WO2015070480A1 - 基于风功率预测的电池储能电站能量管理方法 - Google Patents

基于风功率预测的电池储能电站能量管理方法 Download PDF

Info

Publication number
WO2015070480A1
WO2015070480A1 PCT/CN2013/087683 CN2013087683W WO2015070480A1 WO 2015070480 A1 WO2015070480 A1 WO 2015070480A1 CN 2013087683 W CN2013087683 W CN 2013087683W WO 2015070480 A1 WO2015070480 A1 WO 2015070480A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
energy storage
wind power
state
Prior art date
Application number
PCT/CN2013/087683
Other languages
English (en)
French (fr)
Inventor
李相俊
惠东
张亮
贾学翠
许守平
王银明
Original Assignee
国家电网公司
国网新源张家口风光储示范电站有限公司
中国电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网新源张家口风光储示范电站有限公司, 中国电力科学研究院 filed Critical 国家电网公司
Publication of WO2015070480A1 publication Critical patent/WO2015070480A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention belongs to the technical field of smart grid and energy storage and conversion, and particularly relates to a battery energy storage power station control method considering wind power forecasting in advance, and is particularly suitable for coordinated control of wind storage power and battery of wind storage combined power generation system of various scales. Energy management of energy storage systems to improve wind power prediction capabilities based on energy storage systems. Background technique
  • the National Scenery Storage and Depot Demonstration Project is the first pilot project of the State Grid Corporation to build a strong smart grid. It is characterized by "grid-friendly" new energy generation and is characterized by “advancedness, flexibility, demonstration, and economy".
  • the world's largest renewable energy demonstration project integrating wind power, photovoltaic power generation, energy storage and transmission engineering.
  • the National Landscape Storage and Demonstration Project plans to build wind power 100 liters, photovoltaic power generation 40 liters and energy storage devices 20 MW (including 14 MW lithium iron phosphate battery energy storage system, 2 MW all vanadium flow battery energy storage system, 4 MW sodium) Sulfur battery energy storage system).
  • battery energy storage power plants are used to achieve smooth wind power output, tracking planned power generation, participation in system frequency modulation, peak clipping, transient power output emergency response, transient voltage emergency support.
  • a variety of applications have become a viable option.
  • an object of the present invention is to disclose a battery energy storage power plant energy management method based on short-term wind power prediction, which can optimize the working efficiency and energy of a battery energy storage power station while satisfying the wind power power prediction error requirement in real time.
  • the storage state function ensures the stable and reliable operation of the battery storage power station for control purposes.
  • An energy management method for a battery energy storage power station based on wind power prediction includes the following steps:
  • Step 1) Obtain the current predicted value of the wind power, the current actual wind power value, and the current controllable state value and state of charge of each energy storage unit;
  • Step 2) Calculate the upper and lower limit eigenvalues of the wind power power prediction based on the predicted value of the wind power power; Step 3) Correct the wind turbine combined output control target in real time through the finite state machine control module, and determine the total power demand value of the battery energy storage power station
  • the finite state machine control module includes an energy storage SOC finite state machine and a wind power finite state machine.
  • step 2) specifically includes:
  • the wind power power prediction upper limit characteristic value is a product of a wind power power pre-predicted value and a preset wind power power maximum error upper limit value
  • the wind power power prediction lower limit characteristic value is a wind power power daily predicted value and a preset wind power maximum The product of the lower error limit.
  • step 3) specifically includes:
  • S0C state A The state of charge of the energy storage unit is less than 80 (: 1 (3 ⁇ 4 state);
  • S0C Status B state of charge value of the storage unit interposed state between S0C minl, S0C min2;
  • S0C state C the state of charge of the energy storage unit is greater than the state of S0C high ;
  • S0C lOT S0C minl ⁇ S0C min2 ⁇ S0C high, the S0C high, S0C lOT respectively predetermined storage unit on the state of charge, the lower limit value, S0C min ⁇ B S0C min2 to a preset storage
  • Wind power state A The current actual wind power value is less than the wind power power lower limit characteristic value
  • Windd power status B The current actual wind power value is between the upper and lower limit characteristic values of wind power prediction;
  • Windd power status C The current actual wind power value is greater than the wind power prediction upper limit characteristic value.
  • the total power demand value of the battery energy storage power station is the lower limit characteristic value of the current wind power prediction minus the current actual wind power value;
  • the total power demand value of the battery energy storage station is the current wind power prediction upper limit characteristic value multiplied by the predicted upper limit power correction coefficient, minus the current actual wind power Value
  • the total power demand value of the battery energy storage power station is the current wind power power prediction upper limit characteristic value minus the current actual wind power value;
  • the invention provides an energy management method for a battery energy storage power station based on short-term prediction of wind power, which can balance the wind power prediction error and the state of charge of the energy storage system, thereby realizing long-term and stable operation of the battery energy storage power station.
