WO2012151906A1 - 移动终端及移动终端的处理方法 - Google Patents

移动终端及移动终端的处理方法 Download PDF

Info

Publication number
WO2012151906A1
WO2012151906A1 PCT/CN2011/082341 CN2011082341W WO2012151906A1 WO 2012151906 A1 WO2012151906 A1 WO 2012151906A1 CN 2011082341 W CN2011082341 W CN 2011082341W WO 2012151906 A1 WO2012151906 A1 WO 2012151906A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
antenna matching
matching network
antenna
selector
Prior art date
Application number
PCT/CN2011/082341
Other languages
English (en)
French (fr)
Inventor
周闯柱
杨喜
王煜
石青松
陈琼
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012151906A1 publication Critical patent/WO2012151906A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band

Definitions

  • the present invention relates to the field of communications, and in particular to a method for processing a mobile terminal and a mobile terminal.
  • 3G third generation
  • 2nd generation 2nd generation
  • 4G fourth generation
  • the telecommunications market in each region is not well developed. Different markets require different network coverage and different combinations of modes or frequency bands are required. However, for terminal equipment manufacturers, from the perspective of R&D cost and customer, all modes are expected.
  • the terminal device also covers all frequency bands.
  • WCDMA Wideband Code Division Multiple Access
  • HSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • LTE Long-Term Evolution
  • the performance requirements of the wireless terminal are also higher and higher, especially the radiation performance of the "window"-antenna that interacts with the mobile terminal and the base station system.
  • mobile terminals are developing toward miniaturization. Therefore, on the mobile terminal, the position occupied by the structural members and the circuit devices is subtracted, and the space left for the antenna is very limited.
  • Full-band coverage in a limited space, and good antenna radiation performance not only increases the difficulty of antenna debugging, but also prolongs the development and debugging cycle, and also sacrifices the performance of certain frequency bands, affecting the experience of end users. effect.
  • a mobile terminal comprising: a plurality of antenna matching networks coupled to an antenna of the mobile terminal, wherein each antenna matching network is configured to carry one or more frequency bands; a selector, A radio frequency transceiver circuit configured to couple one antenna matching network of the plurality of antenna matching networks to the mobile terminal.
  • the mobile terminal further includes: a controller configured to output a control signal to the selector, the control selector coupling an antenna matching network to the radio frequency transceiver circuit.
  • the selector is configured to couple an antenna matching network to the radio frequency transceiver circuit using a selection logic signal selection in the control signal, wherein the selection logic signal corresponds to a frequency band in an antenna matching network.
  • the controller is a baseband circuit.
  • the selector is a switch.
  • the switch is a double pole multi throw switch configured to couple an antenna matching network to the radio frequency transceiver circuit by connecting different ports of the double pole multi throw switch.
  • a processing method of a mobile terminal comprising: selecting, by a selector in a mobile terminal, coupling an antenna matching network of a plurality of antenna matching networks in a mobile terminal to a radio frequency in a mobile terminal Transceiver circuit;
  • the mobile terminal receives and/or transmits signals through one of the plurality of antenna matching networks.
  • the selector in the mobile terminal selects to couple one of the plurality of antenna matching networks in the mobile terminal to the radio frequency transceiver circuit in the mobile terminal comprises: the selector receiving the control signal from the controller in the mobile terminal The selector uses a control signal to couple an antenna matching network to the RF transceiver circuit.
  • the selector couples an antenna matching network to the radio frequency transceiver circuit using the control signal selection: the selector couples an antenna matching network to the radio frequency transceiver circuit using the selection logic signal selection in the control signal, wherein the selection logic signal corresponds to An antenna matches the frequency band in the network.
  • the controller is a double pole multi throw switch configured to couple an antenna matching network to the radio frequency transceiver circuit by connecting different ports of the double pole multi throw switch.
  • the invention adopts a method for carrying one or more frequency bands in each antenna matching network in multiple antenna matching networks, which solves the problem that the multi-band antenna of the mobile terminal is low in the related art and the debugging is difficult, thereby achieving the reduction.
  • FIG. 1 is a structural block diagram of a mobile terminal according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a preferred mobile terminal according to an embodiment of the present invention
  • FIG. 3 is another structural diagram according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for designing a radio frequency front end system of a mobile terminal according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of still another preferred mobile terminal according to an embodiment of the present invention
  • 6 is a schematic diagram of a switch selection logic according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a switch selection logic for implementing high and low frequency separation according to an embodiment of the present invention
  • FIG. 8 is a processing method of a mobile terminal according to an embodiment of the present invention
  • FIG. 1 is a structural block diagram of a mobile terminal according to an embodiment of the present invention.
  • the mobile terminal includes: a plurality of antenna matching networks 12 coupled to the mobile terminal.
  • the antenna of the mobile terminal covers the entire frequency band, and all the frequency bands are carried in one antenna matching network, and the performance of the multi-band antenna is difficult to balance.
  • debugging the antenna it is necessary to debug each frequency band, and debugging is difficult. And it takes a long time.
  • multiple antenna matching networks are used, and each antenna matching network carries one or more frequency bands, so that only the antenna matching network corresponding to the frequency band needs to be debugged when debugging the frequency band, thereby reducing the difficulty of debugging and reducing the difficulty.
  • the debugging time increases the antenna performance.
