WO2013094242A1 - 立体物検出装置 - Google Patents

立体物検出装置 Download PDF

Info

Publication number
WO2013094242A1
WO2013094242A1 PCT/JP2012/069095 JP2012069095W WO2013094242A1 WO 2013094242 A1 WO2013094242 A1 WO 2013094242A1 JP 2012069095 W JP2012069095 W JP 2012069095W WO 2013094242 A1 WO2013094242 A1 WO 2013094242A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional object
image
bird
difference
object detection
Prior art date
Application number
PCT/JP2012/069095
Other languages
English (en)
French (fr)
Inventor
早川 泰久
修 深田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP12860558.1A priority Critical patent/EP2797320B1/en
Priority to US14/363,882 priority patent/US9740943B2/en
Priority to CN201280063075.3A priority patent/CN104012081B/zh
Priority to JP2013550148A priority patent/JP5776795B2/ja
Publication of WO2013094242A1 publication Critical patent/WO2013094242A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/002Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles specially adapted for covering the peripheral part of the vehicle, e.g. for viewing tyres, bumpers or the like
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/60Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective
    • B60R2300/607Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective from a bird's eye viewpoint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/802Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for monitoring and displaying vehicle exterior blind spot views
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/804Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for lane monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30256Lane; Road marking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a three-dimensional object detection device.
  • a vehicle periphery monitoring device that detects a three-dimensional object around a vehicle and detects whether the three-dimensional object is stationary or moving has been proposed.
  • this vehicle periphery monitoring device two images taken at different times are converted into bird's-eye views, the two bird's-eye views are aligned, the difference between the two images after alignment is taken, and the inconsistent portion is stereoscopically converted. It detects as a thing (refer patent document 1).
  • the problem to be solved by the present invention is to provide a three-dimensional object detection device capable of increasing the detection accuracy of a three-dimensional object regardless of the brightness of the detection environment.
  • the present invention solves the above problem by increasing the weight of the detection result based on edge information when the detection environment is dark, and increasing the weight of the detection result based on differential waveform information when the detection environment is bright.
  • Increasing the weight of the detection result based on edge information when the detection environment is dark has little effect on the edge information even if there is a change in the light and darkness of the road surface that causes false detection in the differential waveform information. Can be increased. Also, when the detection environment is bright and the weight of the detection result based on the differential waveform information is increased, even if there is a road surface pattern that causes false detection in the edge information, the differential waveform information has little effect. Detection accuracy can be increased.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to an embodiment to which a three-dimensional object detection device of the present invention is applied. It is a top view (three-dimensional object detection by difference waveform information) which shows the driving state of the vehicle of FIG. It is a block diagram which shows the detail of the computer of FIG. 4A and 4B are diagrams for explaining the outline of processing of the alignment unit in FIG. 3, in which FIG. 3A is a plan view showing a moving state of the vehicle, and FIG. It is the schematic which shows the mode of the production
  • FIG. 4 is a flowchart (No. 1) illustrating a three-dimensional object detection method using differential waveform information executed by the viewpoint conversion unit, the alignment unit, the smear detection unit, and the first three-dimensional object detection unit of FIG. 3.
  • FIG. 2 It is a flowchart (the 2) which shows the solid object detection method using the difference waveform information performed by the viewpoint conversion part of FIG. 3, a position alignment part, a smear detection part, and a 1st solid object detection part.
  • FIG. 3 It is a figure (three-dimensional object detection by edge information) which shows the running state of vehicles of Drawing 1, (a) is a top view showing the positional relationship of a detection field etc., and (b) shows the positional relationship of a detection field etc. in real space. It is a perspective view shown.
  • 4A and 4B are diagrams for explaining the operation of the luminance difference calculation unit in FIG. 3, in which FIG.
  • 3A is a diagram illustrating a positional relationship among attention lines, reference lines, attention points, and reference points in a bird's eye view image; It is a figure which shows the positional relationship of the attention line, reference line, attention point, and reference point.
  • 4A and 4B are diagrams for explaining the detailed operation of the luminance difference calculation unit in FIG. 3, in which FIG. 3A is a diagram illustrating a detection region in a bird's-eye view image, and FIG. It is a figure which shows the positional relationship of a reference point.
  • FIG. 6 is a flowchart (part 1) illustrating a three-dimensional object detection method using edge information executed by a viewpoint conversion unit, a luminance difference calculation unit, an edge line detection unit, and a second three-dimensional object detection unit in FIG. 3;
  • FIG. 1 is a flowchart (part 1) illustrating a three-dimensional object detection method using edge information executed by a viewpoint conversion unit, a luminance difference calculation unit, an edge line detection unit, and a second three-dimensional object detection unit in FIG. 3;
  • FIG. 6 is a flowchart (part 2) illustrating the three-dimensional object detection method using edge information executed by the viewpoint conversion unit, the luminance difference calculation unit, the edge line detection unit, and the second three-dimensional object detection unit of FIG. 3. It is a figure which shows the example of an image for demonstrating edge detection operation
  • control map which shows the relationship of ratio (alpha) / (beta) of the 1st threshold value and 2nd threshold value with respect to brightness. It is another example of the control map which shows the relationship of ratio (alpha) / (beta) of the 1st threshold value and 2nd threshold value with respect to brightness. It is a control map which shows the example of a setting of 1st threshold value (alpha) and 2nd threshold value (beta) with respect to brightness. It is a control map which shows the example of a setting of the weight X of the detection result by the 1st three-dimensional object detection part with respect to brightness, and the weight Y of the detection result by the 2nd three-dimensional object detection part.
  • FIG. 10 is a diagram (No.
  • FIG. 10 is a diagram (No. 2) for describing another example of the processing of the alignment unit in FIG. 3;
  • FIG. 10 is a diagram (No. 3) for describing another example of the process of the alignment unit in FIG. 3;
  • FIG. 1 is a schematic configuration diagram of a vehicle according to an embodiment to which a three-dimensional object detection device 1 of the present invention is applied.
  • the three-dimensional object detection device 1 of the present example is in contact with the host vehicle V when changing lanes. The purpose is to detect other vehicles with potential and calculate the travel distance. For this reason, the example demonstrated below shall show the example which mounts the solid-object detection apparatus 1 in the vehicle V, and makes a succeeding vehicle the solid object of a detection target.
  • the three-dimensional object detection device 1 of the present example includes a camera 10, a vehicle speed sensor 20, a calculator 30, and a brightness detection unit 40.
  • the camera 10 is attached to the vehicle V so that the optical axis is at an angle ⁇ from the horizontal to the lower side at the height h at the rear of the vehicle V.
  • the camera 10 captures an image of a predetermined area in the surrounding environment of the vehicle V from this position.
  • the vehicle speed sensor 20 detects the traveling speed of the vehicle V, and calculates the vehicle speed from the wheel speed detected by, for example, a wheel speed sensor that detects the rotational speed of the wheel.
  • the computer 30 detects a three-dimensional object behind the vehicle, and calculates a moving distance and a moving speed for the three-dimensional object in this example.
  • the brightness detection unit 40 detects the brightness of a predetermined area imaged by the camera 10, and details thereof will be described later.
  • FIG. 2 is a plan view showing a traveling state of the vehicle V in FIG.
  • the camera 10 images the vehicle rear side at a predetermined angle of view a.
  • the angle of view a of the camera 10 is set to an angle of view at which the left and right lanes can be imaged in addition to the lane in which the host vehicle V travels.
  • FIG. 3 is a block diagram showing details of the computer 30 of FIG. In FIG. 3, the camera 10, the vehicle speed sensor 20, and the brightness detection unit 40 are also illustrated in order to clarify the connection relationship.
  • the computer 30 includes a viewpoint conversion unit 31, an alignment unit 32, a first three-dimensional object detection unit 33, a smear detection unit 34, a luminance difference calculation unit 35, and an edge line detection unit 36. And a second three-dimensional object detection unit 37, a three-dimensional object determination unit 38, and a threshold setting unit 39.
  • the viewpoint conversion unit 31, the smear detection unit 34, the alignment unit 32, and the first three-dimensional object detection unit 33 are components related to a three-dimensional object detection block using differential waveform information described later, and the viewpoint conversion unit 31.
  • the luminance difference calculation unit 35, the edge line detection unit 36, and the second three-dimensional object detection unit 37 are components related to a three-dimensional object detection block using edge information described later.
  • each component will be described first.
  • the viewpoint conversion unit 31 inputs captured image data of a predetermined area obtained by imaging with the camera 10 and converts the input captured image data into a bird's-eye image data in a bird's-eye view state.
  • the state viewed from a bird's-eye view is a state viewed from the viewpoint of a virtual camera looking down from above, for example, vertically downward.
  • This viewpoint conversion can be executed as described in, for example, Japanese Patent Application Laid-Open No. 2008-219063.
  • the viewpoint conversion of captured image data to bird's-eye view image data is based on the principle that a vertical edge peculiar to a three-dimensional object is converted into a straight line group passing through a specific fixed point by viewpoint conversion to bird's-eye view image data. This is because a planar object and a three-dimensional object can be distinguished if used. Note that the result of the image conversion processing by the viewpoint conversion unit 31 is also used in detection of a three-dimensional object by edge information described later.
  • the alignment unit 32 sequentially inputs the bird's-eye image data obtained by the viewpoint conversion of the viewpoint conversion unit 31, and aligns the positions of the inputted bird's-eye image data at different times.
  • 4A and 4B are diagrams for explaining the outline of the processing of the alignment unit 32, where FIG. 4A is a plan view showing the moving state of the vehicle V, and FIG. 4B is an image showing the outline of the alignment.
  • the host vehicle V at the current time is located at V1, and the host vehicle V one hour before is located at V2.
  • the other vehicle V is located in the rear direction of the own vehicle V and is in parallel with the own vehicle V, the other vehicle V at the current time is located at V3, and the other vehicle V one hour before is located at V4.
  • the host vehicle V has moved a distance d at one time.
  • “one hour before” may be a past time for a predetermined time (for example, one control cycle) from the current time, or may be a past time for an arbitrary time.
  • the bird's-eye image PB t at the current time is as shown in Figure 4 (b).
  • the bird's-eye image PB t becomes a rectangular shape for the white line drawn on the road surface, but a relatively accurate is a plan view state, tilting occurs about the other vehicle V3.
  • the white line drawn on the road surface has a rectangular shape and is relatively accurately viewed in plan, but the other vehicle V4 falls down.
  • the vertical edges of solid objects are straight lines along the collapse direction by the viewpoint conversion processing to bird's-eye view image data. This is because the plane image on the road surface does not include a vertical edge, but such a fall does not occur even when the viewpoint is changed.
  • the alignment unit 32 performs alignment of the bird's-eye images PB t and PB t ⁇ 1 as described above on the data. At this time, the alignment unit 32 is offset a bird's-eye view image PB t-1 before one unit time, to match the position and bird's-eye view image PB t at the current time.
  • the image on the left side and the center image in FIG. 4B show a state that is offset by the movement distance d ′.
  • This offset amount d ′ is a movement amount on the bird's-eye view image data corresponding to the actual movement distance d of the host vehicle V shown in FIG. It is determined based on the time until the time.
  • the alignment unit 32 takes the difference between the bird's-eye images PB t and PB t ⁇ 1 and generates data of the difference image PD t .
  • the pixel value of the difference image PD t may be an absolute value of the difference between the pixel values of the bird's-eye images PB t and PB t ⁇ 1 , and the absolute value is predetermined in order to cope with a change in the illuminance environment. “1” may be set when the threshold value is exceeded, and “0” may be set when the threshold value is not exceeded.
  • the image on the right side of FIG. 4B is the difference image PD t .
  • the alignment unit 32 of this example aligns the positions of the bird's-eye view images at different times on the bird's-eye view, and obtains the aligned bird's-eye view images.
  • it can be performed with accuracy according to the required detection accuracy. It may be a strict alignment process such as aligning positions based on the same time and the same position, or may be a loose alignment process that grasps the coordinates of each bird's-eye view image.
  • the first three-dimensional object detection unit 33 detects a three-dimensional object based on the data of the difference image PD t shown in FIG. At this time, the first three-dimensional object detection unit 33 of this example also calculates the movement distance of the three-dimensional object in the real space. In detecting the three-dimensional object and calculating the movement distance, the first three-dimensional object detection unit 33 first generates a differential waveform.
  • the first three-dimensional object detection unit 33 sets a detection region in the difference image PD t .
  • the three-dimensional object detection device 1 of the present example is for the purpose of calculating the travel distance for other vehicles that may be contacted when the host vehicle V changes lanes. For this reason, in this example, rectangular detection areas A1 and A2 are set on the rear side of the host vehicle V as shown in FIG. Such detection areas A1 and A2 may be set from a relative position with respect to the host vehicle V, or may be set based on the position of the white line. When setting the position of the white line as a reference, the movement distance detection device 1 may use, for example, an existing white line recognition technique.
  • the first three-dimensional object detection unit 33 recognizes the sides (sides along the traveling direction) of the set detection areas A1 and A2 on the own vehicle V side as the ground lines L1 and L2.
  • the ground line means a line in which the three-dimensional object contacts the ground.
  • the ground line is set as described above, not a line in contact with the ground. Even in this case, from experience, the difference between the ground wire according to the present embodiment and the ground wire obtained from the position of the other vehicle V is not too large, and there is no problem in practical use.
  • FIG. 5 is a schematic diagram illustrating how a differential waveform is generated by the first three-dimensional object detection unit 33 illustrated in FIG. 3.
  • the first three-dimensional object detection unit 33 starts from the portion corresponding to the detection areas A1 and A2 in the difference image PD t (right diagram in FIG. 4B) calculated by the alignment unit 32.
  • a differential waveform DW t is generated.
  • the first three-dimensional object detection unit 33 generates a differential waveform DW t along the direction in which the three-dimensional object falls due to viewpoint conversion.
  • the difference waveform DW t is generated for the detection area A2 in the same procedure.
  • the first three-dimensional object detection unit 33 defines a line La in the direction in which the three-dimensional object falls on the data of the difference image PD t . Then, the first three-dimensional object detection unit 33 counts the number of difference pixels DP indicating a predetermined difference on the line La.
