成影响。 因此, 监控好电池荷电状态、 在储能电站内部合理分配好总功率需求, 并将电池的荷电状态控制在 一定范围内是必要的。
目前有关基于兆瓦级大功率大容量锂离子电池储能电站的总功率实时控制方面的专利、 文献、 技术报告等非常少, 需要深入研究和探索大规模电池储能电站综合控制和并网运行的 核心技术, 解决大规模电池储能电站协调控制及能量管理的关键问题。 发明内容
针对上述问题, 本发明的目的之一在于提供一种操作方便、 易于实现的兆瓦级电池储能 电站的实时功率控制方法, 该方法能够同时满足储能电站的实时总功率需求和大容量电池储 能电站存储能量的实时监管要求。
本发明的控制方法是通过如下技术方案实现的: 一种兆瓦级电池储能电站实时功率控制方法, 包括以下步骤:
步骤 A, 实时读取电池储能电站的总功率需求和该电站的相关运行数据, 并对上述总功 率需求和运行数据进行存储和管理;
步骤 B, 根据电池储能电站总功率需求来判断电池储能电站的状态, 并通过相应的预设 规则来获得电池储能电站中各电池储能子单元的初始功率命令值;
步骤 C, 对各电池储能子单元的初始功率命令值进行实时诊断和修正, 以确定待分配给 各电池储能子单元的功率命令值;
步骤 D, 对待分配给各电池储能子单元的功率命令值进行汇总后输出至电池储能电站, 以实现对各电池储能子单元进行功率分配和对电池储能电站的实时功率控制。
其中, 所述电池储能电站的相关运行数据包括: 电池储能电站中各电池储能子单元的可 控状态值、 荷电状态值、 最大允许放电功率、 最大允许充电功率和额定功率。
其中, 所述步骤 B包括如下步骤:
判断电池储能电站的状态;
当电池储能电站总功率需求为正值时, 表示该电池储能电站将处于放电状态, 则通过第 一预设规则获得各电池储能子单元的初始功率命令值;
当电池储能电站总功率需求为负值时, 表示该电池储能电站将处于充电状态, 则通过第 二预设规则获得各电池储能子单元的初始功率命令值;
当电池储能电站总功率需求为零时, 表示该电池储能电站将处于零功率状态, 则直接将 所有电池储能子单元的功率命令值设置为零。
其中, 所述第一预设规则包括:
1 )当电池储能电站的总功率需求占该储能电站各可控电池储能子单元最大允许放电功率 总和的比例值大于等于预设值; / ¾时, 则各电池储能子单元的初始功率命令值为上述比例值 与相应可控电池储能子单元最大允许放电功率的乘积;
2)当电池储能电站的总功率需求占该储能电站各可控电池储能子单元最大允许放电功率 总和的比例值大于预设值; / ¾且小于 ¾时, 则各电池储能子单元的初始功率命令值为相应 可控电池储能子单元的荷电状态值占当前所有可控电池储能子单元荷电状态值总和的比例 值、 再乘以电池储能电站总功率需求;
3)当电池储能电站的总功率需求占该储能电站各可控电池储能子单元最大允许放电功率 总和的比例值小于等于预设值; / ¾时,
首先, 计算各电池储能子单元的当前可用最大放电功率特征值; 然后, 按照最大放电功率特征值由小到大的顺序对各电池储能子单元排序, 以电池储能 电站当前总功率需求占该储能电站当前所有可控电池储能子单元最大允许放电功率总和的比 例值大于等于预设值;^ ¾为条件, 采用排除法计算出符合上述条件的最少个数电池储能子单 元;
最后, 上述最少个数电池储能子单元的初始功率命令值为相应可控电池储能子单元的荷 电状态值占当前最少个数可控电池储能子单元荷电状态值总和的比例值、 再乘以电池储能电 站当前总功率需求; 其余电池储能子单元的初始功率命令值均设为 0。
所述第二预设规则包括:
1 )当电池储能电站的总功率需求 占该储能电站各可控电池储能子单元最大允许充 电功率总和的比例值大于等于预设值;^ ¾时, 则各电池储能子单元的初始功率命令值为上述 比例值与相应可控电池储能子单元最大允许充电功率的乘积;
2)当电池储能电站的总功率需求占该储能电站各可控电池储能子单元最大允许充电功率 总和的比例值大于预设值 ¾且小于 ¾时, 则各电池储能子单元的初始功率命令值为相应 可控电池储能子单元的放电状态值占各可控电池储能子单元放电状态值总和的比例值、 再乘 以电池储能电站当前总功率需求;
3)当电池储能电站的总功率需求占该储能电站各可控电池储能子单元最大允许充电功率 总和的比例值小于等于预设值; 7S ¾时,
首先, 计算各电池储能子单元的当前可用最大充电功率特征值;
然后, 按照最大充电功率特征值由小到大的顺序对各电池储能子单元排序, 以电池储能 电站当前总功率需求占该储能电站当前各可控电池储能子单元最大允许放电功率总和的比例 值大于等于预设值;^ ¾为条件,采用排除法计算出符合上述条件的最少个数电池储能子单元; 最后, 上述最少个数电池储能子单元的初始功率命令值为相应可控电池储能子单元的放 电状态值占当前最少个数可控电池储能子单元放电状态值总和的比例值、 再乘以电池储能电 站当前总功率需求; 其余电池储能子单元的初始功率命令值均设为 0;
上述步骤中, 所述可控电池储能子单元最大允许放、 充电功率总和为各可控电池储能子 单元的最大允许放、 充电功率之和, 可控电池储能子单元荷电、 放电状态值总和为各可控电 池储能子单元的荷电、 放电状态值之和。 所述可控电池储能子单元最大允许放电功率为电池 储能子单元的可控状态值与其最大允许放电功率的乘积, 可控电池储能子单元的荷电状态值 为电池储能子单元的可控状态值与其荷电状态值的乘积, 可控电池储能子单元最大允许充电 功率为电池储能子单元的可控状态值与其最大允许充电功率的乘积, 可控电池储能子单元的 放电状态值为电池储能子单元的可控状态值与其放电状态值的乘积。放电状态值(SOD: State of Discharge) 等于 1减去其荷电状态值 (SOC: State of Charge )。
其中, 当电池储能子单元可控时, 该子单元的可控状态值为 1 ; 否则值为 0。
其中, 所述; /放电和 充电的取值范围为 0.7〜0.9, 所述 放电和 电的取值范围为 0.2〜0.4, 所述 7c放电和 ^电的取值范围为 0.7〜0.9。
其中, 所述步骤 C包括如下步骤:
对步骤 B计算出的各电池储能子单元的初始功率命令值进行实时诊断, 看是否有违反各 电池储能子单元最大允许放电功率及最大允许充电功率限制的情况发生, 如果有, 则对各电 池储能子单元进行在线修正和再计算; 如没有, 则将步骤 B计算出的电池储能子单元的初始 功率命令值设置为其功率命令值。
其中, 所述在线修正和再计算的方法包括如下步骤:
当电池储能电站总功率需求为正值时, 如果发生任一电池储能子单元的初始功率命令值 违反该子单元最大允许放电功率限值 (即任一电池储能子单元的初始功率命令值大于该子单 元最大允许放电功率) 的情况时, 则查找满足上述情况的电池储能子单元个数, 并将这些电 池储能子单元的最大允许放电功率设定为其功率命令值, 余下各电池储能子单元的功率命令 值为余下各可控电池储能子单元最大允许放电功率占当前余下各可控电池储能子单元最大允 许放电功率总和的比例值、 再乘以电池储能电站当前总功率需求与满足上述情况的各电池储 能子单元最大允许放电功率总和的差值。
当电池储能电站总功率需求为负值时, 如果发生任一电池储能子单元的初始功率命令值 违反其最大允许充电功率限值 (即任一电池储能子单元初始功率命令值的绝对值大于该子单 元最大允许充电功率的绝对值) 的情况时, 则查找满足上述情况的电池储能子单元个数, 并 将这些电池储能子单元的最大允许充电功率设定为其功率命令值, 余下各电池储能子单元的 功率命令值为余下的各可控电池储能子单元最大允许充电功率占余下的所有可控电池储能子 单元最大允许充电功率总和的比例值、 再乘以电池储能电站当前总功率需求与满足上述情况 的各电池储能子单元最大允许充电功率总和的差值。 本发明的另一目的在于提出一种兆瓦级电池储能电站实时功率控制系统, 该系统包括: 通讯模块, 用于实时读取电池储能电站的实时总功率需求和电站的相关运行数据, 以及 将各电池储能子单元的功率命令值输出至电池储能电站, 实现对电池储能电站中的各电池储 能子单元进行功率分配; 数据存储与管理模块, 用于存储和管理实时总功率需求和相关运行数据, 以及将实时调 节模块返回的各电池储能子单元的功率命令值汇总后传至通讯模块进行输出;
总功率初始分配控制模块, 用于根据电池储能电站总功率需求来判断电池储能电站将处 于的状态, 并通过相应的预设规则来计算各电池储能子单元的初始功率命令值; 和
实时调节模块, 用于对各电池储能子单元的初始功率命令值进行实时诊断和修正, 以确 定各电池储能子单元的功率命令值。
与现有技术相比, 本发明达到的有益效果是:
本发明提供一种兆瓦级电池 (锂电池或钠硫电池) 储能电站实时功率控制方法及其系统 具有操作方便、 在实际应用中易于实现和掌握等优点, 该方法和系统主要是结合可表示电池 储能子单元实时功率特性的允许充放电能力 (即, 各电池储能子单元最大允许放电功率, 各 电池储能子单元最大允许充电功率等) 及可表示电池储能子单元存储能量特性的荷电状态
SOC, 基于给定的判断基准对电池储能电站的总功率需求值进行在线分配, 在实现了实时分 配电池储能电站总功率需求的同时, 还实现了并网用兆瓦级电池储能电站的能量管理及实时 控制。 附图说明
图 1是兆瓦级锂离子电池储能电站实施例的系统示意图;
图 2是兆瓦级锂离子电池储能电站实时功率分配控制系统实施例的结构示意图; 图 3是总功率初始分配控制模块实施例的结构示意图;
图 4是实时调节模块实施例的结构示意图;
图 5是兆瓦级锂离子电池储能电站实时功率控制方法实施例的流程框图。 具体实施方式
本发明的控制方法和系统可以应用于锂离子电池储能电站或钠硫电池储能电站, 下面以 锂离子电池为例、 结合附图对本发明的控制方法和系统作进一步的详细说明。
如图 1所示, 锂离子电池储能电站中包括双向变流器和多个锂离子电池储能子单元, 通 过双向变流器可执行对锂离子电池储能子单元的启停控制及充放电功率指令等。
图 2示出了锂离子电池储能电站实时功率分配控制系统实施例的结构框图。 如图 2所示, 本例的控制系统是通过设置在远程服务器中的通讯模块 10、数据存储与管理模块 20、总功率 初始分配控制模块 30和实时调节模块 40实现的。该控制系统中的通讯模块 10与电池储能电 站通过有线或无线网络进行连接, 来完成该控制系统与锂离子电池储能电站之间的数据交互 和通信, 从而实现为电池储能电站中各锂离子电池储能子单元进行功率分配, 以及对电池储 能电站进行实时功率监控, 其中,
通讯模块 10, 用于接收锂离子电池储能电站的实时总功率需求值和该电站的相关运行数 据, 以及将待分配给各锂离子电池储能子单元的功率命令值输出至电池储能电站。
数据存储与管理模块 20, 用于存储和管理锂离子电池储能电站的实时总功率需求值和相 关运行数据(该数据可包括实时数据和历史数据); 而且负责将计算出的各锂离子电池储能子 单元功率命令值进行汇总、并赋值给相关的接口变量, 供远程服务器通过通讯模块进行调用。
总功率初始分配控制模块 30, 用于实时确定各锂离子电池储能子单元初始功率命令值。 实时调节模块 40, 用于计算和确定待分配给各锂离子电池储能子单元的功率命令值。 如图 3所示, 所述总功率初始分配控制模块包括:
判断模块, 用于根据电池储能电站当前总功率需求来判断电池储能电站的状态: 当电池 储能电站当前总功率需求为正值时, 表示该电池储能电站将处于放电状态, 则通过第一执行 模块计算各电池储能子单元的初始功率命令值; 当电池储能电站当前总功率需求为负值时, 表示该电池储能电站将处于充电状态, 则通过第二执行模块计算各电池储能子单元的初始功 率命令值; 当电池储能电站的当前总功率需求值为零时, 表示该电池储能电站将处于零功率 状态, 则通过第三执行模块直接设置各电池储能机组的功率命令值;
第一执行模块, 用于当电池储能电站将处于放电状态时, 计算各电池储能子单元的初始 功率命令值;
第二执行模块, 用于当电池储能电站将处于充电状态时, 计算各电池储能子单元的初始 功率命令值; 和
第三执行模块, 用于直接设置所有电池储能子单元的功率命令值为零。 其中, 所述第一执行模块包括:
第一执行子单元 I, 用于当锂离子电池储能电站当前总功率需求占该储能电站当前各可 控锂离子电池储能子单元最大允许放电功率总和的比例值大于等于; / ¾时, 计算各锂离子电 池储能子单元的初始功率命令值;
