WO2016041334A1 - 终端、终端的多载波发送及接收方法 - Google Patents

终端、终端的多载波发送及接收方法 Download PDF

Info

Publication number
WO2016041334A1
WO2016041334A1 PCT/CN2015/075301 CN2015075301W WO2016041334A1 WO 2016041334 A1 WO2016041334 A1 WO 2016041334A1 CN 2015075301 W CN2015075301 W CN 2015075301W WO 2016041334 A1 WO2016041334 A1 WO 2016041334A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
carrier
terminal
band
frequency
Prior art date
Application number
PCT/CN2015/075301
Other languages
English (en)
French (fr)
Inventor
牛慧
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016041334A1 publication Critical patent/WO2016041334A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present invention relates to the field of communications, and in particular to a method for transmitting and receiving multiple carriers of a terminal and a terminal.
  • CA Carrier Aggregation
  • carrier aggregation broadens the bandwidth and improves the spectrum utilization rate, it also brings about an increase in the path loss of the radio link and interference between the carriers.
  • the increase in the path loss of the wireless link is mainly due to the addition of a multiplexer (terminal) of the terminal supporting the carrier aggregation technology to the radio link, and the suppression of inter-band interference during multi-carrier aggregation is affected by the current antenna technology.
  • the available space of mobile terminal antennas is getting smaller and smaller, and therefore, the requirements for multi-band and antenna available space cannot be balanced.
  • the present invention provides a multi-carrier transmission and reception method for a terminal and a terminal, so as to at least solve the technical problems in the related art that the multi-band requirement of the terminal and the available space requirement of the terminal antenna cannot be simultaneously satisfied.
  • a terminal including: a multi-band antenna, configured with a plurality of antenna structures, configured to transmit or receive a carrier corresponding to the antenna structure in a multi-carrier through the antenna structure, where The different antenna structures correspond to different frequency bands; the baseband chip is configured to output a baseband signal, and configure an antenna structure corresponding to the frequency band of each carrier according to a frequency band of each carrier in the multiple carrier; a radio frequency module, And modulating the baseband signal to the multi-carrier and transmitting the multi-carrier to the multi-band antenna, or transmitting the carrier received by the multi-band antenna to the baseband chip.
  • the terminal further includes: a tuning module disposed between the radio frequency module and the multi-band antenna, configured to perform frequency tuning on the multi-carrier.
  • the tuning module is one.
  • the terminal further includes: an antenna switch, where multiple ports are provided, each of the ports only allows carrier input corresponding to the port; one end of the antenna switch is connected to the radio frequency module, and the other end Connected to the tuning module.
  • the multi-band antenna is one.
  • the antenna structure includes: a plurality of feed points and/or short circuit points, a matching network circuit corresponding to the carrier, and a radiator trace.
  • a method for transmitting a multi-carrier of a terminal includes: acquiring a frequency band of each carrier in a multi-carrier to be transmitted by the terminal; selecting, for each carrier, a plurality of antenna structures An antenna structure corresponding to the frequency band, wherein the plurality of antenna structures are disposed in the multi-band antenna of the terminal; and the carrier of the frequency band corresponding to the antenna structure is transmitted on the selected antenna structure.
  • the method before transmitting the carrier of the frequency band corresponding to the antenna structure on the selected antenna structure, the method further includes: performing tuning processing of the transmission frequency on each of the multiple carriers.
  • a method for receiving a multi-carrier of a terminal includes: receiving a multi-carrier from a network side; and selecting, for each of the multi-carriers, a frequency band with each of the carriers A corresponding antenna structure processes the baseband chip in each of the carrier transmitting terminals, wherein the antenna structure is disposed in the multi-band antenna of the terminal.
  • the method before processing the baseband chip in each of the carrier transmitting terminals, the method further includes: performing tuning processing of the receiving frequency on each of the multiple carriers.
  • the embodiment of the present invention utilizes an antenna structure corresponding to a frequency band in a multi-band antenna to implement transmission or reception of multiple carriers, and solves technical problems that the multi-band requirement of the terminal and the available space requirement of the terminal antenna cannot be simultaneously satisfied in the related art. Therefore, while realizing the multi-band requirement of the terminal, the available space of the antenna is also taken into account, and the path loss of the wireless link is also reduced because the multiplexer is omitted.
  • FIG. 1a is a structural block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 1b is a schematic structural diagram of a terminal according to a preferred embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for transmitting a multi-carrier of a terminal according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a multi-carrier receiving method of a terminal according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a terminal supporting carrier aggregation according to a preferred embodiment of the present invention.
  • FIG. 5 is a flow chart of a method of multi-carrier transmission or reception of a terminal in accordance with a preferred embodiment of the present invention.
  • FIG. 1a is a structural block diagram of a terminal according to an embodiment of the present invention. As shown in FIG. 1a, the terminal includes:
  • the multi-band antenna 10 is provided with a plurality of antenna structures, and is configured to transmit or receive a carrier corresponding to the antenna structure in the multi-carrier through the antenna structure, wherein different antenna structures correspond to different frequency bands;
  • the baseband chip 20 is configured to output a baseband signal, and configure an antenna structure corresponding to the frequency band of each of the carriers according to a frequency band of each of the plurality of carriers;
