WO2013177923A1 - 风光储联合发电系统日前优化调度方法 - Google Patents

风光储联合发电系统日前优化调度方法 Download PDF

Info

Publication number
WO2013177923A1
WO2013177923A1 PCT/CN2012/086730 CN2012086730W WO2013177923A1 WO 2013177923 A1 WO2013177923 A1 WO 2013177923A1 CN 2012086730 W CN2012086730 W CN 2012086730W WO 2013177923 A1 WO2013177923 A1 WO 2013177923A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
power generation
power
energy storage
period
Prior art date
Application number
PCT/CN2012/086730
Other languages
English (en)
French (fr)
Inventor
李利利
丁恰
涂孟夫
单茂华
雷为民
梁廷婷
Original Assignee
国电南瑞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司 filed Critical 国电南瑞科技股份有限公司
Publication of WO2013177923A1 publication Critical patent/WO2013177923A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the invention belongs to the technical field of power system dispatching automation, and relates to a pre-optimization scheduling method for a wind-light storage combined power generation system.
  • Wind energy and solar energy are renewable and pollution-free green energy sources.
  • Wind power and photovoltaic power generation have been vigorously developed in recent years. Wind power generation relies on changing meteorological conditions. The active output will fluctuate wildly during different periods. For example, the output power in the previous period is very high, and it falls to a lower level in the next period.
  • the large-scale wind power and photovoltaic power generation and other renewable energy sources in the system have a great impact on the reliability and stability of the traditional power grid, which contradicts the system's need for stable and certain power injection.
  • the climbing rate of the traditional unit often fails to meet the large and short-term power fluctuation requirements of renewable energy, which forces the grid to limit the renewable energy of the access system. .
  • the operation process of the wind and light storage combined power generation system according to the power demand of the power grid and the wind speed and illumination prediction, optimize the active power of the wind power plant, the photovoltaic power station and the energy storage power station, and formulate a reasonable wind and light storage combined power generation meter. It is an important part of the comprehensive benefits of wind and light storage combined power generation system to achieve safety, economy and environmental protection. It is also an indispensable link in the construction of intelligent panoramic control system for wind and light storage combined power generation. The output based on wind power generation is unschedulable under normal conditions. The main task of joint scheduling of wind and light storage systems is to determine the charging and discharging process of the energy storage device to ensure that the system can reach the predetermined control target to the maximum extent.
  • the object of the present invention is to provide a pre-optimization scheduling method for a wind-light storage combined power generation system, which utilizes the joint optimization scheduling of wind power generation and energy storage, utilizes the storage and release of electric energy by the energy storage device, and smoothes the power output curve of the power generation system. Improve the power output characteristics of the wind and solar storage combined power generation system, and increase the absorption acceptance of renewable energy by the power grid.
  • the present invention proposes an active power optimization scheduling method for a wind and solar storage combined power generation system suitable for the preparation of a daily dispatching plan, which is characterized in that it comprises the following steps:
  • the optimal scheduling model is:
  • the method of the invention has the following features and functions:
  • the optimal scheduling method considers the coupling between the scheduling periods, realizes the overall optimization of the continuous process of wind power storage and output, and obtains more effective power generation planning results. Considering the charge and discharge characteristics of energy storage, considering the accumulation of electricity in multi-period coupling The effect is to suppress fluctuations in the output of intermittent energy generation and obtain a smoother and friendly system power generation curve.
  • the invention optimizes the wind and solar storage combined power generation plan that meets the requirements of the power grid dispatching operation, improves the power output characteristics of the entire power generation system, alleviates the intermittent fluctuation of the renewable energy source, and utilizes the energy storage device to store and release the electric energy, which can make the unstable scenery Power generation becomes a stable, high-quality power product, increasing the extent to which the grid can dissipate renewable energy.
  • the invention considers various constraints of the operation of the wind and light storage combined power generation system, and can provide the dispatcher with a practical wind and light storage combined power generation plan, which replaces the original empirical analysis type scheduling scheme, can effectively guide the short-term dispatching operation of the power system, and greatly improve The ability to control the power grid and optimize the allocation of power resources.