  • the difference pixel DP indicating a predetermined difference exceeds a predetermined threshold when the pixel value of the difference image PDt is an absolute value of the difference between the pixel values of the bird's-eye images PB t and PB t ⁇ 1.
  • the pixel value of the difference image PDt is expressed by “0” and “1”, the pixel indicates “1”.
  • the first three-dimensional object detection unit 33 counts the number of difference pixels DP and then obtains an intersection CP between the line La and the ground line L1. Then, the first three-dimensional object detection unit 33 associates the intersection point CP with the count number, determines the horizontal axis position based on the position of the intersection point CP, that is, the position on the vertical axis in the right diagram of FIG. The vertical axis position, that is, the position on the horizontal axis in the right diagram of FIG. 5, is determined and plotted as the count number at the intersection CP.
  • the first three-dimensional object detection unit 33 defines lines Lb, Lc,... In the direction in which the three-dimensional object falls, counts the number of difference pixels DP, and determines the horizontal axis position based on the position of each intersection CP. And the vertical axis position is determined from the count number (number of difference pixels DP) and plotted.
  • the first three-dimensional object detection unit 33 generates the differential waveform DW t as shown in the right diagram of FIG.
  • the line La and the line Lb in the direction in which the three-dimensional object collapses have different distances overlapping the detection area A1. For this reason, if the detection area A1 is filled with the difference pixels DP, the number of difference pixels DP is larger on the line La than on the line Lb. For this reason, when the first three-dimensional object detection unit 33 determines the vertical axis position from the count number of the difference pixels DP, the first three-dimensional object detection unit 33 is based on the distance at which the lines La and Lb in the direction in which the three-dimensional object falls and the detection area A1 overlap. Normalize. As a specific example, in the left diagram of FIG.
  • the first three-dimensional object detection unit 33 normalizes the count number by dividing it by the overlap distance.
  • the difference waveform DW t the line La on the direction the three-dimensional object collapses, the value of the differential waveform DW t corresponding to Lb is substantially the same.
  • the first three-dimensional object detection unit 33 calculates the movement distance by comparison with the difference waveform DW t ⁇ 1 one time before. That is, the first three-dimensional object detection unit 33 calculates the movement distance from the time change of the difference waveforms DW t and DW t ⁇ 1 .
  • the first three-dimensional object detection unit 33 divides the differential waveform DW t into a plurality of small areas DW t1 to DW tn (n is an arbitrary integer equal to or greater than 2) as shown in FIG.
  • FIG. 6 is a diagram illustrating the small areas DW t1 to DW tn divided by the first three-dimensional object detection unit 33.
  • the small areas DW t1 to DW tn are divided so as to overlap each other, for example, as shown in FIG. For example, the small area DW t1 and the small area DW t2 overlap, and the small area DW t2 and the small area DW t3 overlap.
  • the first three-dimensional object detection unit 33 obtains an offset amount (a movement amount of the differential waveform in the horizontal axis direction (vertical direction in FIG. 6)) for each of the small regions DW t1 to DW tn .
  • the offset amount is determined from the difference between the differential waveform DW t in the difference waveform DW t-1 and the current time before one unit time (distance in the horizontal axis direction).
  • the first three-dimensional object detection unit 33 for each small area DW t1 ⁇ DW tn, when moving the differential waveform DW t1 before one unit time in the horizontal axis direction, the differential waveform DW t at the current time Is determined as the offset (the position in the horizontal axis direction), and the amount of movement in the horizontal axis between the original position of the differential waveform DW t ⁇ 1 and the position where the error is minimum is determined. Then, the first three-dimensional object detection unit 33 counts the offset amount obtained for each of the small areas DW t1 to DW tn and forms a histogram.
  • FIG. 7 is a diagram illustrating an example of a histogram obtained by the first three-dimensional object detection unit 33.
  • the offset amount which is the amount of movement that minimizes the error between each of the small areas DW t1 to DW tn and the differential waveform DW t ⁇ 1 one time before, has some variation.
  • the first three-dimensional object detection unit 33 forms a histogram of offset amounts including variations, and calculates a movement distance from the histogram.
  • the first three-dimensional object detection unit 33 calculates the movement distance of the three-dimensional object from the maximum value of the histogram. That is, in the example illustrated in FIG.
  • the first three-dimensional object detection unit 33 calculates the offset amount indicating the maximum value of the histogram as the movement distance ⁇ * .
  • the moving distance ⁇ * is a relative moving distance of the other vehicle V with respect to the host vehicle V. For this reason, when calculating the absolute movement distance, the first three-dimensional object detection unit 33 calculates the absolute movement distance based on the obtained movement distance ⁇ * and the signal from the vehicle speed sensor 20. .
  • the first three-dimensional object detection unit 33 weights each of the plurality of small areas DW t1 to DW tn and forms an offset amount calculated for each of the small areas DW t1 to DW tn according to the weight.
  • a histogram may be formed.
  • FIG. 8 is a diagram illustrating weighting by the first three-dimensional object detection unit 33.
  • the small area DW m (m is an integer of 1 to n ⁇ 1) is flat. That is, in the small area DW m , the difference between the maximum value and the minimum value of the number of pixels indicating a predetermined difference is small.
  • the first three-dimensional object detection unit 33 to reduce the weight for such small area DW m. This is because the flat small area DW m has no characteristics and is likely to have a large error in calculating the offset amount.
  • the small region DW m + k (k is an integer equal to or less than nm) is rich in undulations. That is, in the small area DW m , the difference between the maximum value and the minimum value of the number of pixels indicating a predetermined difference is large.
  • the first three-dimensional object detection unit 33 increases the weight for such small area DW m. This is because the small region DW m + k rich in undulations is characteristic and there is a high possibility that the offset amount can be accurately calculated. By weighting in this way, the calculation accuracy of the movement distance can be improved.
  • the differential waveform DW t is divided into a plurality of small areas DW t1 to DW tn in order to improve the calculation accuracy of the movement distance.
  • the small area DW t1 is divided. It is not necessary to divide into ⁇ DW tn .
  • the first three-dimensional object detection unit 33 calculates the movement distance from the offset amount of the differential waveform DW t when the error between the differential waveform DW t and the differential waveform DW t ⁇ 1 is minimized. That is, the method for obtaining the offset amount of the difference waveform DW t in the difference waveform DW t-1 and the current time before one unit time is not limited to the above disclosure.
  • the computer 30 includes a smear detection unit 34.
  • the smear detection unit 34 detects a smear occurrence region from data of a captured image obtained by imaging with the camera 10. Since smear is a whiteout phenomenon that occurs in a CCD image sensor or the like, the smear detector 34 may be omitted when the camera 10 using a CMOS image sensor or the like in which such smear does not occur.
  • FIG. 9 is an image diagram for explaining the processing by the smear detection unit 34 and the calculation processing of the differential waveform DW t thereby.
  • data of the captured image P in which the smear S exists is input to the smear detection unit 34.
  • the smear detection unit 34 detects the smear S from the captured image P.
  • There are various methods for detecting the smear S For example, in the case of a general CCD (Charge-Coupled Device) camera, the smear S is generated only in the downward direction of the image from the light source.
  • CCD Charge-Coupled Device
  • a region having a luminance value equal to or higher than a predetermined value from the lower side of the image to the upper side of the image and continuous in the vertical direction is searched, and this is identified as a smear S generation region.
  • the smear detection unit 34 generates smear image SP data in which the pixel value is set to “1” for the place where the smear S is generated and the other place is set to “0”. After the generation, the smear detection unit 34 transmits the data of the smear image SP to the viewpoint conversion unit 31.
  • the viewpoint conversion unit 31 to which the data of the smear image SP is input converts the viewpoint into a state of bird's-eye view.
  • the viewpoint conversion unit 31 generates data of the smear bird's-eye view image SB t .
  • the viewpoint conversion unit 31 transmits the data of the smear bird's-eye view image SB t to the alignment unit 32.
  • the viewpoint conversion unit 31 transmits the data of the smear bird's-eye view image SB t ⁇ 1 one hour before to the alignment unit 32.
  • the alignment unit 32 aligns the smear bird's-eye images SB t and SB t ⁇ 1 on the data.
  • the specific alignment is the same as the case where the alignment of the bird's-eye images PB t and PB t ⁇ 1 is executed on the data.
  • the alignment unit 32 performs a logical sum on the smear S generation region of each smear bird's-eye view image SB t , SB t ⁇ 1 . Thereby, the alignment part 32 produces
  • the alignment unit 32 transmits the data of the mask image MP to the first three-dimensional object detection unit 33.
  • the first three-dimensional object detection unit 33 sets the count number of the frequency distribution to zero for the portion corresponding to the smear S generation region in the mask image MP. That is, when the differential waveform DW t as shown in FIG. 9 is generated, the first three-dimensional object detection unit 33 sets the count number SC by the smear S to zero and generates a corrected differential waveform DW t ′. It will be.
  • the first three-dimensional object detection unit 33 obtains the moving speed of the vehicle V (camera 10), and obtains the offset amount for the stationary object from the obtained moving speed. After obtaining the offset amount of the stationary object, the first three-dimensional object detection unit 33 ignores the offset amount corresponding to the stationary object among the maximum values of the histogram and calculates the moving distance of the three-dimensional object.
  • FIG. 10 is a diagram illustrating another example of the histogram obtained by the first three-dimensional object detection unit 33.
  • two maximum values ⁇ 1 and ⁇ 2 appear in the obtained histogram.
  • one of the two maximum values ⁇ 1, ⁇ 2 is the offset amount of the stationary object.
  • the first three-dimensional object detection unit 33 obtains the offset amount for the stationary object from the moving speed, ignores the maximum value corresponding to the offset amount, and adopts the remaining one maximum value to move the three-dimensional object movement distance. Is calculated.
  • the first three-dimensional object detection unit 33 stops calculating the movement distance.
  • 11 and 12 are flowcharts showing the three-dimensional object detection procedure of this embodiment.
  • the computer 30 inputs data of an image P captured by the camera 10, and generates a smear image SP by the smear detection unit 34 (S ⁇ b> 1).
  • the viewpoint conversion unit 31 generates data of the bird's-eye view image PB t from the data of the captured image P from the camera 10, and also generates data of the smear bird's-eye view image SB t from the data of the smear image SP (S2).
  • the alignment unit 32 aligns the data of the bird's-eye view image PB t and the data of the bird's-eye view image PB t ⁇ 1 of the previous time, and the data of the smear bird's-eye view image SB t and the smear bird's-eye view of the previous time.
  • the data of the image SB t-1 is aligned (S3).
  • the alignment unit 32 generates data for the difference image PD t and also generates data for the mask image MP (S4).
  • the first three-dimensional object detection unit 33, the data of the difference image PD t, and a one unit time before the difference image PD t-1 of the data generates a difference waveform DW t (S5).
  • the first three-dimensional object detection unit 33 After generating the differential waveform DW t , the first three-dimensional object detection unit 33 sets the count number corresponding to the smear S generation region in the differential waveform DW t to zero, and suppresses the influence of the smear S (S6).
  • the first three-dimensional object detection unit 33 determines whether or not the peak of the differential waveform DW t is greater than or equal to the first threshold value ⁇ (S7).
  • the first threshold value ⁇ is set by the three-dimensional object determination unit 38 shown in FIG. 3, and details thereof will be described later.
  • the peak of the difference waveform DW t is not equal to or greater than the first threshold value ⁇ , that is, when there is almost no difference, it is considered that there is no three-dimensional object in the captured image P.
  • the first three-dimensional object detection unit 33 determines that there is no three-dimensional object and no other vehicle exists. (FIG. 12: S16). Then, the processes shown in FIGS. 11 and 12 are terminated.
  • the first three-dimensional object detection unit 33 determines that a three-dimensional object exists, and sets the difference waveform DW t as the difference waveform DW t .
  • the area is divided into a plurality of small areas DW t1 to DW tn (S8).
  • the first three-dimensional object detection unit 33 performs weighting for each of the small areas DW t1 to DW tn (S9).
  • the first three-dimensional object detection unit 33 calculates an offset amount for each of the small areas DW t1 to DW tn (S10), and generates a histogram with the weights added (S11).
  • the first three-dimensional object detection unit 33 calculates a relative movement distance that is a movement distance of the three-dimensional object with respect to the host vehicle V based on the histogram (S12). Next, the first three-dimensional object detection unit 33 calculates the absolute movement speed of the three-dimensional object from the relative movement distance (S13). At this time, the first three-dimensional object detection unit 33 calculates the relative movement speed by differentiating the relative movement distance with respect to time, and calculates the absolute movement speed by adding the own vehicle speed detected by the vehicle speed sensor 20.
  • the first three-dimensional object detection unit 33 determines whether the absolute movement speed of the three-dimensional object is 10 km / h or more and the relative movement speed of the three-dimensional object with respect to the host vehicle V is +60 km / h or less (S14). ). When both are satisfied (S14: YES), the first three-dimensional object detection unit 33 determines that the three-dimensional object is the other vehicle V (S15). Then, the processes shown in FIGS. 11 and 12 are terminated. On the other hand, when neither one is satisfied (S14: NO), the first three-dimensional object detection unit 33 determines that there is no other vehicle (S16). Then, the processes shown in FIGS. 11 and 12 are terminated.
  • the rear side of the host vehicle V is set as the detection areas A1 and A2, and emphasis is placed on whether or not there is a possibility of contact when the host vehicle V changes lanes. For this reason, the process of step S14 is performed. That is, assuming that the system according to this embodiment is operated on a highway, if the speed of a three-dimensional object is less than 10 km / h, even if another vehicle V exists, Since it is located far behind the vehicle V, there are few problems. Similarly, when the relative moving speed of the three-dimensional object with respect to the own vehicle V exceeds +60 km / h (that is, when the three-dimensional object is moving at a speed higher than 60 km / h than the speed of the own vehicle V), the lane is changed. In some cases, since the vehicle is moving in front of the host vehicle V, there is little problem. For this reason, it can be said that the other vehicle V which becomes a problem at the time of lane change is judged in step S14.
  • step S14 it is determined whether the absolute moving speed of the three-dimensional object is 10 km / h or more and the relative moving speed of the three-dimensional object with respect to the vehicle V is +60 km / h or less.