  • the radio frequency module 30 is configured to modulate the baseband signal onto the multi-carrier, transmit the multi-carrier to the multi-band antenna, or transmit the carrier received by the multi-band antenna to the baseband chip.
  • the terminal including each of the above modules can realize the transmission or reception of multiple carriers by using the antenna structure corresponding to the frequency band in the multi-band antenna, thereby solving the problem that the multi-band requirement of the terminal and the available space requirement of the terminal antenna cannot be simultaneously satisfied.
  • the problem is that while realizing the multi-band requirement of the terminal, the available space of the antenna is also taken into account, and the path loss of the wireless link is also reduced because the multiplexer is omitted.
  • the radio frequency module may include the following hardware processing modules, but is not limited thereto:
  • the radio frequency chip module is configured to transmit to the base station by using multiple component carriers, and receive the wireless signal from the base station; that is, mainly complete modulation of the transmitted digital baseband signal to meet the required radio frequency index for transmission in space; Demodulating the spatially received RF signal to convert it into a digital baseband signal is performed by the baseband chip module to perform related data operations.
  • the RF front-end device mainly includes a filter, a power amplifier and a duplexer, etc., completes amplification and filtering of the transmitted signal, and is transmitted by the antenna after the antenna switch; completes filtering of the signal received by the antenna, and then enters the RF chip.
  • the module performs demodulation.
  • the terminal may further include: a tuning module 40 (also referred to as an antenna tuning module) disposed between the radio frequency module 30 and the multi-band antenna 10, and configured to Frequency tuning is performed on the above multiple carriers.
  • a tuning module 40 also referred to as an antenna tuning module
  • the number of tuning modules 40 is one, which effectively ensures the available space of the terminal antenna.
  • the terminal further includes: an antenna switch 50, which is provided with a plurality of ports, each of which only allows carrier input corresponding to the port; the antenna switch One end of 50 is connected to the above RF module, and the other end is connected to the above tuning module.
  • the number of the above multi-band antennas 10 can also be set to one.
  • the antenna structure may include, but is not limited to, a plurality of feed points and/or short circuit points, a matching network circuit corresponding to the carrier, and a radiator trace.
  • the embodiment of the invention further provides a method for transmitting a multi-carrier of a terminal. As shown in FIG. 2, the method includes:
  • Step S202 acquiring a frequency band of each carrier in the multi-carrier to be sent by the terminal;
  • Step S204 for each carrier, selecting an antenna structure corresponding to the frequency band from a plurality of antenna structures, wherein the plurality of antenna structures are disposed in the multi-band antenna of the terminal;
  • Step S206 transmitting a carrier of a frequency band corresponding to the antenna structure on the selected antenna structure.
  • the frequency of the tuning may be performed on each of the plurality of carriers.
  • the embodiment of the invention further provides a multi-carrier receiving method for a terminal. As shown in FIG. 3, the method includes:
  • Step S302 receiving multiple carriers from the network side
  • Step S304 selecting, for each carrier of the multiple carriers, an antenna structure corresponding to the frequency band of each carrier to process a baseband chip in each of the carrier transmitting terminals, wherein the antenna structure is disposed on the terminal.
  • the band antenna In the band antenna.
  • the embodiments of the present invention provide a terminal and implementation method for supporting carrier aggregation, which can reduce the path loss of the wireless link, and reduce interference caused by carrier aggregation by optimizing antenna performance, thereby improving the quality of the communication system.
  • the design idea of the following embodiment is to reduce the path loss of the wireless link by reducing the path loss of the wireless link by implementing the function of the Diplexer in the multi-band antenna by using the design of the tunable multi-band antenna; adjusting one or the antenna tuning module More than one antenna parameter to optimize antenna performance, thereby reducing carrier aggregation interference.
  • the embodiment further provides a terminal, as shown in FIG. 4, comprising: a baseband chip 20, a power management chip 60, a radio frequency chip module 300, a radio frequency front end device 302, an antenna switch 50, an antenna tuning module 40, and a multi-band antenna 10 Wait.
  • a terminal as shown in FIG. 4, comprising: a baseband chip 20, a power management chip 60, a radio frequency chip module 300, a radio frequency front end device 302, an antenna switch 50, an antenna tuning module 40, and a multi-band antenna 10 Wait.
  • the baseband chip 20 is used to synthesize the baseband signal to be transmitted or to decode the baseband signal received from the radio frequency module 30. At the same time, it is also responsible for controlling and managing the entire terminal, including timing control, digital system control, and human-machine. Interface management and control, and RF device control.
  • the power management chip 60 is configured to provide power for the baseband chip, the radio frequency chip, the radio frequency front end device, the antenna switch, and the antenna tuning module.
  • the radio frequency chip module 300 is configured to transmit to the base station by using multiple component carriers, and receive the wireless signal from the base station; that is, mainly complete modulation of the transmitted digital baseband signal to meet the required radio frequency index for transmission in space; At the same time, the radio frequency signal received by the space is demodulated and converted into a digital baseband signal to perform related data operations by the baseband chip module.