  • 2 is a structural block diagram of a preferred mobile terminal according to an embodiment of the present invention. As shown in FIG.
  • the mobile terminal may further include: a controller 22 coupled to the selector 14 and configured to output control to the selector 14.
  • the signal, control selector 14 couples one of the plurality of antenna matching networks in the plurality of antenna matching networks 12 to the radio frequency transceiver circuit.
  • the selector is selected to select the corresponding antenna matching network.
  • the selector 14 is configured to use a selection logic signal selection in the control signal to couple one of the plurality of antenna matching networks to the radio frequency transceiver circuit, wherein the selection logic signal corresponds to The frequency band in an antenna matching network.
  • the selection logic signal in the control signal corresponds to the frequency band in the antenna matching network, so that the selector 14 can be selected to connect to the appropriate antenna matching network.
  • the controller 22 is a baseband circuit.
  • the baseband circuit existing in the mobile terminal is used as the controller, and the change to the mobile terminal is small, and the implementation is also relatively simple.
  • the selector 14 is a switch.
  • the switch can be a double-pole multi-throw switch configured to couple one of the plurality of antenna matching networks to the RF transceiver circuit by connecting different ports of the double-pole multi-throw switch. This embodiment has the advantage of being easy to implement.
  • Embodiment 2 This embodiment provides a mobile terminal, which is configured to compensate for an increase in antenna debugging difficulty due to limited antenna space, shorten an antenna debugging period, meet performance requirements of different modes and different frequency band combinations, and improve antenna radiation performance. And enhance the user experience of mobile terminals.
  • the mobile terminal provided in this embodiment includes: a main board of the mobile terminal, a power management circuit on the main board, a baseband circuit, a radio frequency transceiver circuit, a double-pole multi-throw switch electrically connected to the radio frequency transceiver circuit, and a double-pole multi-throw switch
  • the antenna matching network 1 and the antenna matching network 2 and the antenna, wherein the antenna matching network 1 and the antenna matching network 2 respectively carry a part of the frequency band, and the frequency band of the antenna matching network 1 and the antenna matching network 2 may be completely different or partially overlapped.
  • the mobile terminal configures a logic signal for selecting an antenna switch according to a control signal output by the baseband chip (baseband circuit), and realizes selection of two ports of the antenna switch, so that the antenna matching network is connected to the circuit, thereby realizing The selection of different frequency bands is combined to debug the antenna matching network of the corresponding port to optimize the antenna performance.
  • baseband chip baseband circuit
  • the mobile terminal in this embodiment realizes the control of switching between the double-pole multi-throw switch through the double-knife multi-throw switch, the added matching network, and the logic selection signal of the configuration switch, and the antenna can be flexibly used.
  • FIG. 3 is a structural block diagram of another preferred mobile terminal according to an embodiment of the present invention.
  • the antenna is electrically connected to the two ports of the double-pole multi-throw switch through the antenna matching network one and the antenna matching network 2, and the other end of the double-pole multi-throw switch is electrically connected to the radio frequency transceiver circuit.
  • the RF transceiver circuit is electrically connected to the baseband circuit to complete the reception and transmission of the RF signal.
  • FIG. 4 is a flowchart of a method for designing a radio frequency front end system of a mobile terminal according to an embodiment of the present invention. As shown in FIG. 4, the method includes the following steps S402 to S418.
  • Step S402 Design an antenna on the main board of the mobile terminal.
  • Step S404 Design an antenna matching network 1 on the main board of the mobile terminal, and electrically connect to the antenna.
  • Step S406 Design an antenna matching network 2 on the main board of the mobile terminal, and electrically connect with the antenna.
  • Step S408 A double-pole multi-throw switch is disposed on the main board of the mobile terminal, and the antenna matching network 1 and the antenna matching network 2 are respectively electrically connected with the double-pole multi-throw switch.
  • Step S410 designing an RF transceiver circuit on the main board of the mobile terminal, and electrically connecting with the double-pole multi-throw switch.
  • Step S412 Design a baseband circuit on the main board of the mobile terminal, and electrically connect with the radio frequency transceiver circuit.
  • Step S414 designing a power management circuit on the main board of the mobile terminal, and electrically connecting to the radio frequency transceiver circuit, the baseband circuit, and the double-pole multi-throw switch, respectively.
  • Step S416 outputting a control signal from the baseband circuit to the double-pole multi-throw switch, and implementing a dual-pole multi-throw switch output two different frequency band combinations through different logic configurations.
  • the sequence of the steps described in this embodiment is only a preferred implementation.
  • FIG. 5 is a schematic structural diagram of still another preferred mobile terminal according to an embodiment of the present invention.
  • the design method of the mobile terminal will be described in detail below with reference to FIG. 5.
  • An antenna 2 is designed on the top of the main board 1 of the mobile terminal.
  • the antenna 2 can be in the form of a monopole or a Planar Inverted F Antenna (PIFA) or an inverted F antenna (Inverted F Antenna). For the form of IFA).
  • An antenna matching network 3 and an antenna matching network 2 are disposed at the lower left of the antenna 2, and the antenna matching network 3 and the antenna matching network 2 are ⁇ -type matching networks.
  • the antenna matching network 3 and the antenna matching network 2 may also be other types of matching networks such as double L type and ⁇ type, and are electrically connected to the antenna 2 respectively.
  • a double-pole multi-throw switch 5 is disposed below the antenna matching network 3 and the antenna matching network 2, and the port 6 and the port 7 of the double-pole multi-throw switch 5 are electrically connected to the antenna matching network 3 and the antenna matching network 2, respectively.