  • the invention adds the curve smoothing as a soft constraint to the optimization target, can automatically adjust the curve shape according to the operating characteristics of the system, realizes the joint optimization of improving the power output curve and increasing the acceptance of clean energy, and helps to improve the intelligent level of power generation dispatching and Decision-making capacity.
  • the optimization method has the characteristics of low computational intensity and strong adaptability, and is more suitable for practical application in China's dispatching institutions. detailed description
  • the invention relates to a pre-optimization scheduling method for a wind-solar storage combined power generation system.
  • the following is a preferred embodiment of the present invention, including a prior art power generation planning process for a wind and solar storage cogeneration system employing the method of the present invention, the features, purposes and advantages of which can be seen from the description of the embodiments.
  • pre-construction power generation planning process it is necessary to prepare according to the operation mode of the wind and light storage combined power generation system and the wind and light storage operation constraints, including wind power availability capability, photovoltaic available capacity, energy storage charge and discharge constraints, equipment maintenance plan, etc.
  • the time and scenery of the combined storage plan is necessary to prepare according to the operation mode of the wind and light storage combined power generation system and the wind and light storage operation constraints, including wind power availability capability, photovoltaic available capacity, energy storage charge and discharge constraints, equipment maintenance plan, etc.
  • the active power optimization scheduling method of the wind and light storage combined power generation system of the invention the active output of the three types of wind and light storage units in the system is the research object, the maximum active power is added as the optimization target, and the smooth soft constraint of the curve is added to establish an optimal solution model, which adopts linearity.
  • the planning algorithm is quickly solved to obtain the active optimization results of the wind and solar storage combined power generation system.
  • the method includes the following steps:
  • E s (s,t) E s (s,tl)-p s (s,t)*PrdMn/60*77 ( 7 )
  • Equation (2) is the system active balance equation constraint
  • Equation (3) is the system active climbing slope constraint
  • Equation (4) is the wind farm output upper limit constraint
  • Equation (5) is the photovoltaic power plant output upper limit constraint
  • Equation (6) is Energy storage power upper limit constraint
  • Equation (7) is the expression of energy storage charge and discharge energy
  • Equation (8) is the energy storage energy constraint
  • NT is the number of scheduling periods
  • It is the wind farm set
  • G pv is the PV power plant set
  • G s For the energy storage device set
  • P (t) is the total active output of the system t period
  • p w (w, t) is the active output of the wind farm at the time period t
  • Ppv (pv, t) is the active power of the photovoltaic power station during the time period t Output
  • p s (s, t) is the active plan of the energy storage device during the period t
  • is the maximum value of the climbing
  • the invention can dynamically consider the limitation conditions of the power generation planning under the condition of the grid operation mode and the data change in different time periods, and flexibly adapt to the influence of various factors in the actual scheduling under the premise of ensuring the maximum connection of the clean energy grid.
  • Multi-period joint power generation plan for wind and light storage systems The analysis of the optimization results of the power generation plan is characterized by the fact that the wind power output is small at night, the photovoltaic power generation is large during the day, and the wind power generation has certain complementarity. Further, through the charging and discharging process of the energy storage device, a relatively smooth system power generation is obtained. The curve, and the charge and discharge plan of the energy storage device is obtained.
  • the storage and release of energy can improve the active output characteristics of the entire power generation system.
  • the output characteristics of the entire wind storage system to the power grid are similar to those of conventional power sources, thus greatly improving the ability of the power grid to accept new energy sources.
  • This method studies and attempts to optimize the power generation plan under the actual grid data, and explores the short-term power generation plan optimization method for the combined wind power storage system.
  • the method fully considers the operating characteristics and various limiting factors of the wind and light storage, and adopts the optimization to obtain the model, and finally obtains a more reasonable system short-term power generation plan result.
  • the method does not require a large amount of manpower participation, and the calculation speed can meet the needs of practical applications, effectively solving the drawbacks of the traditional power generation plan formulation requiring a large amount of manpower, relying on experience, low efficiency, and difficulty in obtaining optimal results, and has broad application prospects. .

