WO2013097444A1 - Lte系统的模式切换方法及装置 - Google Patents

Lte系统的模式切换方法及装置 Download PDF

Info

Publication number
WO2013097444A1
WO2013097444A1 PCT/CN2012/078469 CN2012078469W WO2013097444A1 WO 2013097444 A1 WO2013097444 A1 WO 2013097444A1 CN 2012078469 W CN2012078469 W CN 2012078469W WO 2013097444 A1 WO2013097444 A1 WO 2013097444A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
antenna
switch
lte
antenna switch
Prior art date
Application number
PCT/CN2012/078469
Other languages
English (en)
French (fr)
Inventor
陈寿炎
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013097444A1 publication Critical patent/WO2013097444A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and in particular to a mode switching method and apparatus for a Long-Term Evolution (LTE) system.
  • LTE Long-Term Evolution
  • LTE is a fourth-generation (4th Generation, 4G) communication standard, which is qualitative compared to the third-generation (3G)/2nd Generation (2G) transmission rate.
  • 4G fourth-generation
  • 3G third-generation
  • 2G /2nd Generation
  • LTE is the goal and direction of future wireless broadband technology.
  • the technology of LTE 4G is currently in the stage of network construction or experimental network. Therefore, it also needs to support the relatively mature 2G/3G communication network.
  • 2G voice service is a very mature and stable network, and also in data services. It can reduce the burden on the LTE network. Therefore, for LTE terminals, it is required to support Time Division Duplex (TDD)-LTE/Frequency Division Duplex (FDD)-LTE/3G/2G multimode.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • 3G includes Universal Mobile Telecommunications System (UMTS), Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) technology, and code division multiple access (Code Division Multiple Access, CDMA for short) technology.
  • UMTS Universal Mobile Telecommunications System
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • a multi-mode radio frequency (RF) transceiver performs down-conversion modulation of the radio frequency signal into a baseband signal input to a baseband processing chip (Digital Baseband, referred to as DBB), and the DBB is based on the baseband signal.
  • the lower pilot channel signal determines a control strategy, and then the DBB sends the control policy to the multimode RF Transceiver, thereby controlling the channel corresponding to the first antenna switch and/or the second antenna switch switching mode of operation.
  • the LTE diversity channel uses the first antenna switch to switch the diversity frequency band, and the LTE main set channel, the 3G channel, and the 2G channel perform mode and frequency band switching through the second antenna switch.
  • the second antenna switch may require SP12T (single knife 12 switch)
  • SP12T single knife 12 switch
  • the embodiments of the present invention provide a mode switching method and apparatus for an LTE system, so as to at least solve the problem that the LTE system supporting multi-mode multi-band in the related art cannot guarantee good radio frequency performance.
  • a mode switching method of an LTE system is provided.
  • the first antenna switch of the LTE system is configured to switch a current working mode to an LTE main set channel, where the second antenna switch of the LTE system is used.
  • the method For switching the current working mode to a 2G channel, a 3G channel, or an LTE diversity channel, the method includes: the mode controller according to the first antenna connected to the first antenna switch and/or the second antenna connected to the second antenna switch
  • the received radio frequency signal determines a control strategy
  • the mode controller triggers the switching of the working mode by the first antenna switch and/or the second antenna switch according to the determined control strategy.
  • the determining, by the mode controller, the control strategy according to the radio frequency signal received by the first antenna and/or the second antenna may include: after the mode controller receives the radio frequency signal by using the first antenna and/or the second antenna, The RF signal is converted into a baseband signal, and the control strategy is determined based on the above baseband signal.
  • the mode controller may trigger the switching of the working mode by using the first antenna switch and/or the second antenna switch according to the determined control policy, and may include one of the following modes: when the determined control policy is the LTE mode, the mode control The first antenna switch is triggered to switch the current working mode to the LTE main set channel; the mode controller triggers the second antenna switch to switch the current working mode to the LTE diversity channel; when the determined control strategy is 2G mode The mode controller triggers the second antenna switch to switch the current working mode to the 2G channel; when the determined control strategy is the 3G mode, the mode controller triggers the second antenna switch to switch the current working mode For the above 3G channel.
  • the method may further include: the mode controller selecting the foregoing according to the working mode after the switching.
  • the frequency band corresponding to the working mode after switching After the mode controller selects the frequency band corresponding to the switched mode of operation according to the mode of operation after the switching, the method may further include: the mode controller transmitting data by using the frequency band corresponding to the switched working mode.
  • a mode switching apparatus of an LTE system where a first antenna switch of the LTE system is set to switch a current working mode to an LTE main set channel, and a second antenna switch is set to Switching the current working mode to a 2G channel, a 3G channel, or an LTE diversity channel, the device includes: a control policy determining module, configured to be connected according to the first antenna connected to the first antenna switch and/or to the second antenna switch The radio frequency signal received by the second antenna determines a control strategy.
  • the triggering module is configured to trigger the switching of the working mode by using the first antenna switch and/or the second antenna switch according to the foregoing control policy determined by the control policy determining module.
  • the control strategy determining module may include: a signal conversion unit configured to convert the radio frequency signal into a baseband signal after receiving the radio frequency signal by using the first antenna and/or the second antenna, and a control strategy determining unit, configured to The baseband signal converted by the signal conversion unit described above determines a control strategy.
  • the triggering module may include: a first LTE mode triggering unit, configured to: when the control policy determined by the control policy determining module is an LTE mode, triggering the first antenna switch to switch the current working mode to the LTE main set channel;
  • the LTE mode triggering unit is configured to trigger the foregoing second antenna switch to switch the current working mode to the LTE diversity channel, and the 2G mode triggering unit is configured to trigger when the control policy determined by the control policy determining module is the 2G mode.
  • the second antenna switch switches the current working mode to the 2G channel;
  • the 3G mode triggering unit is configured to trigger the second antenna switch to activate the current working mode when the control strategy determined by the control strategy determining module is the 3G mode. Switch to the above 3G channel.
  • the device may further include: a frequency band selection module, configured to select a frequency band corresponding to the switched operation mode according to the switched operation mode.