第一执行子单元 II, 用于当锂离子电池储能电站当前总功率需求占该储能电站当前各可 控电池储能子单元最大允许放电功率总和的比例值大于 ;7 ¾且小于 ¾时, 计算各锂离子电 池储能子单元的初始功率命令值; 和
第一执行子单元 III, 用于当锂离子电池储能电站当前总功率需求占该储能电站当前各可 控电池储能子单元最大允许放电功率总和的比例值小于等于; 7 ¾时,
首先, 计算各锂离子电池储能子单元的当前可用最大放电功率特征值;
然后, 按照最大放电功率特征值由小到大的顺序对各电池储能子单元排序, 以电池储能 电站当前总功率需求占该储能电站当前各可控电池储能子单元最大允许放电功率总和的比例 值大于等于;^ ¾为条件, 采用排除法计算出最少个数电池储能子单元;
最后, 重新计算最少个数锂离子电池储能子单元的初始功率命令值, 其余电池储能子单 元的初始功率命令值均设为 0; 所述第二执行模块包括:
第二执行子单元 I,用于当电池储能电站当前总功率需求占该储能电站当前各可控电池储 能子单元最大允许充电功率总和的比例值大于等于;^ ¾时, 计算各电池储能子单元的初始功 率命令值;
第二执行子单元 II, 用于当电池储能电站当前总功率需求占该储能电站当前各可控电池 储能子单元最大允许充电功率总和的比例值大于 ¾且小于 ¾时, 计算各电池储能子单元 的初始功率命令值; 和
第二执行子单元 III, 用于当电池储能电站当前总功率需求占该储能电站当前各可控电池 储能子单元最大允许充电功率总和的比例值小于等于 ¾时,
首先, 计算各电池储能子单元的当前可用最大充电功率特征值;
然后, 按照最大充电功率特征值由小到大的顺序对各电池储能子单元排序, 以电池储能 电站当前总功率需求占该储能电站当前各可控电池储能子单元最大允许充电功率总和的比例 值大于等于;^ ¾为条件, 采用排除法计算出最少个数电池储能子单元;
最后, 重新计算最少个数电池储能子单元的初始功率命令值, 其余电池储能子单元的初 始功率命令值均设为 0。 如图 4所示, 所述实时调节模块包括:
实时诊断单元, 用于对各锂离子电池储能子单元的初始功率命令值进行实时诊断, 看是 否有违反各电池储能子单元最大允许放电功率及最大允许充电功率限制的情况发生; 和 计算单元, 用于根据实时诊断单元的诊断结果, 进行在线修正和再计算或者直接将相应 电池储能子单元的初始功率命令值设置为其功率命令值。
其中, 所述计算单元包括:
第一计算子单元, 用于当锂离子电池储能电站将处于放电状态时, 如果发生任一锂离子 电池储能子单元的初始命令值大于其最大允许放电功率的情况时, 则查找满足上述情况的电 池储能子单元个数, 并将这些电池储能子单元的最大允许放电功率设定为其功率命令值, 余 下各电池储能子单元的功率命令值重新计算;
第二计算子单元, 用于当锂离子电池储能电站将处于充电状态时, 如果发生任一锂离子 电池储能子单元的初始命令值违反其最大允许充电功率限制的情况时, 则查找满足上述情况 的电池储能子单元个数,并将这些电池储能子单元的最大允许充电功率设定为其功率命令值, 余下各电池储能子单元的功率命令值重新计算; 和
第三计算子单元, 用于直接将相应锂离子电池储能子单元的初始功率命令值设置为其功 率命令值。 图 5示出了本例中基于规则的兆瓦级锂离子电池储能电站实时功率控制方法框图。 下面 结合具体实施步骤, 对各规则及其实施方式进行详细说明, 该方法包括下述步骤:
步骤 A、 通过通讯模块 10读取数据是读取上位机下发的锂离子电池储能电站总功率需求 值和锂离子电池储能电站的相关运行数据, 然后将上述总功率需求值和相关运行数据传至数 据存储与管理模块 20进行存储和管理。
步骤 B、基于总功率初始分配控制模块, 实时计算出储能电站中各锂离子电池储能子单元 初始功率命令值。
步骤 C、 基于实时调节模块, 对各锂离子电池储能子单元初始功率命令值进行实时诊断 和修正后, 以确定待分配给各电池储能子单元的功率命令值;
步骤 D、 将步骤 C计算出的待分配给各锂离子电池储能子单元的功率命令值在数据存储 与管理模块进行汇总后, 通过通讯模块输出至锂离子电池储能电站。 在步骤 A中,通讯模块 10除了实时读取锂离子电池储能电站的总功率需求 外,所 读取的电池储能电站的相关运行数据包括:电池储能电站中各电池储能子单元的可控状态值、 荷电状态值、 最大允许放电功率、 最大允许充电功率和额定功率。
在步骤 B中, 所述各电池储能子单元初始功率命令值的计算方法如下:
先判断当前锂离子电池储能电站的状态, 然后再根据各锂离子电池储能子单元的状态分 别基于相应的预设规则来计算各锂离子电池储能子单元的初始功率命令值:
1 )当锂离子电池储能电站总功率需求 为正值时,表示该储能电站将处于放电状态, 则基于各电池储能子单元的荷电状态(SOC)值和最大允许放电功率值, 通过下式 (1)-(8)计算 各电池储能子单元的初始功率命令值 i 346: 2. 1 规则 A:
Figure imgf000011_0001
最大允许放电
、"厂
i=l
当满足上式(1)时, 如下式 (2)所示, 计算各电池储能子单元的初始功率命令值:
„ p最大允许放电
^初刀始始 ― )总需求
Figure imgf000011_0002
L ' ;)最大允许放电'
i=l
2. 2 规则 B:
Figure imgf000011_0003
i=l
当满足上式 (3)时, 如下式 (4)所示, 计算各锂离子电池储能子单元的初始功率命令值:
初始 = uiSOCi 总需求
(4) i=l
2. 3 规则 C: (5)
Figure imgf000011_0004
当满足上式 (5)时, 首先, 基于排除法计算出能满足式 (7)的最少的储能子单元个数 及 其组合方式。 即, 先基于下式 (6)计算, 各锂离子电池储能子单元 i的当前可用最大放电功 率特征值/ i ¾
Figure imgf000011_0005
然后, 基于排除法, 以/ i ¾由小至大的顺序, 逐个排除锂离子电池储能子单元 i, 直到 计算出能满足下式 (7)的最少的储能子单元个数 为止。
p总需求
锂 >„放电 ίΓΊ\
≥ (7)
)最大允许放电
∑ 』
