WO2013094582A1 - 核磁気共鳴イメージ装置および核磁気共鳴イメージ方法 - Google Patents

核磁気共鳴イメージ装置および核磁気共鳴イメージ方法 Download PDF

Info

Publication number
WO2013094582A1
WO2013094582A1 PCT/JP2012/082739 JP2012082739W WO2013094582A1 WO 2013094582 A1 WO2013094582 A1 WO 2013094582A1 JP 2012082739 W JP2012082739 W JP 2012082739W WO 2013094582 A1 WO2013094582 A1 WO 2013094582A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
magnetic resonance
nuclear magnetic
pulse
time interval
Prior art date
Application number
PCT/JP2012/082739
Other languages
English (en)
French (fr)
Inventor
佐々木 進
達郎 弓削
平山 祥郎
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to US14/367,411 priority Critical patent/US9733327B2/en
Priority to JP2013550279A priority patent/JP6023084B2/ja
Priority to EP12860186.1A priority patent/EP2799849B1/en
Priority to CA2860157A priority patent/CA2860157C/en
Priority to CN201280060866.0A priority patent/CN104094105B/zh
Publication of WO2013094582A1 publication Critical patent/WO2013094582A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/50NMR imaging systems based on the determination of relaxation times, e.g. T1 measurement by IR sequences; T2 measurement by multiple-echo sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • the present invention relates to a nuclear magnetic resonance imaging apparatus and a nuclear magnetic resonance imaging method.
  • Nuclear Magnetic Resonance is the application of a rotating magnetic field with the same frequency as the precessing Larmor frequency to a nuclear spin that precesses in a magnetic field. This is a phenomenon in which resonance occurs.
  • the static magnetic field in the central axis (Z-axis) direction
  • it resonates in a pulsed manner with respect to a nuclear spin oriented in parallel or antiparallel to the magnetic field.
  • the spin direction is changed in the XY-axis direction, and then the time for the spin direction to return to its original state (relaxation time) is measured to identify the bond structure and physical properties of the measurement object.
  • the relaxation time includes a longitudinal relaxation time T 1 which is a relaxation time of the component in the central axis direction (Z-axis direction) of the spin precession before the pulse incidence, and a direction perpendicular to the central axis direction (XY-axis direction) ) Is a relaxation time T 2 which is a relaxation time of the component.
  • the nuclear measurement imaging of spin relaxation state is (imaging) the ones MRI (Magnetic Resonance Image), the coupling structure and physical properties of the longitudinal relaxation time T 1 and / or transverse relaxation time T 2 the measurement object from the image It has become.
  • MRI Magnetic Resonance Image
  • T 2 H reflects the static noise received by the measurement object, so depending on the coupling state of the measurement object and the external environment , T 2 H difference is too small, making it difficult to distinguish by MRI.
  • the difference in T 2 H becomes smaller as the difference in electron density of the measurement target becomes smaller. Therefore, a substance such as a semiconductor doped with a different impurity is added to the MRI. In some cases, it may be difficult to distinguish.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a nuclear magnetic resonance imaging apparatus capable of distinguishing what cannot be distinguished by T 2 H.
  • the present inventor has conducted intensive studies, and as a result, the signal attenuation constant T 2 L (generalized lateral relaxation) of the NMR signal when a ⁇ pulse is applied to the measurement object at a predetermined interval (multiple). It has been found that there is a predetermined relationship between (time) and the dynamic noise that the spin of the measurement object receives from the external environment.
  • T 2 L generally lateral relaxation
  • T 2 L imaging is performed, not static noise due to the external environment.
  • the present inventors have found that a mitigation characteristic that reflects various noises is extracted, and that an MRI that can clearly distinguish a measurement object that cannot be distinguished by T 2 H can be realized, and thus the present invention has been achieved.
  • a probe capable of storing a sample in a static gradient magnetic field and a ⁇ pulse having a Larmor frequency corresponding to the static gradient magnetic field at a predetermined position of the sample are provided.
  • An application unit that applies multiple times to the sample at a predetermined time interval;
  • An image processing unit that obtains and images a relaxation time from a nuclear magnetic resonance (NMR) signal of the sample, and the NMR signal and the relaxation time have a relationship represented by the following formula (1).
  • the time interval of the ⁇ pulse and the frequency of the noise are expressed by the following equation (2), whereby a nuclear magnetic resonance imaging apparatus is obtained.
  • the step (a) of placing a sample in a static gradient magnetic field A step (b) of applying multiple ⁇ pulses of Larmor frequency corresponding to the static gradient magnetic field at a predetermined position of the sample to the sample at predetermined time intervals, and relaxation from the nuclear magnetic resonance signal of the sample