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Wind Motors (AREA)

Abstract

一种风光储联合发电系统日前优化调度方法,包括下列步骤:获取各类优化数据,确定风光储联合发电系统的优化空间;根据实际电网的电网模型建立以有功总电力最大为目标的优化模型;将总有功出力曲线变动关系的惩罚量加入到优化目标中,获得考虑发电曲线平滑的优化调度模型;将模型中的非线性因素线性化,采用对偶单纯形法求解,得出风光储联合发电系统的有功发电曲线,上报至上级调度中心,并得到储能装置的充放电计划,下发子系统执行。本方法大大提高了电力资源优化配置能力。

Description

说 明 书 风光储联合发电系统曰前优化调度方法
技术领域
本发明属于电力系统调度自动化技术领域, 涉及一种风光储联合发电系统 曰前优化调度方法。
背景技术
随着能源与环境问题的曰益严峻, 节能减排问题在世界范围内得到广泛关 注。 风能与太阳能作为可再生无污染的绿色能源, 风力发电、 光伏发电近年来 得到了大力发展。 风光发电依赖于变化的气象条件, 有功出力会在不同时段间 剧烈波动, 比如前一时段输出功率很高, 到下一时段又跌落到较低水平。 系统 中曰益增加的大型风电与光伏发电等可再生能源对传统电网的可靠性及稳定性 带来很大的冲击, 这与系统需要平稳、 确定的电能注入相矛盾。 当大型可再生 能源接入电力系统后, 传统机组的爬坡速率往往不能满足可再生能源带来的大 幅度、 短时的功率波动要求, 这就迫使电网对接入系统的可再生能源进行限制。
由于风能和光能的间歇性和随机性, 风、 光独立运行系统很难提供连续稳 定的能量输出, 如果在风、 光互补的基础上加入储能装置组成风光储联合发电 系统, 就可以充分利用风能和光能在时间及地域上的天然互补性, 同时配合储 能系统对电能的存储和释放, 改善整个风光发电系统的功率输出特性, 缓解风 电、 光电等可再生能源的间歇性和波动性与电力系统需要实时平衡之间的矛盾, 降低其对电网的不利影响。
在风光储联合发电系统运行过程中, 根据电网用电需要及风速、 光照预测, 优化风电厂、 光伏电站、 储能电站的有功功率, 制定合理的风光储联合发电计 划, 是发挥风光储联合发电系统综合效益, 实现安全性、 经济性、 环保性的重 要内容, 也是建设风光储联合发电智能全景优化控制系统必不可少的环节。 基 于风光发电出力在通常情况下是不可调度的, 风光储系统联合调度的主要任务 是确定储能装置的充放电过程, 确保系统能够最大程度地达到预定控制目标。 然而, 目前尚没有有效的调度方法, 实现风光储联合发电系统的有功优化调度。 在实际运行中, 电力系统调度中心往往根据运行经验, 人工制定风光储联合发 电系统的发电计划, 从而难以保证调度运行的安全性和经济性, 也给运行人员 带来了巨大的工作量。
发明内容
本发明实施的目的在于提供一种风光储联合发电系统曰前优化调度方法, 通过风光发电与储能的联合优化调度, 利用储能装置对电能的存储和释放, 平 滑发电系统的功率输出曲线, 改善风光储联合发电系统的功率输出特性, 增加 电网对可再生能源的吸收接纳程度。
为解决上述技术问题, 本发明提出了一种适用于日前调度计划编制的风光 储联合发电系统有功优化调度方法, 其特征在于, 包括以下步骤:
1)根据风光储联合发电系统内的机组类型, 将全部机组划分为风电机组、 光伏机组、 储能电池组三部分; 风电与光伏机组通过并网发电实现清洁能源的 转化利用, 储能装置负责电能的存储与释放;
2)确定需要进行风光储联合发电系统优化调度的周期范围(即调度时段长度 与时段总数目), 从短期风电功率预测系统获取周期内各时段风电机组有功功率 的预测值, 从短期光伏发电功率预测系统获取周期内各时段光伏发电机组有功 功率预测值, 以此预测值作为风机组、 光机组的出力上限; 从储能管理系统获 得储能装置的可用容量, 作为储能容量限额;
3)基于风光储联合发电系统的经济参数与运行参数,考虑间歇式能源发电的 出力限制、 储能装置充放电的电力电量限制, 将风发电单元、 光发电单元、 储 能单元的有功功率进行相加, 获得联合发电系统的有功总出力, 建立以并网有 功总出力最大为目标函数的优化调度模型, 实现风光储短期出力计划的联合优 化以及发电计划的多时段整体优化,
优化调度模型为:
目标函数:
∑ P (0 1 )
约束条件:
∑ Pw(w,t)+ ∑ Ppv(pv,t)+∑ps(s,t) = psum(t) (2)
weG^ pveGpy s eGs
-Δ<ρ_(ΐ)-ρ_(ΐ-1)<Δ (3)
pw(w,t)<I^ (4)
Ppv(pv,t)≤I^ (5)