  • the method mainly combines the wind power prediction result, the wind power allowable error range, the energy storage battery soc, the energy storage S0C finite state machine and the wind power finite state machine, and real-times the charging and discharging power and the stored energy state of the battery energy storage power station. Adjusting, realizing the real-time optimal control of the charge and discharge power demand of the battery energy storage power station based on the wind power prediction result, optimizing the battery energy storage
  • DRAWINGS 1 is a schematic diagram of a system of an embodiment of a clock-scale lithium-ion battery energy storage power plant of the present invention
  • FIG. 2 is a flow chart of an embodiment of a method for energy management of a battery energy storage power plant based on wind power prediction according to the present invention. detailed description
  • control method of the present invention can be applied to coordinated control and energy management of a battery energy storage power station.
  • the control method of the present invention will be further described in detail below with reference to the accompanying drawings.
  • the lithium battery energy storage power station includes a bidirectional converter and a plurality of lithium battery energy storage units, and the bidirectional converter can perform the start and stop control and the charge and discharge power command of the lithium battery energy storage unit.
  • Figure 2 is a flow chart of energy management method for battery energy storage power station based on wind power prediction, including the following steps: Step 1) Obtain the current predicted value of wind power, the current actual wind power value, and the current controllable energy storage units. Data such as status values and state of charge values;
  • Step 2 directly read the daily predicted value of the wind power through the daily prediction curve, and further pass the following formula (1) -
  • the prediction error characteristic value includes the wind power power prediction upper limit characteristic value i3 ⁇ 4 and the wind power power prediction lower limit characteristic value P t
  • ⁇ lower limit of prediction ( _ exhibition) corpse Xiao (2)
  • is the upper limit of the maximum error of wind power
  • is preset according to the maximum allowable error value
  • the value range is
  • Step 3 Based on the wind power prediction error characteristic value and the current state of charge of each battery energy storage unit, the limited state machine control module corrects the wind storage combined output control target in real time, and determines the total power demand of the battery energy storage power station. Based on this, the optimal control and management of the storage energy of the battery energy storage power station is realized based on the predicted power of wind power.
  • the calculation method of the total power demand value of the battery energy storage power station is as follows:
  • the finite state machine control module includes two finite state machines, namely an energy storage S0C finite state machine and a wind power finite state machine.
  • S0C Status A S0C ⁇ S0C lOT.
  • BP S0C is smaller than the lower limit value S0C lOT of the state of charge of the energy storage unit ;
  • SOC state B S0C midl ⁇ S0C ⁇ S0C mid2 .
  • SOC of the energy storage unit in the ideal range namely: the state of charge of the energy storage units in a set S0C value between the ideal and S0C S0C minL MIN2;
  • S0C state c soc>soc high .
  • gp the state of charge SOC is larger than the set value storage unit soc high;
  • S0C low ⁇ S0C mi memoi ⁇ S0C micountry 2 ⁇ S0C high for example, 80 (: 1 (beat is 30%, 80 ( ⁇ is 40%, S0C mid2 is 60%, S0C high) Is 0 .
  • Wind power status A P wind power ⁇ P prediction lower limit. That is, when the current actual wind power value is less than the lower limit characteristic of the wind power prediction, according to the energy storage S0C finite state machine A, the calculation method of the total power demand value of the battery energy storage power station is as follows:
  • Wind power status B P f Tm ⁇ P Mt ⁇ P upper limit of prediction. That is, when the current actual wind power value is less than the wind power predicted power upper limit characteristic value and greater than the wind power predicted power lower limit characteristic value, according to the energy storage S0C finite state machine B, the calculation method of the total energy demand value of the battery energy storage power station is as follows:
  • Wind power status C P touch > P prediction upper limit. That is, when the current actual wind power value is greater than the wind power power prediction upper limit characteristic value, according to the energy storage S0C finite state machine c, the calculation method of the total energy demand value of the battery energy storage power station is as follows: Next:
  • the invention adopting the above technical solution has the functions of combining the wind power prediction power state, the energy storage S0C and the maximum allowable working capacity of the energy storage system, and performing the functions of energy management and power coordinated control of the battery energy storage power station, thereby meeting the wind power power prediction target. At the same time, the energy management of the battery energy storage power station is also optimized.
  • the "energy storage S0C finite state machine and the wind power finite state machine are considered, and combined with the allowable range of wind power prediction error, the charge and discharge power of the energy storage power station is effectively adjusted within the allowable range of the wind power prediction error.
  • the energy storage state S0C “steps, so not only overcome the above drawbacks, but also have a better effect on the control of wind power prediction error and the charge and discharge power timing control of the battery energy storage power station, and is more conducive to the long-term battery storage power station, Reliable and stable operation.