ii==ll
最后, 基于下式 (8), 计算 个锂离子电池储能子单元 i的初始功率命令值:
Figure imgf000012_0001
剩余 -Z^. 个锂离子电池储能子单元的初始功率命令值均设为 0。
2)当锂离子电池储能电站总功率需求 为负值时,表示该电池储能电站将处于充电 状态,则基于各电池储能子单元的放电状态(SOD)值和最大允许充电功率值,通过下式 (9)-(17) 计算各电池储能子单元初始功率命令值 i 346
2.4 规则 D:
Figure imgf000012_0002
当满足上式 (9)时, 如下式(10)所示, 计算各电池储能子单元的初始功率命令值:
(10)
Figure imgf000012_0003
2.5 规则 E: 充电 <
Figure imgf000012_0004
当满足式(11)时, 如下式(12)-(13), 计算各锂离子电池储能子单元的初始功率命令值:
—总需求 (12) 锂
Figure imgf000012_0005
SOD, =l_SOC; (13)
2.6 规则 F:
Figure imgf000012_0006
当满足上式 (14)时,基于排除法计算出能满足下式 (16)的最少的储能子单元个数 及其 组合方式。 即, 先基于下式(15)计算, 各锂离子电池储能子单元 i的当前可用最大充电功率 特征值 /i 电: p最大允许充电
充电 Ι^ ΐ^
Α· = ^ ^ (15) 然后, 基于排除法, 以 由小至大的顺序, 逐个排除锂离子电池储能子单元 i, 直到 计算出能满足下式 (16)的最少个数的储能子单元 为止。
Figure imgf000013_0001
然后, 基于下式 (17), 计算!^ 个锂离子电池储能子单元 i的初始功率命令值:
( Λ η· v1 '、
Figure imgf000013_0002
剩余 -zi 个锂离子电池储能子单元的初始功率命令值均设为 0
3 )当电池储能电站当前总功率需求值 /¾¾^¾为零时,表示该电池储能电站将处于零功率 状态, 无须通过预设规则来计算电池储能子单元的初始功率命令值, 而是直接将所有电池储 能子单元的功率命令值设置为 0
式 (1 ) - ( 17 ) 中, 为 号电池储能子单元的可控状态值, 该状态通过步骤 A读取, 当该电池储能子单元可控时, 此状态值为 1, 其他值为 0; SOC,为 号电池储能子单元的荷电 状态值; SOD,.为 号电池储能子单元的放电状态值; 为锂离子电池储能子单元的总个数, L 和 ί,ί均为满足条件的最少电池储能子单元个数; 为 i号锂离子电池储能子单元的额定 功率; 为 号锂离子电池储能子单元的最大允许放电功率; 为 号锂离子 电池储能子单元的最大允许充电功率。
上述各式中, /^¾、 为储能 ¾ 将^ 放¾状^0^、 储能 ¾ 前 、功率
Figure imgf000013_0003
需求占储能电站当前可控储能子单元最大允许放电功率总和的比例; η 、 电、 η ^为 储能电站将处于充电状态时, 储能电站当前总功率需求占储能电站当前可控储能子单元最大 允许充电功率总和的比例。
上述各项规则中,
1 ) ^¾和^¾*的取值范围可设定为 0.7至 0.9。 以7^ = 77^¾ = 0.5为佳,
2) 电和 放电的取值范围可设定为 0.2至 0.4。 以 电 = 77】夂电 = 0.3为佳, 3 ) 77c?电和^放电的取值范围可设定为 0.7至 0.9。 以;7 电 = 77 电 = .S为佳。 在步骤 C中,实时调节模块通过下述方法实时修正各电池储能子单元的初始功率命令值:
1 )当锂离子电池储能电站总功率需求 为正值时,表示该电池储能电站将处于放电 状态, 则基于下式 (18)-(20)确定各电池储能子单元功率命令值:
3. 1 规则 G:
ρ初始 \ ρ最大允许放电
" 〉尸'' (i=l, -, L) (18) 当有任何一个电池储能子单元 i的初始功率命令值/ ^满足上式 (18)时,计算出相应个数
N, 并将相应子单元 i的功率命令值 均如下式 (19)进行限制。
n _ jo最大允许放电 1 fVl 尸'' = " (i=l, -, Ν) (19) 然后, 基于下式 (20), 重新计算余下 (L-N) 个锂离子电池储能子单元的功率命令值 : 最大允许放电、
P, =
Figure imgf000014_0001
2 )当锂离子电池储能电站总功率需求 i¾ ^ 为负值时,表示该电池储能电站将处于充电 状态, 则基于下式 (21)-(23)确定各电池储能子单元功率命令值:
3. 2 规则 H:
Figure imgf000014_0002
当有任何一个电池储能子单元 i的初始功率命令值/ ^满足上式 (21)时,计算出相应个数 M, 并将相应子单元 i的功率命令值 均如下式 (22)进行限制。
p jD最大允许充电 / \ 尸'' (i = 1, -, Μ) (22) 然后, 基于下式 (23), 重新计算余下 (L-M)个锂离子电池储能子单元的功率命令值 : u ·ρ最大允许充电 Λ
Ρ = P .需求 — ^ (Μ,ρ,最大允许充电) (23) 最大允许充电 式 (18)-(23), J为锂离子电池储能子单元的总个数, N和 M分别为部分锂离子电池储能 子单元的个数。
采用上述技术方案, 本发明具有在线分配锂离子电池储能电站的总功率需求, 实时监控 SOC值等功能, 从而准确、 便捷、 有效的实现了对锂离子电池储能电站的实时功率控制和对 储能电站中各锂离子电池储能子单元的功率分配功能。