  • the RF front-end device 302 mainly includes a filter, a power amplifier and a duplexer, and performs amplification and filtering on the transmitted signal, and is transmitted by the antenna after being switched by the antenna; filtering the signal received by the antenna, and then entering the RF
  • the chip module performs demodulation.
  • the antenna switch 50 and the antenna tuning module 40 are configured to adjust the transmission line structure, the matching network, the antenna resonating element, the antenna ground, and the antenna feed, that is, select corresponding matching circuits and feeds according to the frequency band of the carrier aggregation.
  • the electric point and the short circuit point, etc. are the corresponding antenna structures of each frequency band in which carrier aggregation is selected.
  • the antenna tuning module 40 has a plurality of inputs and a plurality of outputs.
  • the plurality of input ends of the antenna tuning module respectively correspond to the multi-carrier output of the antenna switch
  • the plurality of output ends of the antenna tuning module respectively correspond to multiple feeding points and short-circuit points of the multi-band antenna.
  • the baseband chip controls the antenna tuning module according to the required transmission.
  • the frequency of the carrier signal is selected to match the matching circuit of carrier 2, carrier 5 and carrier L, the feeding point and the short-circuit point, etc.; then each carrier transmitting signal is sent to the antenna via the corresponding feeding point, radiated to the free space, and is performed with the base station system. Wireless communication. For receiving signals, and vice versa.
  • the multi-band antenna 10 includes a plurality of antenna feed points, a plurality of short-circuit points, and respective matching networks, in addition to the radiator traces designed according to actual needs.
  • the resonance frequency changes, and thus the operating band of the antenna changes.
  • the distance from each feed point to other feed points in the radiator and possible short-circuit points, and the value of the matching network belonging to the reactance circuit between the feed point and the switch , and the distance between the ground plane and the radiator is a variable.
  • a workflow of the terminal is as follows:
  • the RF chip module modulates the baseband signal output by the baseband chip to the high frequency carrier signal, and outputs a lower power RF signal to the RF front end device for filtering and amplification, and then reaches the antenna switch;
  • each carrier signal is output to the antenna tuning module via carrier 1, carrier 2, ... carrier L port; at this time, the baseband chip controls the antenna tuning module to select the corresponding matching circuit according to the frequency of the required transmitted signal. , feed point and short circuit point, etc.; then the transmitted signal is sent to the antenna via the feed point, radiated to the free space, and wirelessly communicates with the base station system.
  • the antenna sends the downlink signal transmitted by the base station antenna to the antenna tuning module.
  • the baseband chip synchronously obtains the information of each frequency band received; the baseband chip controls according to the frequency of each frequency band received.
  • the antenna tuning module selects the corresponding matching circuit, the feeding point and the short-circuit point, etc., and then the signals of each frequency band enter the antenna switch through respective suitable tuning paths, and then are sent to the duplexer, and reach the receiving end of the RF transceiver chip through the receiving link.
  • the RF chip is internally down-converted, demodulated into a baseband signal, and transmitted to a baseband chip for information processing.
  • a short-circuit point may be selected to be connected to the ground through the tuning component, or may be directly connected to the ground, or may be selected between two or more short-circuit points and ground. use. That is, according to the different environments in which the antenna operates, it is determined that the antenna of the appropriate position is connected to the feeding point and the short-circuit point of the appropriate position and quantity.
  • the intermediate frequency portion can improve the efficiency in the intermediate frequency band and the out-of-band suppression separately, and the low-frequency portion can simultaneously improve the efficiency in the low frequency band and the out-of-band rejection.
  • the improvement of the in-band efficiency means that the performance of the antenna is improved, and the improvement of the out-of-band suppression means that the interference to other frequency bands is reduced, thereby reducing the interference of carrier aggregation and optimizing the performance of the terminal during carrier aggregation.
  • FIG. 5 is a flowchart showing the operation of the schematic steps according to an embodiment of the present invention.
  • the specific implementation manner is: when the terminal works in the carrier aggregation mode, the baseband chip first determines which frequency bands to use for carrier aggregation. Then, according to each frequency band of the carrier aggregation, the antenna switch, the antenna tuning module, and the corresponding matching circuit, the feeding point and the short-circuit point are selected, that is, the corresponding antenna structure of each frequency band is selected; after the above configuration and selection are completed, the completion is completed.
  • the corresponding antenna structure of each frequency band is tuned so that the corresponding antenna structure works on the desired operating frequency band; then, the tuned antenna structure of each frequency band is used for transmitting/receiving signals.
  • the Diplexer on the radio link can be omitted, which can significantly reduce the path loss of the radio link and improve the radio frequency performance of the terminal.
  • the frequency tuning of the multi-band antenna is optimized. Antenna performance, thereby reducing interference during multi-carrier aggregation, thereby improving the quality of the communication system
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the foregoing technical solution provided by the embodiment of the present invention utilizes an antenna structure corresponding to a frequency band in a multi-band antenna to implement transmission or reception of multiple carriers, and solves the problem that the multi-band requirement of the terminal and the available space of the terminal antenna cannot be simultaneously satisfied in the related art.