  • the device may further include: an RF signal sending module, configured to send data by using a frequency band corresponding to the switched working mode selected by the frequency band selecting module.
  • the main set channel of the LTE system adopts an independent antenna, and the LTE diversity channel performs antenna multiplexing with the 2G channel and the 3G channel.
  • the mode controller receives the radio frequency according to the first antenna and/or the second antenna.
  • the signal determines the control strategy, and then triggers the first antenna switch and/or the second antenna switch to switch the working mode according to the determined control strategy, and solves the problem that the LTE system supporting the multi-mode multi-band in the related art cannot guarantee good radio frequency performance. Therefore, the insertion loss of the antenna switch of the LTE system is reduced, and the performance and competitiveness of the system are improved.
  • FIG. 1 is a schematic structural diagram of an LTE multimode radio frequency system according to the related art
  • FIG. 2 is a schematic structural diagram of an LTE multimode radio frequency system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a mode switching method of an LTE system according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of a mode switching apparatus of an LTE system according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing a specific structure of a mode switching apparatus of an LTE system according to an embodiment of the present invention.
  • an embodiment of the present invention provides a mode switching method and apparatus for an LTE system.
  • the LTE main set channel uses the first antenna switch to switch the diversity frequency band, and the LTE diversity channel, the 3G channel, and the 2G channel perform mode and frequency band switching through the second antenna switch. The details will be described below by way of examples.
  • FIG. 2 is a schematic structural diagram of an LTE multimode radio frequency system according to an embodiment of the present invention.
  • the workflow of the LTE multimode radio frequency system is consistent with the workflow of the LTE multimode radio frequency system in the related art shown in FIG. 1 , but only in the system.
  • the architecture is improved, that is, the first antenna switch is set to switch the current working mode to the LTE main set channel, and the second antenna switch is set to switch the current working mode to the 2G channel, the 3G channel or the LTE diversity channel.
  • the above configuration is such that the number of paths of the first antenna switch is smaller than that of the second antenna switch, assuming that 3 bands are required for the 4G mode, 2 bands are required for the 3G mode, and 4 bands are required for the 2G mode, then the second antenna switch may require the SP12T. (Single-pole twelve-switch) Even more switch can meet multi-mode multi-band switching, and the first antenna switch may only need SP5T (single-pole five-switch) or even fewer switches to meet multi-mode Switching of frequency bands.
  • the insertion loss of the corresponding first antenna switch is smaller than that of the second antenna switch, and the insertion loss of the first antenna switch is reduced by 0.7 ⁇ ldB relative to the second antenna switch, so the receiving sensitivity of LTE is increased by 0.7 ⁇ ldB, PA It can reduce the transmit power of 0.7 ⁇ ldB, correspondingly reduce the power consumption of the terminal and improve the index of signal transmission.
  • the first antenna switch and the first antenna are used in the main set of the LTE system, that is, the first antenna is only used by the LTE main set, so that the wireless performance of the antenna can be optimized for the LTE single-end, and the reception of the LTE main set is improved. Sensitivity and transmit power, improve the wireless performance of the LTE system, and increase the wireless throughput and performance of the LTE system.
  • the embodiment provides a mode switching method for the LTE system, where the first antenna switch of the LTE system is used to switch the current working mode to the LTE main set channel, and the LTE system The two antenna switches are used to switch the current working mode to the 2G channel, the 3G channel, or the LTE diversity channel.
  • Step S302 the mode controller determines a control strategy according to the radio frequency signal received by the first antenna connected to the first antenna switch and/or the second antenna connected to the second antenna switch;
  • Step S304 mode The controller triggers the switching of the working mode by the first antenna switch and/or the second antenna switch according to the determined control strategy.
  • the mode controller determines a control strategy according to the radio frequency signal received by the first antenna and/or the second antenna, and then triggers the switching of the working mode by the first antenna switch and/or the second antenna switch according to the determined control strategy.
  • the mode controller determines a control strategy according to the radio frequency signal received by the first antenna and/or the second antenna, specifically, the mode controller receives the radio frequency signal by using the first antenna and/or the second antenna. Thereafter, the mode controller converts the radio frequency signal into a baseband signal, and then determines a control strategy based on the baseband signal. In the above step S304, the mode controller triggers the switching of the working mode by the first antenna switch and/or the second antenna switch according to the determined control strategy.
  • the second antenna switch of the LTE system is used to switch the current working mode to the 2G channel, the 3G channel, or The LTE diversity channel, so that the mode controller triggers the switching of the working mode by using the first antenna switch and/or the second antenna switch according to the control policy, and may include one of the following three modes: In the first mode, when the LTE is the main mode and the 3G and 2G are the auxiliary modes (hereinafter referred to as the LTE mode), the first antenna switch and the second antenna switch are both switched to the corresponding frequency bands of the LTE.
  • the mode controller triggers the first antenna switch to switch the current working mode to the LTE main set channel, and the mode controller triggers the second antenna switch to be The current working mode is switched to the LTE diversity channel.
  • the LTE main set channel and the LTE diversity channel enter the working state, and the LTE main set channel receives or transmits the radio frequency signal through the first antenna connected to the first antenna switch, and the LTE diversity channel is connected to the second antenna switch.
  • the second antenna receives the radio frequency signal, such that the LTE system enters the LTE mode.
  • the first antenna switch enters the low power mode, that is, the first antenna switch and the first antenna do not work, and the second antenna The switch switches to the corresponding band of 2G.
  • the mode controller triggers the second antenna switch to switch the current working mode to the 2G channel.
  • the 2G channel enters the working state, and the 2G channel receives or transmits the radio frequency signal through the second antenna connected to the second antenna switch, so that the LTE system enters the 2G mode.
  • the first antenna switch enters the low power mode, that is, the first antenna switch and the first antenna do not work, and the second antenna The switch switches to the corresponding frequency band of the IJ 3G.