Abstract

一种基于风功率预测的电池储能电站能量管理方法,包括如下步骤:首先获取风电功率的日前预测值、当前实际风电功率值以及当前各储能机组的可控状态值和荷电状态值;然后基于风电功率的日期预测值,分别计算风电功率预测上、下限特征值;最后通过有限状态机控制模块实时修正风储联合出力控制目标,并确定电池储能电站总功率需求值;所述有限状态机控制模块包括储能SOC有限状态机和风电功率有限状态机。该方法将风功率短期预测值考虑到电池储能电站控制策略中,实现基于风电预测功率的电池储能电站功率协调控制及存储能量的优化管理。

Description

基于风功率预测的电池储能电站能量管理方法 技术领域
本发明属于智能电网以及能量存储与转换技术领域, 具体涉及一种考虑风功率日前预测 的电池储能电站控制方法, 尤其适用于各种规模的风储联合发电系统中风储功率的协调控制 及电池储能系统的能量管理, 以实现基于储能系统提高风功率预测能力。 背景技术
国家风光储输示范工程是国家电网公司建设坚强智能电网首批试点工程, 以 "电网友好 型"新能源发电为目标, 以 "先进性、 灵活性、 示范性、 经济性"为特点, 是目前世界上规 模最大、 集风电、 光伏发电、 储能及输电工程四位一体的可再生能源综合示范工程。 其中, 国家风光储输示范工程(一期)拟建设风电 100丽、 光伏发电 40丽和储能装置 20MW (包含 14MW 磷酸铁锂电池储能系统、 2MW全钒液流电池储能系统、 4MW钠硫电池储能系统)。
随着储能电池及其集成技术的不断发展, 应用电池储能电站去实现平滑风光功率输出、 跟踪计划发电、 参与系统调频、 削峰填谷、 暂态有功出力紧急响应、 暂态电压紧急支撑等多 种应用, 已成为了一种可行方案。
随着风电场并网规模的逐渐加大, 为规范风电场并网运行及风电并网调度管理, 近年相 继出台了风电场功率预测预报及风电场并网运行相关的管理办法和实施细则, 与风电场配套 的风功率预测系统也在普及应用。基于风功率的日前预测结果,网调部门可以合理制定风电场 发电计划, 优化日前机组组合, 减少电力系统的旋转备用容量。 在风电场与储能电站联合发 电并网运行时, 应用储能系统提高风电场预测功率, 将有助于提高风储系统以及电网运行的 经济性。 其中关键问题之一是掌握基于风功率预测的风储联合发电系统优化控制方法。
从电池储能系统的角度来说, 其充放电功率和储能容量有限, 且过度的充电和过度的放 电都将对储能电池的寿命造成影响。 因此, 监控好储能电池荷电状态, 优化控制实时风储功 率, 并将储能电池的荷电状态控制在一定范围内是必要的。
目前正在探索基于风功率预测的风储联合发电系统的功率实时控制及能量管理方法, 需 要结合电池储能电站的运行特性及储能电池特性, 深入研究和探索基于功率预测的大规模风 储联合发电系统并网运行控制的核心技术, 解决大规模风储联合发电站的协调控制及能量管 理中的关键问题。现有的大规模电池储能系统 /电站的功率控制与能量管理方法中,一般不将 储能电池的充放电倍率特性计入约束条件进行能量管理, 因此, 有时会存在不能充分发挥不 同类型储能系统的互补特性优势, 影响电池使用寿命等弊端。 发明内容
针对上述问题, 本发明的目的在于公开一种基于风功率短期预测的电池储能电站能量管 理方法, 该方法在实时满足风电功率预测误差要求的同时, 具备可以优化电池储能电站工作 效率及能量存储状态的功能, 以确保电池储能电站稳定、 可靠运行的控制目的。
本发明的控制方法是通过如下技术方案实现的:
一种基于风功率预测的电池储能电站能量管理方法, 包括以下步骤:
步骤 1 ) 获取风电功率的日前预测值、 当前实际风电功率值以及当前各储能机组的可控 状态值和荷电状态值;
步骤 2 ) 基于风电功率的日前预测值, 分别计算风电功率预测上、 下限特征值; 步骤 3 ) 通过有限状态机控制模块实时修正风储联合出力控制目标, 并确定电池储能电 站总功率需求值;所述有限状态机控制模块包括储能 S0C有限状态机和风电功率有限状态机。
进一步地, 所述步骤 2 ) 具体包括:
所述风电功率预测上限特征值为风电功率的日前预测值与预设的风电功率最大误差上限 值的乘积, 所述风电功率预测下限特征值为风电功率日前预测值与预设的风电功率最大误差 下限值的乘积。
进一步地, 所述步骤 3 ) 具体包括:
1 ) 在储能 S0C有限状态机中设置如下三种状态:
"S0C状态 A" : 储能机组的荷电状态值小于 80(:1(¾的状态;
"S0C状态 B" : 储能机组的荷电状态值介于 S0Cminl、 S0Cmin2之间的状态;
"S0C状态 C" : 储能机组的荷电状态值大于 S0Chigh的状态;