  • a radio frequency transceiver circuit 8 is disposed under the double-pole multi-throw switch 5, and is electrically connected to the double-pole multi-throw switch 5.
  • a baseband circuit 9 is disposed under the radio frequency transceiver circuit 8 and electrically connected to the radio frequency transceiver circuit 8.
  • a power management circuit 10 is disposed under the baseband circuit 9, and is electrically connected to the baseband circuit 9, the RF transceiver circuit 8, and the double-pole multi-throw switch 5, respectively, to complete the power management required for each circuit unit.
  • Four control signals CtlAll, CtlB12, CtlC13, and CtlD14 are output from the baseband circuit 9, and are electrically connected to the double-pole multi-throw switch 5.
  • the control signals CtlAll, CtlB12, CtlC13, and CtlD14 can be configured as shown in FIG.
  • WCDMA I TRx represents the transmission and reception of WCDMA bandl
  • WCDMA VIII TRx represents the transmission and reception of WCDMA band8
  • digital cellular system Digital Cellular System (DCS) Rx stands for Global System for Mobile Communication (GSM) 1800 band reception
  • GSM900 Rx stands for GSM900 band reception
  • GSM850/900 Tx stands for GSM850/900 band transmission.
  • DCS Digital Cellular System
  • Port 6 of the double-pole multi-throw switch 5 transmits and receives signals of the GSM900, DCS, W900 and W2100 commonly used 2G/3G bands in Europe;
  • WCDMAII TRx represents the transmission and reception of WCDMA band2
  • WCDMAV TRx represents the transmission and reception of WCDMA band5
  • personal communication System (Personal Communications System, PCS for short) Rx stands for GSM1900 band reception
  • GSM 850 Rx stands for GSM850 band Receiving
  • GSM850 / 900 Tx representative of GSM850 / 900 band emission pole
  • multi-throw Port 7 of switch 5 transmits and receives signals of 2G/3G frequency bands commonly used in GSM850, PCS, W850 and W1900 America
  • the number of the above control signals can be set according to requirements, for example, multiple control signals can be predefined, wherein multiple control signals can be For three control signals, it can also be 5 control signals, or more; the frequency band combination can also be configured at the design time according to
  • multiple frequency band combinations are predefined, as shown in Figure 7, GSM850/900, W850
  • the low frequency band such as /900 passes through one port input and output of the double-pole multi-throw switch
  • the high frequency band such as DCS/PCS, WCDMAI and P WCDMAII passes through the input and output of the other port of the double-pole multi-throw switch, thereby realizing the way of high and low frequency separation.
  • the antenna matching network can be adjusted for the GSM900, DCS, W900 and W2100 bands, and the antenna matching network can be adjusted for the GSM850, PCS, W850 and W1900 bands.
  • a double-pole multi-throw switch is designed, the antenna matching network is added, and the control signal is outputted by the control signal outputted by the baseband circuit, and the double-knife can be freely controlled.
  • the performance is optimized, which increases the radiation performance of the antenna and improves the user's satisfaction with the use of the mobile terminal.
  • Embodiment 4 provides a processing method of a mobile terminal, and the method may use the mobile terminal in Embodiments 1 to 3.
  • FIG. 8 is a flowchart of a processing method of a mobile terminal according to an embodiment of the present invention. As shown in FIG. 8, the method includes steps S802 to S804. Step S802, the selector in the mobile terminal selects to couple one of the plurality of antenna matching networks in the mobile terminal to the radio frequency transceiver circuit in the mobile terminal. Step S804, the mobile terminal receives and/or transmits a signal through one of the plurality of antenna matching networks.
  • the antenna of the mobile terminal covers the entire frequency band, and all frequency bands are carried in one antenna matching network, and the multi-band antenna system can be difficult to balance.
  • This embodiment uses multiple antenna matching networks, one for each matching network. Or multiple frequency bands, so that only the antenna matching network corresponding to the frequency band needs to be debugged when debugging the frequency band, thereby reducing the difficulty of debugging, reducing the debugging time, and improving the antenna performance.
  • the selector receives a control signal from a controller in the mobile terminal; the selector then uses control signal selection to couple one of the plurality of antenna matching networks to the radio frequency transceiver circuit.
  • the selecting, by the selector, the coupling of the antenna matching network of the plurality of antenna matching networks to the radio frequency transceiver circuit by using the control signal may include: selecting, by using the selection logic signal in the control signal, the selector One of the plurality of antenna matching networks is coupled to the radio frequency transceiver circuit, wherein the selection logic signal corresponds to a frequency band in one of the plurality of antenna matching networks.
  • the selection logic signal in the control signal corresponds to the frequency band in the antenna matching network, so that the selector 14 can be selected to connect to the appropriate antenna matching network.
  • the controller may be a switch.
  • the controller is a double-pole multi-throw switch, and is configured to couple one antenna matching network of the plurality of antenna matching networks to the radio frequency transceiver by connecting different ports of the double-pole multi-throw switch. Circuit.
  • the controller is a baseband circuit.
  • the baseband circuit existing in the mobile terminal is used as the controller, and the change to the mobile terminal is small, and the implementation is also relatively simple.
  • a processing software for a mobile terminal is provided, which is used to execute the technical solutions described in the foregoing embodiments and preferred embodiments.
  • a storage medium is provided, in which the processing software of the mobile terminal is stored.
  • the present invention adopts a method of carrying one or more frequency bands in each antenna matching network in a plurality of antenna matching networks, and only needs to debug the antenna matching network corresponding to the frequency band when debugging the frequency band, thereby achieving a reduction The difficulty of debugging, reducing the effect of debugging time, and improving the performance of multi-band antennas.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Telephone Function (AREA)