  • the method may be specifically described as: when the determined control policy is the 3G mode, the mode controller triggers the second antenna switch to switch the current working mode to the 3G channel.
  • the 3G channel enters the working state, and the 3G channel receives or transmits the radio frequency signal through the second antenna connected to the second antenna switch, so that the LTE system enters the 3G mode.
  • the LTE system can also measure 2G channel and 3G channel at the same time.
  • the signal strength in LTE mode is weak, the signal strength of 2G or 3G channel is weak.
  • the baseband physical layer performs the switching control of the antenna switch and the mode switching control.
  • the switching of the three modes also needs to be switched through the antenna switch.
  • the specific operation process of the antenna is the same as that of the above mode switching process, and will not be described here.
  • the LTE system is currently working in 2G mode, it can also measure the 3G channel and LTE main set channel and diversity channel at the same time.
  • the LTE system can also measure the 2G channel and LTE main set channel and diversity channel at the same time.
  • the specific operation process is the same as the above process, and will not be described here.
  • the above method can expand the adaptation range of the LTE system and improve the performance of the LTE system.
  • the step completes the channel switching, After switching to the channel corresponding to the current working mode, the appropriate frequency band of the channel is also selected, and the RF signal is transmitted through the selected frequency band, so that the signal transmission can be optimized and the signal transmission quality can be improved.
  • the mode controller selects the frequency band corresponding to the switched working mode according to the mode of operation after the switching, the mode controller sends the radio frequency signal through the frequency band corresponding to the switched working mode.
  • the embodiment provides a mode switching device of the LTE system, where the first antenna switch of the LTE system is set to switch the current working mode to the LTE main set channel, and the second antenna switch setting
  • the apparatus is arranged to implement the above embodiment.
  • 4 is a structural block diagram of a mode switching apparatus of an LTE system according to an embodiment of the present invention. As shown in FIG.
  • the apparatus includes the following modules: a control policy determining module 40 configured to be first connected according to the first antenna switch The radio frequency signal received by the antenna and/or the second antenna connected to the second antenna switch determines a control strategy; the triggering module 42 is connected to the control policy determining module 40, and is configured to trigger the foregoing according to the foregoing control policy determined by the control policy determining module 40.
  • the first antenna switch and/or the second antenna switch described above perform switching of an operation mode.
  • the control policy determining module 40 determines the control strategy according to the radio frequency signals received by the first antenna and/or the second antenna, and then the triggering module 42 triggers the first antenna switch and/or the second antenna switch according to the foregoing control strategy.
  • the switching of the working mode solves the problem that the LTE system supporting the multi-mode multi-band in the related art cannot guarantee good radio frequency performance, thereby reducing the insertion loss of the antenna switch and improving the performance and competitiveness of the system.
  • the control policy determining module 40 determines a control strategy according to the radio frequency signals received by the first antenna and/or the second antenna, and specifically, the control policy determining module 40 includes: a signal conversion unit, configured to pass the first antenna and/or After receiving the radio frequency signal, the second antenna converts the radio frequency signal into a baseband signal; and the control strategy determining unit is configured to determine a control strategy according to the baseband signal converted by the signal conversion unit.
  • the triggering module 42 triggers the switching of the working mode by the first antenna switch and/or the second antenna switch according to the foregoing control policy determined by the control policy determining module 40.
  • the switching includes three modes, which have been described in detail above.
  • the present embodiment provides a preferred embodiment, as shown in the specific structural block diagram of the mode switching device of the LTE system shown in FIG. 5, the triggering module 42 includes: a first LTE mode triggering unit 420, The second LTE mode trigger unit 422, the 2G mode trigger unit 424, and the 3G mode trigger unit 426. The structure will be described below.
  • the first LTE mode triggering unit 420 is configured to trigger the first antenna switch to switch the current working mode to the LTE main set channel when the control policy determined by the control policy determining module 40 is the LTE mode; the second LTE mode triggering unit 422, configured to trigger the foregoing second antenna switch to switch the current working mode to the foregoing LTE diversity channel;
  • the 2G mode triggering unit 424 is configured to trigger the second antenna switch to switch the current working mode to the 2G channel when the control policy determined by the control policy determining module 40 is in the 2G mode;
  • the 3G mode triggering unit 426 is configured to trigger the second antenna switch to switch the current working mode to the 3G channel when the control policy determined by the control policy determining module 40 is in the 3G mode.
  • the LTE system can also measure 2G channel and 3G channel at the same time.
  • the signal strength in LTE mode is weak, the signal strength of 2G or 3G channel is weak.
  • the LTE system works in 2G and 3G modes, the above operations can also be performed. The specific operation process has been previously described, and will not be described here.
  • the frequency band corresponding to the channel is also selected, and the radio frequency signal is transmitted through the selected frequency band.
  • the present embodiment provides a preferred implementation manner, and the foregoing apparatus further The method includes: a frequency band selection module, configured to select a frequency band corresponding to the working mode after the switching according to the working mode after the switching.
  • the radio frequency signal sending module is configured to send data by using a frequency band corresponding to the switched working mode selected by the frequency band selecting module.
  • the LTE main set channel adopts an independent antenna, and the LTE diversity channel is multiplexed with the 2G channel and the 3G channel, thereby optimizing the performance of the LTE main set single-ended antenna and improving
  • the receiving sensitivity of the LTE main set improves the wireless performance of the LTE system, increases the wireless throughput and performance of the LTE system, and improves the radio frequency performance and competitiveness of the system.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. Perform the steps shown or described, or separate them into individual integrated circuit modules, or Multiple of these modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种LTE系统的模式切换方法及装置。其中,上述LTE系统的第一天线开关用于将当前工作模式切换为LTE主集通道,该LTE系统的第二天线开关用于将当前工作模式切换为2G通道、3G通道或LTE分集通道,该方法包括:模式控制器根据与上述第一天线开关相连的第一天线和/或与上述第二天线开关相连的第二天线接收的射频信号确定控制策略,上述模式控制器根据确定的控制策略触发上述第一天线开关和/或上述第二天线开关进行工作模式的切换。通过本发明,解决了相关技术中支持多模多频段的LTE系统不能保证良好的射频性能的问题,从而减小天线开关的插入损耗,提高系统的性能和竞争力。