其中, S0ClOT〈S0Cminl〈S0Cmin2〈 S0Chigh, 所述 S0Chigh、 S0ClOT分别为预设的储能机组荷电状态 上、 下限值, S0Cmin^B S0Cmin2为预设的储能机组荷电状态理想值;
2 ) 在风电功率有限状态机中设置如下三种状态:
"风电状态 A" : 当前实际风电功率值小于风电功率预测下限特征值的状态;
"风电状态 B" : 当前实际风电功率值介于风电功率预测上、 下限特征值之间的状态; "风电状态 C" : 当前实际风电功率值大于风电功率预测上限特征值的状态。
当风电功率有限状态机中的风电功率处于 "风电状态 A" 时, 通过下述方法计算电池储 能电站总功率需求值: AO当前储能机组的荷电状态值处于 "S0C状态 A" 时, 电池储能电站总功率需求值为当 前风电功率预测下限特征值乘以预测下限功率修正系数后, 减去当前实际风电功率值;
A2 )当前储能机组的荷电状态值处于 "S0C状态 B" 时: 电池储能电站总功率需求值为当 前风电功率预测下限特征值减去当前实际风电功率值;
A3 )当前储能机组的荷电状态值处于 "S0C状态 C" 时: 电池储能电站总功率需求值为当 前风电功率预测上限特征值乘以预测上限功率修正系数后, 减去当前实际风电功率值;
当风电功率有限状态机中风电功率处于 "风电状态 B" 时, 通过下述方法计算电池储能 电站总功率需求值:
B1 )当前储能机组的荷电状态值处于 "S0C状态 A" 时: 电池储能电站总功率需求值为当 前风电功率预测下限特征值减去当前实际风电功率值;
B2 )当前储能机组的荷电状态值处于 "S0C状态 B" 时:电池储能电站总功率需求值为零;
B3 )当前储能机组的荷电状态值处于 "S0C状态 C" 时: 电池储能电站总功率需求值为当 前风电功率预测上限特征值减去当前实际风电功率值;
当风电功率有限状态机中风电功率处于 "风电状态 C" 时, 通过下述方法计算电池储能 电站总功率需求值:
C1 )当前储能 S0C处于 "S0C状态 A" 时: 电池储能电站总功率需求值为当前风电功率预 测下限特征值乘以预测下限功率修正系数后, 减去当前实际风电功率值;
C2 )当前储能 S0C处于 "S0C状态 B" 时: 电池储能电站总功率需求值为当前风电功率预 测上限特征值减去当前实际风电功率值;
C3 )当前储能 S0C处于 "S0C状态 C" 时: 电池储能电站总功率需求值为当前风电功率预 测上限特征值乘以预测上限功率修正系数后, 减去当前实际风电功率值。
与现有技术相比, 本发明达到的有益效果是:
本发明提供一种基于风功率短期预测的电池储能电站能量管理方法, 具有可兼顾风功率 预测误差、 储能系统的荷电状态, 从而可实现电池储能电站长期、 稳定运行。 该方法主要是 结合风功率预测结果、 风功率允许误差范围、 储能电池 soc, 应用储能 S0C有限状态机和风 电功率有限状态机, 对电池储能电站的充放电功率和存储能量状态进行实时调节, 实现了基 于风功率预测结果对电池储能电站充放电功率需求的实时优化控制的同时, 优化了电池储能
附图说明 图 1是本发明钟兆瓦级锂离子电池储能电站实施例的系统示意图;
图 2是本发明基于风功率预测的电池储能电站能量管理方法实施例的流程图。 具体实施方式
本发明的控制方法可以应用于电池储能电站的协调控制与能量管理中, 下面结合附图对 本发明的控制方法作进一步的详细说明。
如图 1所示, 锂电池储能电站中包括双向变流器和多个锂电池储能机组, 通过双向变流 器可执行对锂电池储能机组的启停控制及充放电功率指令等。
如图 2所示为基于风功率预测的电池储能电站能量管理方法流程图, 包含下列步骤: 步骤 1 ) 获取风电功率的日前预测值、 当前实际风电功率值以及当前各储能机组的可控 状态值和荷电状态值等数据;
步骤 2) 通过日前预测曲线直接读取风电功率的日前预测值, 并进一步通过下式 (1 ) -
( 2)计算风电功率预测误差特征值,该预测误差特征值包括风电功率预测上限特征值 i¾ 和风电功率预测下限特征值 Pt
P预测上限 = 1 + ε上限 ψ预测 ( 1 )
Ρ预测下限 = ( _ 展)尸蕭 ( 2) 上述公式中, 为风电功率的日前预测值、 ^^^为风电功率最大误差上限值、 ε下跟% 风电功率最大误差下限值。 ε上限 、 ^^是根据最大允许误差值预先设定的, 取值范围分别在
[0, 1]之间; 例如, 当风功率预测的最大允许误差值为 25%时, 则 和^^的取值为 0. 25。