  • a nuclear magnetic resonance imaging method characterized by comprising the step (c) of obtaining time and imaging the same.
  • FIG. 1 is a schematic diagram illustrating a configuration of a nuclear magnetic resonance imaging apparatus 1 according to a first embodiment.
  • 3 is a flowchart showing the operation of the nuclear magnetic resonance imaging apparatus 1.
  • it is a graph which shows the relationship between a NMR signal and time at the time of applying the multiple pi pulse shown in FIG. 1 to Si dope GaAs.
  • it is a graph which shows the relationship between a NMR signal at the time of applying the multiple pi pulse shown in FIG. 1 to non-doped GaAs.
  • it is a graph which shows the relationship between a NMR signal and time at the time of applying the multiple pi pulse shown in FIG.
  • a magnetic pulse (here, ⁇ pulse) having a Larmor frequency corresponding to a static magnetic field at a point to be measured is applied to a sample to be measured.
  • a multiple ⁇ pulse as shown in FIG. 1 is applied.
  • the pulse application interval is 2 ⁇ .
  • means 1/2 time of ⁇ pulse interval (see FIG. 1).
  • the nuclides that resonate with the magnetic pulse of the measurement object to which the magnetic pulse was applied changed the direction of the spin of precession due to the nuclear magnetic resonance, and then aligned while outputting the nuclear magnetic resonance signal (NMR signal). Although the spin phase is disturbed, the following relationship (1) is established between the intensity and time of the nuclear magnetic resonance signal after the ⁇ pulse is applied in a sufficiently long time (sufficiently). .
  • the signal decay constant (herein referred to as generalized transverse relaxation time) T 2 L depends on the ⁇ pulse interval 2 ⁇ , and furthermore, the ⁇ pulse interval 2 ⁇ and noise that the nuclear spin receives from the external environment (fluctuation of the fluctuation magnetic field) ),
  • the following relationship (2) is established between the frequencies f for measurement.
  • the noise that contributes to the generalized transverse relaxation time T 2 L is limited to the noise that satisfies the relationship of (2). Therefore, the NMR signal is acquired by changing the ⁇ pulse interval 2 ⁇ . Thus, the noise spectrum can be measured.
  • a ⁇ pulse having a predetermined pulse interval in consideration of noise received by the nuclide to be measured from the external environment is incident on the sample, and the generalized transverse relaxation time T 2 L is obtained. Perform imaging.
  • the nuclear magnetic resonance imaging apparatus 1 includes a probe 3 in which a measurement object is stored and a static gradient magnetic field is applied (a sample can be stored in a static gradient magnetic field), and a probe 3 includes an application unit 5 that applies a magnetic pulse, and an image processing unit 7 that performs imaging of a generalized transverse relaxation time from a nuclear magnetic resonance signal output from the sample.
  • an object to be measured is placed in the probe 3 shown in FIG. 2, and a magnetic pulse is incident on the probe 3 using the application unit 5 while applying a static gradient magnetic field using a coil or the like (not shown). Multiple ⁇ pulses are applied to the sample (S1 in FIG. 3).
  • the ⁇ pulse interval 2 ⁇ at this time is determined according to the external environment of the sample in consideration of noise (received from the external environment) felt by the nuclide to be measured. Specifically, for example, when the sample is a semiconductor as in an embodiment described later, a ⁇ pulse interval 2 ⁇ corresponding to a frequency region in which the interaction between the carrier and the nuclear spin causes noise is selected.
  • a ⁇ pulse interval 2 ⁇ corresponding to a frequency region corresponding to a biological reaction or a reaction speed of a specific part of an organ is selected.
  • a sample to which multiple ⁇ pulses are applied outputs an NMR signal, but the logarithm of the intensity of the NMR signal is that a certain number of ⁇ pulses are incident after a certain time has passed. Then, as shown in FIG. 4, it attenuates in proportion to the time (see equation (1)).
  • the image processing unit 7 performs T 2 L imaging by expressing the magnitude of the generalized lateral relaxation time T 2 L by , for example, color shading (S 3 in FIG. 3).
  • the nuclear magnetic resonance imaging apparatus 1 applies multiple ⁇ pulses to the sample at a predetermined time interval 2 ⁇ and generalizes from the nuclear magnetic resonance signal of the sample. Perform (lateral) relaxation time imaging.
  • MRI imaging suitable for the measurement object can be performed by selecting the ⁇ pulse interval 2 ⁇ according to the measurement object.
  • an image of the generalized relaxation time is obtained by changing the measurement position and the ⁇ pulse interval 2 ⁇ with respect to the measurement object in the first embodiment.
  • an object to be measured is placed in the probe 3 shown in FIG. 2, and a static gradient magnetic field is applied using a coil or the like (not shown) (S21 in FIG. 10).
  • the multiple ⁇ pulse interval 2 ⁇ applied to the sample that is, the frequency of the dynamic noise f to be measured is determined (S22 in FIG. 10).