Description

LTE系统的模式切换方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种长期演进 (Long-Term Evolution, 简 称为 LTE) 系统的模式切换方法及装置。 背景技术
LTE 为第四代 (4th Generation, 简称为 4G) 的通信标准, 相对于第三代 (3rd Generation, 简称为 3G) /第二代 (2nd Generation, 简称为 2G) 传输速率而言有了质 的提高, LTE是未来无线宽带技术的目标和前进方向。 LTE 4G的技术目前正处在建网 或实验网阶段, 因此还需要支持目前相对成熟的 2G/3G的通信网络, 特别是 2G的语 音业务是非常成熟和稳定的网络, 在数据业务上同时也可以减少 LTE的网络的负担。 因此对于 LTE终端来说是要求同时支持时分双工方式 (Time Division Duplex, 简称为 TDD) -LTE/频分双工方式 (Frequency Division Duplex, 简称为 FDD) -LTE/3G/2G的 多模的终端, 其中 3G包括通用移动通信系统 (Universal Mobile Telecommunications System, 简称为 UMTS)、 时分同步码分多址接入 (Time Division-Synchronous Code Division Multiple Access,简称为 TD-SCDMA)技术和码分多址(Code Division Multiple Access, 简称为 CDMA) 技术。 LTE宽带射频的实现本身就是一个难题, 但是又要求 同时支持多模多频段, 因此模式与频段的增加, 极大的加大了射频系统的设计难度。 图 1是根据相关技术的 LTE多模射频系统的结构示意图, 如图 1所示, 在与第一 天线开关相连的第一天线和 /或与第二天线开关相连的第二天线接收到射频信号之后, 多模射频 (Radio Frequency, 简称为 RF) 收发器 (Transceiver) 将该射频信号进行下 变频调制为基带信号输入到基带处理芯片 (Digital Baseband, 简称为 DBB), DBB根 据该基带信号中的下导频信道信号确定控制策略,然后 DBB将该控制策略发送给多模 RF Transceiver, 从而控制第一天线开关和 /或第二天线开关切换工作模式对应的通道。 其中, LTE的分集通道采用第一天线开关进行分集频段的切换, LTE的主集通道、 3G通道及 2G通道通过第二天线开关进行模式与频段的切换。 上述构造使得第二天线 开关的路数较多, 假设 4G模式需要 3个频段, 3G模式需要 2个频段, 2G模式需要 4 个频段, 那么第二个天线开关可能需要 SP12T (单刀十二制开关) 甚至更多的路数开 关才能满足多模多频段的切换, 这样将导致天线开关的插入损耗很大, LTE的性能受 到较大影响。 针对相关技术中支持多模多频段的 LTE系统不能保证良好的射频性能的问题, 目 前尚未提出有效的解决方案。 发明内容 本发明实施例提供了一种 LTE系统的模式切换方法及装置, 以至少解决相关技术 中支持多模多频段的 LTE系统不能保证良好的射频性能的问题。 根据本发明实施例的一个方面, 提供了一种 LTE系统的模式切换方法, 上述 LTE 系统的第一天线开关用于将当前工作模式切换为 LTE主集通道,该 LTE系统的第二天 线开关用于将当前工作模式切换为 2G通道、 3G通道或 LTE分集通道, 该方法包括: 模式控制器根据与上述第一天线开关相连的第一天线和 /或与上述第二天线开关相连 的第二天线接收的射频信号确定控制策略, 上述模式控制器根据确定的控制策略触发 上述第一天线开关和 /或上述第二天线开关进行工作模式的切换。 上述模式控制器根据上述第一天线和 /或上述第二天线接收的射频信号确定控制 策略可以包括: 上述模式控制器通过上述第一天线和 /或上述第二天线接收到射频信号 之后, 将上述射频信号转换为基带信号, 根据上述基带信号确定控制策略。 上述模式控制器根据确定的上述控制策略触发上述第一天线开关和 /或上述第二 天线开关进行工作模式的切换可以包括以下方式之一: 当确定的上述控制策略为 LTE 模式时,该模式控制器触发该第一天线开关将当前工作模式切换为上述 LTE主集通道; 该模式控制器触发该第二天线开关将上述当前工作模式切换为上述 LTE分集通道; 当 确定的上述控制策略为 2G模式时, 该模式控制器触发上述第二天线开关将上述当前 工作模式切换为上述 2G通道; 当确定的上述控制策略为 3G模式时, 该模式控制器触 发上述第二天线开关将上述当前工作模式切换为上述 3G通道。 上述模式控制器根据确定的上述控制策略触发上述第一天线开关和 /或上述第二 天线开关进行工作模式的切换之后, 上述方法还可以包括: 该模式控制器根据切换后 的工作模式, 选择上述切换后的工作模式对应的频段。 上述模式控制器根据切换后的工作模式, 选择该切换后的工作模式对应的频段之 后, 上述方法还可以包括: 上述模式控制器通过上述切换后的工作模式对应的频段发 送数据。 根据本发明实施例的另一方面,提供了一种 LTE系统的模式切换装置, 该 LTE系 统的第一天线开关设置为将当前工作模式切换为 LTE主集通道, 第二天线开关设置为 将当前工作模式切换为 2G通道、 3G通道或 LTE分集通道, 该装置包括: 控制策略确 定模块, 设置为根据与上述第一天线开关相连的第一天线和 /或与上述第二天线开关相 连的第二天线接收的射频信号确定控制策略; 触发模块, 设置为根据上述控制策略确 定模块确定的上述控制策略触发上述第一天线开关和 /或上述第二天线开关进行工作 模式的切换。 上述控制策略确定模块可以包括: 信号转换单元, 设置为通过上述第一天线和 / 或上述第二天线接收到上述射频信号之后, 将该射频信号转换为基带信号; 控制策略 确定单元, 设置为根据上述信号转换单元转换的该基带信号确定控制策略。 