步骤 3) 基于风电功率预测误差特征值以及当前各电池储能机组的荷电状态值, 通过有 限状态机控制模块实时修正风储联合出力控制目标, 并确定电池储能电站总功率需求。据此, 基于风电预测功率实现电池储能电站存储能量的优化控制与管理。 所述电池储能电站总功率 需求值的计算方法如下:
所述有限状态机控制模块中包括两种有限状态机, 分别为储能 S0C有限状态机及风电功 率有限状态机。
(1) 在储能 S0C有限状态机中设置如下三种状态:
"S0C状态 A" : S0C〈S0ClOT。 当储能机组的荷电状态值 S0C较低, BP : S0C小于设定的储 能机组荷电状态下限值 S0ClOT; "SOC状态 B" : S0Cmidl〈S0C〈 S0Cmid2。当储能机组的荷电状态值 SOC在较理想的范围之内, 即: S0C处于设定的储能机组荷电状态理想值 S0Cminl和 S0Cmin2之间;
"S0C状态 c" : soc〉sochigh。 当储能机组的荷电状态值 SOC较高, gp : SOC大于设定的 储能机组荷电状态上限值 sochigh
在实际实施过程中, S0Clow <S0Cmi„i<S0Cmi2< S0Chigh,例如,可取 80(:1(„为30%, 80(^为40%, S0Cmid2为 60%, S0Chigh0
(2) 在风电功率有限状态机中设置如下三种状态:
(2. 1) "风电状态 A" : P风电 < P预测下限。 即, 当前实际风电功率值小于风电功率预测下 限特征值时, 依据储能 S0C有限状态机 A, 电池储能电站总功率需求值 的计算方法如下:
( a) 当前储能机组的荷电状态值 S0C处于 "S0C状态 A" 时: 能 = β 预测下限― Ρ风电
(b ) 当前储能机组的荷电状态值 S0C处于 "S0C状态 B" 时: 能 = ^预测下限 P风电
( c ) 当前储能机组的荷电状态值 S0C处于 "S0C状态 C" 时: 能 = a ^预测上限― P风电
(2. 2) "风电状态 B" : Pf Tm < PMt < P预测上限。 即, 当前实际风电功率值小于风电 预测功率上限特征值、 并且大于风电预测功率下限特征值时, 依据储能 S0C有限状态机 B, 电池储能电站总功率需求值 的计算方法如下:
( a) 当前储能 S0C处于 "S0C状态 A" 时: p储能 = p预测下限— p风电
(b ) 当前储能 S0C处于 "S0C状态 B" 时: 储能 0
( c ) 当前储能 S0C处于 "S0C状态 C" 时: p储能 = p预测上限— p风电
( 2. 3 ) "风电状态 C" : P触 > P预测上限。 即, 当前实际风电功率值大于风电功率预测 上限特征值时, 依据储能 S0C有限状态机 c, 电池储能电站总功率需求值 的计算方法如 下:
( a) 当前储能 SOC处于 " S0C状态 A" 时: p储能 = β p预测下限— p风电
( b ) 当前储能 SOC处于 " SOC状态 B " 时: p储能 = p预测上限— p风电
( c ) 当前储能 S0C处于 " S0C状态 C " 时: p储能 = a p预测上限— p风电 上式中, ¾为当前实际风电功率值, 《为预测上限功率修正系数、 ^为预测下限功率 修正系数。 通常, 修正系数 和 ^均可取值为 1。
采用上述技术方案的本发明具有结合风电预测功率状态、 储能 S0C及储能系统最大允许 工作能力的特性, 进行电池储能电站能量管理与功率协调控制的功能, 从而达到满足风电功 率预测目标的同时, 还优化了电池储能电站的能量管理。
如何只是简单根据储能 S0C值以及风电预测误差值, 直接进行储能电站充放电功率的计 算, 则不能在一个较长时间段内优化储能电站电池存储能量的优化分配和合理使用, 从而限 制电池储能电站提高风功率预测结果的控制效果, 并会存在不能有效充分利用电池储能电站 存储电能,导致电池储能电站由于经常处在过充电或过放电状态而不能长期稳定工作的弊端。
正由于本发明增加了 "考虑储能 S0C有限状态机和风电功率有限状态机, 并结合风功率 预测误差的允许范围, 在风功率预测误差允许范围之内, 有效调节储能电站充放电功率和能 量存储状态 S0C "等步骤, 所以不仅克服了上述弊端, 还对风功率预测误差的控制以及电池 储能电站的充放电功率时序控制产生了更好的效果, 更有利于电池储能电站长期、 可靠和稳 定运行。 最后应该说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限制, 结合上述 实施例对本发明进行了详细说明, 所属领域的普通技术人员应当理解到: 本领域技术人员依 然可以对本发明的具体实施方式进行修改或者等同替换, 但这些修改或变更均在申请待批的 权利要求保护范围之中。