  • the measurement position corresponding to the applied magnetic field gradient is determined (S23 in FIG. 10). Specifically, the frequency and phase of the RF magnetic field are determined.
  • a magnetic pulse is made incident into the probe 3 using the applying unit 5, and a multiple ⁇ pulse is applied to the sample at an interval 2 ⁇ determined in S22 (S24 in FIG. 10).
  • the generalized transverse relaxation time T 2 L is obtained from the NMR signal (S25 in FIG. 10).
  • the process returns to S23 (S26 in FIG. 10), determines the measurement positions again, and executes S23 to S25 according to the number of positions to be measured. repeat.
  • the process returns to S22 (S28 in FIG. 10), determines the multiple ⁇ pulse interval 2 ⁇ again, and determines the frequency to be measured.
  • S22 to S27 are repeated according to the number.
  • the measurement position and the ⁇ pulse interval 2 ⁇ may be variable.
  • images of the generalized transverse relaxation time T 2 L can be obtained for the same measurement object at various measurement positions and ⁇ pulse intervals 2 ⁇ , thereby understanding the characteristics of the measurement object in more detail. can do.
  • the nuclear magnetic resonance imaging apparatus 1 applies multiple ⁇ pulses to the sample at a predetermined time interval 2 ⁇ , and generalizes the nuclear magnetic resonance signal from the sample. Perform (lateral) relaxation time imaging.
  • the nuclear magnetic resonance imaging apparatus 1 can acquire images of the generalized lateral relaxation time T 2 L at various measurement positions and ⁇ pulse intervals 2 ⁇ .
  • the characteristics of the measurement object can be understood in more detail as compared with the first embodiment.
  • multiple ⁇ pulses are used to generate nuclear magnetic resonance to image the generalized transverse relaxation time T 2 L , and to support static transverse relaxation time using the Hahn echo used in conventional MRI compared with the case of performing the imaging signal attenuation constant T 2 H to.
  • substrates of three types of materials GaAs (non-doped), GaAs (Si-doped, doped amount 10 18 cm ⁇ 3 ), and GaAs (Cr-doped, doped amount 10 15 cm ⁇ 3 ) were prepared as samples.
  • the sample volume was increased so that the experiment with various parameters can be performed in a short time.
  • the generalized transverse relaxation time T 2 L is sufficient even when the total amount of the target nuclear spin is 1/40 of this time. Has been confirmed.
  • protons used in biological MRI are at least 200 times more sensitive than As (in principle, proportional to the cube of the nuclear gyromagnetic ratio).
  • the generalized lateral relaxation time T 2 L can be obtained for a biological sample with a dimension sufficiently smaller than 1 mm 3 .
  • the nuclear magnetic resonance apparatus was manufactured by the applicants of the present application.
  • Oxford room temperature bore high-resolution NMR superconducting magnet (Oxford 300/89, made in the UK)
  • RF signal generator HP8656B (made in the United States)
  • DC pulse programmer Samway N210-1026S (made in Japan)
  • programmable attenuator Tamagawa TPA-410 (made in Japan)
  • RF power amplifier DotyDSI1000B (made in the United States)
  • RF preamplifier Doty2LSeries (made in the United States), etc. .
  • the T 2 L obtained in Example is the same as the actual MRI.
  • nuclear magnetic resonance was generated using the Hahn echo for the above three types of samples, and a signal attenuation constant T 2 H was obtained.
  • the measurement conditions are multiple except that the integration is 64 times and the pulse application is up to the first two pulses in FIG. 1 and the signal intensity of the spin echo is measured as a function of ⁇ (general Hahn echo measurement). It is exactly the same as the pulse measurement conditions.
  • the sample is arranged in a plane shape (thickness is 1 mm) having a size of 5 mm ⁇ 5 mm square, and 3 ⁇ 3 pieces are arranged in an arrangement as shown in FIG. An imaging simulation was performed.
  • the T 2 L imaging images embodiment shown in FIG. 9 T 2 H imaging image of the comparative example.
  • the imaging image is a gray scale, was set to as the value of T 2 H or T 2 L large dark (gradation).
  • T 2 L has a clear difference in the value of each sample (in the order of ms), and each sample can be clearly distinguished even in an image.
  • T 2 H has a difference between GaAs (Si-doped) having an electron density as large as 10 18 cm ⁇ 2 and GaAs (non-doped) and GaAs (Cr-doped) exhibiting insulating properties.
  • T 2 H is 220,230 ⁇ s of GaAs (undoped) and GaAs (Cr-doped), since the difference was only (10 [mu] s order), to distinguish the two in T 2 H by the Hahn-echo It was difficult.
  • the present invention can be applied to imaging of 1 H (proton) and 13 C widely used in living bodies and medical MRI.
  • the solid MRI as in this embodiment can be expected to be applied to imaging of many nuclides other than 75 As.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 T では区別ができないものの区別が可能な核磁気共鳴イメージ装置を提供するために、本発明の核磁気共鳴イメージ装置1は、静的な勾配磁場中に試料を収納可能なプローブ3と、試料の所定の位置における静的な勾配磁場に対応したラーモア周波数のπパルスを所定の時間間隔で試料に多重に印加する印加部5と、試料の核磁気共鳴信号から、緩和時間を求めてそのイメージングを行う画像処理部7を有する。