  • the absolute moving speed of the stationary object may be detected to be several km / h. Therefore, the possibility of determining that the stationary object is the other vehicle V can be reduced by determining whether the speed is 10 km / h or more.
  • the relative speed of the three-dimensional object with respect to the host vehicle V may be detected at a speed exceeding +60 km / h. Therefore, the possibility of erroneous detection due to noise can be reduced by determining whether the relative speed is +60 km / h or less.
  • step S14 it may be determined that the absolute movement speed is not negative or not 0 km / h. Further, in the present embodiment, since emphasis is placed on whether or not there is a possibility of contact when the host vehicle V changes lanes, when the other vehicle V is detected in step S15, the driver of the host vehicle is notified. A warning sound may be emitted or a display corresponding to a warning may be performed by a predetermined display device.
  • the number of pixels indicating a predetermined difference is counted on the data of the difference image PD t along the direction in which the three-dimensional object falls by viewpoint conversion.
  • the difference waveform DW t is generated by frequency distribution.
  • the pixel indicating the predetermined difference on the data of the difference image PD t is a pixel that has changed in an image at a different time, in other words, a place where a three-dimensional object exists.
  • the difference waveform DW t is generated by counting the number of pixels along the direction in which the three-dimensional object collapses and performing frequency distribution at the location where the three-dimensional object exists.
  • the differential waveform DW t is generated from the information in the height direction for the three-dimensional object. Then, the moving distance of the three-dimensional object is calculated from the time change of the differential waveform DW t including the information in the height direction. For this reason, compared with the case where only one point of movement is focused on, the detection location before the time change and the detection location after the time change are specified including information in the height direction. The same location is likely to be obtained, and the movement distance is calculated from the time change of the same location, so that the calculation accuracy of the movement distance can be improved.
  • the count number of the frequency distribution is set to zero for the portion corresponding to the smear S generation region in the differential waveform DW t .
  • the waveform portion generated by the smear S in the differential waveform DW t is removed, and a situation in which the smear S is mistaken as a three-dimensional object can be prevented.
  • the moving distance of the three-dimensional object is calculated from the offset amount of the differential waveform DW t when the error of the differential waveform DW t generated at different times is minimized. For this reason, the movement distance is calculated from the offset amount of the one-dimensional information called the waveform, and the calculation cost can be suppressed in calculating the movement distance.
  • the differential waveform DW t generated at different times is divided into a plurality of small regions DW t1 to DW tn .
  • a plurality of waveforms representing respective portions of the three-dimensional object are obtained.
  • weighting is performed for each of the plurality of small areas DW t1 to DW tn , and the offset amount obtained for each of the small areas DW t1 to DW tn is counted according to the weight to form a histogram. For this reason, the moving distance can be calculated more appropriately by increasing the weight for the characteristic area and decreasing the weight for the non-characteristic area. Therefore, the calculation accuracy of the moving distance can be further improved.
  • the weight is increased as the difference between the maximum value and the minimum value of the number of pixels indicating a predetermined difference increases. For this reason, the characteristic undulation region having a large difference between the maximum value and the minimum value has a larger weight, and the flat region having a small undulation has a smaller weight.
  • the moving distance is calculated by increasing the weight in the area where the difference between the maximum value and the minimum value is large. The accuracy can be further improved.
  • the moving distance of the three-dimensional object is calculated from the maximum value of the histogram obtained by counting the offset amount obtained for each of the small areas DW t1 to DW tn . For this reason, even if there is a variation in the offset amount, a more accurate movement distance can be calculated from the maximum value.
  • the offset amount for a stationary object is obtained and this offset amount is ignored, it is possible to prevent a situation in which the calculation accuracy of the moving distance of the three-dimensional object is lowered due to the stationary object.
  • the calculation of the moving distance of the three-dimensional object is stopped. For this reason, it is possible to prevent a situation in which an erroneous movement distance having a plurality of maximum values is calculated.
  • the vehicle speed of the host vehicle V is determined based on a signal from the speed sensor 20, but the present invention is not limited to this, and the speed may be estimated from a plurality of images at different times. In this case, a vehicle speed sensor becomes unnecessary, and the configuration can be simplified.
  • the captured image at the current time and the image one hour before are converted into a bird's-eye view, the converted bird's-eye view is aligned, the difference image PD t is generated, and the generated difference image PD
  • t is evaluated along the falling direction (the falling direction of the three-dimensional object when the captured image is converted into a bird's eye view)
  • the differential waveform DW t is generated, but the present invention is not limited to this.
  • the differential waveform DW t may be generated by evaluating along the direction corresponding to the falling direction (that is, the direction in which the falling direction is converted into the direction on the captured image).
  • the difference image PD t is generated from the difference between the two images subjected to the alignment, and the difference image PD t is converted into a bird's eye view
  • the bird's-eye view does not necessarily have to be clearly generated as long as the evaluation can be performed along the direction in which the user falls.
  • a difference image between them is obtained. It generates a PD t, but generates a difference waveform DW t by evaluating along a direction corresponding to the direction collapsing the difference image PD t as shown in FIG. 5, the current time and one time before the bird's-eye image data PB t 1 and PB t ⁇ 1 are respectively evaluated along a direction corresponding to the falling direction as shown in FIG. 5 to generate a differential waveform DW t at the current time and one hour before, respectively.
  • the waveforms may be aligned as shown in FIG. 4B, and final difference waveform information may be generated from the difference between these two difference waveforms.
  • FIGS. 13A and 13B are diagrams illustrating an imaging range and the like of the camera 10 in FIG. 3.
  • FIG. 13A is a plan view, and FIG. Show.
  • the camera 10 has a predetermined angle of view a, and images the rear side from the host vehicle V1 included in the predetermined angle of view a.
  • the angle of view a of the camera 10 is set so that the imaging range of the camera 10 includes the adjacent lane in addition to the lane in which the host vehicle V1 travels.
  • the detection areas A1 and A2 in this example are trapezoidal in a plan view (when viewed from a bird's eye), and the positions, sizes, and shapes of the detection areas A1 and A2 are determined based on the distances d 1 to d 4. Is done.
  • the detection areas A1 and A2 in the example shown in the figure are not limited to a trapezoidal shape, and may be other shapes such as a rectangle when viewed from a bird's eye view as shown in FIG.
  • the distance d1 is a distance from the host vehicle V1 to the ground lines L1 and L2.
  • the ground lines L1 and L2 mean lines on which a three-dimensional object existing in the lane adjacent to the lane in which the host vehicle V1 travels contacts the ground.
  • an object is to detect other vehicles V2 and the like (including two-wheeled vehicles and the like) traveling in the left and right lanes adjacent to the lane of the host vehicle V1 on the rear side of the host vehicle V1.
  • a distance d1 which is a position to be the ground lines L1 and L2 of the other vehicle V2 is calculated from a distance d11 from the own vehicle V1 to the white line W and a distance d12 from the white line W to a position where the other vehicle V2 is predicted to travel. It can be determined substantially fixedly.
  • the distance d1 is not limited to being fixedly determined, and may be variable.
  • the computer 30 recognizes the position of the white line W with respect to the host vehicle V1 by a technique such as white line recognition, and determines the distance d11 based on the recognized position of the white line W.
  • the distance d1 is variably set using the determined distance d11.
  • the distance d1 is It shall be fixedly determined.
  • the distance d2 is a distance extending in the vehicle traveling direction from the rear end portion of the host vehicle V1.
  • the distance d2 is determined so that the detection areas A1 and A2 are at least within the angle of view a of the camera 10.
  • the distance d2 is set so as to be in contact with the range divided into the angle of view a.
  • the distance d3 is a distance indicating the length of the detection areas A1, A2 in the vehicle traveling direction. This distance d3 is determined based on the size of the three-dimensional object to be detected. In the present embodiment, since the detection target is the other vehicle V2 or the like, the distance d3 is set to a length including the other vehicle V2.
  • the distance d4 is a distance indicating a height set so as to include a tire such as the other vehicle V2 in the real space, as shown in FIG. 13B.
  • the distance d4 is a length shown in FIG. 13A in the bird's-eye view image.
  • the distance d4 may be a length that does not include a lane that is further adjacent to the left and right adjacent lanes in the bird's-eye view image (that is, a lane that is adjacent to two lanes). If the lane adjacent to the two lanes is included from the lane of the own vehicle V1, there is another vehicle V2 in the adjacent lane on the left and right of the own lane that is the lane in which the own vehicle V1 is traveling. This is because it becomes impossible to distinguish whether the other vehicle V2 exists.
  • the distances d1 to d4 are determined, and thereby the positions, sizes, and shapes of the detection areas A1 and A2 are determined. More specifically, the position of the upper side b1 of the detection areas A1 and A2 forming a trapezoid is determined by the distance d1. The starting point position C1 of the upper side b1 is determined by the distance d2. The end point position C2 of the upper side b1 is determined by the distance d3. The side b2 of the detection areas A1 and A2 having a trapezoidal shape is determined by a straight line L3 extending from the camera 10 toward the starting point position C1.
  • a side b3 of trapezoidal detection areas A1 and A2 is determined by a straight line L4 extending from the camera 10 toward the end position C2.
  • the position of the lower side b4 of the detection areas A1 and A2 having a trapezoidal shape is determined by the distance d4.
  • the areas surrounded by the sides b1 to b4 are set as the detection areas A1 and A2.
  • the detection areas A1 and A2 are true squares (rectangles) in the real space on the rear side from the host vehicle V1.
  • the viewpoint conversion unit 31 inputs captured image data of a predetermined area obtained by imaging with the camera 10.
  • the viewpoint conversion unit 31 performs viewpoint conversion processing on the input captured image data to the bird's-eye image data in a bird's-eye view state.
  • the bird's-eye view is a state seen from the viewpoint of a virtual camera looking down from above, for example, vertically downward (or slightly obliquely downward).
  • This viewpoint conversion process can be realized by a technique described in, for example, Japanese Patent Application Laid-Open No. 2008-219063.
  • the luminance difference calculation unit 35 calculates a luminance difference with respect to the bird's-eye view image data subjected to viewpoint conversion by the viewpoint conversion unit 31 in order to detect the edge of the three-dimensional object included in the bird's-eye view image. For each of a plurality of positions along a vertical imaginary line extending in the vertical direction in the real space, the brightness difference calculating unit 35 calculates a brightness difference between two pixels in the vicinity of each position.
  • the luminance difference calculation unit 35 can calculate the luminance difference by either a method of setting only one vertical virtual line extending in the vertical direction in the real space or a method of setting two vertical virtual lines.
  • the brightness difference calculation unit 35 applies a first vertical imaginary line corresponding to a line segment extending in the vertical direction in the real space and a vertical direction in the real space different from the first vertical imaginary line with respect to the bird's-eye view image that has undergone viewpoint conversion.
  • a second vertical imaginary line corresponding to the extending line segment is set.
  • the luminance difference calculation unit 35 continuously obtains a luminance difference between a point on the first vertical imaginary line and a point on the second vertical imaginary line along the first vertical imaginary line and the second vertical imaginary line.
  • the operation of the luminance difference calculation unit 35 will be described in detail.
  • the luminance difference calculation unit 35 corresponds to a line segment extending in the vertical direction in the real space and passes through the detection area A1 (hereinafter referred to as the attention line La).
  • the luminance difference calculation unit 35 corresponds to a line segment extending in the vertical direction in the real space and also passes through the second vertical virtual line Lr (hereinafter referred to as a reference line Lr) passing through the detection area A1.
  • the reference line Lr is set at a position separated from the attention line La by a predetermined distance in the real space.
  • the line corresponding to the line segment extending in the vertical direction in the real space is a line that spreads radially from the position Ps of the camera 10 in the bird's-eye view image.
  • This radially extending line is a line along the direction in which the three-dimensional object falls when converted to bird's-eye view.
  • the luminance difference calculation unit 35 sets the attention point Pa (point on the first vertical imaginary line) on the attention line La.
  • the luminance difference calculation unit 35 sets a reference point Pr (a point on the second vertical plate) on the reference line Lr.
  • the attention line La, the attention point Pa, the reference line Lr, and the reference point Pr have the relationship shown in FIG. 14B in the real space.
  • the attention line La and the reference line Lr are lines extending in the vertical direction in the real space, and the attention point Pa and the reference point Pr are substantially the same height in the real space. This is the point that is set.
  • the attention point Pa and the reference point Pr do not necessarily have the same height, and an error that allows the attention point Pa and the reference point Pr to be regarded as the same height is allowed.
  • the luminance difference calculation unit 35 obtains a luminance difference between the attention point Pa and the reference point Pr. If the luminance difference between the attention point Pa and the reference point Pr is large, it is considered that an edge exists between the attention point Pa and the reference point Pr. Therefore, the edge line detection unit 36 shown in FIG. 3 detects an edge line based on the luminance difference between the attention point Pa and the reference point Pr.
  • FIG. 15 is a diagram illustrating a detailed operation of the luminance difference calculation unit 35, in which FIG. 15 (a) shows a bird's-eye view image in a bird's-eye view state, and FIG. 15 (b) is shown in FIG. 15 (a). It is the figure which expanded a part B1 of the bird's-eye view image. Although only the detection area A1 is illustrated and described in FIG. 15, the luminance difference is calculated in the same procedure for the detection area A2.
  • the other vehicle V2 When the other vehicle V2 is reflected in the captured image captured by the camera 10, the other vehicle V2 appears in the detection area A1 in the bird's-eye view image as shown in FIG. As shown in the enlarged view of the area B1 in FIG. 15A in FIG. 15B, it is assumed that the attention line La is set on the rubber part of the tire of the other vehicle V2 on the bird's-eye view image.
  • the luminance difference calculation unit 35 first sets the reference line Lr.
  • the reference line Lr is set along the vertical direction at a position away from the attention line La by a predetermined distance in the real space.
  • the reference line Lr is set at a position separated from the attention line La by 10 cm in real space.
  • the reference line Lr is set on the wheel of the tire of the other vehicle V2 that is separated from the rubber of the tire of the other vehicle V2 by, for example, about 10 cm on the bird's eye view image.
  • the luminance difference calculation unit 35 sets a plurality of attention points Pa1 to PaN on the attention line La.