Abstract

本发明提供了一种终端、终端的多载波发送及接收方法,其中,上述终端包括:多频带天线(10),设置有多个天线结构,设置为通过天线结构发送或接收多载波中与天线结构对应的载波,其中,不同的天线结构对应不同的频段;基带芯片(20),设置为输出基带信号,并根据多载波中每个载波的频段配置与每个载波的频段对应的天线结构;射频模块(30),设置为将基带信号调制到多载波上,并将多载波发送至多频带天线,或者,将多频带天线(10)接收的载波发送至基带芯片(20)。采用本发明提供的上述方案,在实现终端多频带需求的同时,也兼顾了天线的可用空间,并且,由于省去了多工器,也减少了无线链路的路径损耗。

Description

终端、终端的多载波发送及接收方法 技术领域
本发明涉及通信领域,具体而言,涉及一种终端、终端的多载波发送及接收方法。
背景技术
随着无线通信技术的进步和智能终端发展,丰富的多媒体内容已可以递送给行进中的用户,移动终端对吞吐量的需求也在日益增加。为向移动用户提供更高的数据速率,第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)在高级长期演进系统(Long-Term Evolution Advance,简称为LTE-Advance)系统中,提出了载波聚合(Carrier Aggregation,简称为CA)技术。载波聚合技术可为具有相应能力的用户设备提供更大宽带,提高UE的峰值速率。
但载波聚合在扩宽带宽、提高频谱利用率的同时,也带来了无线链路路径损耗增大和各载波间干扰的问题。无线链路路径损耗的增大主要来源为目前支持载波聚合技术的终端在射频链路上增加的多工器(Diplexer);而对多载波聚合时频段间干扰的抑制则受到目前天线技术的影响——为满足消费者对于小型无线设备的需求,移动终端天线的可用空间越来越小,因此,无法兼顾多频带和天线可用空间的要求。
发明内容
本发明提供了一种终端、终端的多载波发送及接收方法,以至少解决相关技术中无法同时满足终端的多频带需求和终端天线的可用空间要求等技术问题。
根据本发明的一个实施例,提供了一种终端,包括:多频带天线,设置有多个天线结构,设置为通过所述天线结构发送或接收多载波中与所述天线结构对应的载波,其中,不同的所述天线结构对应不同的频段;基带芯片,设置为输出基带信号,并根据所述多载波中每个载波的频段配置与所述每个载波的频段对应的天线结构;射频模块,设置为将所述基带信号调制到所述多载波上,并将所述多载波发送至所述多频带天线,或者,将所述多频带天线接收的载波发送至所述基带芯片。
在本实施例中,上述终端还包括:调谐模块,设置于所述射频模块和所述多频带天线之间,设置为对所述多载波进行频率调谐。
在本实施例中,所述调谐模块为一个。
在本实施例中,上述终端还包括:天线开关,设置有多个端口,每个所述端口仅允许与所述端口对应的载波输入;所述天线开关一端与所述射频模块连接,另一端与所述调谐模块连接。
在本实施例中,所述多频带天线为一个。
在本实施例中,所述天线结构包括:多个馈电点和/或短路点,与载波对应的匹配网络电路以及辐射体走线。
根据本发明的另一个实施例,提供了一种终端的多载波发送方法,包括:获取终端待发送的多载波中各个载波的频段;对于每个载波,从多个天线结构中选择与所述频段对应的天线结构,其中,所述多个天线结构设置于所述终端的多频带天线中;在选择的所述天线结构上发送与所述天线结构对应频段的载波。
在本实施例中,在选择的所述天线结构上发送与所述天线结构对应频段的载波之前,还包括:对所述多载波中的各个载波进行发送频率的调谐处理。
根据本发明的再一个实施例,提供了一种终端的多载波接收方法,包括:接收来自网络侧的多载波;对于所述多载波中的每个载波,选择与所述每个载波的频段对应的天线结构将所述每个载波发送终端中的基带芯片进行处理,其中,所述天线结构设置于所述终端的多频带天线中。
在本实施例中,将所述每个载波发送终端中的基带芯片进行处理之前,还包括:对所述多载波中的各个载波进行接收频率的调谐处理。
通过本发明实施例,利用多频带天线中与频段对应的天线结构实现对多载波的发送或接收,解决了相关技术中无法同时满足终端的多频带需求和终端天线的可用空间要求等技术问题,从而在实现终端多频带需求的同时,也兼顾了天线的可用空间,并且,由于省去了多工器,也减少了无线链路的路径损耗。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1a是根据本发明实施例的终端的结构框图;
图1b是根据本发明优选实施例的终端的结构示意图;
图2是根据本发明实施例的终端的多载波发送方法的流程图;
图3是根据本发明实施例的终端的多载波接收方法的流程图;
图4是根据本发明优选实施例的支持载波聚合的终端的结构示意图;