上述触发模块可以包括: 第一 LTE模式触发单元, 设置为当上述控制策略确定模 块确定的上述控制策略为 LTE模式时, 触发上述第一天线开关将当前工作模式切换为 上述 LTE主集通道; 第二 LTE模式触发单元, 设置为触发上述第二天线开关将上述当 前工作模式切换为上述 LTE分集通道; 2G模式触发单元, 设置为当上述控制策略确 定模块确定的上述控制策略为 2G模式时, 触发上述第二天线开关将上述当前工作模 式切换为上述 2G通道; 3G模式触发单元, 设置为当上述控制策略确定模块确定的上 述控制策略为 3G模式时, 触发上述第二天线开关将上述当前工作模式切换为上述 3G 通道。 上述装置还可以包括: 频段选择模块, 设置为根据切换后的工作模式, 选择该切 换后的工作模式对应的频段。 上述装置还可以包括: 射频信号发送模块, 设置为通过上述频段选择模块选择的 上述切换后的工作模式对应的频段发送数据。 通过本发明, LTE系统的主集通道采用独立的天线, LTE分集通道与 2G通道、 3G通道进行天线复用, 在此架构下, 模式控制器根据第一天线和 /或第二天线接收的 射频信号确定控制策略,然后根据确定的控制策略触发第一天线开关和 /或第二天线开 关进行工作模式的切换, 解决了相关技术中支持多模多频段的 LTE系统不能保证良好 的射频性能的问题, 从而减小 LTE系统的天线开关的插入损耗, 提高系统的性能和竞 争力。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的 LTE多模射频系统的结构示意图; 图 2是根据本发明实施例的 LTE多模射频系统的结构示意图; 图 3是根据本发明实施例的 LTE系统的模式切换方法的流程图; 图 4是根据本发明实施例的 LTE系统的模式切换装置的结构框图; 图 5是根据本发明实施例的 LTE系统的模式切换装置的具体结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在 LTE系统中,多模多频段的切换是靠射频前端的天线开关进行的操作,如果 LTE 系统的模式多频段多, 相应的天线开关的路数便随之增多, 天线开关和系统前端的插 入损耗增大, 那么 LTE系统的灵敏度与发射功率等射频指标难以满足第三代合作伙伴 计划(3rd Generation Partnership Project, 简称为 3GPP) 的要求。 如何让射频系统适应 多模多频段同时又能保证射频的性能满足 3GPP的规范要求是目前各个厂家面临的挑 战和各个厂家都必须解决的问题。 基于此,本发明实施例提供了一种 LTE系统的模式切换方法及装置。在该 LTE系 统中, LTE的主集通道采用第一天线开关进行分集频段的切换, LTE的分集通道、 3G 通道及 2G通道通过第二天线开关进行模式与频段的切换。 下面通过实施例进行详细 说明。 图 2是根据本发明实施例的 LTE多模射频系统的结构示意图,该 LTE多模射频系 统得工作流程与上述图 1所示的相关技术中的 LTE多模射频系统工作流程一致, 只是 在系统架构上做了改进,即第一天线开关设置为将当前工作模式切换为 LTE主集通道, 第二天线开关设置为将当前工作模式切换为 2G通道、 3G通道或 LTE分集通道。 上述构造使得第一天线开关的路数比第二天线开关的路数少,假设 4G模式需要 3 个频段, 3G模式需要 2个频段, 2G模式需要 4个频段, 那么第二天线开关可能需要 SP12T (单刀十二制开关) 甚至更多的路数开关才能满足多模多频段的切换, 而第一 天线开关可能只需要 SP5T (单刀五制开关)甚至更少路数开关就能满足多模多频段的 切换。 相应的第一天线开关的插入损耗比第二天线开关小, 第一天线开关的插入损耗 相对于第二天线开关大概减少 0.7~ldB, 那么 LTE的接收灵敏度将提高 0.7~ldB, PA 可以降低 0.7~ldB 的发射功率, 相应的降低了终端的功耗, 提高了信号发射的指标性
LTE系统的主集单端采用第一天线开关和第一天线, 即第一天线只给 LTE的主集 使用,这样可以针对 LTE单端将天线的无线性能进行优化,提高了 LTE主集的接收灵 敏度与发射功率, 提高 LTE系统无线性能, 增加了 LTE系统的无线吞吐量和性能。 针对上述 LTE多模射频系统的架构,本实施例提供了一种 LTE系统的模式切换方 法, 该 LTE系统的第一天线开关用于将当前工作模式切换为 LTE主集通道, 该 LTE 系统的第二天线开关用于将当前工作模式切换为 2G通道、 3G通道或 LTE分集通道, 图 3所示的是根据本发明实施例的 LTE系统的模式切换方法的流程图, 该方法包括以 下步骤 (步骤 S302-步骤 S304): 步骤 S302,模式控制器根据与上述第一天线开关相连的第一天线和 /或与上述第二 天线开关相连的第二天线接收的射频信号确定控制策略; 步骤 S304,模式控制器根据确定的上述控制策略触发上述第一天线开关和 /或上述 第二天线开关进行工作模式的切换。 通过上述方法,模式控制器根据第一天线和 /或第二天线接收的射频信号确定控制 策略,然后根据确定的控制策略触发第一天线开关和 /或第二天线开关进行工作模式的 切换,解决了相关技术中支持多模多频段的 LTE系统不能保证良好的射频性能的问题, 从而减小天线开关的插入损耗, 提高系统的性能和竞争力。 在上述步骤 S302中, 模式控制器根据第一天线和 /或第二天线接收的射频信号确 定控制策略, 具体地, 在模式控制器通过上述第一天线和 /或上述第二天线接收到射频 信号之后, 模式控制器将上述射频信号转换为基带信号, 然后根据上述基带信号确定 控制策略。 在上述步骤 S304中,模式控制器根据确定的上述控制策略触发上述第一天线开关 和 /或上述第二天线开关进行工作模式的切换。 因为上述 LTE系统的架构是该 LTE系 统的第一天线开关用于将当前工作模式切换为 LTE主集通道,该 LTE系统的第二天线 开关用于将当前工作模式切换为 2G通道、 3G通道或 LTE分集通道, 因此上述模式控 制器根据控制策略触发上述第一天线开关和 /或上述第二天线开关进行工作模式的切 换可以包括以下三种方式之一: 方式一, 在以 LTE为主模式、 3G和 2G为辅模式 (下面简称为 LTE模式) 时, 第一天线开关和第二天线开关都切换到 LTE的相应的频段。 