Claims

权 利 要 求
1、 一种基于风功率预测的电池储能电站能量管理方法, 其特征在于, 包括以下步骤: 步骤(1 )获取风电功率的日前预测值、 当前实际风电功率值以及当前各储能机组的可控 状态值和荷电状态值;
步骤 (2 ) 基于风电功率的日前预测值, 分别计算风电功率预测上、 下限特征值; 步骤(3 )通过有限状态机控制模块实时修正风储联合出力控制目标, 并确定电池储能电 站总功率需求值;所述有限状态机控制模块包括储能 S0C有限状态机和风电功率有限状态机。
2、 如权利要求 1所述的能量管理方法, 其特征在于, 所述步骤 (2 ) 包括如下步骤: 所述风电功率预测上限特征值为风电功率的日前预测值与预设的风电功率最大误差上限 值的乘积, 所述风电功率预测下限特征值为风电功率日前预测值与预设的风电功率最大误差 下限值的乘积。
3、 如权利要求 1所述的控制方法, 其特征在于, 所述步骤 (3 ) 包括如下步骤:
1 ) 在储能 S0C有限状态机中设置如下三种状态:
"S0C状态 A" : 储能机组的荷电状态值小于 80(:111的状态;
"S0C状态 B" : 储能机组的荷电状态值介于 S0Cminl、 S0Cmin2之间的状态;
"S0C状态 C" : 储能机组的荷电状态值大于 S0Chigh的状态;
其中, S0ClOT〈S0Cminl〈S0Cmin2〈 S0Chigh, 所述 S0Chigh、 S0ClOT分别为预设的储能机组荷电状态 上、 下限值, S0Cmin^B S0Cmin2为预设的储能机组荷电状态理想值;
2 ) 在风电功率有限状态机中设置如下三种状态:
"风电状态 A" : 当前实际风电功率值小于风电功率预测下限特征值的状态;
"风电状态 B" : 当前实际风电功率值介于风电功率预测上、 下限特征值之间的状态; "风电状态 C" : 当前实际风电功率值大于风电功率预测上限特征值的状态。
当风电功率有限状态机中的风电功率处于 "风电状态 A" 时, 通过下述方法计算电池储 能电站总功率需求值:
A1 )当前储能机组的荷电状态值处于 "S0C状态 A" 时, 电池储能电站总功率需求值为当 前风电功率预测下限特征值乘以预测下限功率修正系数后, 减去当前实际风电功率值;
A2 )当前储能机组的荷电状态值处于 "S0C状态 B" 时: 电池储能电站总功率需求值为当 前风电功率预测下限特征值减去当前实际风电功率值;
A3 )当前储能机组的荷电状态值处于 "S0C状态 C" 时: 电池储能电站总功率需求值为当 前风电功率预测上限特征值乘以预测上限功率修正系数后, 减去当前实际风电功率值; 当风电功率有限状态机中风电功率处于 "风电状态 B" 时, 通过下述方法计算电池储能 电站总功率需求值:
B1 )当前储能机组的荷电状态值处于 "S0C状态 A" 时: 电池储能电站总功率需求值为当 前风电功率预测下限特征值减去当前实际风电功率值;
B2 )当前储能机组的荷电状态值处于 "S0C状态 B" 时:电池储能电站总功率需求值为零;
B3 )当前储能机组的荷电状态值处于 "S0C状态 C" 时: 电池储能电站总功率需求值为当 前风电功率预测上限特征值减去当前实际风电功率值;
当风电功率有限状态机中风电功率处于 "风电状态 C" 时, 通过下述方法计算电池储能 电站总功率需求值:
C1 )当前储能 S0C处于 "S0C状态 A" 时: 电池储能电站总功率需求值为当前风电功率预 测下限特征值乘以预测下限功率修正系数后, 减去当前实际风电功率值;
C2 )当前储能 S0C处于 "S0C状态 B" 时: 电池储能电站总功率需求值为当前风电功率预 测上限特征值减去当前实际风电功率值;
C3 )当前储能 S0C处于 "S0C状态 C" 时: 电池储能电站总功率需求值为当前风电功率预 测上限特征值乘以预测上限功率修正系数后, 减去当前实际风电功率值。
PCT/CN2013/087683 2013-11-14 2013-11-22 基于风功率预测的电池储能电站能量管理方法 WO2015070480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310566349.7 2013-11-14
CN201310566349.7A CN104638772B (zh) 2013-11-14 2013-11-14 基于风功率预测的电池储能电站能量管理方法

Publications (1)

Publication Number Publication Date
WO2015070480A1 true WO2015070480A1 (zh) 2015-05-21

Family

ID=53056674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087683 WO2015070480A1 (zh) 2013-11-14 2013-11-22 基于风功率预测的电池储能电站能量管理方法

Country Status (2)