图5是根据本发明优选实施例的终端的多载波发送或接收方法的流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
图1a是根据本发明实施例的终端的结构框图。如图1a所示,该终端包括:
多频带天线10,设置有多个天线结构,设置为通过上述天线结构发送或接收多载波中与上述天线结构对应的载波,其中,不同的上述天线结构对应不同的频段;
基带芯片20,设置为输出基带信号,并根据上述多载波中每个载波的频段配置与上述每个载波的频段对应的天线结构;
射频模块30,设置为将上述基带信号调制到上述多载波上,并将上述多载波发送至上述多频带天线,或者,将上述多频带天线接收的载波发送至上述基带芯片。
采用包括上述各个模块的终端,由于利用多频带天线中与频段对应的天线结构实现对多载波的发送或接收,因此,可以解决无法同时满足终端的多频带需求和终端天线的可用空间要求等技术问题,从而在实现终端多频带需求的同时,也兼顾了天线的可用空间,并且,由于省去了多工器,也减少了无线链路的路径损耗。
在一个优选实施过程中,如图4所示,射频模块可以包括以下硬件处理模块,但不限于此:
射频芯片模组,设置为通过多个分量载波向基站发射,以及从基站接收无线信号;即主要完成对发射数字基带信号的调制,使其满足发射所需求的射频指标以便于在空间传输;同时对空间接收的射频信号进行解调,使之变换成数字基带信号由基带芯片模块来完成相关数据操作。
射频前端器件,主要包括滤波器、功率放大器和双工器等,完成对发射信号的放大、滤波,并经过天线开关后由天线发射出去;完成对天线接收到的信号的滤波,然后进入射频芯片模块进行解调。
在本实施例的一个优选实施例中,如图1b所示,终端还可以包括:调谐模块40(又称为天线调谐模块),设置于射频模块30和上述多频带天线10之间,设置为对上述多载波进行频率调谐。
在一个优选实施例中,调谐模块40的数量为一个,这样可以有效保证终端天线的可用空间。
为了实现多频带的支持,在本实施例中,如图1b所示,终端还包括:天线开关50,设置有多个端口,每个上述端口仅允许与上述端口对应的载波输入;上述天线开关50一端与上述射频模块连接,另一端与上述调谐模块连接。
为进一步保证终端内部的可用空间,上述多频带天线10数量也可以设置为一个。
在本实施例的一个优选实施例中,上述天线结构可以包括但不限于:多个馈电点和/或短路点,与载波对应的匹配网络电路以及辐射体走线。
本发明实施例还提供一种终端的多载波发送方法,如图2所示,该方法包括:
步骤S202,获取终端待发送的多载波中各个载波的频段;
步骤S204,对于每个载波,从多个天线结构中选择与上述频段对应的天线结构,其中,上述多个天线结构设置于上述终端的多频带天线中;
步骤S206,在选择的上述天线结构上发送与上述天线结构对应频段的载波。
在选择的上述天线结构上发送与上述天线结构对应频段的载波之前,还可以对上述多载波中的各个载波进行发生频率的调谐处理。
本发明实施例还提供一种终端的多载波接收方法,如图3所示,该方法包括:
步骤S302,接收来自网络侧的多载波;
步骤S304,对于上述多载波中的每个载波,选择与上述每个载波的频段对应的天线结构将上述每个载波发送终端中的基带芯片进行处理,其中,上述天线结构设置于上述终端的多频带天线中。
在一个优选实施例中,将上述每个载波发送终端中的基带芯片进行处理之前,还需要对上述多载波中的各个载波进行接收频率的调谐处理。
为了更好地理解上述实施例,以下结合优选实施例详细说明。
本发明实施例提出了一种支持载波聚合的终端及实现方法,能够减小无线链路的路径损耗,以及通过优化天线性能降低载波聚合时可能引起的干扰,从而提高通信系统的质量。
以下实施例的设计思想在于,利用可调谐多频带天线的设计,通过在多频带天线中实现Diplexer的功能,减小无线链路的路径损耗,从而降低终端功耗;通过天线调谐模块调整一个或一个以上的天线参数以优化天线性能,从而降低载波聚合的干扰。
本实施例还提供一种终端,如图4所示,包括:基带芯片20,电源管理芯片60,射频芯片模组300,射频前端器件302,天线开关50、天线调谐模块40和多频带天线10等。
其中,基带芯片20用来合成即将发射的基带信号,或对从射频模块30接收到的基带信号进行解码;同时,也负责对整个终端进行控制和管理,包括定时控制、数字系统控制,人机接口的管理和控制以及射频器件控制等。
电源管理芯片60设置为为基带芯片、射频芯片、射频前端器件,天线开关及天线调谐模块等提供供电。
射频芯片模组300,设置为通过多个分量载波向基站发射,以及从基站接收无线信号;即主要完成对发射数字基带信号的调制,使其满足发射所需求的射频指标以便于在空间传输;同时对空间接收的射频信号进行解调,使之变换成数字基带信号由基带芯片模块来完成相关数据操作。
射频前端器件302,主要包括滤波器、功率放大器和双工器等,完成对发射信号的放大、滤波,并经过天线开关后由天线发射出去;完成对天线接收到的信号的滤波,然后进入射频芯片模块进行解调。