针对上述方式, 具体可以 描述为: 当确定的上述控制策略为 LTE模式时, 模式控制器触发上述第一天线开关将 当前工作模式切换为 LTE主集通道, 模式控制器触发上述第二天线开关将当前工作模 式切换为 LTE分集通道。 通过上述方式, LTE主集通道和 LTE分集通道都进入工作状态, LTE主集通道通 过与上述第一天线开关相连的第一天线接收或发送射频信号, LTE分集通道通过与上 述第二天线开关相连的第二天线接收射频信号, 这样, LTE系统进入 LTE模式。 方式二, 在以 2G为主模式、 LTE和 3G为辅模式 (下面简称为 2G模式) 时, 第 一天线开关进入低功耗模式, 即第一天线开关和第一天线不工作, 第二天线开关切换 到 2G的相应的频段。 针对上述方式, 具体可以描述为: 当确定的上述控制策略为 2G模式时, 模式控制器触发上述第二天线开关将当前 工作模式切换为 2G通道。 通过上述方式, 2G通道进入工作状态, 2G通道通过与上 述第二天线开关相连的第二天线接收或发送射频信号这样, LTE系统进入 2G模式。 方式三, 在以 3G为主模式、 LTE和 2G为辅模式 (下面简称为 3G模式) 时, 第 一天线开关进入低功耗模式, 即第一天线开关和第一天线不工作, 第二天线开关切换 至 IJ 3G的相应的频段。针对该方式, 具体可以描述为: 当确定的上述控制策略为 3G模 式时, 模式控制器触发上述第二天线开关将当前工作模式切换为 3G通道。 通过上述 方式, 3G通道进入工作状态, 3G通道通过与上述第二天线开关相连的第二天线接收 或发送射频信号, 这样, LTE系统进入 3G模式。 对于上述三种工作模式的切换方式, 如果 LTE系统当前工作在 LTE模式下, 也可 以同时对 2G通道和 3G通道进行测量, 当 LTE模式下的信号强度变弱, 而 2G或 3G 通道的信号强度较强时, 可以选择将当前工作模式切换到 2G模式或 3G模式, 在模式 切换时, 基带物理层进行天线开关的切换控制和模式切换控制的修改, 三种模式的切 换还需要通过天线开关切换天线, 具体的操作过程与上述模式切换流程一样, 在此不 再赘述。 同样的, 如果 LTE系统当前工作在 2G模式下, 也可以同时对 3G通道和 LTE的 主集通道、 分集通道进行测量。 如果 LTE系统当前工作在 3G模式下, 也可以同时对 2G通道和 LTE的主集通道、 分集通道进行测量。 具体操作流程与上述流程一样, 在 此不再赘述。 上述方式可以扩大 LTE系统的适应范围, 提高 LTE系统性能。 在上述步骤 S304之后, 即 LTE系统的模式控制器根据确定的控制策略触发上述 第一天线开关和 /或上述第二天线开关进行工作模式的切换之后, 该模式控制器根据切 换后的工作模式, 选择上述切换后的工作模式对应的频段。 在 LTE系统的第一天线开 关将当前工作模式切换为 LTE主集通道,或者第二天线开关将当前工作模式切换为 2G 通道、 3G通道或 LTE分集通道时, 该步骤完成了通道的切换, 在切换到与当前工作 模式对应的通道之后, 还要选择该通道合适的频段, 通过选择后的频段进行射频信号 的发送, 这样可以优化信号的传输, 提升信号的传输质量。 针对上述方式, 本实施例 在上述模式控制器根据切换后的工作模式, 选择上述切换后的工作模式对应的频段之 后, 该模式控制器通过上述切换后的工作模式对应的频段发送射频信号。 对应于上述 LTE系统的模式切换方法,本实施例提供了一种 LTE系统的模式切换 装置, 该 LTE系统的第一天线开关设置为将当前工作模式切换为 LTE主集通道,第二 天线开关设置为将当前工作模式切换为 2G通道、 3G通道或 LTE分集通道, 该装置设 置为实现上述实施例。 图 4是根据本发明实施例的 LTE系统的模式切换装置的结构框 图, 如图 4所示, 该装置包括以下模块: 控制策略确定模块 40, 设置为根据与上述第 一天线开关相连的第一天线和 /或与上述第二天线开关相连的第二天线接收的射频信 号确定控制策略; 触发模块 42, 连接至控制策略确定模块 40, 设置为根据控制策略确 定模块 40确定的上述控制策略触发上述第一天线开关和 /或上述第二天线开关进行工 作模式的切换。 通过上述装置, 控制策略确定模块 40根据第一天线和 /或第二天线接收的射频信 号确定控制策略, 然后触发模块 42根据上述控制策略触发上述第一天线开关和 /或上 述第二天线开关进行工作模式的切换, 解决了相关技术中支持多模多频段的 LTE系统 不能保证良好的射频性能的问题, 从而减小天线开关的插入损耗, 提高系统的性能和 竞争力。 控制策略确定模块 40根据上述第一天线和 /或上述第二天线接收的射频信号确定 控制策略, 具体地, 上述控制策略确定模块 40包括: 信号转换单元, 设置为通过上述 第一天线和 /或上述第二天线接收到所述射频信号之后,将上述射频信号转换为基带信 号; 控制策略确定单元, 设置为根据上述信号转换单元转换的上述基带信号确定控制 策略。 触发模块 42根据控制策略确定模块 40确定的上述控制策略触发上述第一天线开 关和 /或上述第二天线开关进行工作模式的切换, 该切换包括三种方式, 前面已经进行 了详细描述,针对这三种方式,本实施例提供了一种优选实施方式,如图 5所示的 LTE 系统的模式切换装置的具体结构框图,触发模块 42包括:第一 LTE模式触发单元 420、 第二 LTE模式触发单元 422、 2G模式触发单元 424和 3G模式触发单元 426。 下面对 该结构进行说明。 第一 LTE模式触发单元 420,设置为当控制策略确定模块 40确定的上述控制策略 为 LTE模式时, 触发上述第一天线开关将当前工作模式切换为上述 LTE主集通道; 第二 LTE模式触发单元 422, 设置为触发上述第二天线开关将当前工作模式切换 为上述 LTE分集通道;
2G模式触发单元 424, 设置为当控制策略确定模块 40确定的上述控制策略为 2G 模式时, 触发上述第二天线开关将当前工作模式切换为上述 2G通道;