Country Link
CN (1) CN104638772B (zh)
WO (1) WO2015070480A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109274112A (zh) * 2018-09-25 2019-01-25 内蒙古电力(集团)有限责任公司 一种考虑区域稳定性的储能电站调度方法
CN111106625A (zh) * 2020-01-20 2020-05-05 集美大学 一种漂浮式海上雷达测风移动平台风光储直流微网系统蓄电池组运行管理方法
CN111555347A (zh) * 2020-05-14 2020-08-18 国家电网有限公司 基于风功率预测的风储联合运行控制方法
CN111598313A (zh) * 2020-04-28 2020-08-28 西安理工大学 一种风功率预测方法
WO2020219078A1 (en) * 2019-04-26 2020-10-29 Pason Power, Inc. Intelligent energy management system for distributed energy resources and energy storage systems using machine learning
CN112288164A (zh) * 2020-10-29 2021-01-29 四川大学 一种计及空间相关性和修正数值天气预报的风功率组合预测方法
CN112366731A (zh) * 2020-11-05 2021-02-12 国能日新科技股份有限公司 一种电网频率调节方法、系统、服务器及存储介质
CN113373457A (zh) * 2021-06-11 2021-09-10 河北建投新能源有限公司 电解水制氢的控制方法、装置和计算机可读存储介质
CN114362201A (zh) * 2021-12-29 2022-04-15 华北电力科学研究院有限责任公司 电网功率平衡控制方法、装置及储能电站集群
CN115117906A (zh) * 2022-07-06 2022-09-27 湖南大学 一种基于动态约束区间的双电池储能控制方法
CN115117906B (zh) * 2022-07-06 2024-04-26 湖南大学 一种基于动态约束区间的双电池储能控制方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098810B (zh) * 2015-08-11 2018-04-10 华北电力大学 自适应式微网储能系统能量优化管理方法
CN110912162B (zh) * 2018-09-18 2021-05-07 电力规划总院有限公司 一种储能装置方案的确定方法及装置
CN110535159B (zh) * 2019-07-25 2022-04-15 中国电力科学研究院有限公司 一种规模化储能电站运行单元故障预警的方法及系统
CN111384729B (zh) * 2020-02-24 2021-10-15 国网浙江嘉善县供电有限公司 一种基于边缘计算的分布式电源调度控制方法
CN111342501B (zh) * 2020-02-24 2022-09-27 国网浙江省电力有限公司嘉善县供电公司 一种含分布式电源微电网的无功功率控制方法
CN112821385A (zh) * 2021-01-04 2021-05-18 阳光电源股份有限公司 储能系统的控制方法、装置以及计算机可读存储介质
CN113036822B (zh) * 2021-03-02 2022-10-21 中国电力科学研究院有限公司 一种风储协调控制方法、系统、设备及存储介质
CN114156922B (zh) * 2021-11-23 2023-02-14 中节能风力发电股份有限公司 风机与储能装置联合能量控制方法、系统、介质及设备
CN115659595B (zh) * 2022-09-26 2024-02-06 中国华能集团清洁能源技术研究院有限公司 基于人工智能的新能源场站的储能控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522776A (zh) * 2011-12-23 2012-06-27 中国电力科学研究院 储能系统提升风电跟踪计划出力能力的方法
CN102545250A (zh) * 2011-11-16 2012-07-04 河海大学 锂电池储能的风电场功率平滑控制方法及装置和工作方法
US20130024044A1 (en) * 2011-07-18 2013-01-24 Nec Laboratories America, Inc. Optimal storage sizing for integrating wind and load forecast uncertainties