Abstract

本发明公开了一种移动终端及移动终端的处理方法,该移动终端包括:多个天线匹配网络,耦合至该移动终端的天线,其中,每个天线匹配网络用于承载一个或多个频段;选择器,用于选择将多个天线匹配网络中的一个天线匹配网络耦合至移动终端的射频收发电路。本发明达到了提高天线性能、降低调试难度、和减少调试时间的效果。

Description

移动终端及移动终端的处理方法 技术领域 本发明涉及通信领域, 具体而言, 涉及一种移动终端及移动终端的处理方法。 背景技术 随着全球电信市场的迅速发展, 第三代 (3rf generation, 简称为 3G) 网络得到广 泛的推广, 目前处在一个由第二代 (2nd generation, 简称为 2G) 向 2G/3G模式并逐渐 向 3G/第四代 (4th generation, 简称为 4G) 模式转换的阶段。 各个区域的电信市场发 展不均衡, 不同的市场需要不同的网络覆盖, 需要不同的模式组合或频段组合, 但对 于终端设备制造商来说, 从研发成本和客户的角度上考虑, 希望所有的模式和频段组 合都能一起实现, 以满足各个运营商的不同需求。 因此, 终端设备除了要求芯片、 电 路能支持不同模式和频段组合外, 天线也要覆盖全部频段。 从 3G 的宽带码分多址接入 (Wideband Code Division Multiple Access, 简称为 WCDMA) 的速率到高速下行分组接入 (High Speed Downlink Packet Access, 简称为 HSDPA) /高速上行分组接入(High Speed Uplink Packet Access, 简称为 HSUPA)的上 行 5.76 Mbps, 下行 21 Mbps 到双载波下行 42 Mbps, 以及长期演进 (Long-Term Evolution, 简称为 LTE), 极高的速率给用户带来了越来越快速的速率体验。 为了满足 用户使用的流畅性, 对无线终端的性能要求也越来越高, 尤其是对移动终端与基站系 统交互的"窗口"一天线的辐射性能也提出了苛刻的要求。 然而, 目前的市场上, 移动终端都在向小型化发展, 因此, 在移动终端上, 减去 结构件和电路器件所占的位置, 给天线留下的空间十分有限。 在有限的空间内实现全 频段覆盖, 并要求良好的天线辐射性能, 不仅增加了天线调试的难度, 也延长了研发 调试周期, 还会使某些频段的性能有所牺牲, 影响终端用户的体验效果。 发明内容 本发明提供了一种移动终端及移动终端的处理方法, 以至少解决相关技术中存在 的移动终端天线调试困难的问题。 根据本发明的一个方面, 提供了一种移动终端, 包括: 多个天线匹配网络, 耦合 至该移动终端的天线, 其中, 每个天线匹配网络设置为承载一个或多个频段; 选择器, 设置为选择将多个天线匹配网络中的一个天线匹配网络耦合至移动终端的射频收发电 路。 优选地, 上述移动终端还包括: 控制器, 设置为向选择器输出控制信号, 控制选 择器将一个天线匹配网络耦合至射频收发电路。 优选地, 上述选择器设置为使用控制信号中的选择逻辑信号选择将一个天线匹配 网络耦合至射频收发电路,其中, 该选择逻辑信号对应于一个天线匹配网络中的频段。 优选地, 上述控制器为基带电路。 优选地, 上述选择器为开关。 优选地, 上述开关为双刀多掷开关, 设置为通过连接该双刀多掷开关的不同端口 将一个天线匹配网络耦合至射频收发电路。 根据本发明的另一方面, 提供了一种移动终端的处理方法, 包括: 移动终端中的 选择器选择将移动终端中的多个天线匹配网络中的一个天线匹配网络耦合至移动终端 中的射频收发电路; 移动终端通过多个天线匹配网络中的一个天线匹配网络接收和 / 或发送信号。 优选地, 移动终端中的选择器选择将移动终端中的多个天线匹配网络中的一个天 线匹配网络耦合至移动终端中的射频收发电路包括: 选择器接收来自移动终端中的控 制器的控制信号;选择器使用控制信号选择将一个天线匹配网络耦合至射频收发电路。 优选地,选择器使用控制信号选择将一个天线匹配网络耦合至射频收发电路包括: 选择器使用控制信号中的选择逻辑信号选择将一个天线匹配网络耦合至射频收发电 路, 其中, 选择逻辑信号对应于一个天线匹配网络中的频段。 优选地, 控制器为双刀多掷开关, 设置为通过连接双刀多掷开关的不同端口将一 个天线匹配网络耦合至射频收发电路。 通过本发明, 采用多个天线匹配网络中的每条天线匹配网络中承载一个或多个频 段的方式, 解决了相关技术中存在的移动终端多频段天线低, 调试困难的问题, 进而 达到了降低调试难度, 减少调试时间, 提高天线性能的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明实施例的移动终端的结构框图; 图 2是根据本发明实施例的一种优选的移动终端的结构框图; 图 3是根据本发明实施例的另一种优选的移动终端的结构框图; 图 4是根据本发明实施例的一种移动终端射频前端系统设计方法的流程图; 图 5是根据本发明实施例的再一种优选的移动终端的结构示意图; 图 6是根据本发明实施例的配置的开关选择逻辑示意图; 图 7是根据本发明实施例的实现高低频分开的开关选择逻辑示意图; 图 8是根据本发明实施例的移动终端的处理方法的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例一 本实施例提供了一种移动终端,图 1是根据本发明实施例的移动终端的结构框图, 如图 1所示, 该移动终端包括: 多个天线匹配网络 12, 耦合至该移动终端的天线, 其 中, 每个天线匹配网络设置为承载一个或多个频段; 选择器 14, 耦合至多个天线匹配 网络 12, 设置为选择将多个天线匹配网络 12中的一个天线匹配网络耦合至移动终端 的射频收发电路。 