Description

核磁気共鳴イメージ装置および核磁気共鳴イメージ方法
 本発明は核磁気共鳴イメージ装置および核磁気共鳴イメージ方法に関する。
 核磁気共鳴(NMR、Nuclear Magnetic Resonance)とは、磁場中で歳差運動をしている核スピンに対して、歳差運動のラーモア周波数と同じ周波数の回転磁場を印加することにより、磁場と原子核の間に共鳴が生じる現象である。
 共鳴によりその状態が変化した核スピンが元の状態に戻る緩和特性は当該核スピンの置かれた状況により異なるため、測定対象物の結合構造や物性の特定が可能になる。
 より具体的には、例えば、静磁場中(静磁場は中心軸(Z軸)方向に加えられている)で磁場と並行あるいは反並行に向いている核スピンに対して、パルス状に共鳴する振動磁場を印加して、スピンの向きをXY軸方向に変化させ、その後、スピンの向きが元に戻る時間(緩和時間)を測定することにより、測定対象物の結合構造や物性の特定を行う。
 なお、緩和時間には、パルス入射前のスピンの歳差運動の中心軸方向(Z軸方向)の成分の緩和時間である縦緩和時間Tと、中心軸方向に垂直な方向(XY軸方向)の成分の緩和時間である横緩和時間Tがある。
 この核スピン緩和状態の測定結果を画像化(イメージング)したものがMRI(Magnetic Resonance Image)であり、縦緩和時間Tおよび/または横緩和時間Tから測定対象物の結合構造や物性を画像化している。
 ここで、横緩和時間Tからイメージングを行う場合、ハーンエコーによりTを測定する方法が一般的である(特許文献1)。
特開平10-277006号公報
 しかしながら、ハーンエコーによりT(T )を測定してイメージングを行う場合、T は測定対象物が受ける静的な雑音を反映するため、測定対象物の結合状態や外部環境によっては、T の差が小さすぎてMRIによる区別が困難となるという問題があった。
 具体的には、例えばT の差は、半導体基板が測定対象の場合、測定対象物の電子密度の差が小さくなればなるほど小さくなるため、異なる不純物をドープした半導体のような物質をMRIで区別する場合、区別が困難になる場合があった。
 本発明は上記課題に鑑みてなされたものであり、その目的は、T では区別ができないものの区別が可能な核磁気共鳴イメージ装置を提供することにある。
 上記した課題を達成するため、本発明者は鋭意検討の結果、測定対象物にπパルスを所定の間隔で(多重に)印加した場合のNMR信号の信号減衰定数T L(一般化横緩和時間)と、測定対象物のスピンが外部環境から受ける動的な雑音の間に所定の関係があることを見出した。
 さらに、測定対象の核種が外部環境から受ける雑音を考慮した所定の時間間隔でπパルス信号を試料に印加してT Lのイメージングを行うことにより、外部環境による静的な雑音ではなく動的な雑音を反映する緩和特性を抽出し、T では区別ができない測定対象物を明瞭に区別できるMRIが実現可能であることを見出し、本発明をするに至った。
 即ち、本発明の第1の態様によれば、静的な勾配磁場中に試料を収納可能なプローブと、前記試料の所定の位置における前記静的な勾配磁場に対応したラーモア周波数のπパルスを所定の時間間隔で前記試料に多重に印加する印加部と、
 前記試料の核磁気共鳴(NMR)信号から、緩和時間を求めてそのイメージングを行う画像処理部と、を有し、前記NMR信号と前記緩和時間は、以下の式(1)に示す関係を有し、前記πパルスの時間間隔と前記雑音の周波数は以下の式(2)で表されることを特徴とする核磁気共鳴イメージ装置が得られる。
 また、本発明の第2の態様によれば、静的な勾配磁場中に試料を配置する工程(a)と、
 前記試料の所定の位置における前記静的な勾配磁場に対応したラーモア周波数のπパルスを所定の時間間隔で前記試料に多重に印加する工程(b)と、前記試料の核磁気共鳴信号から、緩和時間を求めてそのイメージングを行う工程(c)と、を有することを特徴とする核磁気共鳴イメージ方法が得られる。
 本発明によれば、T では区別ができないものの区別が可能な核磁気共鳴イメージ装置を提供することができる。
本発明で使用する多重πパルスの例を示す図である。 第1の実施形態に係る核磁気共鳴イメージ装置1の構成を示す概略図である。 核磁気共鳴イメージ装置1の動作を示すフローチャートである。 実施例において、SiドープGaAsに図1に示す多重πパルスを印加した場合の、NMR信号と時間の関係を示すグラフである。 実施例において、ノンドープGaAsに図1に示す多重πパルスを印加した場合の、NMR信号と時間の関係を示すグラフである。 実施例において、CrドープGaAsに図1に示す多重πパルスを印加した場合の、NMR信号と時間の関係を示すグラフである。 実施例および比較例において、試料の平面上の配置形状および寸法を示す図である。 実施例における図7のT Lイメージ像を示す図である。 比較例における図7のT イメージ像を示す図である。 第2の実施形態の手順を示すフローチャートである。
 以下、図面に基づき、本発明の実施形態を詳細に説明する。
 まず、第1の実施形態について説明する。
 最初に、本発明の核磁気共鳴イメージングの原理について説明する
 まず、測定対象である試料に、測定したいポイントにおける静磁場に対応するラーモア周波数の磁気パルス(ここではπパルス)を印加する。
 具体的には、図1に示すような多重πパルスを印加する。このパルスの印加の間隔をここでは2τとする。
 なお、τはπパルス間隔の1/2の時間を意味する(図1参照)。
 磁気パルスが印加された測定対象物の磁気パルスに共鳴する核種は、核磁気共鳴により歳差運動のスピンの向きが変化し、その後、核磁気共鳴信号(NMR信号)を出力しながら揃っていたスピンの位相が乱れてゆくが、πパルスを多重に十分に長い時間に(十分に多く)印加した後では、核磁気共鳴信号の強度と時間の間には以下の関係(1)が成立する。
Figure JPOXMLDOC01-appb-M000003
 ここで、信号減衰定数(ここでは一般化横緩和時間と称す)T Lはπパルス間隔2τに依存し、さらに、πパルス間隔2τと核スピンが外部環境から受ける雑音(揺動磁場の揺らぎ)のうち測定にかかる周波数fの間には以下の関係(2)が成立する。