天线开关50和天线调谐模块40(即天线调节系统),用以针对传输线结构、匹配网络、天线谐振元件、天线地以及天线馈电进行调节,即根据载波聚合的频段选择相应的匹配电路、馈电点和短路点等,亦即是选择了载波聚合的各频段各自相应的天线结构。
此处,天线调谐模块40有多个输入和多个输出端。以下以发射链路为例说明。在发射链路中,天线调谐模块的多个输入端分别对应天线开关的多载波输出,天线调谐模块的多个输出端分别对应多频带天线的多个馈电点和短路点。当需要进行多个载波聚合时(比如载波2、载波5和载波L的三载波聚合),各载波发射信号从天线开关输出至天线调谐模块后,基带芯片控制天线调谐模块根据所需发射的各载波信号的频率,选择适合载波2、载波5和载波L的匹配电路、馈电点以及短路点等;然后各载波发射信号经由相应馈电点送至天线,辐射至自由空间,与基站系统进行无线通信。对于接收信号,反之亦然。
多频带天线10,除了包括根据实际需要设计的辐射体走线外,还包括多个天线馈电点、多个短路点及各自相应的匹配网络等。当从多个馈电点和馈源组成的调谐通路中选择导通至少一个导通路径时,谐振频率改变,因此天线的工作频带改变。除天线的基本尺寸之外,在天线设计中,每个馈电点到辐射体中的其它馈电点和可能短路点的距离,以及属于馈电点与开关之间的电抗电路匹配网络的值,及接地平面距辐射体的距离都是变量。通过使用多频带天线,使得该天线的功能类似于包含了支持不同频带的天线。
基于上述结构特征,终端的一个工作流程如下:
在发射链路上,射频芯片模组将基带芯片输出的基带信号调制到高频载波信号上,并输出较小功率的射频信号至射频前端器件进行滤波和放大,然后到达天线开关;经过天线开关时,在基带芯片的控制下,各载波信号分别经过载波1、载波2……载波L端口输出至天线调谐模块;此时基带芯片根据所需发射信号的频率控制天线调谐模块选择相应的匹配电路、馈电点和短路点等;然后发射信号经由馈电点送至天线,辐射至自由空间,与基站系统进行无线通信。
在接收链路上,天线将接收到的基站天线发射的下行信号,送至天线调谐模块,此时基带芯片同步获得接收到的各频段的信息;基带芯片根据接收到的各频段的频率,控制天线调谐模块选择相应的匹配电路、馈电点和短路点等,之后各频段信号经过各自合适的调谐通路进入天线开关,然后再送至双工器,通过接收链路到达射频收发芯片接收端,在射频芯片内部进行下变频,解调成为基带信号,并传送至基带芯片进行信息处理。
需要说明的是,天线在不同的工作要求下,可以选择一个短路点通过调谐组件来与地连接,也可以选择与地直接连接,也可以在两个及以上短路点与地之间都选择使 用。即,根据天线工作的不同环境,确定合适位置的天线接入馈电点和合适位置及数量的短路点.
与相关技术相比,这里仍只需一根天线,而且不需要使用多工器。通过包含多馈电点和多短路点的多频带天线、天线调谐模块以及开关切换来支持所有频段,在省去了多工器的同时也不会增大天线的体积。在性能方面,现有使用宽频带天线的方案中,在当需要支持多个频段的载波聚合时,比如一个中频,一个低频,宽频天线存在当低频发射的带外抑制不好,谐波刚好落入中频带内时,天线就无法提供较好的抑制度。但是,当使用多频带天线去支持这两个频段时,中频部分可单独提高在中频带内的效率及带外的抑制度,低频部分也可同时提高在低频带内的效率以及带外抑制度,带内效率提高意味着天线性能的提升,而带外抑制度提高则意味着对其他频段干扰的降低,从而降低载波聚合的干扰,优化载波聚合时终端的性能。
图5是根据本发明的一个实施例的示意性步骤的工作流程图,如图5所示,具体实施方式为:当终端工作于载波聚合模式时,基带芯片首先确定要使用哪些频段进行载波聚合;然后根据载波聚合的各频段,配置天线开关、天线调谐模块以及选择相应的匹配电路、馈电点和短路点等,即选择各频段相应的天线结构;上述配置和选择完成后,即完成了对各频段相应的天线结构进行调谐,使得相应的天线结构工作在所期望的工作频段上;然后,使用各频段已调谐的天线结构进行发送/接收信号即可。
综上所述,本发明实施例实现了以下有益效果:
首先,由于使用多频带天线,从而可以将射频链路上的Diplexer省去,这样能够明显降低无线链路的路径损耗,提高终端的射频性能;其次,利用对多频带天线进行频率调谐,优化了天线性能,从而降低多载波聚合时的干扰,进而提高通信系统的质量
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
基于本发明实施例提供的上述技术方案,利用多频带天线中与频段对应的天线结构实现对多载波的发送或接收,解决了相关技术中无法同时满足终端的多频带需求和终端天线的可用空间要求等技术问题,从而在实现终端多频带需求的同时,也兼顾了天线的可用空间,并且,由于省去了多工器,也减少了无线链路的路径损耗。