3G模式触发单元 426, 设置为当控制策略确定模块 40确定的上述控制策略为 3G 模式时, 触发上述第二天线开关将当前工作模式切换为上述 3G通道。 对于上述三种工作模式的切换方式, 如果 LTE系统当前工作在 LTE模式下, 也可 以同时对 2G通道和 3G通道进行测量, 当 LTE模式下的信号强度变弱, 而 2G或 3G 通道的信号强度较强时,可以选择将当前工作模式切换到 2G模式或 3G模式。同样的, 当 LTE系统工作在 2G、 3G模式下, 也可执行上述操作, 具体的操作过程前面已经进 行了介绍, 在此不再赘述。 在切换到与当前工作模式对应的通道之后, 还要选择该通道合适的频段, 通过选 择后的频段进行射频信号的发送,针对上述方式,本实施例提供了一种优选实施方式, 上述装置还包括: 频段选择模块, 设置为根据切换后的工作模式, 选择上述切换后的 工作模式对应的频段。 射频信号发送模块, 设置为通过上述频段选择模块选择的上述 切换后的工作模式对应的频段发送数据。 从以上的描述中可以看出, 本发明实施例通过将 LTE主集通道采用独立的天线, LTE分集通道与 2G通道、 3G通道进行天线复用, 从而优化了 LTE主集单端的天线性 能, 提高了 LTE主集的接收灵敏度, 提高了 LTE系统无线性能, 增加了 LTE系统的 无线吞吐量和性能, 提高了系统的射频性能和竞争力。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种 LTE系统的模式切换方法,所述 LTE系统的第一天线开关用于将当前工作 模式切换为 LTE主集通道;所述 LTE系统的第二天线开关用于将当前工作模式 切换为 2G通道、 3G通道或 LTE分集通道; 所述方法包括:
模式控制器根据与所述第一天线开关相连的第一天线和 /或与所述第二天 线开关相连的第二天线接收的射频信号确定控制策略;
所述模式控制器根据确定的所述控制策略触发所述第一天线开关和 /或所 述第二天线开关进行工作模式的切换。
2. 根据权利要求 1所述的方法, 其中, 所述模式控制器根据所述第一天线和 /或所 述第二天线接收的射频信号确定控制策略包括:
所述模式控制器通过所述第一天线和 /或所述第二天线接收到射频信号之 后, 将所述射频信号转换为基带信号, 根据所述基带信号确定控制策略。
3. 根据权利要求 1所述的方法, 其中, 所述模式控制器根据确定的所述控制策略 触发所述第一天线开关和 /或所述第二天线开关进行工作模式的切换包括以下 方式之一:
当确定的所述控制策略为 LTE模式时,所述模式控制器触发所述第一天线 开关将当前工作模式切换为所述 LTE主集通道;所述模式控制器触发所述第二 天线开关将所述当前工作模式切换为所述 LTE分集通道;
当确定的所述控制策略为 2G模式时, 所述模式控制器触发所述第二天线 开关将所述当前工作模式切换为所述 2G通道;
当确定的所述控制策略为 3G模式时, 所述模式控制器触发所述第二天线 开关将所述当前工作模式切换为所述 3G通道。
4. 根据权利要求 1所述的方法, 其中, 所述模式控制器根据确定的所述控制策略 触发所述第一天线开关和 /或所述第二天线开关进行工作模式的切换之后,所述 方法还包括:
所述模式控制器根据切换后的工作模式, 选择所述切换后的工作模式对应 的频段。
5. 根据权利要求 4所述的方法, 其中, 所述模式控制器根据切换后的工作模式, 选择所述切换后的工作模式对应的频段之后, 所述方法还包括:
所述模式控制器通过所述切换后的工作模式对应的频段发送数据。
6. 一种 LTE系统的模式切换装置,所述 LTE系统的第一天线开关设置为将当前工 作模式切换为 LTE主集通道;所述 LTE系统的第二天线开关设置为将当前工作 模式切换为 2G通道、 3G通道或 LTE分集通道;
所述装置包括:
控制策略确定模块, 设置为根据与所述第一天线开关相连的第一天线和 / 或与所述第二天线开关相连的第二天线接收的射频信号确定控制策略;
触发模块, 设置为根据所述控制策略确定模块确定的所述控制策略触发所 述第一天线开关和 /或所述第二天线开关进行工作模式的切换。
7. 根据权利要求 6所述的装置, 其中, 所述控制策略确定模块包括: 信号转换单元,设置为通过所述第一天线和 /或所述第二天线接收到所述射 频信号之后, 将所述射频信号转换为基带信号;
控制策略确定单元, 设置为根据所述信号转换单元转换的所述基带信号确 定控制策略。
8. 根据权利要求 6所述的装置, 其中, 所述触发模块包括:
第一 LTE模式触发单元,设置为当所述控制策略确定模块确定的所述控制 策略为 LTE模式时, 触发所述第一天线开关将当前工作模式切换为所述 LTE 主集通道; 第二 LTE模式触发单元, 设置为触发所述第二天线开关将所述当前 工作模式切换为所述 LTE分集通道;
2G模式触发单元,设置为当所述控制策略确定模块确定的所述控制策略为 2G模式时, 触发所述第二天线开关将所述当前工作模式切换为所述 2G通道;
3G模式触发单元,设置为当所述控制策略确定模块确定的所述控制策略为 3G模式时, 触发所述第二天线开关将所述当前工作模式切换为所述 3G通道。
9. 根据权利要求 6所述的装置, 其中, 所述装置还包括: 频段选择模块, 设置为根据切换后的工作模式, 选择所述切换后的工作模 式对应的频段。
0. 根据权利要求 9所述的装置, 其中, 所述装置还包括: 射频信号发送模块, 设置为通过所述频段选择模块选择的所述切换后的工 作模式对应的频段发送数据。
PCT/CN2012/078469 2011-12-31 2012-07-11 Lte系统的模式切换方法及装置 WO2013097444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110459285.1A CN102448129B (zh) 2011-12-31 2011-12-31 Lte系统的模式切换方法及装置
CN201110459285.1 2011-12-31