  • attention point Pai when an arbitrary point is indicated
  • the number of attention points Pa set on the attention line La may be arbitrary.
  • N attention points Pa are set on the attention line La.
  • the luminance difference calculation unit 35 sets the reference points Pr1 to PrN so as to be the same height as the attention points Pa1 to PaN in the real space. Then, the luminance difference calculation unit 35 calculates the luminance difference between the attention point Pa and the reference point Pr having the same height. Thereby, the luminance difference calculation unit 35 calculates the luminance difference between the two pixels for each of a plurality of positions (1 to N) along the vertical imaginary line extending in the vertical direction in the real space. For example, the luminance difference calculating unit 35 calculates a luminance difference between the first attention point Pa1 and the first reference point Pr1, and the second difference between the second attention point Pa2 and the second reference point Pr2. Will be calculated.
  • the luminance difference calculation unit 35 continuously calculates the luminance difference along the attention line La and the reference line Lr. That is, the luminance difference calculation unit 35 sequentially obtains the luminance difference between the third to Nth attention points Pa3 to PaN and the third to Nth reference points Pr3 to PrN.
  • the luminance difference calculation unit 35 repeatedly executes the above-described processing such as setting the reference line Lr, setting the attention point Pa and the reference point Pr, and calculating the luminance difference while shifting the attention line La in the detection area A1. That is, the luminance difference calculation unit 35 repeatedly executes the above processing while changing the positions of the attention line La and the reference line Lr by the same distance in the extending direction of the ground line L1 in the real space. For example, the luminance difference calculation unit 35 sets the reference line Lr as the reference line Lr in the previous processing, sets the reference line Lr for the attention line La, and sequentially obtains the luminance difference. It will be.
  • the edge line detection unit 36 detects an edge line from the continuous luminance difference calculated by the luminance difference calculation unit 35.
  • the first attention point Pa ⁇ b> 1 and the first reference point Pr ⁇ b> 1 are located in the same tire portion, and thus the luminance difference is small.
  • the second to sixth attention points Pa2 to Pa6 are located in the rubber part of the tire, and the second to sixth reference points Pr2 to Pr6 are located in the wheel part of the tire. Therefore, the luminance difference between the second to sixth attention points Pa2 to Pa6 and the second to sixth reference points Pr2 to Pr6 becomes large. Therefore, the edge line detection unit 36 may detect that an edge line exists between the second to sixth attention points Pa2 to Pa6 and the second to sixth reference points Pr2 to Pr6 having a large luminance difference. it can.
  • the edge line detection unit 36 firstly follows the following Equation 1 to determine the i-th attention point Pai (coordinate (xi, yi)) and the i-th reference point Pri (coordinate ( xi ′, yi ′)) and the i th attention point Pai are attributed.
  • Equation 1 t represents a threshold value
  • I (xi, yi) represents the luminance value of the i-th attention point Pai
  • I (xi ′, yi ′) represents the luminance value of the i-th reference point Pri.
  • the attribute s (xi, yi) of the attention point Pai is “1”.
  • the attribute s (xi, yi) of the attention point Pai is “ ⁇ 1”.
  • the edge line detection unit 36 determines whether or not the attention line La is an edge line from the continuity c (xi, yi) of the attribute s along the attention line La based on Equation 2 below.
  • the continuity c (xi, yi) is “1”.
  • the attribute s (xi, yi) of the attention point Pai is not the same as the attribute s (xi + 1, yi + 1) of the adjacent attention point Pai + 1
  • the continuity c (xi, yi) is “0”.
  • the edge line detection unit 36 obtains the sum for the continuity c of all the points of interest Pa on the line of interest La.
  • the edge line detection unit 36 normalizes the continuity c by dividing the obtained sum of continuity c by the number N of points of interest Pa.
  • the edge line detection unit 36 determines that the attention line La is an edge line when the normalized value exceeds the threshold ⁇ .
  • the threshold value ⁇ is a value set in advance through experiments or the like.
  • the edge line detection unit 36 determines whether or not the attention line La is an edge line based on Equation 3 below. Then, the edge line detection unit 36 determines whether or not all the attention lines La drawn on the detection area A1 are edge lines.
  • Equation 3 >> ⁇ c (xi, yi) / N> ⁇
  • the second three-dimensional object detection unit 37 detects a three-dimensional object based on the amount of edge lines detected by the edge line detection unit 36.
  • the three-dimensional object detection device 1 detects an edge line extending in the vertical direction in real space. The fact that many edge lines extending in the vertical direction are detected means that there is a high possibility that a three-dimensional object exists in the detection areas A1 and A2. For this reason, the second three-dimensional object detection unit 37 detects a three-dimensional object based on the amount of edge lines detected by the edge line detection unit 36. Furthermore, prior to detecting the three-dimensional object, the second three-dimensional object detection unit 37 determines whether or not the edge line detected by the edge line detection unit 36 is correct.
  • the second three-dimensional object detection unit 37 determines whether or not the luminance change along the edge line of the bird's-eye view image on the edge line is larger than a predetermined threshold value. When the luminance change of the bird's-eye view image on the edge line is larger than the threshold value, it is determined that the edge line is detected by erroneous determination. On the other hand, when the luminance change of the bird's-eye view image on the edge line is not larger than the threshold value, it is determined that the edge line is correct.
  • This threshold value is a value set in advance by experiments or the like.
  • FIG. 16 is a diagram showing the luminance distribution of the edge line
  • FIG. 16A shows the edge line and luminance distribution when another vehicle V2 as a three-dimensional object exists in the detection area A1
  • FIG. Indicates an edge line and a luminance distribution when there is no solid object in the detection area A1.
  • the attention line La set in the tire rubber part of the other vehicle V2 is determined to be an edge line in the bird's-eye view image.
  • the luminance change of the bird's-eye view image on the attention line La is gentle. This is because the tire of the other vehicle V2 is extended in the bird's-eye view image by converting the image captured by the camera 10 into a bird's-eye view image.
  • the attention line La set in the white character portion “50” drawn on the road surface in the bird's-eye view image is erroneously determined as an edge line.
  • the brightness change of the bird's-eye view image on the attention line La has a large undulation. This is because a portion with high brightness in white characters and a portion with low brightness such as a road surface are mixed on the edge line.
  • the second three-dimensional object detection unit 37 determines whether or not the edge line is detected by erroneous determination. When the luminance change along the edge line is larger than a predetermined threshold, the second three-dimensional object detection unit 37 determines that the edge line has been detected by erroneous determination. And the said edge line is not used for the detection of a solid object. Thereby, white characters such as “50” on the road surface, weeds on the road shoulder, and the like are determined as edge lines, and the detection accuracy of the three-dimensional object is prevented from being lowered.
  • the second three-dimensional object detection unit 37 calculates the luminance change of the edge line according to any one of the following mathematical formulas 4 and 5.
  • the luminance change of the edge line corresponds to the evaluation value in the vertical direction in the real space.
  • Equation 4 evaluates the luminance distribution by the sum of the squares of the differences between the i-th luminance value I (xi, yi) on the attention line La and the adjacent i + 1-th luminance value I (xi + 1, yi + 1).
  • Equation 5 evaluates the luminance distribution by the sum of the absolute values of the differences between the i-th luminance value I (xi, yi) on the attention line La and the adjacent i + 1-th luminance value I (xi + 1, yi + 1).
  • the threshold value t2 is used to binarize the attribute b of the adjacent luminance value, and the binarized attribute b is summed for all the attention points Pa. Also good.
  • the attribute b (xi, yi) of the attention point Pa (xi, yi) is “1”. Become. If the relationship is other than that, the attribute b (xi, yi) of the attention point Pai is '0'.
  • This threshold value t2 is set in advance by an experiment or the like in order to determine that the attention line La is not on the same three-dimensional object. Then, the second three-dimensional object detection unit 37 sums up the attributes b for all the attention points Pa on the attention line La, obtains an evaluation value in the vertical equivalent direction, and determines whether the edge line is correct.
  • 17 and 18 are flowcharts showing details of the three-dimensional object detection method according to the present embodiment.
  • FIG. 17 and FIG. 18 for the sake of convenience, the processing for the detection area A1 will be described, but the same processing is executed for the detection area A2.
  • step S21 the camera 10 images a predetermined area specified by the angle of view a and the attachment position.
  • step S22 the viewpoint conversion unit 31 inputs the captured image data captured by the camera 10 in step S21, performs viewpoint conversion, and generates bird's-eye view image data.
  • step S23 the luminance difference calculation unit 35 sets the attention line La on the detection area A1. At this time, the luminance difference calculation unit 35 sets a line corresponding to a line extending in the vertical direction in the real space as the attention line La.
  • luminance difference calculation part 35 sets the reference line Lr on detection area
  • step S25 the luminance difference calculation unit 35 sets a plurality of attention points Pa on the attention line La.
  • the luminance difference calculation unit 35 sets the attention points Pa as many as not causing a problem at the time of edge detection by the edge line detection unit 36.
  • step S26 the luminance difference calculation unit 35 sets the reference point Pr so that the attention point Pa and the reference point Pr are substantially the same height in the real space. Thereby, the attention point Pa and the reference point Pr are arranged in a substantially horizontal direction, and it becomes easy to detect an edge line extending in the vertical direction in the real space.
  • step S27 the luminance difference calculation unit 35 calculates the luminance difference between the attention point Pa and the reference point Pr that have the same height in the real space.
  • the edge line detection unit 36 calculates the attribute s of each attention point Pa in accordance with Equation 1 above.
  • step S28 the edge line detection unit 36 calculates the continuity c of the attribute s of each attention point Pa in accordance with Equation 2 above.
  • step S29 the edge line detection unit 36 determines whether or not the value obtained by normalizing the total sum of continuity c is greater than the threshold value ⁇ according to the above formula 3.
  • the edge line detection unit 36 detects the attention line La as an edge line in step S30. Then, the process proceeds to step S31.
  • the edge line detection unit 36 does not detect the attention line La as an edge line, and the process proceeds to step S31.
  • step S31 the computer 30 determines whether or not the processing in steps S23 to S30 has been executed for all the attention lines La that can be set on the detection area A1. If it is determined that the above processing has not been performed for all the attention lines La (S31: NO), the processing returns to step S23, a new attention line La is set, and the processing up to step S31 is repeated. On the other hand, when it is determined that the above process has been performed for all the attention lines La (S31: YES), the process proceeds to step S32 in FIG.
  • the second three-dimensional object detection unit 37 calculates a luminance change along the edge line for each edge line detected in step S30 of FIG.
  • the second three-dimensional object detection unit 37 calculates the luminance change of the edge line according to any one of the above formulas 4, 5, and 6.
  • Step S33 the second three-dimensional object detection unit 37 excludes edge lines whose luminance change is larger than a predetermined threshold from the edge lines. That is, it is determined that an edge line having a large luminance change is not a correct edge line, and the edge line is not used for detecting a three-dimensional object. As described above, this is to prevent characters on the road surface, roadside weeds, and the like included in the detection area A1 from being detected as edge lines. Therefore, the predetermined threshold value is a value set based on a luminance change generated by characters on the road surface, weeds on the road shoulder, or the like obtained in advance by experiments or the like.
  • the second three-dimensional object detection unit 37 determines whether or not the amount of the edge line is equal to or greater than the second threshold value ⁇ .
  • the second threshold value ⁇ is a value set in advance by experiments or the like, and is set by the three-dimensional object determination unit 38 described later. For example, when a four-wheeled vehicle is set as the three-dimensional object to be detected, the second threshold value ⁇ is set based on the number of edge lines of the four-wheeled vehicle that have appeared in the detection region A1 in advance through experiments or the like.
  • the second three-dimensional object detection unit 37 detects that a three-dimensional object exists in the detection area A1 in step S35.
  • the second three-dimensional object detection unit 37 determines that there is no three-dimensional object in the detection area A1. Thereafter, the processing illustrated in FIGS. 17 and 18 ends.
  • the vertical direction in the real space with respect to the bird's-eye view image A vertical imaginary line is set as a line segment extending to. Then, for each of a plurality of positions along the vertical imaginary line, a luminance difference between two pixels in the vicinity of each position can be calculated, and the presence or absence of a three-dimensional object can be determined based on the continuity of the luminance difference.
  • the attention line La corresponding to the line segment extending in the vertical direction in the real space and the reference line Lr different from the attention line La are set for the detection areas A1 and A2 in the bird's-eye view image. Then, a luminance difference between the attention point Pa on the attention line La and the reference point Pr on the reference line Lr is continuously obtained along the attention line La and the reference line La. In this way, the luminance difference between the attention line La and the reference line Lr is obtained by continuously obtaining the luminance difference between the points. In the case where the luminance difference between the attention line La and the reference line Lr is high, there is a high possibility that there is an edge of the three-dimensional object at the set position of the attention line La.
  • a three-dimensional object can be detected based on a continuous luminance difference.
  • the detection accuracy of a three-dimensional object can be improved.
  • the luminance difference between two points of approximately the same height near the vertical imaginary line is obtained.
  • the luminance difference is obtained from the attention point Pa on the attention line La and the reference point Pr on the reference line Lr, which are substantially the same height in the real space, and thus the luminance when there is an edge extending in the vertical direction. The difference can be detected clearly.
  • FIG. 19 is a diagram illustrating an example of an image for explaining the processing of the edge line detection unit 36.
  • 102 is an adjacent image.
  • a region where the brightness of the first striped pattern 101 is high and a region where the brightness of the second striped pattern 102 is low are adjacent to each other, and a region where the brightness of the first striped pattern 101 is low and the second striped pattern 102. Is adjacent to a region with high brightness.
  • the portion 103 located at the boundary between the first striped pattern 101 and the second striped pattern 102 tends not to be perceived as an edge depending on human senses.
  • the edge line detection unit 36 determines the part 103 as an edge line only when there is continuity in the attribute of the luminance difference in addition to the luminance difference in the part 103, the edge line detection unit 36 An erroneous determination of recognizing a part 103 that is not recognized as an edge line as a sensation as an edge line can be suppressed, and edge detection according to a human sensation can be performed.
  • the edge line detection unit 36 when the luminance change of the edge line detected by the edge line detection unit 36 is larger than a predetermined threshold value, it is determined that the edge line has been detected by erroneous determination.