在相关技术中, 移动终端的天线覆盖全频段, 所有频段都承载在一个天线匹配网 络中, 多频段天线性能难以全部兼顾, 在对天线进行调试时, 需要对每个频段都进行 调试, 调试困难且费时也较长。 本实施例使用多个天线匹配网络, 每个天线匹配网络 中承载一个或多个频段, 使得在调试频段时只需要调试该频段对应的天线匹配网络即 可, 从而减低了调试的难度, 减少了调试的时间, 提高了天线性能。 图 2是根据本发明实施例的一种优选的移动终端的结构框图, 如图 2所示, 该移 动终端还可以包括: 控制器 22, 耦合至选择器 14, 设置为向选择器 14输出控制信号, 控制选择器 14将多个天线匹配网络 12中的多个天线匹配网络中的一个天线匹配网络 耦合至射频收发电路。 该实施例中, 通过控制器输出控制信号, 实现了选择器选择相 应的天线匹配网络。 在本发明实施例的一个优选实现方式中,选择器 14设置为使用控制信号中的选择 逻辑信号选择将多个天线匹配网络中的一个天线匹配网络耦合至射频收发电路,其中, 选择逻辑信号对应于一个天线匹配网络中的频段。 本实施例中, 将控制信号中的选择 逻辑信号与天线匹配网络中的频段相对应,从而能够使选择器 14选择连接合适的天线 匹配网络。 优选地, 上述控制器 22为基带电路。本实施例使用移动终端中存在的基带电路作 为控制器, 对移动终端的改变较小, 实现也较为简单。 优选地, 上述选择器 14为开关。该开关可以为双刀多掷开关, 设置为通过连接双 刀多掷开关的不同端口将多个天线匹配网络中的一个天线匹配网络耦合至射频收发电 路。 本实施例具有易于实现的优点。 实施例二 本实施例提供了一种移动终端, 设置为弥补因天线空间有限而带来的天线调试难 度的增加, 缩短天线调试周期, 满足不同模式和不同频段组合的性能需求, 提高天线 辐射性能, 以及增强移动终端的用户体验性。 本实施例提供的移动终端包括: 移动终端的主板、 主板上的电源管理电路、 基带 电路、 射频收发电路、 与射频收发电路电连接的双刀多掷开关、 与双刀多掷开关相连 接的天线匹配网络一和天线匹配网络二以及天线, 其中, 天线匹配网络一和天线匹配 网络二分别承载一部分的频段, 天线匹配网络一和天线匹配网络二承载的频段可以完 全不同, 也可以有部分重叠。 该移动终端通过基带芯片 (基带电路)输出的控制信号, 根据需求配置对天线开关的选择逻辑信号, 实现对天线开关的两个端口的选择, 使得 天线匹配网络接入到电路中, 从而实现对不同频段组合的选择, 分别调试对应端口的 天线匹配网络, 使天线性能达到最优。 需要说明的是, 本实施例仅是以两个天线匹配 网络为例, 多个天线匹配网络也可以实现类似的功能。 与相关技术相比较, 本实施例中的移动终端, 通过双刀多掷开关、 增加的匹配网 络及配置开关的逻辑选择信号实现对双刀多掷开关切换的控制, 可以灵活地使用天线 的匹配电路, 减小了天线的调试难度, 进而缩短研发周期, 增强了多模多频段天线的 性能, 提高了用户的速率体验效果。 实施例三 图 3是根据本发明实施例的另一种优选的移动终端的结构框图。 如图 3所示, 在 该实施例中, 天线通过天线匹配网络一和天线匹配网络二与双刀多掷开关的两个端口 电连接, 双刀多掷开关的另一端与射频收发电路电连接, 射频收发电路与基带电路电 连接, 完成射频信号的接收和发射, 电源管理电路分别与基带电路、 射频收发电路及 双刀多掷开关电连接, 完成对各电路的供电; 基带电路输出可以配置的控制信号, 通 过该控制信号完成对双刀多掷开关的逻辑选择, 从而使双刀多掷开关的输出两路不同 的频段组合;并针对两种不同的频段组合分别调整天线匹配网络一和天线匹配网络二, 使天线性能在各个工作频段内达到最佳。 图 4是根据本发明实施例的一种移动终端射频前端系统设计方法的流程图, 如图 4所示, 该方法包括以下步骤 S402至步骤 S418。 步骤 S402、 在移动终端的主板上设计一天线。 步骤 S404、 在移动终端的主板上设计一天线匹配网络一, 与天线电连接。 步骤 S406、 在移动终端的主板上设计一天线匹配网络二, 与天线电连接。 步骤 S408、 在移动终端的主板上设置一双刀多掷开关, 天线匹配网络一和天线匹 配网络二分别与双刀多掷开关电连接。 步骤 S410、 在移动终端的主板上设计一射频收发电路, 与双刀多掷开关电连接。 步骤 S412、 在移动终端的主板上设计一基带电路, 与射频收发电路电连接。 步骤 S414、 在移动终端的主板上设计一电源管理电路, 分别与射频收发电路、 基 带电路和双刀多掷开关电连接。 