Ps(st)≤ (6)
Es(s,t) = Es(s,t-l)-Ps(s,t)* *dt (7 )
Figure imgf000004_0001
其巾:
式 (2)是系统有功平衡等式约束; 式 (3)是系统有功爬坡约束; 式 (4) 是风电场出力上限约束; 式 (5) 是光伏电站出力上限约束; 式 (6)是储能电 力上限约束; 式 (7)是储能充放电能量表达式; 式 (8)是储能存储能量约束; NT为调度时段数; ^为风电场集合; Gpv为光伏电站集合; Gs为储能装置集合; w为风电场的索引; pv为光伏电站的索引; s为储能装置的索引; psmn(t)为系统 t时段的总有功出力; pw(W t)为风电场在时段 t的有功出力; ppv(pv t)为光伏电站 在时段 t的有功出力; ps (s,t)为储能装置在时段 t的有功计划; Δ为系统有功出 力每时段爬坡速率的最大值; 为风电场输出功率的上限; 为光伏电站输 出功率的上限; 为储能装置输出功率的上限; Es (S t)为储能装置在时段 t的存 储电量; 7为储能装置充放电效率系数; dt为调度周期内的时段长度; 和^ 分别为储能允许的存储电量的最大值和最小值;
4)将有功总出力的多时段间变化量加入到优化目标中,基于发电曲线多时段 间的耦合关系, 建立考虑发电曲线平滑的优化调度模型, 通过储能的充放电控 制, 降低发电曲线的波动性;
加入平滑建模后的调度模型优化目标表达为:
max∑ (Psum(t)- I P (t) - psum(t - 1) 1) ( 9 )
5)将优化调度模型中的非线性因素线性化,在步骤 3)与 4)所述优化模型中, 只有式 (9 ) 中含有绝对值, 为非线性形式, 对式 〔9 ) 的优化目标进行线性化 转化, 得到线性优化模型; 釆用对偶单纯形法求解优化调度模型, 得出风光储 联合发电系统的有功发电曲线, 并得到各风电场、 光伏电站在调度周期内的有 功出力, 以及储能装置的充放电计划;
6)将调度周期内的风光储发电计划下发, 风光储各场站接收到发电计划后, 制定本场站内的发电计划; 同时, 将风光储联合发电系统的总发电曲线上报至 上级调度中心。
本发明的方法具有以下特点和功能:
(1) 通过建立风光储联合发电系统日前优化模型, 能够根据风光发电预测信 息, 考虑多种运行约束, 统筹协调各类发电资源, 制定切实有效的风光储联合 发电计划。
(2) 优化模型中考虑了发电曲线的多点变化关系,在目标函数中加入有功出 力曲线变动关系的惩罚量, 通过曲线平滑, 改善风光储联合发电系统的功率输 出特性。
(3) 优化调度方法考虑调度周期时段间的耦合, 实现了风光储有功出力的连 续过程整体优化, 获得更为有效的发电计划结果; 利用储能的充放电特性, 考 虑多时段耦合的电量累积效应, 平抑间歇式能源发电出力的波动, 获得较为平 滑友好的系统发电功率曲线。
本发明的有益效果是:
本发明优化编制满足电网调度运行要求的风光储联合发电计划, 改善整个 发电系统的功率输出特性, 缓解可再生能源的间歇波动, 利用储能装置对电能 的存储和释放, 可以使不稳定的风光发电变成稳定的具有较高品质的电力产品, 增加电网对可再生能源的消纳程度。
本发明考虑了风光储联合发电系统运行的多种约束条件, 可以为调度人员 提供切实可行的风光储联合发电计划, 替代原先的经验分析型调度方案, 能够 有效指导电力系统短期调度运行, 大大提高了电网驾驭能力和电力资源优化配 置能力。
本发明把曲线平滑作为软约束加入到优化目标中, 可以根据系统运行特点 自动调整曲线形状, 实现了改善功率输出曲线与增加清洁能源接纳的联合优化, 有助于提高发电调度的智能化水平和决策能力。 同时, 优化方法具有计算强度 低、 适应性强的特点, 更加适合在我国调度机构实际应用。 具体实施方式
本发明一种风光储联合发电系统曰前优化调度方法。 下面是本发明的一个 优选实施案例, 包含了采用本发明方法的一个风光储联合发电系统的日前发电 计划编制过程, 它的特征、 目的和优点可以从实施例的说明中看出。
在曰前发电计划编制过程中, 需要根据风光储联合发电系统的运行模式和 风光储运行约束, 包括风电可用能力、 光伏可用能力、 储能充放电约束、 设备 检修计划等, 编制次日 96个时段的风光储联合发电计划。
本发明的风光储联合发电系统有功优化调度方法, 系统中的风光储三类机 组有功出力为研究对象, 以有功总加最大为优化目标, 并加入曲线平滑软约束, 建立优化求解模型, 采用线性规划算法快速求解, 获得风光储联合发电系统的 有功优化结果。
本方法包括以下步骤:
1)根据风光储联合发电系统内的机组类型, 将全部机组划分为风电机组、 光伏机组、 储能电池组三部分; 风电与光伏机组通过并网发电实现清洁能源的 转化利用, 储能装置负责电能的存储与释放;
2)确定风光储联合发电系统有功优化调度的周期,从短期预测系统读取风电 场风电功率预测信息和光伏电站发电预测信息, 作为风光机组的出力上限; 从 储能管理系统获得储能装置的可用容量, 作为储能容量限额;
3)根据风光储联合发电系统的经济模型,考虑间歇能源出力限制、储能电力 电量限制, 基于风光储三部分的有功功率总加, 获得系统的有功总出力, 建立 以并网有功总电力最大为目标函数的优化调度模型, 实现风光储短期出力计划 的联合优化以及发电计划的多时段整体优化; 优化调度模型为:
目标函数:
∑ P (0 1 )
约束条件:
∑ Pw(w,t)+ ∑ Ppv(pv,t)+∑ps(s,t) = psum(t) (2)
weG^ veGpy s eGs
-Δ<ρ_(ΐ)-ρ_(ΐ-1)<Δ (3)
pw(w,t)<I^ (4)
Ppv(Pv,t)≤^ (5)
Ps(s,t)≤ (6)
Es(s,t) = Es(s,t-l)-ps(s,t)*PrdMn/60*77 ( 7 )
Figure imgf000008_0001
其巾:
式 (2)是系统有功平衡等式约束; 式 (3)是系统有功爬坡约束; 式 (4) 是风电场出力上限约束; 式 (5) 是光伏电站出力上限约束; 式 (6)是储能电 力上限约束; 式 (7)是储能充放电能量表达式; 式 (8)是储能存储能量约束; NT为调度时段数; 为风电场集合; Gpv为光伏电站集合; Gs为储能装置集合; P (t)为系统 t时段的总有功出力; pw(w,t)为风电场在时段 t的有功出力; Ppv(pv,t) 为光伏电站在时段 t的有功出力; ps(s,t)为储能装置在时段 t的有功计划; Δ为 系统有功出力每时段爬坡速率的最大值; 为风电场输出功率的上限; ^为 光伏电站输出功率的上限; ^;为储能装置输出功率的上限; Es(S0为储能装置 在时段 t的存储电量; /为储能装置充放电效率系数; Es(St)为储能装置在时 t的存储电量; ^;和 Est分别为储能允许的最大值和最小值; 4)将总有功出力曲线变动关系的惩罚量加入到优化目标中,基于多点曲线间 的耦合关系, 建立考虑发电曲线平滑的优化调度模型, 通过储能的充放电控制, 降低发电曲线的波动性;
加入平滑建模后的调度模型优化目标表达为:
max∑ (P (t)- 1 p (t) - p (t - 1) I) ( 9 )
5) 将优化调度模型中的非线性因素线性化,在步骤 3)与 4)所述优化模型中, 只有的绝对值表达为非线性形式, 将优化目标进行线性化, 得到线性优化模型; 采用对偶单纯形法求解优化调度模型, 得出风光储联合发电系统的有功发电曲 线, 并得到各风电场、 光伏电站在调度周期内的有功出力, 以及储能装置的充 放电计划;
6)将调度周期内的风光储发电计划下发, 风光储各场站接收到发电计划后, 制定本场站内的发电计划; 同时, 将风光储联合发电系统的总发电曲线上报至 上级调度中心。
实际应用效果
本发明能够在不同时段间电网运行方式与数据变化的条件下, 动态地考虑 发电计划编制的限制条件, 在保障清洁能源并网最大的前提下, 灵活适应实际 调度中各种因素的影响, 获得风光储系统的多时段联合发电计划。 对发电计划 优化结果进行分析, 受风电出力夜间大白天小、 光伏发电白天大夜间小的特点, 风光发电具有一定的互补性, 进一步通过储能装置的充放电过程, 获得了相对 平滑的系统发电曲线, 并获得了储能装置的充放电计划。 同时, 受储能存储容 量及检修的影响, 当储能达到充电限值时, 会影响系统曲线的平滑效果, 若增 加储能容量, 系统发电曲线平滑效果将会得到进一步改善。 通过储能装置对电 能的存储与释放, 改善整个发电系统的有功输出特性, 整个风光储系统对电网 的输出特性类似于常规电源, 从而极大地提高了电网接纳新能源的能力。
本方法在实际电网数据下开展的发电计划优化的研究和尝试, 摸索出风光 储联合发电系统短期发电计划优化方法。 该方法充分考虑风光储的运行特点和 各种限制因素, 采用优化得到模型, 最终获得更加合理的系统短期发电计划结 果。 该方法不需要大量人力的参与, 计算速度可以满足实际应用的需要, 有效 地解决了传统的发电计划制定需要大量人力, 依靠经验, 效率低, 难以获得最 优结果的弊病, 具有广泛的应用前景。
此处根据特定的示例性实施案例描述了本发明。 对本领域的技术人员来说 不脱离本发明范围下进行适当的替换或修改是显而易见的。 示例性的实施案例 仅仅是例证性的, 而不是对本发明的范围的限制, 本发明的范围由所附属的权 利要求定义。