Figure JPOXMLDOC01-appb-M000004
 (1)と(2)より、一般化横緩和時間T Lに寄与する雑音は(2)の関係を満たす雑音に限定されるため、πパルス間隔2τを変化させてNMR信号を取得することにより、雑音のスペクトルを測定することができる。
 本発明では、このことを利用して、測定対象の核種が外部環境から受ける雑音を考慮した所定のパルス間隔のπパルスを試料に入射して、一般化横緩和時間T Lを取得し、イメージングを行う。
 次に、図2を参照して、第1の実施形態に係る核磁気共鳴イメージ装置1の構成について説明する。
 図2に示すように、核磁気共鳴イメージ装置1は、測定対象物が収納され、静的な勾配磁場が印加される(静的な勾配磁場中に試料を収納可能な)プローブ3と、プローブ3に磁気パルスを印加する印加部5と、試料が出力する核磁気共鳴信号から、一般化横緩和時間のイメージングを行う画像処理部7を有している。
 なお、図2では静磁場と勾配磁場を印加するためのコイル、磁気パルスを増幅する増幅器、装置を冷却するための冷却装置等は記載を省略している。
 次に、図2~図4を参照して第1の実施形態に係る核磁気共鳴イメージ装置1を用いたイメージング法について説明する。
 まず、測定対象物を図2に示すプローブ3内に配置し、図示しないコイル等を用いて静的な勾配磁場を印加しつつ、印加部5を用いて磁気パルスをプローブ3内に入射し、試料に多重πパルスを印加する(図3のS1)。
 なお、この際のπパルス間隔2τは、測定対象の核種が感じる(外部環境から受ける)雑音を考慮し、試料の外部環境に応じて決定する。具体的には、例えば後述する実施例のように、試料が半導体である場合は、キャリアと核スピンの相互作用が雑音となる周波数領域に対応したπパルス間隔2τを選択する。
 また、試料が生体である場合は、生体反応や臓器の特定部分の反応速度に対応する周波数領域に応じたπパルス間隔2τを選択する。
 次に、NMR信号から信号減衰定数T Lを求める(図3のS2)。
 具体的には、多重πパルスを印加された試料は、NMR信号を出力するが、NMR信号の強度の対数は、一定の時間が経過すると(即ち、十分に多くの数のπパルスが入射されると)図4に示すように時間に比例して減衰するようになる(式(1)参照)。
 この比例定数(の逆数)が一般化横緩和時間T Lであるため、これを求める。
 最後に、画像処理部7は、一般化横緩和時間T Lの大小を例えば色の濃淡等で表すなどしてT Lのイメージングを行う(図3のS3)。
 このように、第1の実施形態によれば、核磁気共鳴イメージ装置1は、所定の時間間隔2τでπパルスを多重に試料に対して印加して、試料の核磁気共鳴信号から、一般化した(横)緩和時間のイメージングを行う。
 そのため、測定対象の核種が感じる(外部環境から受ける)動的な雑音を考慮したイメージングを行うことができ、測定対象物の結合状態や外部環境による静的な雑音が例え同じであってもその区別が可能である。
 また、πパルス間隔2τは広い範囲で制御できることから、測定対象に応じたπパルス間隔2τを選択することにより、測定対象に適したMRIのイメージングが可能である。
 次に、第2の実施形態について、図10を参照して説明する。
 第2の実施形態は、第1の実施形態において、測定対象物に対して測定位置およびπパルス間隔2τを変化させて一般化緩和時間のイメージを取得したものである。
 なお、第2の実施形態において使用する核磁気共鳴イメージ装置1は、第1の実施形態と同様であるため、説明を省略する。
 まず、測定対象物を図2に示すプローブ3内に配置し、図示しないコイル等を用いて静的な勾配磁場を印加する(図10のS21)。
 次に、試料に印加する多重πパルス間隔2τ、即ち測定する動的な雑音fの周波数を決定する(図10のS22)。
 次に、印加している磁場勾配に対応した測定位置を決定する(図10のS23)。具体的には、RF磁場の周波数および位相を決定する。
 次に、印加部5を用いて磁気パルスをプローブ3内に入射し、S22で決定した間隔2τで多重πパルスを試料に印加する(図10のS24)。
 次に、NMR信号から一般化横緩和時間T Lを求める(図10のS25)。
 これにより、S23で決定した測定位置における一般化横緩和時間T Lが求められる。
 次に、異なる測定位置での一般化横緩和時間T Lを求めるために、S23に戻って(図10のS26)再度測定位置を決定し、測定したい位置の数に応じてS23~S25を繰り返す。
 全ての位置の測定を終えると、S22で決定した動的な雑音fの周波数に対応する、試料の一般化横緩和時間T Lが求められる(図10のS27)。
 次に、異なる動的な雑音fの周波数における一般化横緩和時間T Lを求めるために、S22に戻って(図10のS28)、再度多重πパルス間隔2τを決定し、測定したい周波数の数に応じてS22~S27を繰り返す。
 全ての周波数での測定を終了すると、最後に、S22で決定した種々の周波数に対応する、試料の一般化横緩和時間T Lのイメージが求められる(図10のS29)。
 このように、測定位置およびπパルス間隔2τは可変としてもよい。
 これにより、同じ測定対象物に対して様々な測定位置およびπパルス間隔2τで一般化横緩和時間T Lのイメージを取得することができ、これにより、測定対象物の特性をより詳細に理解することができる。
 このように、第2の実施形態によれば、核磁気共鳴イメージ装置1は、所定の時間間隔2τでπパルスを多重に試料に対して印加して、試料の核磁気共鳴信号から、一般化した(横)緩和時間のイメージングを行う。
 従って、第1の実施形態と同様の効果を奏する。
 また、第2の実施形態によれば、核磁気共鳴イメージ装置1は、様々な測定位置およびπパルス間隔2τで一般化横緩和時間T Lのイメージを取得することができる。
 そのため、第1の実施形態と比較して測定対象物の特性をより詳細に理解することができる。
 以下、実施例に基づき、本発明を具体的に説明する。