步骤 S416、 从基带电路对双刀多掷开关输出控制信号, 通过不同的逻辑配置实现 双刀多掷开关输出两路不同的频段组合。 步骤 S418、 分别针对所要实现的频段分别调节天线匹配网络一和天线匹配网络 二, 实现各个频段的天线性能达到最佳。 在本实施例中描述的步骤的先后顺序仅是优选的实现方式, 需要说明的是, 步骤 S402至步骤 S414的执行顺序可以进行任意组合, 这些组合均可实现本实施例相同的 功能。 图 5是根据本发明实施例的再一种优选的移动终端的结构示意图, 下面结合图 5 对该移动终端的设计方法进行详细说明。 在移动终端的主板 1的顶端设计一天线 2, 天线 2的形式可以为单极子、 也可以 为平面倒 F天线(Planar Inverted F Antenna,简称为 PIFA)、倒 F天线(Inverted F Antenna, 简称为 IFA) 等形式。 在天线 2的左下方设置天线匹配网络一 3和天线匹配网络二 4,天线匹配网络一 3 和天线匹配网络二 4为 π型匹配网络。 需要说明的是, 天线匹配网络一 3和天线匹配 网络二 4也可以为双 L型、 Τ型等其他形式的匹配网络, 且分别与天线 2电连接。 在天线匹配网络一 3和天线匹配网络二 4的下方设置一双刀多掷开关 5, 双刀多 掷开关 5的端口 6和端口 7分别与天线匹配网络一 3和天线匹配网络二 4电连接。 在双刀多掷开关 5的下方设置一射频收发电路 8, 与双刀多掷开关 5电连接。 在射频收发电路 8的下方设置一基带电路 9, 与射频收发电路 8电连接。 在基带电路 9的下方设置一电源管理电路 10, 分别与基带电路 9、 射频收发电路 8和双刀多掷开关 5电连接, 完成各个电路单元所需的电源管理。 从基带电路 9输出四个控制信号 CtlAll、 CtlB12、 CtlC13和 CtlD14, 与双刀多掷 开关 5电连接, 控制信号 CtlAll、 CtlB12、 CtlC13和 CtlD14可以如图 6所示的方式 进行配置, 其中, 图中示出了逻辑信号的高电平(High)和逻辑信号的低电平(Low), WCDMA I TRx代表 WCDMA bandl的发射和接收, WCDMA VIII TRx代表 WCDMA band8的发射和接收, 数字蜂窝系统 (Digital Cellular System, 简称为 DCS) Rx代表 移动通信全球系统 (Global System for Mobile Communication,简称为 GSM) 1800频段 的接收, GSM900 Rx代表 GSM900频段的接收, GSM850/900 Tx代表 GSM850/900 频段的发射, 使双刀多掷开关 5的端口 6收发 GSM900、 DCS、 W900和 W2100欧洲 常用的 2G/3G频段的信号; WCDMAII TRx代表 WCDMA band2 的发射和接收, WCDMAV TRx 代表 WCDMA band5 的发射和接收, 个人通信系统 (Personal Communications System, 简称为 PCS) Rx代表 GSM1900频段的接收, GSM 850 Rx 代表 GSM850频段的接收, GSM850/900 Tx代表 GSM850/900频段的发射, 双刀多掷 开关 5的端口 7收发 GSM850、 PCS、 W850和 W1900美洲常用的 2G/3G频段的信号; 上述控制信号的数量可以根据需求进行设置, 例如可以预定义多个控制信号, 其中, 多个控制信号可以为三个控制信号, 也可以为 5个控制信号, 或者更多; 频段组合也 可以根据需求在设计时自行配置, 例如, 预先定义多个频段组合, 如图 7 所示, GSM850/900 , W850/900 等低频段通过双刀多掷开关的一个端口输入和输出, DCS/PCS、 WCDMAI禾 P WCDMAII等高频段通过双刀多掷开关的另一个端口输入和 输出, 从而实现高低频分离的方式。 通过设置上述频段组合, 在针对 GSM900、 DCS、 W900和 W2100频段时, 可以 调整天线匹配网络一 3, 在针对 GSM850、 PCS、 W850和 W1900频段时, 可以调整天 线匹配网络二 4。 在本实施例中, 在移动终端的电路中, 设计了双刀多掷开关, 增加了天线匹配网 络, 并通过基带电路输出的控制信号对控制信号进行选择逻辑配置, 可以自由地控制 双刀多掷开关的切换及实现两个端口不同的收发频段组合, 针对不同的频段组合, 再 分别调节两路天线匹配电路, 从而降低了天线的调试难度, 缩短了天线研发周期, 而 且可以使各个频段天线性能达到最佳, 进而增加了天线的辐射性能, 提高用户使用移 动终端的满意度。 实施例四 本实施例提供了一种移动终端的处理方法, 该方法可以使用实施例一至实施例三 中的移动终端。 图 8是根据本发明实施例的移动终端的处理方法的流程图, 如图 8所示, 该方法 包括步骤 S802至步骤 S804。 步骤 S802,移动终端中的选择器选择将移动终端中的多个天线匹配网络中的一个 天线匹配网络耦合至移动终端中的射频收发电路。 