Claims

权利 要 求 书
1、 一种风光储联合发电系统日前优化调度方法, 其特征在于, 包括以下步 骤:
1)根据风光储联合发电系统内的机组类型, 将全部机组划分为风电机组单 元、 光伏发电单元、 储能单元三部分; 风电与光伏单元通过并网发电实现清洁 能源的转化利用, 储能装置负责电能的存储与释放;
2)确定需要进行风光储联合发电系统有功优化调度的周期范围,即调度时段 长度与时段总数目, 从短期风电功率预测系统获取周期内各时段风电机组有功 功率的预测值, 从短期光伏发电功率预测系统获取周期内各时段光伏发电机组 有功功率预测值, 以此预测值作为风单元、 光单元的出力上限; 从储能管理系 统获得储能装置的可用容量, 作为储能容量限额;
3)将风发电单元、光发电单元和储能单元的有功功率进行相加, 获得联合发 电系统的有功总出力, 建立以并网有功总电力最大为目标函数的优化调度模型, 实现风光储短期出力计划的联合优化以及发电计划的多时段整体优化;
优化调度模型为:
目标函数:
∑ P (0 ( 1 ) 约束条件:
∑ Pw(w,t)+ ∑ Ppv(pv,t)+XPs(s,t) = psum(t) (2)
weG^ pveGpy s eGs
-Δ<ρ_(ΐ)-ρ_(ΐ-1)<Δ (3)
pw(w,t)<I^ (4)
pPv(pv,t)< I (5) Ps(s,t)≤ (6) Es(s,t) = Es(s,t-l)-ps(s,t)* *dt ( 7 )
Figure imgf000012_0001
其中:
式 (2)是系统有功平衡等式约束; 式 (3)是系统有功爬坡约束; 式 (4) 是风电场出力上限约束; 式 (5) 是光伏电站出力上限约束; 式 (6)是储能电 力上限约束; 式 (7)是储能充放电能量表达式; 式 (8)是储能存储能量约束; NT为调度时段数; ^为风电场集合; GPV为光伏电站集合; Gs为储能装置集合; w为风电场的索引; pv为光伏电站的索引; s为储能装置的索引; Psum(t)为系统 t时段的总有功出力; Pw(wt)为风电场在时段 t的有功出力; ppv(pvt)为光伏电站 在时段 t的有功出力; Ps(S,t)为储能装置在时段 t的有功计划; Δ为系统有功出 力每时段爬坡速率的最大值; ^:为风电场输出功率的上限; 为光伏电站输 出功率的上限; 为储能装置输出功率的上限; Es(S,t)为储能装置在时段 t的存 储电量; ;7为储能装置充放电效率系数; dt为调度周期内的时段长度; Es(s,t)为 储能装置在时段 t的存储电量; 和^分别为储能允许的存储电量的最大值和 最小值;
4)将有功总出力的多时段间变化量加入到优化目标中,基于发电曲线多时段 间的耦合关系, 建立考虑发电曲线平滑的优化调度模型, 通过储能的充放电控 制, 降低发电曲线的波动性;
加入平滑建模后的调度模型优化目标表达为:
max∑ (p』- 1 P (t) - psum(t- 1)1) ( )
teNT
5)将优化调度模型中的非线性因素线性化,在步骤 3)与 4)所述优化模型中, 只有式 (9 ) 中含有绝对值, 为非线性形式, 对式 (9 ) 的优化目标进行线性化 转化, 得到线性优化模型; 采用对偶单纯形法求解优化调度模型, 得出风光储 联合发电系统的有功发电曲线, 并得到各风电场、 光伏电站在调度周期内的有 功出力, 以及储能装置的充放电计划;
6)将调度周期内的风光储发电计划下发, 风光储各场站接收到发电计划后, 制定本场站内的发电计划; 同时, 将风光储联合发电系统的总发电曲线上报至 上级调度中心。
PCT/CN2012/086730 2012-05-31 2012-12-17 风光储联合发电系统日前优化调度方法 WO2013177923A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210176522.8A CN102694391B (zh) 2012-05-31 2012-05-31 风光储联合发电系统日前优化调度方法
CN201210176522.8 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013177923A1 true WO2013177923A1 (zh) 2013-12-05