 3種類のGaAsについて、多重πパルスを用いて核磁気共鳴を生じさせて一般化横緩和時間T Lのイメージングを行い、従来のMRIで用いるハーンエコーを用いて静的な横緩和時間に対応する信号減衰定数T のイメージングを行った場合と比較した。
 まず、試料としてはGaAs(ノンドープ)、GaAs(Siドープ、ドープ量1018cm-3)、GaAs(Crドープ、ドープ量1015cm-3)の3種類の材料の基板を用意した。
 一般化横緩和時間T Lを求めたこの実施例では、これらの基版(厚さ0.3mm)を10.5×3.8(mm)に切り出したものを4枚重ねて実験を行った。
 なお、本実施例では、様々なパラメータでの実験が短時間でできるように試料の容量を大きくしたが、対象核スピンの全量が今回の1/40でも十分に一般化横緩和時間T Lが求められることを確認している。
 従って、本特許の提案はGaAsに対して少なくとも1mm立方の試料にまで適用可能である。
 さらに、生体のMRIに用いるプロトンは、Asに対して少なくとも(原理的には核磁気回転比の3乗に比例するので)200倍感度が高い。
 従って、生体試料に関しては1mmより十分小さい寸法で一般化横緩和時間T Lを求めることができる。
 なお、核磁気共鳴装置は本出願人らが作製したものであり、Oxford室温ボア高分解能NMR超伝導マグネット(Oxford300/89、英国製)、RF信号発生器:HP8656B(米国製)、DCパルスプログラマー:サムウェイN210-1026S(日本製)、プログラマブル減衰器:多摩川電子TPA-410(日本製)、RF電力増幅器:DotyDSI1000B(米国製)、RF前置増幅器:Doty2LSeries(米国製)などで構成されている。
 次に、図2に示す核磁気共鳴装置に試料をセットして静磁場中で多重πパルスを入射し、NMR信号から75Asの一般化横緩和時間T Lを求めた。
 具体的には、まず、多重πパルスを試料に入射し、試料から出力されたNMR信号の強度の経時変化を図4~図6に示すように、対数グラフにプロットした。
 次に、プロットしたデータから、初期の大きな減衰が落ち着き、NMR信号の強度の対数が時間に比例して減衰する領域を求め、図4~図6の破線で示すような直線でフィッティングし、直線の傾きから信号減衰定数T Lを求めた。
 ここで、第1の180°パルスからではなく、NMR信号の強度が十分に減衰し、信号強度がM(t)~exp(-t/T2L)でフィッティングされる時間域を用いる。
 なお、πパルス間隔2τは、キャリアと核スピンの相互作用が雑音に大きく表れる周波数領域に対応した間隔として2τ=100μsとした。
 また、通常のMRIでは画像を得るのに静磁場の勾配を利用するが、今回の実験は一定の静磁場下で行った。その条件は静磁場:6.16578T、測定温度:300K、繰り返し時間:3.0sec、積算:512回(APCPパルス)である。
 ただし、静磁場の不均一はT Lを得る際に影響しないため、実施例で得られたT Lは実際のMRIと同一である。
 さらに、比較例として、上記の3種類の試料に対して、ハーンエコーを用いて核磁気共鳴を生じさせて、信号減衰定数T を取得した。測定条件は、積算が64回であることとパルス印加が図1の最初の2パルスまででスピンエコーの信号強度をτの関数として測定している(一般的なハーンエコー測定)こと以外は多重パルス測定の条件と全く同じである。
 次に、得られたT LおよびT を元に、試料を寸法5mm×5mm角の平面形状(厚さは1mm)として図7に示すような配置で3×3個並べた場合のイメージングのシミュレーションを行った。
 T LおよびT の計算結果を表1に示す。
 また、実施例のT Lイメージング像を図8に、比較例のT イメージング像を図9に示す。なお、イメージング像はグレースケールとし、T またはT Lの値が大きいほど濃い色(階調)になるようにした。
Figure JPOXMLDOC01-appb-T000005
 表1および図8から明らかなように、T Lは各試料の値の差が明確(msのオーダー)であり、イメージ像でも明瞭に各試料の区別ができた。
 一方、表1および図9に示すように、T は、電子密度が1018cm-2と大きいGaAs(Siドープ)と絶縁性を示すGaAs(ノンドープ)、GaAs(Crドープ)の差はあるが、GaAs(ノンドープ)とGaAs(Crドープ)のT は220、230μsであり、その差がわずか(10μsのオーダー)であったため、ハーンエコーによるT でこの二つを区別することは困難であった。
 この結果より、雑音(f)に対応した適切なπパルス間隔2τを選択してT Lイメージングを行うことにより、T では区別が困難であった物質の区別が可能であることが分かった。
 上述した実施例では本発明を用いてGaAsの75Asのイメージングを行った場合について説明したが、本発明は特にこれに限定されることはない。
 例えば、本発明は、生体や医療MRIで広く用いられているH(プロトン)や13Cのイメージングにも適用できる。
 これは、現状のMRIは殆どが生体内の水のプロトンのNMR信号を検出しているが、プローブする核の感度としてプロトンは、本実施例で測定対象としたAsより強いためである。
 そのため、生体内でプロトンが感じる(外部環境から受ける)雑音もその周囲の状況により大きく変化することが期待されるため、H(プロトン)や13Cのイメージングに本発明を適用することにより、本実施例において、75AsでGaAs基板の違いが区別できたように、医療分野でも、これまで区別できなかった病変が区別できることが十分に期待される。
 さらに、現在のパルス技術で検出可能なノイズの周波数が100Hzから数kHzのオーダーであり、この周波数が生体反応や臓器の小さい部分の反応速度と重なっている点からも、H(プロトン)や13Cのイメージングに本発明を適用する上で優位に働くと期待される。
 また、本実施例のような固体MRIとしても、75As以外の多くの核種のイメージングへの適用が期待できる。
1     核磁気共鳴イメージ装置
3     プローブ
5     印加部
7     画像処理部