Claims (10)

  1. 一种终端,包括:
    多频带天线,设置有多个天线结构,设置为通过所述天线结构发送或接收多载波中与所述天线结构对应的载波,其中,不同的所述天线结构对应不同的频段;
    基带芯片,设置为输出基带信号,并根据所述多载波中每个载波的频段配置与所述每个载波的频段对应的天线结构;
    射频模块,设置为将所述基带信号调制到所述多载波上,并将所述多载波发送至所述多频带天线,或者,将所述多频带天线接收的载波发送至所述基带芯片。
  2. 根据权利要求1所述的终端,其中,还包括:
    调谐模块,设置于所述射频模块和所述多频带天线之间,设置为对所述多载波进行频率调谐。
  3. 根据权利要求2所述的终端,其中,所述调谐模块为一个。
  4. 根据权利要求2所述的终端,其中,还包括:天线开关,设置有多个端口,每个所述端口仅允许与所述端口对应的载波输入;所述天线开关一端与所述射频模块连接,另一端与所述调谐模块连接。
  5. 根据权利要求1所述的终端,其中,所述多频带天线为一个。
  6. 根据权利要求1所述的终端,其中,所述天线结构包括:
    多个馈电点和/或短路点,与载波对应的匹配网络电路以及辐射体走线。
  7. 一种终端的多载波发送方法,包括:
    获取终端待发送的多载波中各个载波的频段;
    对于每个载波,从多个天线结构中选择与所述频段对应的天线结构,其中,所述多个天线结构设置于所述终端的多频带天线中;
    在选择的所述天线结构上发送与所述天线结构对应频段的载波。
  8. 根据权利要求7所述的方法,其中,在选择的所述天线结构上发送与所述天线结构对应频段的载波之前,还包括:
    对所述多载波中的各个载波进行发送频率的调谐处理。
  9. 一种终端的多载波接收方法,包括:
    接收来自网络侧的多载波;
    对于所述多载波中的每个载波,选择与所述每个载波的频段对应的天线结构将所述每个载波发送终端中的基带芯片进行处理,其中,所述天线结构设置于所述终端的多频带天线中。
  10. 根据权利要求9所述的方法,其中,将所述每个载波发送终端中的基带芯片进行处理之前,还包括:
    对所述多载波中的各个载波进行接收频率的调谐处理。
PCT/CN2015/075301 2014-09-16 2015-03-27 终端、终端的多载波发送及接收方法 WO2016041334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410473216.XA CN105490714B (zh) 2014-09-16 2014-09-16 终端、终端的多载波发送及接收方法
CN201410473216.X 2014-09-16