如果只是根据电池储能电站总功率需求和各电池储能子单元荷电状态值 (SOC) 直接计 算电池储能电站中各电池储能子单元的功率命令值, 则可能出现电池储能子单元功率命令值 超过其允许充、 放电功率 (深度) 上下极限的情况, 当出现这种超限情况时, 如不及时进行 自适应修正和在线处理, 会因下发功率命令值超出设备工作能力而导致对各电池储能子单元 分配功率误差变大, 并存在难以满足电池储能电站总功率需求的弊端; 正由于本发明增加了 "通过先判断电池储能电站的状态, 再通过相应的预设规则分别来计算电池储能电站中各电 池储能子单元的初始功率命令值, 同时有效考虑可表示电池储能子单元实时功率特性的允许 充放电能力约束条件 (即, 各电池储能子单元最大允许放电功率, 各电池储能子单元最大允 许充电功率等约束条件) 至控制算法和系统中 "等步骤, 所以不仅克服了上述弊端, 还对电 池储能电站中的各电池储能子单元产生了更好的在线分配和实时监控的效果, 更便于应用及 实现。 最后应该说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限制, 结合上述 实施例对本发明进行了详细说明, 所属领域的普通技术人员应当理解到: 本领域技术人员依 然可以对本发明的具体实施方式进行修改或者等同替换, 但这些修改或变更均在申请待批的 权利要求保护范围之中。

Claims

权 利 要 求
1、 一种兆瓦级电池储能电站实时功率控制方法, 其特征在于, 包括以下步骤: 步骤 A, 实时读取电池储能电站的总功率需求和该电站的相关运行数据, 并对上述总功 率需求和相关运行数据进行存储;
步骤 B, 根据电池储能电站总功率需求来判断电池储能电站的状态, 并通过相应的预设 规则来获得电池储能电站中各电池储能子单元的初始功率命令值;
步骤 C, 对各电池储能子单元的初始功率命令值进行实时诊断和修正, 以确定各电池储 能子单元的功率命令值;
步骤 D, 对各电池储能子单元的功率命令值进行汇总后输出至电池储能电站。
2、 如权利要求 1所述的控制方法, 其特征在于, 在步骤 A中, 所述电池储能电站的相关 运行数据包括: 电池储能电站中各电池储能子单元的可控状态值、 荷电状态值、 最大允许放 电功率、 最大允许充电功率和额定功率。
3、 如权利要求 1所述的控制方法, 其特征在于, 所述步骤 B具体包括:
判断电池储能电站的状态;
当电池储能电站总功率需求为正值时, 表示该电池储能电站将处于放电状态, 则通过第 一预设规则获得各电池储能子单元的初始功率命令值;
当电池储能电站总功率需求为负值时, 表示该电池储能电站将处于充电状态, 则通过第 二预设规则获得各电池储能子单元的初始功率命令值;
当电池储能电站总功率需求为零时, 表示该电池储能电站将处于零功率状态, 则直接将 所有电池储能子单元的功率命令值设置为零。
4、 如权利要求 3所述的控制方法, 其特征在于,
所述第一预设规则包括:
1 )当电池储能电站的总功率需求占该储能电站各可控电池储能子单元最大允许放电功率 总和的比例值大于等于预设值 *时, 则各电池储能子单元的初始功率命令值为上述比例值 与相应可控电池储能子单元最大允许放电功率的乘积;
2)当电池储能电站的总功率需求占该储能电站各可控电池储能子单元最大允许放电功率 总和的比例值大于预设值 且小于 时, 则各电池储能子单元的初始功率命令值为相应 可控电池储能子单元的荷电状态值占当前所有可控电池储能子单元荷电状态值总和的比例 值、 再乘以电池储能电站总功率需求; 3)当电池储能电站的总功率需求占该储能电站各可控电池储能子单元最大允许放电功率 总和的比例值小于等于预设值 时,
首先, 计算各电池储能子单元的当前可用最大放电功率特征值;
然后, 按照最大放电功率特征值由小到大的顺序对各电池储能子单元排序, 以电池储能 电站当前总功率需求占该储能电站当前所有可控电池储能子单元最大允许放电功率总和的比 例值大于等于预设值 为条件,采用排除法计算符合上述条件的最少个数电池储能子单元; 最后, 上述最少个数电池储能子单元的初始功率命令值为相应可控电池储能子单元的荷 电状态值占当前最少个数可控电池储能子单元荷电状态值总和的比例值、 再乘以电池储能电 站当前总功率需求; 其余电池储能子单元的初始功率命令值均设为 0。
所述第二预设规则包括:
1 ) 当电池储能电站的总功率需求 ^^*占该储能电站各可控电池储能子单元最大允许充 电功率总和的比例值大于等于预设值 时, 则各电池储能子单元的初始功率命令值为上述 比例值与相应可控电池储能子单元最大允许充电功率的乘积;
2)当电池储能电站的总功率需求占该储能电站各可控电池储能子单元最大允许充电功率 总和的比例值大于预设值 且小于 时,则各电池储能子单元的初始功率命令值为相应可 控电池储能子单元的放电状态值占各可控电池储能子单元放电状态值总和的比例值、 再乘以 电池储能电站当前总功率需求;
3)当电池储能电站的总功率需求占该储能电站各可控电池储能子单元最大允许充电功率 总和的比例值小于等于预设值 *时,
首先, 计算各电池储能子单元的当前可用最大充电功率特征值;
然后, 按照最大充电功率特征值由小到大的顺序对各电池储能子单元排序, 以电池储能 电站当前总功率需求占该储能电站当前各可控电池储能子单元最大允许放电功率总和的比例 值大于等于预设值; 7e ¾*为条件, 采用排除法计算出符合上述条件的最少个数电池储能子单元; 最后, 上述最少个数电池储能子单元的初始功率命令值为相应可控电池储能子单元的放 电状态值占当前最少个数可控电池储能子单元放电状态值总和的比例值、 再乘以电池储能电 站当前总功率需求; 其余电池储能子单元的初始功率命令值均设为 0;
所述电池储能子单元的放电状态值等于 1减去该子单元的荷电状态值; 所述可控电池储 能子单元最大允许放电功率、 可控电池储能子单元最大允许充电功率、 可控电池储能子单元 荷电状态值和可控电池储能子单元放电状态值等于电池储能子单元的可控状态值分别与该子 单元最大允许放电功率、 最大允许充电功率、 荷电状态值和放电状态值的乘积; 当电池储能 子单元可控时, 该子单元的可控状态值为 1 ; 否则值为 0。
5、 如权利要求 4所述的控制方法, 其特征在于, 所述 *和 的取值范围为 0.7〜0.9, 所述^她和 充电的取值范围为 0.2〜0.4, 所述/ ^电和 /^电的取值范围为 0.7〜0.9。
6、 如权利要求 1所述的控制方法, 其特征在于, 所述步骤 C具体包括:
对步骤 B计算出的各电池储能子单元的初始功率命令值进行实时诊断, 看是否有违反各 电池储能子单元最大允许放电功率及最大允许充电功率限制的情况发生, 如果有, 则对各电 池储能子单元进行在线修正和再计算; 如没有, 则将步骤 B计算出的各电池储能子单元的初 始功率命令值设置为其功率命令值。