Claims (14)

  1.  静的な勾配磁場中に試料を収納可能なプローブと、
     前記試料の所定の位置における前記静的な勾配磁場に対応したラーモア周波数のπパルスを所定の時間間隔で前記試料に多重に印加する印加部と、
     前記試料の核磁気共鳴(NMR)信号から、緩和時間を求めてそのイメージングを行う画像処理部と、を有し、
     前記NMR信号と前記緩和時間は、以下の式(1)に示す関係を有し、
     前記πパルスの時間間隔と前記雑音の周波数は以下の式(2)で表されることを特徴とする核磁気共鳴イメージ装置。
    Figure JPOXMLDOC01-appb-M000001
  2.  前記印加部は、前記核磁気共鳴信号の横緩和時間が前記πパルスの時間間隔に依存し、さらに前記πパルスの時間間隔に依存する横緩和時間が、前記試料が外部環境から受ける雑音に依存することを利用して、前記試料の外部環境に応じて決定された時間間隔のπパルスを印加することを特徴とする請求項1に記載の核磁気共鳴イメージ装置。
  3.  前記画像処理部は、横緩和時間の大小を色の濃淡で表示することにより、前記緩和時間のイメージングを行うことを特徴とする請求項2記載の核磁気共鳴イメージ装置。
  4.  前記試料は半導体であり、前記πパルスの時間間隔は、前記半導体のキャリアと核スピンの相互作用が雑音となる周波数領域に対応した間隔であることを特徴とする請求項1~3のいずれか一項に記載の核磁気共鳴イメージ装置。
  5.  前記試料は生体であり、前記πパルスの時間間隔は、生体反応または臓器の特定部分の反応速度に対応する周波数領域に応じた間隔であることを特徴とする請求項1~3のいずれか一項に記載の核磁気共鳴イメージ装置。
  6.  前記印加部は、前記試料の複数の異なる位置における前記静的な勾配磁場に対応したラーモア周波数のπパルスを所定の時間間隔で多重に印加可能であり、
     前記画像処理部は、前記試料の複数の異なる位置ごとに、前記試料の核磁気共鳴信号から、緩和時間を求めてそのイメージングを行うことが可能であることを特徴とする請求項1~5のいずれか一項に記載の核磁気共鳴イメージ装置。
  7.  前記印加部は、複数の異なる時間間隔のπパルスを印加可能であり、
     前記画像処理部は、複数の異なる時間間隔のπパルスごとに、前記試料の核磁気共鳴信号から、緩和時間を求めてそのイメージングを行うことが可能であることを特徴とする請求項1~6のいずれか一項に記載の核磁気共鳴イメージ装置。
  8.  静的な勾配磁場中に試料を配置する工程(a)と、
     前記試料の所定の位置における前記静的な勾配磁場に対応したラーモア周波数のπパルスを所定の時間間隔で前記試料に多重に印加する工程(b)と、
     前記試料の核磁気共鳴信号から、緩和時間を求めてそのイメージングを行う工程(c)と、を有し、前記核磁気共鳴信号と前記緩和時間は、以下の式(1)に示す関係を有し、前記πパルスの時間間隔と前記雑音は以下の式(2)で表されることを特徴とする核磁気共鳴イメージ方法。
    Figure JPOXMLDOC01-appb-M000002
  9.  前記工程(b)は、前記核磁気共鳴信号の横緩和時間が前記πパルスの時間間隔に依存し、さらに前記πパルスの時間間隔に依存する横緩和時間が、前記試料が外部環境から受ける雑音に依存することを利用して、前記試料の外部環境に応じて決定された時間間隔のπパルスを印加することを特徴とする請求項8に記載の核磁気共鳴イメージ方法。
  10.  前記工程(c)は、横緩和時間の大小を色の濃淡で表示することにより、前記緩和時間のイメージングを行うことを特徴とする請求項9記載の核磁気共鳴イメージ方法。
  11.  前記試料は半導体であり、前記工程(b)は、前記πパルスの時間間隔として、前記半導体のキャリアと核スピンの相互作用が雑音となる周波数領域に対応した時間間隔を用いることを特徴とする請求項8~10のいずれか一項に記載の核磁気共鳴イメージ方法。
  12.  前記試料は生体であり、前記工程(b)は、前記πパルスの時間間隔として、生体反応または臓器の特定部分の反応速度に対応する周波数領域に応じた時間間隔を用いることを特徴とする請求項8~11のいずれか一項に記載の核磁気共鳴イメージ方法。
  13.  前記試料の所定の位置を変えながら前記工程(b)および前記工程(c)を繰り返すことにより、前記試料の複数の異なる位置ごとに、前記試料の核磁気共鳴信号から、緩和時間を求めてそのイメージングを行うことを特徴とする請求項8~12のいずれか一項に記載の核磁気共鳴イメージ方法。
  14.  前記試料に印加するπパルスの時間間隔を変えながら前記工程(b)および前記工程(c)を繰り返すことにより、πパルスの時間間隔ごとに、前記試料の核磁気共鳴信号から、緩和時間を求めてそのイメージングを行うことを特徴とする請求項8~13のいずれか一項に記載の核磁気共鳴イメージ方法。
PCT/JP2012/082739 2011-12-21 2012-12-18 核磁気共鳴イメージ装置および核磁気共鳴イメージ方法 WO2013094582A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/367,411 US9733327B2 (en) 2011-12-21 2012-12-18 NMR imaging device with probe, magnetic field generator and image processor using transverse relaxation time (T2L) and NMR imaging method for performing T2L imaging
JP2013550279A JP6023084B2 (ja) 2011-12-21 2012-12-18 核磁気共鳴イメージ装置および核磁気共鳴イメージ方法
EP12860186.1A EP2799849B1 (en) 2011-12-21 2012-12-18 Nmr imaging device and nmr imaging method
CA2860157A CA2860157C (en) 2011-12-21 2012-12-18 Nmr imaging device and nmr imaging method
CN201280060866.0A CN104094105B (zh) 2011-12-21 2012-12-18 核磁共振成像装置以及核磁共振成像方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011280016 2011-12-21
JP2011-280016 2011-12-21

Publications (1)

Publication Number Publication Date
WO2013094582A1 true WO2013094582A1 (ja) 2013-06-27

Family

ID=48668471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082739 WO2013094582A1 (ja) 2011-12-21 2012-12-18 核磁気共鳴イメージ装置および核磁気共鳴イメージ方法

Country Status (6)