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638436B2 (ja) * 2011-03-28 2014-12-10 三菱重工業株式会社 電力貯蔵システム
US9071056B2 (en) * 2011-11-04 2015-06-30 Samsung Sdi Co., Ltd. Apparatus and method for managing battery cell, and energy storage system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130024044A1 (en) * 2011-07-18 2013-01-24 Nec Laboratories America, Inc. Optimal storage sizing for integrating wind and load forecast uncertainties
CN102545250A (zh) * 2011-11-16 2012-07-04 河海大学 锂电池储能的风电场功率平滑控制方法及装置和工作方法
CN102522776A (zh) * 2011-12-23 2012-06-27 中国电力科学研究院 储能系统提升风电跟踪计划出力能力的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIN, WENTAO ET AL.: "BESS for Wind Power ''Peak Shaving'' Control and Capacity Configuration", ELECTRIC POWER, vol. 8, 31 August 2013 (2013-08-31) *
KE , LIANJIN ET AL.: "Analysis of Capacity Requirements of Battery Energy Storage Based on Forecasted Wind Power Correction", ADVANCED TECHNOLOGY OF ELECTRICAL ENGINEERING AND ENERGY, vol. 32, no. 3, 31 July 2013 (2013-07-31) *
LI, BEI ET AL.: "A Control Strategy for Battery Energy Storage System to Level Wind Power Output", POWER SYSTEM TECHNOLOGY, vol. 36, no. 8, 31 August 2012 (2012-08-31) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109274112A (zh) * 2018-09-25 2019-01-25 内蒙古电力(集团)有限责任公司 一种考虑区域稳定性的储能电站调度方法
CN109274112B (zh) * 2018-09-25 2022-04-01 内蒙古电力(集团)有限责任公司 一种考虑区域稳定性的储能电站调度方法
WO2020219078A1 (en) * 2019-04-26 2020-10-29 Pason Power, Inc. Intelligent energy management system for distributed energy resources and energy storage systems using machine learning
CN111106625A (zh) * 2020-01-20 2020-05-05 集美大学 一种漂浮式海上雷达测风移动平台风光储直流微网系统蓄电池组运行管理方法
CN111598313A (zh) * 2020-04-28 2020-08-28 西安理工大学 一种风功率预测方法
CN111555347A (zh) * 2020-05-14 2020-08-18 国家电网有限公司 基于风功率预测的风储联合运行控制方法
CN112288164A (zh) * 2020-10-29 2021-01-29 四川大学 一种计及空间相关性和修正数值天气预报的风功率组合预测方法
CN112288164B (zh) * 2020-10-29 2023-04-07 四川大学 一种计及空间相关性和修正数值天气预报的风功率组合预测方法
CN112366731A (zh) * 2020-11-05 2021-02-12 国能日新科技股份有限公司 一种电网频率调节方法、系统、服务器及存储介质
CN112366731B (zh) * 2020-11-05 2023-08-11 国能日新科技股份有限公司 一种电网频率调节方法、系统、服务器及存储介质
CN113373457B (zh) * 2021-06-11 2022-11-15 河北建投新能源有限公司 电解水制氢的控制方法、装置和计算机可读存储介质
CN113373457A (zh) * 2021-06-11 2021-09-10 河北建投新能源有限公司 电解水制氢的控制方法、装置和计算机可读存储介质
CN114362201A (zh) * 2021-12-29 2022-04-15 华北电力科学研究院有限责任公司 电网功率平衡控制方法、装置及储能电站集群
CN114362201B (zh) * 2021-12-29 2024-03-12 华北电力科学研究院有限责任公司 电网功率平衡控制方法、装置及储能电站集群
CN115117906A (zh) * 2022-07-06 2022-09-27 湖南大学 一种基于动态约束区间的双电池储能控制方法
CN115117906B (zh) * 2022-07-06 2024-04-26 湖南大学 一种基于动态约束区间的双电池储能控制方法

Also Published As

Publication number Publication date
CN104638772B (zh) 2018-01-19
CN104638772A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2015070480A1 (zh) 基于风功率预测的电池储能电站能量管理方法
US10036778B2 (en) Real-time power distribution method and system for lithium battery and redox flow battery energy storage systems hybrid energy storage power station
CN102522776B (zh) 储能系统提升风电跟踪计划出力能力的方法
CN109301849B (zh) 一种用户侧电池储能电站的能量管理组合控制策略
CN108832646B (zh) 一种适用于可动态重构电池储能系统的管理系统及其方法
CN102214934B (zh) 基于兆瓦级电池储能电站的风光发电出力平滑控制方法
US10211665B2 (en) Energy management method of multi-type battery energy storage power station considering charge and discharge rates
CN102208818B (zh) 基于小波滤波的兆瓦级风光储发电系统出力平滑控制方法
US20160233679A1 (en) A method and system for control of smoothing the energy storage in wind phtovolatic power fluctuation based on changing rate
WO2013097489A1 (zh) 兆瓦级电池储能电站实时功率控制方法及其系统
WO2013177923A1 (zh) 风光储联合发电系统日前优化调度方法
CN107370171B (zh) 一种独立微网中大规模储能优化配置与协调控制方法
CN103187733A (zh) 兆瓦级液流电池储能电站实时功率控制方法及其系统
CN109617103B (zh) 一种储能机组的梯次利用储能电池能量控制方法和系统
Xiao et al. Flat tie-line power scheduling control of grid-connected hybrid microgrids
CN103560533B (zh) 基于变化率控制储能电站平滑风光发电波动的方法及系统
CN104253439B (zh) 电池储能电站无功功率分配与控制方法
CN202651806U (zh) 一种电池储能电站平滑风光发电控制系统
CN104935075A (zh) 分布式电源接入用户双向计量、监控与能效管理系统及方法
CN115395545A (zh) 考虑环境修正模型参数的磷酸铁锂电池参与电网调频方法
Lei et al. Power optimization allocation strategy for energy storage station responding to dispatch instruction
Mei et al. Study on the optimal dispatching method of Power Grid Considering the energy storage regulation on power supply side
CN109494814A (zh) 一种具有能量存储装置的智能电网的控制方法
CN114069679B (zh) 锂电池储能电站倍率控制方法、系统及存储介质
CN117353337B (zh) 一种提高电化学储能系统运行效率的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897601

Country of ref document: EP

Kind code of ref document: A1