  • the captured image acquired by the camera 10 is converted into a bird's-eye view image, the three-dimensional object included in the captured image tends to appear in the bird's-eye view image in a stretched state.
  • the luminance change of the bird's-eye view image in the stretched direction tends to be small.
  • the bird's-eye view image includes a high luminance region such as a character portion and a low luminance region such as a road surface portion.
  • the brightness change in the stretched direction tends to increase in the bird's-eye view image. Therefore, by determining the luminance change of the bird's-eye view image along the edge line as in this example, the edge line detected by the erroneous determination can be recognized, and the detection accuracy of the three-dimensional object can be improved.
  • the three-dimensional object detection device 1 of this example uses the detection result by the first three-dimensional object detection unit 33 and the second three-dimensional object detection unit.
  • the first three-dimensional object detection is performed according to the brightness of the detection areas A1 and A2 detected by the brightness detection unit 40 and the three-dimensional object determination unit 38 that finally determines whether or not the object is a three-dimensional object from the detection result 37.
  • a threshold setting unit 39 that sets the first threshold value ⁇ of the unit 33 and the second threshold value ⁇ of the second three-dimensional object detection unit 37.
  • the brightness detection unit 40 is a camera such as a shutter speed, an aperture value, and a gain value controlled by the camera 10 itself based on the light amounts of the detection areas A1 and A2 detected by the camera 10 or the light amounts detected by the camera 10.
  • 10 control values are read from the camera 10 and output to the threshold setting unit 39.
  • threshold setting control according to the brightness of the actual environment can be executed. Further, by detecting the control value of the camera 10 based on the amount of light, it is possible to set a threshold value according to the characteristics of the three-dimensional object detection in accordance with the actual captured image.
  • the brightness detection unit 40 can calculate the altitude of the sun from the time and the longitude of the current position in place of the light amounts, control values, and the like of the detection areas A1 and A2, and use this as the brightness.
  • the solar altitude as the brightness detection value
  • the road surface detection situation becomes close to reality, and a threshold value can be set according to the characteristics of the three-dimensional object detection.
  • the threshold setting unit 39 sets the weight of the detection result of the second three-dimensional object detection unit 37 to be larger as the brightness detected by the brightness detection unit 40 is darker, and the first three-dimensional object detection unit 33 as the brightness is brighter.
  • the detection result weight is set small. That is, when the detection environment is dark, the weight of the detection result based on the edge information is increased, and when the detection environment is bright, the weight of the detection result based on the differential waveform information is increased.
  • the ratio ⁇ / ⁇ between the first threshold value ⁇ and the second threshold value ⁇ is set to be smaller as the brightness detected by the brightness detection unit 40 is darker, and the ratio ⁇ / ⁇ is set as the brightness is brighter. Set larger.
  • FIGS. 21 to 24 are control maps showing setting examples of the ratio ⁇ / ⁇ between the first threshold value ⁇ and the second threshold value ⁇ with respect to brightness.
  • FIG. 21 is an example in which the ratio ⁇ / ⁇ is increased stepwise as the brightness becomes brighter.
  • FIG. 22 is an example in which the ratio ⁇ / ⁇ is increased stepwise as the brightness is increased. This is an example in which hysteresis is set to prevent control hunting.
  • FIG. 23 shows an example in which the ratio ⁇ / ⁇ is proportionally increased as the brightness becomes brighter.
  • FIG. 24 similarly shows an example in which the ratio ⁇ / ⁇ is increased in proportion to the brighter brightness. However, this is an example in which hysteresis is set to prevent control hunting.
  • FIG. 21 to 24 show examples of setting the ratio ⁇ / ⁇ between the first threshold value ⁇ and the second threshold value ⁇ , but the first threshold value ⁇ and the second threshold value ⁇ are independent of each other. It may be set.
  • FIG. 25 is a control map in which the first threshold value ⁇ and the second threshold value ⁇ are set independently of each other, and the first threshold value ⁇ is decreased and the second threshold value ⁇ is increased as the brightness becomes brighter. In this case, only one of the first threshold value ⁇ and the second threshold value ⁇ may be controlled.
  • the second threshold value ⁇ is set to a constant value, and the first threshold value ⁇ is decreased as the brightness increases.
  • the setting value of the second threshold value ⁇ may be set larger than the detection upper limit value, and the detection of the three-dimensional object may be executed only by the first three-dimensional object detection unit 33.
  • FIG. 26 is a control map showing a setting example of the weight X of the detection result by the first three-dimensional object detection unit 33 and the weight Y of the detection result by the second three-dimensional object detection unit 37.
  • the weight X of the detection result by the three-dimensional object detection unit 33 is reduced, and the weight Y of the detection result by the second three-dimensional object detection unit 37 is set large.
  • the detection result weight X by the first three-dimensional object detection unit 33 is set to be larger, and the detection result weight Y by the second three-dimensional object detection unit 37 is decreased.
  • the weight Y is set to zero. That is, in this range, the three-dimensional object is detected only by the first three-dimensional object detection unit 33.
  • the detection environment When the detection environment is dark, such as at night, the lighting condition of the road surface greatly changes due to the influence of street lights, headlights, etc., so there is a possibility that a three-dimensional object detection method using differential waveform information will make a false detection. Even if the light / dark fluctuation of the road surface due to such illumination occurs, an edge does not occur on the road surface, and thus the solid object detection method using the edge information has little influence. Therefore, when the detection environment is dark, the detection accuracy of the three-dimensional object can be increased by increasing the weight of the detection result based on the edge information. On the other hand, when the detection environment is bright as in the daytime, the road pattern and the edge of the object outside the road are clearly detected.
  • the three-dimensional object detection method using the edge information is erroneously detected.
  • such road surface patterns and edges of road objects have little influence on the three-dimensional object detection method using the differential waveform information. Therefore, when the detection environment is bright, the detection accuracy of the three-dimensional object can be increased by increasing the weight of the detection result based on the differential waveform information.
  • step S 41 the brightness of the detection areas A 1 and A 2 is detected by the brightness detection unit 40 and output to the threshold setting unit 39.
  • step S42 the threshold value setting unit 39 calculates the first threshold value ⁇ and the second threshold value ⁇ using the detected brightness and any one of the previously stored control maps shown in FIGS. It outputs to the object detection part 33 and the 2nd three-dimensional object detection part 37.
  • FIG. The first threshold value ⁇ and the second threshold value ⁇ can be obtained, for example, by appropriately dividing the initial values ⁇ 0 and ⁇ 0 so that the ratio ⁇ / ⁇ obtained from the control maps shown in FIGS. .
  • step S43 the three-dimensional object is detected based on the difference waveform information in the above-described procedure.
  • step S44 the detection of the three-dimensional object based on the edge information is performed according to the procedure described above.
  • the first threshold value ⁇ and the second threshold value ⁇ corresponding to the brightness are set to the first three-dimensional object detection unit 33 and the second three-dimensional object detection unit 37, respectively. Is set to
  • step S45 it is detected whether it is a three-dimensional object in step S43, and it is determined whether it is detected as a three-dimensional object in step S44, and it is detected that it is a three-dimensional object in any step S43, S44. In that case, the process proceeds to step S46, and it is finally determined that the object is a three-dimensional object. If it is detected that the object is not a three-dimensional object in any of steps S43 and S44, the process proceeds to step S47, and it is finally determined that the object is not a three-dimensional object.
  • the three-dimensional object detection device 1 of the present example when the detection environment is dark such as at night, a detection result based on differential waveform information that may be erroneously detected due to the influence of a streetlight, a headlight, or the like.
  • the detection accuracy of the three-dimensional object can be increased.
  • the detection environment is bright as in the daytime, the detection result weight by the differential waveform information is added to the detection result by the edge information that may be erroneously detected by the road pattern or the edge of the object outside the road. Therefore, the detection accuracy of the three-dimensional object can be increased.
  • the differential waveform information is generated by the alignment unit 32 and the first three-dimensional object detection unit 33 in FIG. 3, in the above-described embodiment, based on the moving speed of the own vehicle, as shown in FIG.
  • the bird's-eye view image and the bird's-eye view image one hour ago are aligned by shifting the position by the moving distance in the real space of the bird's-eye view image, the difference image in this state is obtained, and the difference waveform information is generated from this. It is also possible to use this method.
  • the pixel value (edge amount) of the difference image of the captured image with different offset timing is compared with the pixel value (edge amount) of the difference image of the captured image with different timing not offset. It is determined whether the object is a stationary object or a moving object.
  • a solid object image Q (T0) is detected in the detection areas A1 and A2 at the past timing T0, and at the current timing T1 after the timing of T0, the detection area A1.
  • the subject vehicle V which is the detection subject, moves along the direction B, so that the three-dimensional object detected at the past timing T0 on the image.
  • the image Q (T0) moves to the position of the image Q (T1) of the three-dimensional object on the upper side in the drawing of the detection areas A1 and A2.
  • FIG. 27 A case where the three-dimensional object is a moving object will be described based on FIG. 28, and a case where the three-dimensional object is a stationary object will be described based on FIG.
  • both the host vehicle V and the other vehicle VX move. There is a tendency to maintain a predetermined positional relationship. That is, when the captured image is offset, the position of the other vehicle VX tends to shift, and many pixels (edges) that can be characteristic are detected in the difference image PDt.
  • FIG. 28B when the captured image is not offset, the positions of the host vehicle V and the other vehicle VX tend to approach each other, and the difference image PDt has pixels (edges) that can be characteristic. Less detected. If the number of pixels (edges) in the difference image PDt is large, the integrated value tends to be high. If the number of pixels (edges) in the difference image PDt is small, the integrated value in the difference waveform information tends to be low.
  • the detected three-dimensional object is a stationary still object Q1
  • the own vehicle V moves while the stationary object Q1 is stationary.
  • the stationary object Q1 tend to be separated. That is, when the captured image is offset, the positions of the host vehicle V and the stationary object Q1 tend to approach, and a small number of pixels (edges) that can be characteristic are detected in the difference image PDt.
  • FIG. 29B if the captured image is not offset, the position of the stationary object Q1 tends to be different from the previous captured image as the host vehicle V moves, and the difference image PDt is characteristic. Many possible pixels (edges) are detected.
  • the integrated value in the luminance distribution information tends to be high, and if there are few pixels (edges) in the difference image PDt, the integrated value in the luminance distribution information tends to be low.
  • the position of the first bird's-eye view image obtained at the first time T0 when the three-dimensional object is detected, and the position of the second bird's-eye view image obtained at the second time T1 after the first time. are obtained by performing frequency distribution by counting the number of pixels in which the brightness difference between adjacent image areas is equal to or greater than a predetermined threshold on the difference image of the aligned bird's-eye view images.
  • a first integrated value of one luminance distribution information is obtained. That is, the offset difference image is generated in consideration of the movement amount of the host vehicle V.
  • the offset amount d ′ corresponds to the movement amount on the bird's-eye view image data corresponding to the actual movement distance of the host vehicle V shown in FIG. 4A, and the signal from the vehicle speed sensor 20 and the current amount from one hour before. It is determined based on the time until the time.
  • the first integrated value is the total of values plotted as the first luminance distribution information or a predetermined area.
  • the first bird's-eye view image obtained at the first time T0 and the second bird's-eye view image obtained at the second time T1 after the first time T0 are obtained without shifting the positions.
  • the second integrated value of the second luminance distribution information generated by counting the number of pixels in which the luminance difference between the adjacent image regions is equal to or greater than a predetermined threshold and performing frequency distribution is obtained. That is, a difference image that is not offset is generated, and its integrated value (second integrated value) is calculated.
  • the second integrated value is all of the values plotted as the second luminance distribution information or the total value of the predetermined area.
  • the evaluation value corresponding to the number of times that the second integrated value is determined to be greater than the first integrated value is equal to or greater than a predetermined evaluation threshold
  • the three-dimensional object detected by the first three-dimensional object detection unit 33 is detected. Judged as “moving object”.
  • the calculation method of the evaluation value is not limited, in this embodiment, every time it is determined that the second integrated value is larger than the first integrated value in the process repeatedly executed at a predetermined cycle, the evaluation point is counted up. The total value is obtained as an “evaluation value”.
  • the pixel amount (edge amount) extracted from the difference image between the past captured image that has been offset and the current captured image, the past captured image that is not offset, and the current captured image Based on the magnitude relationship with the pixel amount (edge amount) extracted from the difference image with the captured image, the image transition feature of the moving object and the image transition feature of the stationary object are identified, and the three-dimensional object is the moving object. Whether the object is a stationary object or not can be determined with high accuracy.
  • the second integrated value of the pixels (edge amount) indicating the predetermined difference in the difference image from the image not offset is the first pixel (edge amount) indicating the predetermined difference in the difference image from the offset image.
  • the evaluation value is calculated by adding the first count value. That is, as the determination that the second integrated value is larger than the first integrated value is accumulated, the evaluation value is increased. If the evaluation value is equal to or greater than a predetermined evaluation threshold, it is determined that the three-dimensional object is a stationary object.
  • the first count value is set higher as the number of consecutive determinations increases. As described above, when the determination that the second integrated value is larger than the first integrated value continues, it is determined that there is an increased possibility that the detected three-dimensional object is a stationary object, and the evaluation value becomes larger. Since the first count value is increased as described above, it is possible to determine with high accuracy whether or not the three-dimensional object is a moving object based on the continuous observation result.
  • the first count value is added, and when it is determined that the second integrated value is smaller than the first integrated value, The evaluation value may be calculated by subtracting the second count value.
  • the stationary object detection unit 38 determines that the second integrated value is smaller than the first integrated value after determining that the second integrated value is larger than the first integrated value. Further, after that, when it is determined that the second integrated value is larger than the first integrated value, the first count value is set high.
  • the detected three-dimensional object is a stationary object. Since it is determined that there is a high possibility, and the first count value is increased so that the evaluation value is increased, it is possible to determine a stationary object with high accuracy based on the continuous observation result. Incidentally, the detection state of the feature of the moving object tends to be observed stably. If the detection result is unstable and the determination result that the three-dimensional object is a stationary object is discretely detected, it can be determined that the detected three-dimensional object is likely to be a stationary object. It is.