Country Link
US (1) US9733327B2 (ja)
EP (1) EP2799849B1 (ja)
JP (1) JP6023084B2 (ja)
CN (1) CN104094105B (ja)
CA (1) CA2860157C (ja)
WO (1) WO2013094582A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168188A1 (ja) * 2018-03-01 2019-09-06 国立大学法人新潟大学 核磁気共鳴装置、磁気共鳴イメージング装置、核磁気共鳴方法、磁気共鳴イメージング方法、測定条件を決定する方法、及びプログラム
JP7412787B2 (ja) 2019-05-17 2024-01-15 国立大学法人 新潟大学 核磁気共鳴イメージング装置、核磁気共鳴イメージング方法、及びプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509777B (zh) * 2015-12-09 2018-04-06 天津大学 结合处理器和磁传感器的可编程实现方法及编码器
CN108267407A (zh) * 2018-01-29 2018-07-10 中国人民解放军国防科技大学 一种碱金属原子的横向自旋弛豫时间测量装置及测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311943A (ja) * 1987-06-15 1988-12-20 Hitachi Ltd 横緩和時間像算出方式
JPH10277006A (ja) 1997-04-10 1998-10-20 Toshiba Corp 磁気共鳴イメージング装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245286A (en) * 1991-04-18 1993-09-14 The Regents Of The University Of California Apparatus and method for stabilizing the background magnetic field during mri
DE10333795B4 (de) * 2003-07-24 2008-01-31 Siemens Ag Verfahren und Vorrichtung zur Vermeidung von peripheren Störsignalen in Spin-Echo-Bildern bei nicht monotonem Magnetfeldverlauf in der Magnetresonanz-Tomographie-Bildgebung
DE10333656B3 (de) 2003-07-24 2004-10-14 Groz-Beckert Kg Wirknadel
JP3968352B2 (ja) * 2004-02-03 2007-08-29 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Mri装置
JP4597857B2 (ja) 2005-12-26 2010-12-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Rfパルス印加方法およびmri装置
CN101545877B (zh) * 2008-03-28 2013-08-28 普拉德研究及开发股份有限公司 改进非均匀磁场中nmr波谱分辨率的方法和设备
US8513945B2 (en) * 2009-04-03 2013-08-20 New York University System, method and computer-accessible medium for providing breath-hold multi-echo fast spin-echo pulse sequence for accurate R2 measurement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311943A (ja) * 1987-06-15 1988-12-20 Hitachi Ltd 横緩和時間像算出方式
JPH10277006A (ja) 1997-04-10 1998-10-20 Toshiba Corp 磁気共鳴イメージング装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KATSUMI KOSE, COMPACT MRI, 15 November 2004 (2004-11-15), pages 64 - 79, XP008174614 *
SUSUMU SASAKI ET AL.: "Direct observation of low-frequency spectra of noise in solids that breaks the nuclear-spin coherence", ABSTRACTS OF THE MEETING OF THE PHYSICAL SOCIETY OF JAPAN, 3 March 2011 (2011-03-03), pages 181, XP055162660 *
SUSUMU SASAKI ET AL.: "Enhancement of nuclear- spin coherence and noise spectra in solids caused by multiple inversion pulse irradiation", ABSTRACTS OF THE MEETING OF THE PHYSICAL SOCIETY OF JAPAN, 24 August 2011 (2011-08-24), pages 123, XP055162666 *
TATSURO YUGE ET AL.: "Determination of fluctuation spectrum by multiple pulse sequence", ABSTRACTS OF THE MEETING OF THE PHYSICAL SOCIETY OF JAPAN, 3 March 2011 (2011-03-03), pages 181, XP055162659 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168188A1 (ja) * 2018-03-01 2019-09-06 国立大学法人新潟大学 核磁気共鳴装置、磁気共鳴イメージング装置、核磁気共鳴方法、磁気共鳴イメージング方法、測定条件を決定する方法、及びプログラム
JPWO2019168188A1 (ja) * 2018-03-01 2021-04-01 国立大学法人 新潟大学 核磁気共鳴装置、磁気共鳴イメージング装置、核磁気共鳴方法、磁気共鳴イメージング方法、測定条件を決定する方法、及びプログラム
US11320507B2 (en) 2018-03-01 2022-05-03 Niigata University Nuclear magnetic resonance apparatus, magnetic resonance imaging apparatus, nuclear magnetic resonance method, magnetic resonance imaging method, method for determining measurement conditions, and program
JP7193165B2 (ja) 2018-03-01 2022-12-20 国立大学法人 新潟大学 核磁気共鳴装置、磁気共鳴イメージング装置、核磁気共鳴方法、磁気共鳴イメージング方法、測定条件を決定する方法、及びプログラム
JP7412787B2 (ja) 2019-05-17 2024-01-15 国立大学法人 新潟大学 核磁気共鳴イメージング装置、核磁気共鳴イメージング方法、及びプログラム

Also Published As

Publication number Publication date
US20140375317A1 (en) 2014-12-25
CA2860157C (en) 2018-07-10
EP2799849B1 (en) 2020-12-02
EP2799849A4 (en) 2015-07-08
JPWO2013094582A1 (ja) 2015-04-27
CN104094105B (zh) 2017-07-18
EP2799849A1 (en) 2014-11-05
CN104094105A (zh) 2014-10-08
JP6023084B2 (ja) 2016-11-09
US9733327B2 (en) 2017-08-15
CA2860157A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
Mitchell et al. Low-field permanent magnets for industrial process and quality control
O’Dell et al. Acquisition of ultra-wideline NMR spectra from quadrupolar nuclei by frequency stepped WURST–QCPMG
US10168444B2 (en) Data processing with magnetic resonance tool
US7999545B2 (en) Method for obtaining amplitude and phase profiles of RF pulses for spatially selective excitation
Tam et al. Null space imaging: nonlinear magnetic encoding fields designed complementary to receiver coil sensitivities for improved acceleration in parallel imaging
JP2010284525A (ja) 磁気共鳴rf磁場計測のためのシステム、方法及び装置
US9389193B1 (en) Spatially resolved magnetic resonance spin-spin relaxation distribution measurement methods
JP6023084B2 (ja) 核磁気共鳴イメージ装置および核磁気共鳴イメージ方法
JPH01113033A (ja) 核磁気分布決定方法
WO2018226784A2 (en) Order of magnitude improvement in t*2 via control and cancellation of spin bath induced dephasing in solid-state ensembles
KR101627706B1 (ko) 자기 공명 기법에서 측정 볼륨 내의 검사 대상의 대상-특정 b1 분포를 결정하는 방법, 자기 공명 시스템, 및 컴퓨터 판독가능한 기록 매체
JPS6297544A (ja) Nmr信号受信方法
Dortch et al. Development, simulation, and validation of NMR relaxation-based exchange measurements
JP4388019B2 (ja) 磁気共鳴イメージング装置
US7199584B2 (en) Method and apparatus for high resolution nuclear magnetic resonance imaging and spectroscopy
Furusawa et al. Electron spin resonance imaging utilizing localized microwave magnetic field
Brai et al. Nuclear magnetic resonance for cultural heritage
JP5212972B2 (ja) 計測装置および計測方法
US5317262A (en) Single shot magnetic resonance method to measure diffusion, flow and/or motion
JP2006346055A (ja) 磁気共鳴を用いた検査装置
US9864031B2 (en) Measurement of NMR characteristics of an object containing fast transversal relaxation components
US5068611A (en) Measuring procedure for the elimination of faults from an NMR signal by comparing RF field components spinning in opposite directions
US7620440B2 (en) Direct temporal encoding of spatial information
US5235280A (en) Method for determining optimized radio-frequency pulse shapes for selective excitation in magnetic resonance spectroscopy and imaging
JP2009172415A (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860186

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013550279

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2860157

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14367411

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012860186

Country of ref document: EP