步骤 S804,移动终端通过多个天线匹配网络中的一个天线匹配网络接收和 /或发送 信号。 在相关技术中, 移动终端的天线覆盖全频段, 所有频段都承载在一个天线匹配网 络中, 多频段天线系能难以兼顾, 在对天线进行调试时, 需要对每个频段都进行调试, 调试困难且费时也较长。 本实施例使用多个天线匹配网络, 每个匹配网络中承载一个 或多个频段, 使得在调试频段时只需要调试该频段对应的天线匹配网络即可, 从而减 低了调试的难度, 减少了调试的时间, 提高了天线性能。 其中, 步骤 S802可以有多种实现方式, 下面仅对其中的一种实现方式进行说明。 选择器接收来自移动终端中的控制器的控制信号; 然后, 该选择器使用控制信号选择 将多个天线匹配网络中的一个天线匹配网络耦合至射频收发电路。 该实施例中, 通过 控制器输出控制信号, 实现了选择器选择相应的天线匹配网络。 在本发明实施例的一个优选实现方式中, 选择器使用控制信号选择将多个天线匹 配网络中的一个天线匹配网络耦合至射频收发电路可以包括: 选择器使用控制信号中 的选择逻辑信号选择将多个天线匹配网络中的一个天线匹配网络耦合至射频收发电 路, 其中, 选择逻辑信号对应于多个天线匹配网络中的一个天线匹配网络中的频段。 本实施例中, 将控制信号中的选择逻辑信号与天线匹配网络中的频段相对应, 从而能 够使选择器 14选择连接合适的天线匹配网络。 优选地, 上述控制器可以为开关, 例如, 该控制器为双刀多掷开关, 设置为通过 连接双刀多掷开关的不同端口将多个天线匹配网络中的一个天线匹配网络耦合至射频 收发电路。 本实施例具有易于实现的优点。 优选地, 上述控制器为基带电路。 本实施例使用移动终端中存在的基带电路作为 控制器, 对移动终端的改变较小, 实现也较为简单。 在另外一个实施例中, 还提供了一种移动终端的处理软件, 该软件用于执行上述 实施例及优选实施例中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储机制中存储有上述移动终 端的处理软件。 综上所述, 本发明采用多个天线匹配网络中的每条天线匹配网络中承载一个或多 个频段的方式, 在调试频段时只需要调试该频段对应的天线匹配网络即可, 达到了减 低调试难度, 减少调试时间的效果, 提高了多频段天线性能。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种移动终端, 包括:
多个天线匹配网络, 耦合至所述移动终端的天线, 其中, 每个所述天线匹 配网络设置为承载一个或多个频段;
选择器, 设置为选择将所述多个天线匹配网络中的一个天线匹配网络耦合 至所述移动终端的射频收发电路。
2. 根据权利要求 1所述的移动终端, 其中, 所述移动终端还包括:
控制器, 设置为向所述选择器输出控制信号, 控制所述选择器将所述一个 天线匹配网络耦合至所述射频收发电路。
3. 根据权利要求 2所述的移动终端, 其中, 所述选择器设置为使用所述控制信号中的选择逻辑信号选择将所述一个天 线匹配网络耦合至所述射频收发电路, 其中, 所述选择逻辑信号对应于所述一 个天线匹配网络中的频段。
4. 根据权利要求 2或 3所述的移动终端, 其中, 所述控制器为基带电路。
5. 根据权利要求 1至 3中任一项所述的移动终端, 其中, 所述选择器为开关。
6. 根据权利要求 5所述的移动终端, 其中, 所述开关为双刀多掷开关, 设置为通 过连接所述双刀多掷开关的不同端口将所述一个天线匹配网络耦合至所述射频 收发电路。
7. 一种移动终端的处理方法, 包括:
移动终端中的选择器选择将所述移动终端中的多个天线匹配网络中的一个 天线匹配网络耦合至所述移动终端中的射频收发电路;
所述移动终端通过所述一个天线匹配网络接收和 /或发送信号。
8. 根据权利要求 7所述的方法, 其中, 移动终端中的选择器选择将所述移动终端 中的多个天线匹配网络中的一个天线匹配网络耦合至所述移动终端中的射频收 发电路包括:
所述选择器接收来自所述移动终端中的控制器的控制信号; 所述选择器使用所述控制信号选择将所述一个天线匹配网络耦合至所述射 频收发电路。 根据权利要求 8所述的方法, 其中, 所述选择器使用所述控制信号选择将所述 一个天线匹配网络耦合至所述射频收发电路包括:
所述选择器使用所述控制信号中的选择逻辑信号选择将所述一个天线匹配 网络耦合至所述射频收发电路, 其中, 所述选择逻辑信号对应于所述一个天线 匹配网络中的频段。 根据权利要求 7至 9中任一项所述的方法,其中,所述控制器为双刀多掷开关, 设置为通过连接所述双刀多掷开关的不同端口将所述一个天线匹配网络耦合至 所述射频收发电路。
PCT/CN2011/082341 2011-09-14 2011-11-17 移动终端及移动终端的处理方法 WO2012151906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110271742.4 2011-09-14
CN2011102717424A CN102394668A (zh) 2011-09-14 2011-09-14 移动终端及移动终端的处理方法