  • the second count value is subtracted to calculate the evaluation value. In this case, if the determination that the second integrated value is smaller than the first integrated value continues for a predetermined number of times, the second count value is set high.
  • the second integrated value is smaller than the first integrated value
  • it is determined that the detected three-dimensional object is likely to be a moving object (another vehicle VX)
  • a stationary object is determined.
  • the second count value related to the subtraction is increased so that the evaluation value for performing the reduction becomes smaller, so that the stationary object can be determined with high accuracy based on the continuous observation result.
  • the camera 10 corresponds to an imaging unit according to the present invention
  • the viewpoint conversion unit 31 corresponds to an image conversion unit according to the present invention
  • the alignment unit 32 and the first three-dimensional object detection unit 33 are the first according to the present invention.
  • the three-dimensional object detection unit corresponds to the luminance difference calculation unit 35, the edge line detection unit 36, and the second three-dimensional object detection unit 37, and corresponds to the second three-dimensional object detection unit according to the present invention.
  • the brightness detection unit 40 corresponds to a brightness detection unit according to the present invention
  • the threshold setting unit 39 corresponds to a threshold setting unit according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mechanical Engineering (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Traffic Control Systems (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

 所定領域を撮像する撮像手段10と、前記撮像手段により得られた画像を鳥瞰視画像に視点変換する画像変換手段31と、前記所定領域の明るさを検出する明るさ検出手段40と、前記画像変換手段により得られた異なる時刻の鳥瞰視画像の差分画像から差分波形情報を生成し、少なくとも前記明るさ検出手段により検出された明るさが所定値以上の明るさである場合に、前記差分波形情報が第1閾値α以上であることで立体物を検出する第1立体物検出手段33と、前記画像変換手段により得られた鳥瞰視画像からエッジ情報を検出し、少なくとも前記明るさ検出手段により検出された明るさが所定値未満の明るさである場合に、前記エッジ情報が第2閾値β以上であることで立体物を検出する第2立体物検出手段37と、を備える。

Description

立体物検出装置
 本発明は、立体物検出装置に関するものである。
 従来、車両周辺における立体物の検出及び立体物が静止しているか移動しているかを検出する車両周辺監視装置が提案されている。この車両周辺監視装置では、異なる時刻に撮像された2枚の画像を鳥瞰図に変換し、2枚の鳥瞰図の位置合わせを行い、位置合わせ後の2枚の画像について差分をとり、不一致部分を立体物として検出する(特許文献1参照)。
特開2008-219063号公報
 しかしながら、上記従来のように2枚の鳥瞰図の差分に基づく立体物の検出方法では、夜間のように路面の照明状況が街灯や車両のヘッドライトにより大きく変化すると、画像の差分が様々な対象物に発生することになるので、誤検出する可能性が高い。
 本発明が解決しようとする課題は、検出環境の明るさに拘らず立体物の検出精度を高めることができる立体物検出装置を提供することである。
 本発明は、検出環境が暗い場合はエッジ情報による検出結果の重みを上げ、検出環境が明るい場合は差分波形情報による検出結果の重みを上げることによって、上記課題を解決する。
 検出環境が暗い場合にエッジ情報による検出結果の重みを上げると、差分波形情報で誤検出の原因となる路面の明暗変動が生じてもエッジ情報には影響が少ないので、立体物の検出精度を高めることができる。また、検出環境が明るい場合に差分波形情報による検出結果の重みを上げると、エッジ情報で誤検出の原因となる路面の模様などがあっても差分波形情報には影響が少ないので、立体物の検出精度を高めることができる。
本発明の立体物検出装置を適用した一実施の形態に係る車両の概略構成図である。 図1の車両の走行状態を示す平面図(差分波形情報による立体物検出)である。 図1の計算機の詳細を示すブロック図である。 図3の位置合わせ部の処理の概要を説明するための図であり、(a)は車両の移動状態を示す平面図、(b)は位置合わせの概要を示す画像である。 図3の第1立体物検出部による差分波形の生成の様子を示す概略図である。 図3の第1立体物検出部によって分割される小領域を示す図である。 図3の第1立体物検出部により得られるヒストグラムの一例を示す図である。 図3の第1立体物検出部による重み付けを示す図である。 図3のスミア検出部による処理及びそれによる差分波形の算出処理を示す図である。 図3の第1立体物検出部により得られるヒストグラムの他の例を示す図である。 図3の視点変換部、位置合わせ部、スミア検出部及び第1立体物検出部により実行される差分波形情報を用いた立体物検出方法を示すフローチャート(その1)である。 図3の視点変換部、位置合わせ部、スミア検出部及び第1立体物検出部により実行される差分波形情報を用いた立体物検出方法を示すフローチャート(その2)である。 図1の車両の走行状態を示す図(エッジ情報による立体物検出)であり、(a)は検出領域等の位置関係を示す平面図、(b)は実空間における検出領域等の位置関係を示す斜視図である。 図3の輝度差算出部の動作を説明するための図であり、(a)は鳥瞰視画像における注目線、参照線、注目点及び参照点の位置関係を示す図、(b)は実空間における注目線、参照線、注目点及び参照点の位置関係を示す図である。 図3の輝度差算出部の詳細な動作を説明するための図であり、(a)は鳥瞰視画像における検出領域を示す図、(b)は鳥瞰視画像における注目線、参照線、注目点及び参照点の位置関係を示す図である。 エッジ線とエッジ線上の輝度分布を示す図であり、(a)は検出領域に立体物(車両)が存在している場合の輝度分布を示す図、(b)は検出領域に立体物が存在しない場合の輝度分布を示す図である。 図3の視点変換部、輝度差算出部、エッジ線検出部及び第2立体物検出部により実行されるエッジ情報を用いた立体物検出方法を示すフローチャート(その1)である。 図3の視点変換部、輝度差算出部、エッジ線検出部及び第2立体物検出部により実行されるエッジ情報を用いた立体物検出方法を示すフローチャート(その2)である。 エッジ検出動作を説明するための画像例を示す図である。 図3の立体物判断部の制御手順を示すフローチャートである。 明るさに対する第1閾値と第2閾値との比α/βの関係を示す制御マップの一例である。 明るさに対する第1閾値と第2閾値との比α/βの関係を示す制御マップの他例である。 明るさに対する第1閾値と第2閾値との比α/βの関係を示す制御マップの他例である。 明るさに対する第1閾値と第2閾値との比α/βの関係を示す制御マップの他例である。 明るさに対する第1閾値αと第2閾値βとの設定例を示す制御マップである。 明るさに対する第1立体物検出部による検出結果の重みXと、第2立体物検出部による検出結果の重みYとの設定例を示す制御マップである。 図3の位置合わせ部の処理の他例を説明するための図(その1)である。 図3の位置合わせ部の処理の他例を説明するための図(その2)である。 図3の位置合わせ部の処理の他例を説明するための図(その3)である。
 図1は、本発明の立体物検出装置1を適用した一実施の形態に係る車両の概略構成図であり、本例の立体物検出装置1は、自車両Vが車線変更する際に接触の可能性がある他車両を検出し、移動距離を算出することを目的とする。このため、以下説明する一例は、立体物検出装置1を車両Vに搭載し、後続車を検出対象の立体物とする例を示すこととする。同図に示すように、本例の立体物検出装置1は、カメラ10と、車速センサ20と、計算機30と、明るさ検出部40とを備える。
 カメラ10は、図1に示すように車両Vの後方における高さhの箇所において、光軸が水平から下向きに角度θとなるように車両Vに取り付けられている。カメラ10は、この位置から車両Vの周囲環境のうちの所定領域を撮像する。車速センサ20は、車両Vの走行速度を検出するものであって、例えば車輪に回転数を検知する車輪速センサで検出した車輪速から車速度を算出する。計算機30は、車両後方の立体物を検出するとともに、本例ではその立体物について移動距離及び移動速度を算出する。明るさ検出部40は、カメラ10により撮像される所定領域の明るさを検出するものであり、その詳細は後述する。
 図2は、図1の車両Vの走行状態を示す平面図である。同図に示すように、カメラ10は、所定の画角aで車両後方側を撮像する。このとき、カメラ10の画角aは、自車両Vが走行する車線に加えて、その左右の車線についても撮像可能な画角に設定されている。
 図3は、図1の計算機30の詳細を示すブロック図である。なお、図3においては、接続関係を明確とするためにカメラ10、車速センサ20及び明るさ検出部40についても図示する。
 図3に示すように、計算機30は、視点変換部31と、位置合わせ部32と、第1立体物検出部33と、スミア検出部34と、輝度差算出部35と、エッジ線検出部36と、第2立体物検出部37と、立体物判断部38と、閾値設定部39とを備える。このうち、視点変換部31、スミア検出部34と、位置合わせ部32及び第1立体物検出部33が後述する差分波形情報を利用した立体物の検出ブロックに関する構成部であり、視点変換部31、輝度差算出部35、エッジ線検出部36及び第2立体物検出部37が後述するエッジ情報を利用した立体物の検出ブロックに関する構成部である。以下、最初にそれぞれの構成部について説明する。
《差分波形情報による立体物の検出》
 視点変換部31は、カメラ10による撮像にて得られた所定領域の撮像画像データを入力し、入力した撮像画像データを鳥瞰視される状態の鳥瞰画像データに視点変換する。鳥瞰視される状態とは、上空から例えば鉛直下向きに見下ろす仮想カメラの視点から見た状態である。この視点変換は、例えば特開2008-219063号公報に記載されるようにして実行することができる。撮像画像データを鳥瞰視画像データに視点変換するのは、立体物に特有の鉛直エッジは鳥瞰視画像データへの視点変換により特定の定点を通る直線群に変換されるという原理に基づき、これを利用すれば平面物と立体物とを識別できるからである。なお、視点変換部31による画像変換処理の結果は、後述するエッジ情報による立体物の検出においても利用される。
 位置合わせ部32は、視点変換部31の視点変換により得られた鳥瞰画像データを順次入力し、入力した異なる時刻の鳥瞰画像データの位置を合わせる。図4は、位置合わせ部32の処理の概要を説明するための図であり、(a)は車両Vの移動状態を示す平面図、(b)は位置合わせの概要を示す画像である。
 図4(a)に示すように、現時刻の自車両VがV1に位置し、一時刻前の自車両VがV2に位置していたとする。また、自車両Vの後側方向に他車両Vが位置して自車両Vと並走状態にあり、現時刻の他車両VがV3に位置し、一時刻前の他車両VがV4に位置していたとする。さらに、自車両Vは、一時刻で距離d移動したものとする。なお、一時刻前とは、現時刻から予め定められた時間(例えば1制御周期)だけ過去の時刻であってもよいし、任意の時間だけ過去の時刻であってもよい。
 このような状態において、現時刻における鳥瞰画像PBは図4(b)に示すようになる。この鳥瞰画像PBでは、路面上に描かれる白線については矩形状となり、比較的正確に平面視された状態となるが、他車両V3については倒れ込みが発生する。また、一時刻前における鳥瞰画像PBt-1についても同様に、路面上に描かれる白線については矩形状となり、比較的正確に平面視された状態となるが、他車両V4については倒れ込みが発生する。既述したとおり、立体物の鉛直エッジ(厳密な意味の鉛直エッジ以外にも路面から三次元空間に立ち上がったエッジを含む)は、鳥瞰視画像データへの視点変換処理によって倒れ込み方向に沿った直線群として現れるのに対し、路面上の平面画像は鉛直エッジを含まないので、視点変換してもそのような倒れ込みが生じないからである。
 位置合わせ部32は、上記のような鳥瞰画像PB,PBt-1の位置合わせをデータ上で実行する。この際、位置合わせ部32は、一時刻前における鳥瞰画像PBt-1をオフセットさせ、現時刻における鳥瞰画像PBと位置を一致させる。図4(b)の左側の画像と中央の画像は、移動距離d’だけオフセットした状態を示す。このオフセット量d’は、図4(a)に示した自車両Vの実際の移動距離dに対応する鳥瞰視画像データ上の移動量であり、車速センサ20からの信号と一時刻前から現時刻までの時間に基づいて決定される。