7、如权利要求 6所述的控制方法,其特征在于,所述在线修正和再计算的方法具体包括: 当电池储能电站总功率需求为正值时, 如果发生任一电池储能子单元的初始功率命令值 违反该子单元最大允许放电功率的情况时, 则查找满足上述情况的电池储能子单元个数, 并 将这些电池储能子单元的最大允许放电功率设定为其功率命令值, 余下各电池储能子单元的 功率命令值为余下的可控电池储能子单元最大允许放电功率占当前余下所有的可控电池储能 子单元最大允许放电功率总和的比例值、 再乘以电池储能电站当前总功率需求与满足上述情 况的各电池储能子单元最大允许放电功率总和的差值。
当电池储能电站总功率需求为负值时, 如果发生任一电池储能子单元的初始功率命令值 违反该子单元最大允许充电功率限值的情况时,则查找满足上述情况的电池储能子单元个数, 并将这些电池储能子单元的最大允许充电功率设定为其功率命令值, 余下各电池储能子单元 的功率命令值为余下的可控电池储能子单元最大允许充电功率占余下所有的可控电池储能子 单元最大允许充电功率总和的比例值、 再乘以电池储能电站当前总功率需求与满足上述情况 的各电池储能子单元最大允许充电功率总和的差值。
8、 一种兆瓦级电池储能电站实时功率控制系统, 其特征在于, 该系统包括:
通讯模块, 用于实时读取电池储能电站的实时总功率需求和该电站的相关运行数据, 以 及将各电池储能子单元的功率命令值输出至电池储能电站;
数据存储与管理模块, 用于存储和管理实时总功率需求和相关运行数据, 以及将实时调 节模块返回的各电池储能子单元的功率命令值汇总后传至通讯模块进行输出;
总功率初始分配控制模块, 用于根据电池储能电站总功率需求来判断电池储能电站将处 于的状态, 并通过相应的预设规则来计算各电池储能子单元的初始功率命令值; 和
实时调节模块, 用于对各电池储能子单元的初始功率命令值进行实时诊断和修正, 以确 定各电池储能子单元的功率命令值。
9、 如权利要求 8所述的控制系统, 其特征在于, 所述总功率初始分配控制模块包括: 判断模块, 用于判断电池储能电站的状态: 当电池储能电站当前总功率需求为正值时, 表示该电池储能电站将处于放电状态, 则通过第一执行模块计算各电池储能子单元的初始功 率命令值; 当电池储能电站当前总功率需求为负值时, 表示该电池储能电站将处于充电状态, 则通过第二执行模块计算各电池储能子单元的初始功率命令值; 当电池储能电站的当前总功 率需求值为零时, 表示该电池储能电站将处于零功率状态, 则通过第三执行模块直接设置各 电池储能机组的功率命令值;
第一执行模块, 用于当电池储能电站将处于放电状态时, 计算各电池储能子单元的初始 功率命令值;
第二执行模块, 用于当电池储能电站将处于充电状态时, 计算各电池储能子单元的初始 功率命令值; 和
第三执行模块, 用于将所有电池储能子单元的功率命令值直接设置为零。
10、 如权利要求 9所述的控制系统, 其特征在于, 所述第一执行模块包括:
第一执行子单元 I, 用于当电池储能电站当前总功率需求占该储能电站当前各可控电池 储能子单元最大允许放电功率总和的比例值大于等于 时, 计算各电池储能子单元的初始 功率命令值;
第一执行子单元 II, 用于当电池储能电站当前总功率需求占该储能电站当前各可控电池 储能子单元最大允许放电功率总和的比例值大于 且小于 时, 计算各电池储能子单元 的初始功率命令值; 和
第一执行子单元 III, 用于当电池储能电站当前总功率需求占该储能电站当前各可控电池 储能子单元最大允许放电功率总和的比例值小于等于 时,
首先, 计算各电池储能子单元的当前可用最大放电功率特征值;
然后, 按照最大放电功率特征值由小到大的顺序对各电池储能子单元排序, 以电池储能 电站当前总功率需求占该储能电站当前各可控电池储能子单元最大允许放电功率总和的比例 值大于等于; 7^*为条件, 采用排除法计算出最少个数电池储能子单元;
最后, 重新计算最少个数电池储能子单元的初始功率命令值, 其余电池储能子单元的初 始功率命令值均设为 0; 所述第二执行模块包括:
第二执行子单元 I,用于当电池储能电站当前总功率需求占该储能电站当前各可控电池储 能子单元最大允许充电功率总和的比例值大于等于 ¾ *时, 计算各电池储能子单元的初始功 率命令值;
第二执行子单元 II, 用于当电池储能电站当前总功率需求占该储能电站当前各可控电池 储能子单元最大允许充电功率总和的比例值大于 ¾*且小于 ¾*时,计算各电池储能子单元的 初始功率命令值; 和
第二执行子单元 III, 用于当电池储能电站当前总功率需求占该储能电站当前各可控电池 储能子单元最大允许充电功率总和的比例值小于等于 ¾*时,
首先, 计算各电池储能子单元的当前可用最大充电功率特征值;
然后, 按照最大充电功率特征值由小到大的顺序对各电池储能子单元排序, 以电池储能 电站当前总功率需求占该储能电站当前各可控电池储能子单元最大允许充电功率总和的比例 值大于等于; 7 *为条件, 采用排除法计算出最少个数电池储能子单元;
最后, 重新计算最少个数电池储能子单元的初始功率命令值, 其余电池储能子单元的初 始功率命令值均设为 0。
11、 如权利要求 8所述的控制系统, 其特征在于, 所述实时调节模块包括:
实时诊断单元, 用于对各电池储能子单元的初始功率命令值进行实时诊断, 看是否有违 反各电池储能子单元最大允许放电功率及最大允许充电功率限制的情况发生; 和
计算单元, 用于根据实时诊断单元的诊断结果, 进行在线修正和再计算或者直接将相应 电池储能子单元的初始功率命令值设置为其功率命令值。
12、 如权利要求 11所述的控制系统, 其特征在于, 所述计算单元包括:
第一计算子单元, 用于当电池储能电站将处于放电状态时, 如果发生任一电池储能子单 元的初始命令值大于其最大允许放电功率的情况时, 则查找满足上述情况的电池储能子单元 个数, 并将这些电池储能子单元的最大允许放电功率设定为其功率命令值, 余下各电池储能 子单元的功率命令值重新计算;
第二计算子单元, 用于当电池储能电站将处于充电状态时, 如果发生任一电池储能子单 元的初始命令值违反其最大允许充电功率限制的情况时, 则查找满足上述情况的电池储能子 单元个数, 并将这些电池储能子单元的最大允许充电功率设定为其功率命令值, 余下各电池 储能子单元的功率命令值重新计算; 和