Publications (1)

Publication Number Publication Date
WO2016041334A1 true WO2016041334A1 (zh) 2016-03-24

Family

ID=55532504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075301 WO2016041334A1 (zh) 2014-09-16 2015-03-27 终端、终端的多载波发送及接收方法

Country Status (2)

Country Link
CN (1) CN105490714B (zh)
WO (1) WO2016041334A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482303A (zh) * 2016-06-08 2017-12-15 中兴通讯股份有限公司 终端设备多天线系统及终端设备信号传输方法
CN107465440B (zh) * 2017-09-12 2021-03-26 天津哈威克科技有限公司 射频天线切换板
US10355758B2 (en) * 2017-10-06 2019-07-16 Huawei Technologies Co., Ltd. Multi-band antennas and MIMO antenna arrays for electronic device
CN110401268B (zh) * 2019-07-29 2023-02-03 哈尔滨工业大学 一种基于电磁空间态势感知的射频能量收集方法及系统
CN111585586A (zh) * 2020-05-09 2020-08-25 张振宇 多频无线信号的发送装置及方法
CN112104770B (zh) * 2020-09-04 2022-08-05 Tcl通讯(宁波)有限公司 天线调谐开关控制器、通信模块及移动终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101356689A (zh) * 2005-11-15 2009-01-28 索尼爱立信移动通讯股份有限公司 具有宽的高频带带宽的无线电通信终端的多频带天线设备
CN101958747A (zh) * 2010-09-25 2011-01-26 北京邮电大学 高速移动环境下移动通信系统、方法和无线通信收发设备
CN102386486A (zh) * 2011-09-15 2012-03-21 清华大学 短路点可重构的手机内置环天线
CN102792178A (zh) * 2009-09-03 2012-11-21 泽布拉企业解决方案公司 用于利用信号识别检测触发的无线信号存储的方法、装置和计算机程序产品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101356689A (zh) * 2005-11-15 2009-01-28 索尼爱立信移动通讯股份有限公司 具有宽的高频带带宽的无线电通信终端的多频带天线设备
CN102792178A (zh) * 2009-09-03 2012-11-21 泽布拉企业解决方案公司 用于利用信号识别检测触发的无线信号存储的方法、装置和计算机程序产品
CN101958747A (zh) * 2010-09-25 2011-01-26 北京邮电大学 高速移动环境下移动通信系统、方法和无线通信收发设备
CN102386486A (zh) * 2011-09-15 2012-03-21 清华大学 短路点可重构的手机内置环天线

Also Published As

Publication number Publication date
CN105490714A (zh) 2016-04-13
CN105490714B (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
WO2015154437A1 (zh) 一种支持载波聚合的方法及终端
WO2016041334A1 (zh) 终端、终端的多载波发送及接收方法
US9125185B2 (en) Method and system for WiFi access point utilizing full spectrum capture
US9948363B2 (en) Configurable receiver architecture for carrier aggregation with multiple-input multiple-output
CN110324061B (zh) 分离式自适应载波聚合实现装置及方法
US8559869B2 (en) Smart channel selective repeater
TWI822771B (zh) 用於增強之交互調變失真性能之切換的終端的前端系統
CN106464626B (zh) 一种基带单元bbu与远端射频单元rru之间的数据传输方法和装置
WO2017166353A1 (zh) 一种载波聚合电路实现方法、实现系统及移动终端
CN108365860B (zh) 一种终端设备
CN109195140B (zh) 一种射频模块、d2d通信方法及移动终端
US10390232B2 (en) Systems and methods for a wireless network bridge
WO2015010484A1 (zh) 多模无线终端
US20190387435A1 (en) Flow control for multiband aggregation
WO2018231009A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
CN204615820U (zh) 射频收发电路及终端
US20230120605A1 (en) Apparatuses and methods for wireless communication
CN102882573A (zh) 多输入多输出的信号传输实现方法、装置及系统
CN108833017B (zh) 单制式直放站系统及其信号兼容方法、装置
US20160066307A1 (en) Mimo communication method and system
CN115208751A (zh) 时间敏感网络中用于移动无线设备的路径选择和调度
CN112134712B (zh) 一种信号处理方法以及相关设备
JP2014520492A (ja) 多入力多出力信号伝送方法及び多入力多出力信号伝送装置
JP2014187647A (ja) アンテナ制御装置、アンテナの制御方法、プログラム及び通信装置
CN108574497B (zh) 带有线性化技术的宽带发射方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842035

Country of ref document: EP

Kind code of ref document: A1