Publications (1)

Publication Number Publication Date
WO2012151906A1 true WO2012151906A1 (zh) 2012-11-15

Family

ID=45861878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082341 WO2012151906A1 (zh) 2011-09-14 2011-11-17 移动终端及移动终端的处理方法

Country Status (2)

Country Link
CN (1) CN102394668A (zh)
WO (1) WO2012151906A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458536B (zh) * 2012-05-31 2016-06-29 展讯通信(上海)有限公司 移动终端和数据传输方法
CN103401081A (zh) * 2013-08-09 2013-11-20 上海华勤通讯技术有限公司 合成天线系统和包含其的手机
CN105897297B (zh) * 2016-05-19 2019-03-12 北京佰才邦技术有限公司 调节天线的装置及方法
CN105915262A (zh) * 2016-06-30 2016-08-31 宇龙计算机通信科技(深圳)有限公司 一种射频发射电路及移动终端
CN106229619B (zh) * 2016-08-16 2019-07-05 青岛海信移动通信技术股份有限公司 一种移动终端
CN110752867B (zh) * 2019-10-10 2021-10-12 维沃移动通信有限公司 一种网络匹配方法、装置及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101002361A (zh) * 2004-07-26 2007-07-18 基奥赛拉无线公司 全双工天线系统和方法
CN200990608Y (zh) * 2006-11-24 2007-12-12 英华达(上海)电子有限公司 一种用于移动终端的多频段天线
CN101567704A (zh) * 2008-04-22 2009-10-28 鸿富锦精密工业(深圳)有限公司 无线通信装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230709A (ja) * 2000-02-17 2001-08-24 Nec Shizuoka Ltd ダイバーシチ受信装置
JP2003158468A (ja) * 2001-11-20 2003-05-30 Toshiba Corp 携帯無線装置
US6816711B2 (en) * 2001-11-27 2004-11-09 Qualcomm Incorporated GPS equipped mobile phone with single shared antenna
US7197347B2 (en) * 2003-09-07 2007-03-27 Benq Corporation Method of changing a frequency band of a wireless communication device according to identity of a detachable cover
US6914570B2 (en) * 2003-11-10 2005-07-05 Motorola, Inc. Antenna system for a communication device
KR20050094695A (ko) * 2004-03-24 2005-09-28 엘지전자 주식회사 이동 통신 단말기의 안테나 매칭 회로 및 방법
KR100742326B1 (ko) * 2005-12-09 2007-07-26 삼성전자주식회사 Rfid 기능을 갖는 이동통신 단말기
US7952464B2 (en) * 2006-10-05 2011-05-31 Intermec Ip Corp. Configurable RFID tag with protocol and band selection
FI120427B (fi) * 2007-08-30 2009-10-15 Pulse Finland Oy Säädettävä monikaista-antenni
CN101388486B (zh) * 2008-10-31 2011-12-28 清华大学 用于数字电视广播移动终端的匹配网络可重构的内置天线
US20110076966A1 (en) * 2009-09-28 2011-03-31 Sony Ericsson Mobile Communications Ab Method for driving an antenna of a mobile device
CN101710832A (zh) * 2009-11-23 2010-05-19 中兴通讯股份有限公司 一种调试射频前端模块的方法及冗余装置
CN101814927B (zh) * 2010-04-14 2014-07-02 中兴通讯股份有限公司 一种多模全频段的射频发射装置及方法
CN101877916A (zh) * 2010-06-13 2010-11-03 中兴通讯股份有限公司 多模移动终端及其天线匹配的实现方法
CN101902243B (zh) * 2010-07-28 2013-01-02 锐迪科创微电子(北京)有限公司 可配置多模式射频前端模块及具有该模块的移动终端
CN201947322U (zh) * 2011-01-11 2011-08-24 惠州Tcl移动通信有限公司 一种手机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101002361A (zh) * 2004-07-26 2007-07-18 基奥赛拉无线公司 全双工天线系统和方法
CN200990608Y (zh) * 2006-11-24 2007-12-12 英华达(上海)电子有限公司 一种用于移动终端的多频段天线
CN101567704A (zh) * 2008-04-22 2009-10-28 鸿富锦精密工业(深圳)有限公司 无线通信装置

Also Published As

Publication number Publication date
CN102394668A (zh) 2012-03-28

Similar Documents

Publication Publication Date Title
US10412591B2 (en) Simultaneous VoLTE and 2G/3G/LTE data in dual SIM configuration
CN106712795B (zh) Lte载波聚合技术的射频电路及其通信设备
US9667279B2 (en) Systems and methods for a universal antenna module
US9106733B2 (en) Simultaneous voice-long term evolution dual antenna system
US10341081B2 (en) User equipment that autonomously selects between full and half duplex operations
US9942873B2 (en) Concurrent data communication and voice call monitoring using dual SIM
KR101836199B1 (ko) 다중모드 무선 단말기
WO2017113693A1 (zh) 天线复用装置以及移动终端
US20100120466A1 (en) Multi-mode antenna switching
WO2012151906A1 (zh) 移动终端及移动终端的处理方法
CN105453339B (zh) 用于天线调谐的方法和装置
JP2012507190A (ja) 可変インピーダンス整合ネットワークおよびその方法
WO2009138845A1 (en) Integrated antenna array and rf front end module
US9287941B2 (en) Beam forming and steering using LTE diversity antenna
CN102857247B (zh) 具有支持同时数据及语音通讯的射频电路架构的移动装置
US10381728B2 (en) Multi-band radio frequency circuit
WO2022160306A1 (zh) 一种无线通信装置及其天线切换方法
US8948707B2 (en) Duplex filter arrangements for use with tunable narrow band antennas having forward and backward compatibility
KR20100020233A (ko) 스위칭을 이용한 멀티 밴드 안테나
WO2016041334A1 (zh) 终端、终端的多载波发送及接收方法
CN111901819A (zh) 一种测试方法、系统及计算机存储介质
WO2012079309A1 (zh) 四频段gsm收发装置及无线终端
WO2011137611A1 (zh) 一种双模智能手机的天线装置及其应用终端
JP5718644B2 (ja) 無線アクセス技術
WO2012159517A1 (zh) 一种天线性能优化方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865142

Country of ref document: EP

Kind code of ref document: A1