第三计算子单元, 用于将相应电池储能子单元的初始功率命令值设置为其功率命令值。
PCT/CN2012/081485 2011-12-31 2012-09-17 兆瓦级电池储能电站实时功率控制方法及其系统 WO2013097489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110459904.7A CN103187750B (zh) 2011-12-31 2011-12-31 兆瓦级电池储能电站实时功率控制方法及其系统
CN201110459904.7 2011-12-31

Publications (1)

Publication Number Publication Date
WO2013097489A1 true WO2013097489A1 (zh) 2013-07-04

Family

ID=48678788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081485 WO2013097489A1 (zh) 2011-12-31 2012-09-17 兆瓦级电池储能电站实时功率控制方法及其系统

Country Status (2)

Country Link
CN (1) CN103187750B (zh)
WO (1) WO2013097489A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684913A (zh) * 2016-12-29 2017-05-17 中国电力科学研究院 一种基于多代理的储能电站跟踪发电计划控制系统和方法
CN109800528A (zh) * 2019-01-30 2019-05-24 辽宁东科电力有限公司 一种基于全钒液流电池过载特性的数学模型
CN113629816A (zh) * 2021-09-01 2021-11-09 国网江苏省电力有限公司电力科学研究院 一种储能群充放电功率分配方法及装置
CN113690918A (zh) * 2021-09-14 2021-11-23 华北电力大学(保定) 基于动态分组技术的集中式电池储能电站调频控制策略
CN117060553A (zh) * 2023-10-13 2023-11-14 快电动力(北京)新能源科技有限公司 储能系统的电池管理方法、装置、系统和部件

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532132A (zh) * 2013-09-23 2014-01-22 国家电网公司 一种自适应移动微电网能量交互系统的控制方法
CN104753076B (zh) * 2013-12-31 2017-08-22 比亚迪股份有限公司 用于削峰填谷的电池储能系统及其控制方法
CN104348177A (zh) * 2014-11-17 2015-02-11 北京四方继保自动化股份有限公司 基于背靠背式储能变流器的多直流分支功率协调控制方法
CN105870973B (zh) * 2016-06-16 2018-05-04 东北电力大学 一种储能系统应对高风电渗透率系统调频需求容量配置方法
CN108336766A (zh) * 2018-02-13 2018-07-27 中国电力科学研究院有限公司 一种储能系统多智能体协同控制方法及装置
CN109617103B (zh) * 2018-11-30 2022-09-02 中国电力科学研究院有限公司 一种储能机组的梯次利用储能电池能量控制方法和系统
CN109910669B (zh) * 2019-04-29 2021-01-15 恒大智慧充电科技有限公司 充电调控方法、计算机设备及存储介质
CN114069679B (zh) * 2021-11-26 2023-07-14 国网湖南省电力有限公司 锂电池储能电站倍率控制方法、系统及存储介质
CN116565267B (zh) * 2023-03-13 2023-10-03 陕西合全建设工程有限公司 一种大规模全钒液流储能电池系统
CN116505623B (zh) * 2023-06-27 2023-12-26 广州汇电云联数科能源有限公司 一种储能电站放电功率分配方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507079A (zh) * 2006-12-18 2009-08-12 三菱重工业株式会社 电力储存装置和混合型分布电源系统
CN101710711A (zh) * 2009-12-21 2010-05-19 中国电力科学研究院 一种平滑风电系统输出功率的储能装置的监控系统
CN102157985A (zh) * 2011-04-20 2011-08-17 中国电力科学研究院 多类型大容量兆瓦级电池储能电站的电池功率控制方法
CN102214934A (zh) * 2011-06-03 2011-10-12 中国电力科学研究院 基于兆瓦级电池储能电站的风光发电出力平滑控制方法
US20110298288A1 (en) * 2010-06-07 2011-12-08 Sungchun Cho Energy storage system
CN102280879A (zh) * 2011-08-01 2011-12-14 刘颖明 风电场大规模储能电站功率调节方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208818B (zh) * 2011-06-03 2014-02-12 中国电力科学研究院 基于小波滤波的兆瓦级风光储发电系统出力平滑控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507079A (zh) * 2006-12-18 2009-08-12 三菱重工业株式会社 电力储存装置和混合型分布电源系统