 また、位置合わせ後において位置合わせ部32は、鳥瞰画像PB,PBt-1の差分をとり、差分画像PDのデータを生成する。ここで、差分画像PDの画素値は、鳥瞰画像PB,PBt-1の画素値の差を絶対値化したものでもよいし、照度環境の変化に対応するために当該絶対値が所定の閾値を超えたときに「1」とし、超えないときに「0」としてもよい。図4(b)の右側の画像が、差分画像PDである。なお、本例の位置合わせ部32は、異なる時刻の鳥瞰視画像の位置を鳥瞰視上で位置合わせし、その位置合わせされた鳥瞰視画像を得るが、この位置合わせ処理は、検出対象の種別や要求される検出精度に応じた精度で行うことができる。同一時刻及び同一位置を基準に位置を合わせるといった厳密な位置合わせ処理であってもよいし、各鳥瞰視画像の座標を把握するという程度の緩い位置合わせ処理であってもよい。
 図3に戻り、第1立体物検出部33は、図4(b)に示す差分画像PDのデータに基づいて立体物を検出する。この際、本例の第1立体物検出部33は、実空間上における立体物の移動距離についても算出する。立体物の検出及び移動距離の算出にあたり、第1立体物検出部33は、まず差分波形を生成する。
 差分波形の生成にあたって第1立体物検出部33は、差分画像PDにおいて検出領域を設定する。本例の立体物検出装置1は、自車両Vが車線変更する際に接触の可能性がある他車両について移動距離を算出する目的のものである。このため、本例では、図2に示すように自車両Vの後側方に矩形状の検出領域A1,A2を設定する。なお、このような検出領域A1,A2は、自車両Vに対する相対位置から設定してもよいし、白線の位置を基準に設定してもよい。白線の位置を基準に設定する場合に、移動距離検出装置1は、例えば既存の白線認識技術等を利用するとよい。
 また、第1立体物検出部33は、設定した検出領域A1,A2の自車両V側における辺(走行方向に沿う辺)を接地線L1,L2として認識する。一般に接地線は立体物が地面に接触する線を意味するが、本実施形態では地面に接触する線でなく上記の如くに設定される。なおこの場合であっても、経験上、本実施形態に係る接地線と、本来の他車両Vの位置から求められる接地線との差は大きくなり過ぎず、実用上は問題が無い。
 図5は、図3に示す第1立体物検出部33による差分波形の生成の様子を示す概略図である。図5に示すように、第1立体物検出部33は、位置合わせ部32で算出した差分画像PD(図4(b)の右図)のうち検出領域A1,A2に相当する部分から、差分波形DWを生成する。この際、第1立体物検出部33は、視点変換により立体物が倒れ込む方向に沿って、差分波形DWを生成する。なお、図5に示す例では、便宜上検出領域A1のみを用いて説明するが、検出領域A2についても同様の手順で差分波形DWを生成する。
 具体的に説明すると、まず第1立体物検出部33は、差分画像PDのデータ上において立体物が倒れ込む方向上の線Laを定義する。そして、第1立体物検出部33は、線La上において所定の差分を示す差分画素DPの数をカウントする。ここで、所定の差分を示す差分画素DPは、差分画像PDtの画素値が鳥瞰画像PB,PBt-1の画素値の差を絶対値化したものである場合は、所定の閾値を超える画素であり、差分画像PDtの画素値が「0」「1」で表現されている場合は、「1」を示す画素である。
 第1立体物検出部33は、差分画素DPの数をカウントした後、線Laと接地線L1との交点CPを求める。そして、第1立体物検出部33は、交点CPとカウント数とを対応付け、交点CPの位置に基づいて横軸位置、すなわち図5右図の上下方向軸における位置を決定するとともに、カウント数から縦軸位置、すなわち図5右図の左右方向軸における位置を決定し、交点CPにおけるカウント数としてプロットする。
 以下同様に、第1立体物検出部33は、立体物が倒れ込む方向上の線Lb,Lc…を定義して、差分画素DPの数をカウントし、各交点CPの位置に基づいて横軸位置を決定し、カウント数(差分画素DPの数)から縦軸位置を決定しプロットする。第1立体物検出部33は、上記を順次繰り返して度数分布化することで、図5右図に示すように差分波形DWを生成する。
 なお、図5左図に示すように、立体物が倒れ込む方向上の線Laと線Lbとは検出領域A1と重複する距離が異なっている。このため、検出領域A1が差分画素DPで満たされているとすると、線Lb上よりも線La上の方が差分画素DPの数が多くなる。このため、第1立体物検出部33は、差分画素DPのカウント数から縦軸位置を決定する場合に、立体物が倒れ込む方向上の線La,Lbと検出領域A1とが重複する距離に基づいて正規化する。具体例を挙げると、図5左図において線La上の差分画素DPは6つあり、線Lb上の差分画素DPは5つである。このため、図5においてカウント数から縦軸位置を決定するにあたり、第1立体物検出部33は、カウント数を重複距離で除算するなどして正規化する。これにより、差分波形DWに示すように、立体物が倒れ込む方向上の線La,Lbに対応する差分波形DWの値はほぼ同じとなっている。
 差分波形DWの生成後、第1立体物検出部33は一時刻前の差分波形DWt-1との対比により移動距離を算出する。すなわち、第1立体物検出部33は、差分波形DW,DWt-1の時間変化から移動距離を算出する。
 詳細に説明すると、第1立体物検出部33は、図6に示すように差分波形DWを複数の小領域DWt1~DWtn(nは2以上の任意の整数)に分割する。図6は、第1立体物検出部33によって分割される小領域DWt1~DWtnを示す図である。小領域DWt1~DWtnは、例えば図6に示すように、互いに重複するようにして分割される。例えば小領域DWt1と小領域DWt2とは重複し、小領域DWt2と小領域DWt3とは重複する。
 次いで、第1立体物検出部33は、小領域DWt1~DWtn毎にオフセット量(差分波形の横軸方向(図6の上下方向)の移動量)を求める。ここで、オフセット量は、一時刻前における差分波形DWt-1と現時刻における差分波形DWとの差(横軸方向の距離)から求められる。この際、第1立体物検出部33は、小領域DWt1~DWtn毎に、一時刻前における差分波形DWt-1を横軸方向に移動させた際に、現時刻における差分波形DWとの誤差が最小となる位置(横軸方向の位置)を判定し、差分波形DWt-1の元の位置と誤差が最小となる位置との横軸方向の移動量をオフセット量として求める。そして、第1立体物検出部33は、小領域DWt1~DWtn毎に求めたオフセット量をカウントしてヒストグラム化する。
 図7は、第1立体物検出部33により得られるヒストグラムの一例を示す図である。図7に示すように、各小領域DWt1~DWtnと一時刻前における差分波形DWt-1との誤差が最小となる移動量であるオフセット量には、多少のバラつきが生じる。このため、第1立体物検出部33は、バラつきを含んだオフセット量をヒストグラム化し、ヒストグラムから移動距離を算出する。この際、第1立体物検出部33は、ヒストグラムの極大値から立体物の移動距離を算出する。すなわち、図7に示す例において第1立体物検出部33は、ヒストグラムの極大値を示すオフセット量を移動距離τと算出する。なおこの移動距離τは、自車両Vに対する他車両Vの相対移動距離である。このため、第1立体物検出部33は、絶対移動距離を算出する場合には、得られた移動距離τと車速センサ20からの信号とに基づいて、絶対移動距離を算出することとなる。
 なお、ヒストグラム化にあたり第1立体物検出部33は、複数の小領域DWt1~DWtn毎に重み付けをし、小領域DWt1~DWtn毎に求めたオフセット量を重みに応じてカウントしてヒストグラム化してもよい。図8は、第1立体物検出部33による重み付けを示す図である。
 図8に示すように、小領域DW(mは1以上n-1以下の整数)は平坦となっている。すなわち、小領域DWは所定の差分を示す画素数のカウントの最大値と最小値との差が小さくなっている。第1立体物検出部33は、このような小領域DWについて重みを小さくする。平坦な小領域DWについては、特徴がなくオフセット量の算出にあたり誤差が大きくなる可能性が高いからである。
 一方、小領域DWm+k(kはn-m以下の整数)は起伏に富んでいる。すなわち、小領域DWは所定の差分を示す画素数のカウントの最大値と最小値との差が大きくなっている。第1立体物検出部33は、このような小領域DWについて重みを大きくする。起伏に富む小領域DWm+kについては、特徴的でありオフセット量の算出を正確に行える可能性が高いからである。このように重み付けすることにより、移動距離の算出精度を向上することができる。
 なお、移動距離の算出精度を向上するために上記実施形態では差分波形DWを複数の小領域DWt1~DWtnに分割したが、移動距離の算出精度がさほど要求されない場合は小領域DWt1~DWtnに分割しなくてもよい。この場合に、第1立体物検出部33は、差分波形DWと差分波形DWt-1との誤差が最小となるときの差分波形DWのオフセット量から移動距離を算出することとなる。すなわち、一時刻前における差分波形DWt-1と現時刻における差分波形DWとのオフセット量を求める方法は上記内容に限定されない。
 図3に戻り、計算機30はスミア検出部34を備える。スミア検出部34は、カメラ10による撮像によって得られた撮像画像のデータからスミアの発生領域を検出する。なお、スミアはCCDイメージセンサ等に生じる白飛び現象であることから、こうしたスミアが生じないCMOSイメージセンサ等を用いたカメラ10を採用する場合にはスミア検出部34を省略してもよい。
 図9は、スミア検出部34による処理及びそれによる差分波形DWの算出処理を説明するための画像図である。まずスミア検出部34にスミアSが存在する撮像画像Pのデータが入力されたとする。このとき、スミア検出部34は、撮像画像PからスミアSを検出する。スミアSの検出方法は様々であるが、例えば一般的なCCD(Charge-Coupled Device)カメラの場合、光源から画像下方向にだけスミアSが発生する。このため、本実施形態では画像下側から画像上方に向かって所定値以上の輝度値を持ち、且つ、縦方向に連続した領域を検索し、これをスミアSの発生領域と特定する。
 また、スミア検出部34は、スミアSの発生箇所について画素値を「1」とし、それ以外の箇所を「0」とするスミア画像SPのデータを生成する。生成後、スミア検出部34はスミア画像SPのデータを視点変換部31に送信する。また、スミア画像SPのデータを入力した視点変換部31は、このデータを鳥瞰視される状態に視点変換する。これにより、視点変換部31はスミア鳥瞰画像SBのデータを生成する。生成後、視点変換部31はスミア鳥瞰画像SBのデータを位置合わせ部32に送信する。また、視点変換部31は一時刻前のスミア鳥瞰画像SBt-1のデータを位置合わせ部32に送信する。
 位置合わせ部32は、スミア鳥瞰画像SB,SBt-1の位置合わせをデータ上で実行する。具体的な位置合わせについては、鳥瞰画像PB,PBt-1の位置合わせをデータ上で実行する場合と同様である。また、位置合わせ後、位置合わせ部32は、各スミア鳥瞰画像SB,SBt-1のスミアSの発生領域について論理和をとる。これにより、位置合わせ部32は、マスク画像MPのデータを生成する。生成後、位置合わせ部32は、マスク画像MPのデータを第1立体物検出部33に送信する。
 第1立体物検出部33は、マスク画像MPのうちスミアSの発生領域に該当する箇所について、度数分布のカウント数をゼロとする。すなわち、図9に示すような差分波形DWが生成されていた場合に、第1立体物検出部33は、スミアSによるカウント数SCをゼロとし、補正された差分波形DW’を生成することとなる。
 なお、本実施形態において第1立体物検出部33は、車両V(カメラ10)の移動速度を求め、求めた移動速度から静止物についてのオフセット量を求める。静止物のオフセット量を求めた後、第1立体物検出部33は、ヒストグラムの極大値のうち静止物に該当するオフセット量を無視したうえで、立体物の移動距離を算出する。
 図10は、第1立体物検出部33により得られるヒストグラムの他例を示す図である。カメラ10の画角内に他車両Vの他に静止物が存在する場合に、得られるヒストグラムには2つの極大値τ1,τ2が現れる。この場合、2つの極大値τ1,τ2のうち、いずれか一方は静止物のオフセット量である。このため、第1立体物検出部33は、移動速度から静止物についてのオフセット量を求め、そのオフセット量に該当する極大値について無視し、残り一方の極大値を採用して立体物の移動距離を算出する。
 なお、静止物に該当するオフセット量を無視したとしても、極大値が複数存在する場合、カメラ10の画角内に他車両Vが複数台存在すると想定される。しかし、検出領域A1,A2内に複数の他車両Vが存在することは極めて稀である。このため、第1立体物検出部33は、移動距離の算出を中止する。
 次に差分波形情報による立体物検出手順を説明する。図11及び図12は、本実施形態の立体物検出手順を示すフローチャートである。図11に示すように、まず、計算機30はカメラ10による撮像画像Pのデータを入力し、スミア検出部34によりスミア画像SPを生成する(S1)。次いで、視点変換部31は、カメラ10からの撮像画像Pのデータから鳥瞰画像PBのデータを生成すると共に、スミア画像SPのデータからスミア鳥瞰画像SBのデータを生成する(S2)。
 そして、位置合わせ部32は、鳥瞰画像PBのデータと、一時刻前の鳥瞰画像PBt-1のデータとを位置合わせすると共に、スミア鳥瞰画像SBのデータと、一時刻前のスミア鳥瞰画像SBt-1のデータとを位置合わせする(S3)。この位置合わせ後、位置合わせ部32は、差分画像PDのデータを生成すると共に、マスク画像MPのデータを生成する(S4)。その後、第1立体物検出部33は、差分画像PDのデータと、一時刻前の差分画像PDt-1のデータとから、差分波形DWを生成する(S5)。差分波形DWを生成後、第1立体物検出部33は、差分波形DWのうち、スミアSの発生領域に該当するカウント数をゼロとし、スミアSによる影響を抑制する(S6)。
 その後、第1立体物検出部33は、差分波形DWのピークが第1閾値α以上であるか否かを判断する(S7)。この第1閾値αは、図3に示す立体物判断部38により設定されるが、その詳細については後述する。ここで、差分波形DWのピークが第1閾値α以上でない場合、すなわち差分が殆どない場合には、撮像画像P内には立体物が存在しないと考えられる。このため、差分波形DWのピークが第1閾値α以上でないと判断した場合には(S7:NO)、第1立体物検出部33は、立体物が存在せず他車両が存在しないと判断する(図12:S16)。そして、図11及び図12に示す処理を終了する。
 一方、差分波形DWのピークが第1閾値α以上であると判断した場合には(S7:YES)、第1立体物検出部33は、立体物が存在すると判断し、差分波形DWを複数の小領域DWt1~DWtnに分割する(S8)。次いで、第1立体物検出部33は、小領域DWt1~DWtn毎に重み付けを行う(S9)。その後、第1立体物検出部33は、小領域DWt1~DWtn毎のオフセット量を算出し(S10)、重みを加味してヒストグラムを生成する(S11)。
 そして、第1立体物検出部33は、ヒストグラムに基づいて自車両Vに対する立体物の移動距離である相対移動距離を算出する(S12)。次に、第1立体物検出部33は、相対移動距離から立体物の絶対移動速度を算出する(S13)。このとき、第1立体物検出部33は、相対移動距離を時間微分して相対移動速度を算出すると共に、車速センサ20で検出された自車速を加算して、絶対移動速度を算出する。