Family

ID=46859706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086730 WO2013177923A1 (zh) 2012-05-31 2012-12-17 风光储联合发电系统日前优化调度方法

Country Status (2)

Country Link
CN (1) CN102694391B (zh)
WO (1) WO2013177923A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110443470A (zh) * 2019-07-18 2019-11-12 清华大学 基于生成式对抗网络的风光水联合调度方法及装置
CN111740443A (zh) * 2020-06-19 2020-10-02 中国电建集团青海省电力设计院有限公司 多分布式电源的独立微电网多时间尺度协同优化调度方法
US11069926B1 (en) * 2019-02-14 2021-07-20 Vcritonc Alpha, Inc. Controlling ongoing battery system usage via parametric linear approximation

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694391B (zh) * 2012-05-31 2014-09-03 国电南瑞科技股份有限公司 风光储联合发电系统日前优化调度方法
CN103199531B (zh) * 2013-02-28 2014-10-29 华北电力大学 基于二阶锥规划的光储系统功率平滑控制方法
CN104036337A (zh) * 2013-03-04 2014-09-10 中国电力科学研究院 基于预测不确定度和净空出力的光伏发电优化调度方法
CN103151798B (zh) * 2013-03-27 2015-02-04 浙江省电力公司电力科学研究院 独立微网系统的优化方法
CN104701870B (zh) * 2013-12-06 2019-09-27 清华大学 一种电力系统储能优化方法
CN103904687B (zh) * 2014-04-03 2016-08-17 北京交通大学 面向电网负载数据的混合能源系统配置及输出平滑方法
CN105490312B (zh) * 2015-12-18 2018-04-06 国家电网公司 一种电力系统多源无功优化控制方法
CN106208136B (zh) * 2016-08-01 2019-02-19 山东理工大学 计及效益和风险的含不确定风电的日前调度方法
FR3055753B1 (fr) * 2016-09-07 2019-06-14 Schneider Electric Industries Sas Procede de controle d'une centrale de production electrique
CN106684916B (zh) * 2017-02-16 2019-04-09 上海电力学院 一种带蓄电池的并网光伏系统运行优化方法
CN109386429B (zh) * 2017-08-04 2021-01-15 中国电力科学研究院 一种风电与光热发电互补系统协调运行控制方法与装置
CN107591806B (zh) * 2017-10-09 2019-10-25 华中科技大学 一种考虑主动配电网有功调节能力的主网日前调度方法
CN107844910A (zh) * 2017-11-20 2018-03-27 华北电力大学(保定) 基于风核协调的多电源联合优化调度运行方法
EP3544142A1 (en) * 2018-03-19 2019-09-25 ABB Schweiz AG Power system optimisation
CN108808744A (zh) * 2018-06-01 2018-11-13 国网冀北电力有限公司电力科学研究院 有储能参与的新能源发电系统的有功协调控制方法及系统
CN108964121B (zh) * 2018-07-11 2021-06-01 南京南瑞集团公司 计及水电日前日内计划及电量目标的风光水实时控制方法
CN109066747B (zh) * 2018-08-23 2021-10-08 天津大学前沿技术研究院有限公司 满足电网三段线需求的多能互补电站储能系统容量配置法
CN110400056B (zh) * 2019-07-04 2022-03-29 国网四川省电力公司电力科学研究院 基于风光时空特性的梯级水电日前优化调度方法及装置
CN112332457B (zh) * 2020-10-13 2022-05-17 江苏方天电力技术有限公司 一种配电综合监测数据的边云协同处理方法
CN113013905B (zh) * 2021-02-03 2024-05-28 国网天津市电力公司营销服务中心 一种风光储微能量收集无线传感系统调度方法及装置
CN113285655A (zh) * 2021-05-25 2021-08-20 中国华能集团清洁能源技术研究院有限公司 一种风光互补优化配比方法
CN113595153B (zh) * 2021-09-29 2022-02-25 中国电力科学研究院有限公司 一种新能源集群的输出功率优化方法及装置
CN114462902B (zh) * 2022-04-13 2022-07-26 山东大学 考虑光热和水势综合储能出力的分布式发电调度方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355006A (zh) * 2011-09-28 2012-02-15 东北电力大学 一种风光储联合并网发电协调控制方法
CN102694391A (zh) * 2012-05-31 2012-09-26 国电南瑞科技股份有限公司 风光储联合发电系统日前优化调度方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8072086B2 (en) * 2008-09-24 2011-12-06 Samuel Thomas Kelly Electrical energy storage and retrieval system
CN102289566B (zh) * 2011-07-08 2014-07-09 浙江大学 独立运行模式下的微电网多时间尺度能量优化调度方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355006A (zh) * 2011-09-28 2012-02-15 东北电力大学 一种风光储联合并网发电协调控制方法
CN102694391A (zh) * 2012-05-31 2012-09-26 国电南瑞科技股份有限公司 风光储联合发电系统日前优化调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, BO ET AL.: "Research on Scheduling Steategy of Wind PV ES Hybrid Power System", EAST CHINA ELECTRIC POWER, vol. 38, no. 12, December 2010 (2010-12-01), pages 1897 - 1899 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069926B1 (en) * 2019-02-14 2021-07-20 Vcritonc Alpha, Inc. Controlling ongoing battery system usage via parametric linear approximation
CN110443470A (zh) * 2019-07-18 2019-11-12 清华大学 基于生成式对抗网络的风光水联合调度方法及装置
CN111740443A (zh) * 2020-06-19 2020-10-02 中国电建集团青海省电力设计院有限公司 多分布式电源的独立微电网多时间尺度协同优化调度方法
CN111740443B (zh) * 2020-06-19 2023-07-04 中国电建集团青海省电力设计院有限公司 多分布式电源的独立微电网多时间尺度协同优化调度方法