CN101710711A (zh) * 2009-12-21 2010-05-19 中国电力科学研究院 一种平滑风电系统输出功率的储能装置的监控系统
US20110298288A1 (en) * 2010-06-07 2011-12-08 Sungchun Cho Energy storage system
CN102157985A (zh) * 2011-04-20 2011-08-17 中国电力科学研究院 多类型大容量兆瓦级电池储能电站的电池功率控制方法
CN102214934A (zh) * 2011-06-03 2011-10-12 中国电力科学研究院 基于兆瓦级电池储能电站的风光发电出力平滑控制方法
CN102280879A (zh) * 2011-08-01 2011-12-14 刘颖明 风电场大规模储能电站功率调节方法及系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684913A (zh) * 2016-12-29 2017-05-17 中国电力科学研究院 一种基于多代理的储能电站跟踪发电计划控制系统和方法
CN109800528A (zh) * 2019-01-30 2019-05-24 辽宁东科电力有限公司 一种基于全钒液流电池过载特性的数学模型
CN113629816A (zh) * 2021-09-01 2021-11-09 国网江苏省电力有限公司电力科学研究院 一种储能群充放电功率分配方法及装置
CN113629816B (zh) * 2021-09-01 2024-05-03 国网江苏省电力有限公司电力科学研究院 一种储能群充放电功率分配方法及装置
CN113690918A (zh) * 2021-09-14 2021-11-23 华北电力大学(保定) 基于动态分组技术的集中式电池储能电站调频控制策略
CN113690918B (zh) * 2021-09-14 2023-04-07 华北电力大学(保定) 基于动态分组技术的集中式电池储能电站调频控制策略
CN117060553A (zh) * 2023-10-13 2023-11-14 快电动力(北京)新能源科技有限公司 储能系统的电池管理方法、装置、系统和部件
CN117060553B (zh) * 2023-10-13 2024-01-02 快电动力(北京)新能源科技有限公司 储能系统的电池管理方法、装置、系统和部件

Also Published As

Publication number Publication date
CN103187750A (zh) 2013-07-03
CN103187750B (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
WO2013097489A1 (zh) 兆瓦级电池储能电站实时功率控制方法及其系统
Li et al. Energy management and operational control methods for grid battery energy storage systems
CN102157985B (zh) 多类型大容量兆瓦级电池储能电站的电池功率控制方法
WO2013097602A1 (zh) 锂-液流电池联合储能电站的实时功率分配方法及系统
CN103187733B (zh) 兆瓦级液流电池储能电站实时功率控制方法及其系统
US10211665B2 (en) Energy management method of multi-type battery energy storage power station considering charge and discharge rates
CN102214934B (zh) 基于兆瓦级电池储能电站的风光发电出力平滑控制方法
CN102208818B (zh) 基于小波滤波的兆瓦级风光储发电系统出力平滑控制方法
WO2015070480A1 (zh) 基于风功率预测的电池储能电站能量管理方法
CN103248064A (zh) 一种复合型能源充电储能系统及其方法
CN110350518B (zh) 一种用于调峰的电网储能容量需求评估方法及系统
CN105226689A (zh) 考虑运行和维护的多类型储能系统能量管理方法和系统
CN103187806A (zh) 用于调频的电池储能电站功率控制方法及其系统
CN109617103B (zh) 一种储能机组的梯次利用储能电池能量控制方法和系统
CN104283229A (zh) 一种子系统自治方式的储能电站综合协调控制系统
CN103560533B (zh) 基于变化率控制储能电站平滑风光发电波动的方法及系统
CN202651806U (zh) 一种电池储能电站平滑风光发电控制系统
CN111555321A (zh) 储能联合火电调频中pcs的功率分配方法及装置
Raducu et al. Design and implementation of a hybrid power plant controller
CN111325423A (zh) 一种区域多能源互联运营优化方法和计算设备
CN117767445A (zh) 一种海上风电及储能参与的有功功率协调控制方法及系统
Wang et al. Operation effect evaluation of grid side energy storage power station based on combined weight TOPSIS model
CN103368194B (zh) 基于蚁群算法的电池储能电站功率控制方法及其系统
CN116072998B (zh) 储能系统的通信方法、装置、系统、设备、介质和产品
Yoon et al. An economic ESS design method based on wind system capacity factor for island power grid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863242

Country of ref document: EP

Kind code of ref document: A1