Publications (1)

Publication Number Publication Date
WO2013097444A1 true WO2013097444A1 (zh) 2013-07-04

Family

ID=46010085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078469 WO2013097444A1 (zh) 2011-12-31 2012-07-11 Lte系统的模式切换方法及装置

Country Status (2)

Country Link
CN (1) CN102448129B (zh)
WO (1) WO2013097444A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015185759A1 (en) 2014-06-06 2015-12-10 Robert Bosch Gmbh Generally c-shaped transverse member for a drive belt for a continuously variable transmission
WO2017054657A1 (zh) * 2015-09-30 2017-04-06 努比亚技术有限公司 移动终端和无线通信方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448129B (zh) * 2011-12-31 2017-12-22 中兴通讯股份有限公司 Lte系统的模式切换方法及装置
CN103391125B (zh) * 2012-05-10 2016-12-14 上海精视信息技术有限责任公司 基于分离式天线来发送数据的发送系统
CN102710826B (zh) * 2012-06-05 2015-06-17 深圳市中兴移动通信有限公司 移动终端数据业务和语音业务复用天线系统及实现方法
CN104284381A (zh) * 2013-07-10 2015-01-14 中兴通讯股份有限公司 一种长期演进终端及其通讯方法
CN104767038A (zh) * 2014-01-03 2015-07-08 中兴通讯股份有限公司 一种用于svlte架构的天线电路及其实现方法、移动终端
CN106465467B (zh) * 2015-05-22 2019-11-22 华为技术有限公司 一种具有复用式天线的设备及通信电路
CN105207709B (zh) * 2015-08-27 2018-11-02 宇龙计算机通信科技(深圳)有限公司 分集接收共天线的控制电路、控制方法及控制装置和终端
CN105472774B (zh) * 2015-09-25 2018-12-07 努比亚技术有限公司 用户设备、无线通信方法及终端
CN106533455B (zh) * 2016-09-20 2019-06-18 惠州Tcl移动通信有限公司 一种天线切换系统及切换方法
CN106332318B (zh) * 2016-11-23 2020-12-01 深圳铂睿智恒科技有限公司 一种移动终端及其射频架构
CN108683439A (zh) * 2018-04-08 2018-10-19 努比亚技术有限公司 天线连接方式调整方法、移动终端及计算机可读存储介质
CN110753396B (zh) * 2018-07-23 2021-08-27 大唐移动通信设备有限公司 一种开关状态的确定方法及装置
CN109495941A (zh) * 2018-11-15 2019-03-19 广东电网有限责任公司 一种4g-lte无线网络信号的切换系统
CN110069334B (zh) * 2019-05-05 2020-08-04 重庆天蓬网络有限公司 一种基于包管理的分布式数据作业调度的方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616505A (zh) * 2009-07-24 2009-12-30 中兴通讯股份有限公司 终端进行模间切换的方法、终端及多模通讯系统
CN101888023A (zh) * 2009-05-15 2010-11-17 中国移动通信集团公司 一种多系统共用的天线设备
WO2011019059A1 (ja) * 2009-08-12 2011-02-17 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム
CN102448129A (zh) * 2011-12-31 2012-05-09 中兴通讯股份有限公司 Lte系统的模式切换方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201571051U (zh) * 2009-12-02 2010-09-01 中兴通讯股份有限公司 一种多模射频接口

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888023A (zh) * 2009-05-15 2010-11-17 中国移动通信集团公司 一种多系统共用的天线设备
CN101616505A (zh) * 2009-07-24 2009-12-30 中兴通讯股份有限公司 终端进行模间切换的方法、终端及多模通讯系统
WO2011019059A1 (ja) * 2009-08-12 2011-02-17 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム
CN102448129A (zh) * 2011-12-31 2012-05-09 中兴通讯股份有限公司 Lte系统的模式切换方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015185759A1 (en) 2014-06-06 2015-12-10 Robert Bosch Gmbh Generally c-shaped transverse member for a drive belt for a continuously variable transmission
WO2017054657A1 (zh) * 2015-09-30 2017-04-06 努比亚技术有限公司 移动终端和无线通信方法
US10298287B2 (en) 2015-09-30 2019-05-21 Nubia Technology Co., Ltd Mobile terminal and wireless communication method

Also Published As

Publication number Publication date
CN102448129A (zh) 2012-05-09
CN102448129B (zh) 2017-12-22

Similar Documents

Publication Publication Date Title
WO2013097444A1 (zh) Lte系统的模式切换方法及装置
EP2731384B1 (en) Method and wi-fi device for setting communication mode
TWI399933B (zh) 多模式通訊終端機以及多模式通訊實現方法
JP4864973B2 (ja) 2以上の無線インターフェースで並行して動作する無線移動局における干渉除去のための装置及び方法
US8059963B2 (en) Time division duplexing remote station having low-noise amplifier shared for uplink and downlink operations and wired relay method using the same
US8983533B2 (en) Multimode communication terminal and multimode communication implementation
JP4619225B2 (ja) 通信端末装置およびその通信方法
JP4528344B2 (ja) 無線通信装置
US7916696B2 (en) Traffic handover control device and method of multi-mode mobile communication terminal
CN101741441A (zh) 无线终端、天线切换控制方法及装置
WO2015039558A1 (zh) 避免信道干扰的电路、方法以及相关装置
US20220255569A1 (en) Antenna Switching Circuit and Electronic Device
WO2019137145A1 (zh) 一种终端设备
CN211266879U (zh) 用于4g/5g标准的射频模块和移动终端
CN102307352A (zh) 相邻频段共存的方法、装置及终端
WO2022160306A1 (zh) 一种无线通信装置及其天线切换方法
WO2016041334A1 (zh) 终端、终端的多载波发送及接收方法
WO2012151906A1 (zh) 移动终端及移动终端的处理方法
WO2011157010A1 (zh) 多模移动终端天线匹配的实现方法及多模移动终端
US20080192848A1 (en) Method and related apparatus for stopping multi-input multi-output operation in a wireless communications system
CN103124426B (zh) 减少无线通信终端中能耗的方法和实现该方法的通信终端
CN113841341B (zh) 一种无线通信装置及其天线切换方法
WO2012159517A1 (zh) 一种天线性能优化方法和系统
CN213152052U (zh) 信号收发电路和电子设备
WO2012097674A1 (zh) 一种射频模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862763

Country of ref document: EP

Kind code of ref document: A1