Also Published As

Publication number Publication date
CN102694391A (zh) 2012-09-26
CN102694391B (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2013177923A1 (zh) 风光储联合发电系统日前优化调度方法
CN103426122B (zh) 一种微电网综合评价方法
CN102684199B (zh) 一种微电网与配电网交换功率的多时间尺度控制方法
CN108649602A (zh) 风光柴储智能交流微电网系统
Liu et al. Impacts of distributed renewable energy generations on smart grid operation and dispatch
CN107404129B (zh) 风-储混合电站运行策略及短期计划出力优化方法
CN101950980A (zh) 用于分布式光伏电源并网调控的储能装置容量配置方法
Chen et al. Scheduling strategy of hybrid wind-photovoltaic-hydro power generation system
CN202651806U (zh) 一种电池储能电站平滑风光发电控制系统
Li et al. Optimal dispatching method for smoothing power fluctuations of the wind-photovoltaic-battery hybrid generation system
CN107871052A (zh) 一种计及可再生能源和储能的能源集线器优化调度模型
Haishan et al. Power System Planning and Thinking base on China’s “Carbon peak and carbon neutrality” Policy
Han et al. Analysis of economic operation model for virtual power plants considering the uncertainties of renewable energy power generation
CN201994663U (zh) 沼光互补一体化智能发电装置
CN106532753A (zh) 一种大规模光伏接入的电力系统储能控制方法
CN106253356A (zh) 基于储能电量价值评估的交直流混合微网实时经济调度法
Bingchen et al. Coordinated optimization scheduling of wind power, photovoltaic, photo-thermal and hydropower considering the schedulability of photo-thermal power stations
Qi et al. Study on the cooperative optimized operation of power system source-grid-load-storage based on Gurobi mathematical programming
Liu et al. Research on the Application of Energy Storage and Peak Shaving Strategy in Rural Power Supply
Yin et al. Multi-timescale Optimal Scheduling of Integrated Energy Systems Based on Wind/Light to Hydrogen
CN108063447B (zh) 一种改进的电网低谷时段负荷功率填谷的储电调制方法
Wei et al. Study on characteristics evaluation index of renewable power output and application on renewable energy development planning
Wang et al. Comparisons of Different Dispatches to Promote the Consumption of Renewable Energy
Zheng et al. Control and Optimization of Power Dispatching System Based on New Energy Mode
Kai et al. Study on the Assessment Method of the Whole Process of Power Grid Dissipating Clean Energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877708

Country of ref document: EP

Kind code of ref document: A1