 その後、第1立体物検出部33は、立体物の絶対移動速度が10km/h以上、且つ、立体物の自車両Vに対する相対移動速度が+60km/h以下であるか否かを判断する(S14)。双方を満たす場合には(S14:YES)、第1立体物検出部33は、立体物が他車両Vであると判断する(S15)。そして、図11及び図12に示す処理を終了する。一方、いずれか一方でも満たさない場合には(S14:NO)、第1立体物検出部33は、他車両が存在しないと判断する(S16)。そして、図11及び図12に示す処理を終了する。
 なお、本実施形態では自車両Vの後側方を検出領域A1,A2とし、自車両Vが車線変更した場合に接触する可能性がある否かに重点を置いている。このため、ステップS14の処理が実行されている。すなわち、本実施形態にけるシステムを高速道路で作動させることを前提とすると、立体物の速度が10km/h未満である場合、たとえ他車両Vが存在したとしても、車線変更する際には自車両Vの遠く後方に位置するため問題となることが少ない。同様に、立体物の自車両Vに対する相対移動速度が+60km/hを超える場合(すなわち、立体物が自車両Vの速度よりも60km/hより大きな速度で移動している場合)、車線変更する際には自車両Vの前方に移動しているため問題となることが少ない。このため、ステップS14では車線変更の際に問題となる他車両Vを判断しているともいえる。
 また、ステップS14において立体物の絶対移動速度が10km/h以上、且つ、立体物の自車両Vに対する相対移動速度が+60km/h以下であるかを判断することにより、以下の効果がある。例えば、カメラ10の取り付け誤差によっては、静止物の絶対移動速度を数km/hであると検出してしまう場合があり得る。よって、10km/h以上であるかを判断することにより、静止物を他車両Vであると判断してしまう可能性を低減することができる。また、ノイズによっては立体物の自車両Vに対する相対速度を+60km/hを超える速度に検出してしまうことがあり得る。よって、相対速度が+60km/h以下であるかを判断することにより、ノイズによる誤検出の可能性を低減できる。
 さらに、ステップS14の処理に代えて、絶対移動速度がマイナスでないことや、0km/hでないことを判断してもよい。また、本実施形態では自車両Vが車線変更した場合に接触する可能性がある否かに重点を置いているため、ステップS15において他車両Vが検出された場合に、自車両の運転者に警告音を発したり、所定の表示装置により警告相当の表示を行ったりしてもよい。
 このように、本例の差分波形情報による立体物の検出手順によれば、視点変換により立体物が倒れ込む方向に沿って、差分画像PDのデータ上において所定の差分を示す画素数をカウントして度数分布化することで差分波形DWを生成する。ここで、差分画像PDのデータ上において所定の差分を示す画素とは、異なる時刻の画像において変化があった画素であり、言い換えれば立体物が存在した箇所であるといえる。このため、立体物が存在した箇所において、立体物が倒れ込む方向に沿って画素数をカウントして度数分布化することで差分波形DWを生成することとなる。特に、立体物が倒れ込む方向に沿って画素数をカウントすることから、立体物に対して高さ方向の情報から差分波形DWを生成することとなる。そして、高さ方向の情報を含む差分波形DWの時間変化から立体物の移動距離を算出する。このため、単に1点の移動のみに着目するような場合と比較して、時間変化前の検出箇所と時間変化後の検出箇所とは高さ方向の情報を含んで特定されるため立体物において同じ箇所となり易く、同じ箇所の時間変化から移動距離を算出することとなり、移動距離の算出精度を向上させることができる。
 また、差分波形DWのうちスミアSの発生領域に該当する箇所について、度数分布のカウント数をゼロとする。これにより、差分波形DWのうちスミアSによって生じる波形部位を除去することとなり、スミアSを立体物と誤認してしまう事態を防止することができる。
 また、異なる時刻に生成された差分波形DWの誤差が最小となるときの差分波形DWのオフセット量から立体物の移動距離を算出する。このため、波形という1次元の情報のオフセット量から移動距離を算出することとなり、移動距離の算出にあたり計算コストを抑制することができる。
 また、異なる時刻に生成された差分波形DWを複数の小領域DWt1~DWtnに分割する。このように複数の小領域DWt1~DWtnに分割することによって、立体物のそれぞれの箇所を表わした波形を複数得ることとなる。また、小領域DWt1~DWtn毎にそれぞれの波形の誤差が最小となるときのオフセット量を求め、小領域DWt1~DWtn毎に求めたオフセット量をカウントしてヒストグラム化することにより、立体物の移動距離を算出する。このため、立体物のそれぞれの箇所毎にオフセット量を求めることとなり、複数のオフセット量から移動距離を求めることとなり、移動距離の算出精度を向上させることができる。
 また、複数の小領域DWt1~DWtn毎に重み付けをし、小領域DWt1~DWtn毎に求めたオフセット量を重みに応じてカウントしてヒストグラム化する。このため、特徴的な領域については重みを大きくし、特徴的でない領域については重みを小さくすることにより、一層適切に移動距離を算出することができる。従って、移動距離の算出精度を一層向上させることができる。
 また、差分波形DWの各小領域DWt1~DWtnについて、所定の差分を示す画素数のカウントの最大値と最小値との差が大きいほど、重みを大きくする。このため、最大値と最小値との差が大きい特徴的な起伏の領域ほど重みが大きくなり、起伏が小さい平坦な領域については重みが小さくなる。ここで、平坦な領域よりも起伏の大きい領域の方が形状的にオフセット量を正確に求めやすいため、最大値と最小値との差が大きい領域ほど重みを大きくすることにより、移動距離の算出精度を一層向上させることができる。
 また、小領域DWt1~DWtn毎に求めたオフセット量をカウントして得られたヒストグラムの極大値から、立体物の移動距離を算出する。このため、オフセット量にバラつきがあったとしても、その極大値から、より正確性の高い移動距離を算出することができる。
 また、静止物についてのオフセット量を求め、このオフセット量を無視するため、静止物により立体物の移動距離の算出精度が低下してしまう事態を防止することができる。また、静止物に該当するオフセット量を無視したうえで、極大値が複数ある場合、立体物の移動距離の算出を中止する。このため、極大値が複数あるような誤った移動距離を算出してしまう事態を防止することができる。
 なお上記実施形態において、自車両Vの車速を速度センサ20からの信号に基づいて判断しているが、これに限らず、異なる時刻の複数の画像から速度を推定するようにしてもよい。この場合、車速センサが不要となり、構成の簡素化を図ることができる。
 また、上記実施形態においては撮像した現時刻の画像と一時刻前の画像とを鳥瞰図に変換し、変換した鳥瞰図の位置合わせを行ったうえで差分画像PDを生成し、生成した差分画像PDを倒れ込み方向(撮像した画像を鳥瞰図に変換した際の立体物の倒れ込み方向)に沿って評価して差分波形DWを生成しているが、これに限定されない。例えば、一時刻前の画像のみを鳥瞰図に変換し、変換した鳥瞰図を位置合わせした後に再び撮像した画像相当に変換し、この画像と現時刻の画像とで差分画像を生成し、生成した差分画像を倒れ込み方向に相当する方向(すなわち、倒れ込み方向を撮像画像上の方向に変換した方向)に沿って評価することによって差分波形DWを生成してもよい。すなわち、現時刻の画像と一時刻前の画像との位置合わせを行い、位置合わせを行った両画像の差分から差分画像PDを生成し、差分画像PDを鳥瞰図に変換した際の立体物の倒れ込み方向に沿って評価できれば、必ずしも明確に鳥瞰図を生成しなくともよい。
 また、上記実施形態においては、図4(b)に示すように現時刻の鳥瞰画像データPBと一時刻前(過去)の鳥瞰画像データPBt-1とを位置合わせしたのちこれらの差分画像PDを生成し、図5に示すように差分画像PDを倒れ込み方向に相当する方向に沿って評価することによって差分波形DWを生成したが、現時刻と一時刻前の鳥瞰画像データPB,PBt-1を、図5に示すように倒れ込み方向に相当する方向に沿ってそれぞれ評価することによって、現時刻と一時刻前の差分波形DWをそれぞれ生成したのち、これら2つの差分波形を図4(b)に示すように位置合わせし、これら2つの差分波形の差分から最終的な差分波形情報を生成してもよい。
《エッジ情報による立体物の検出》
 次に、図3に示す視点変換部31、輝度差算出部35、エッジ線検出部36及び第2立体物検出部37で構成されるエッジ情報を利用した立体物の検出ブロックについて説明する。図13は、図3のカメラ10の撮像範囲等を示す図であり、図13(a)は平面図、図13(b)は、自車両V1から後側方における実空間上の斜視図を示す。図13(a)に示すように、カメラ10は所定の画角aとされ、この所定の画角aに含まれる自車両V1から後側方を撮像する。カメラ10の画角aは、図2に示す場合と同様に、カメラ10の撮像範囲に自車両V1が走行する車線に加えて、隣接する車線も含まれるように設定されている。
 本例の検出領域A1,A2は、平面視(鳥瞰視された状態)において台形状とされ、これら検出領域A1,A2の位置、大きさ及び形状は、距離d~dに基づいて決定される。なお、同図に示す例の検出領域A1,A2は台形状に限らず、図2に示すように鳥瞰視された状態で矩形など他の形状であってもよい。
 ここで、距離d1は、自車両V1から接地線L1,L2までの距離である。接地線L1,L2は、自車両V1が走行する車線に隣接する車線に存在する立体物が地面に接触する線を意味する。本実施形態においては、自車両V1の後側方において自車両V1の車線に隣接する左右の車線を走行する他車両V2等(2輪車等を含む)を検出することが目的である。このため、自車両V1から白線Wまでの距離d11及び白線Wから他車両V2が走行すると予測される位置までの距離d12から、他車両V2の接地線L1,L2となる位置である距離d1を略固定的に決定しておくことができる。
 また、距離d1については、固定的に決定されている場合に限らず、可変としてもよい。この場合に、計算機30は、白線認識等の技術により自車両V1に対する白線Wの位置を認識し、認識した白線Wの位置に基づいて距離d11を決定する。これにより、距離d1は、決定された距離d11を用いて可変的に設定される。以下の本実施形態においては、他車両V2が走行する位置(白線Wからの距離d12)及び自車両V1が走行する位置(白線Wからの距離d11)は大凡決まっていることから、距離d1は固定的に決定されているものとする。
 距離d2は、自車両V1の後端部から車両進行方向に伸びる距離である。この距離d2は、検出領域A1,A2が少なくともカメラ10の画角a内に収まるように決定されている。特に本実施形態において、距離d2は、画角aに区分される範囲に接するよう設定されている。距離d3は、検出領域A1,A2の車両進行方向における長さを示す距離である。この距離d3は、検出対象となる立体物の大きさに基づいて決定される。本実施形態においては、検出対象が他車両V2等であるため、距離d3は、他車両V2を含む長さに設定される。
 距離d4は、図13(b)に示すように、実空間において他車両V2等のタイヤを含むように設定された高さを示す距離である。距離d4は、鳥瞰視画像においては図13(a)に示す長さとされる。なお、距離d4は、鳥瞰視画像において左右の隣接車線よりも更に隣接する車線(すなわち2車線隣りの車線)を含まない長さとすることもできる。自車両V1の車線から2車線隣の車線を含んでしまうと、自車両V1が走行している車線である自車線の左右の隣接車線に他車両V2が存在するのか、2車線隣りの車線に他車両V2が存在するのかについて、区別が付かなくなってしまうためである。
 以上のように、距離d1~距離d4が決定され、これにより検出領域A1,A2の位置、大きさ及び形状が決定される。具体的に説明すると、距離d1により、台形をなす検出領域A1,A2の上辺b1の位置が決定される。距離d2により、上辺b1の始点位置C1が決定される。距離d3により、上辺b1の終点位置C2が決定される。カメラ10から始点位置C1に向かって伸びる直線L3により、台形をなす検出領域A1,A2の側辺b2が決定される。同様に、カメラ10から終点位置C2に向かって伸びる直線L4により、台形をなす検出領域A1,A2の側辺b3が決定される。距離d4により、台形をなす検出領域A1,A2の下辺b4の位置が決定される。このように、各辺b1~b4により囲まれる領域が検出領域A1,A2とされる。この検出領域A1,A2は、図13(b)に示すように、自車両V1から後側方における実空間上では真四角(長方形)となる。
 図3に戻り、視点変換部31は、カメラ10による撮像にて得られた所定領域の撮像画像データを入力する。視点変換部31は、入力した撮像画像データに対して、鳥瞰視される状態の鳥瞰画像データに視点変換処理を行う。鳥瞰視される状態とは、上空から例えば鉛直下向き(又は、やや斜め下向き)に見下ろす仮想カメラの視点から見た状態である。この視点変換処理は、例えば特開2008-219063号公報に記載された技術によって実現することができる。
 輝度差算出部35は、鳥瞰視画像に含まれる立体物のエッジを検出するために、視点変換部31により視点変換された鳥瞰視画像データに対して、輝度差の算出を行う。輝度差算出部35は、実空間における鉛直方向に伸びる鉛直仮想線に沿った複数の位置ごとに、当該各位置の近傍の2つの画素間の輝度差を算出する。輝度差算出部35は、実空間における鉛直方向に伸びる鉛直仮想線を1本だけ設定する手法と、鉛直仮想線を2本設定する手法との何れかによって輝度差を算出することができる。
 鉛直仮想線を2本設定する具体的な手法について説明する。輝度差算出部35は、視点変換された鳥瞰視画像に対して、実空間で鉛直方向に伸びる線分に該当する第1鉛直仮想線と、第1鉛直仮想線と異なり実空間で鉛直方向に伸びる線分に該当する第2鉛直仮想線とを設定する。輝度差算出部35は、第1鉛直仮想線上の点と第2鉛直仮想線上の点との輝度差を、第1鉛直仮想線及び第2鉛直仮想線に沿って連続的に求める。以下、この輝度差算出部35の動作について詳細に説明する。
 輝度差算出部35は、図14(a)に示すように、実空間で鉛直方向に伸びる線分に該当し、且つ、検出領域A1を通過する第1鉛直仮想線La(以下、注目線Laという)を設定する。また輝度差算出部35は、注目線Laと異なり、実空間で鉛直方向に伸びる線分に該当し、且つ、検出領域A1を通過する第2鉛直仮想線Lr(以下、参照線Lrという)を設定する。ここで参照線Lrは、実空間における所定距離だけ注目線Laから離間する位置に設定される。なお、実空間で鉛直方向に伸びる線分に該当する線とは、鳥瞰視画像においてはカメラ10の位置Psから放射状に広がる線となる。この放射状に広がる線は、鳥瞰視に変換した際に立体物が倒れ込む方向に沿う線である。
 輝度差算出部35は、注目線La上に注目点Pa(第1鉛直仮想線上の点)を設定する。また輝度差算出部35は、参照線Lr上に参照点Pr(第2鉛直板想線上の点)を設定する。これら注目線La、注目点Pa、参照線Lr、参照点Prは、実空間上において図14(b)に示す関係となる。図14(b)から明らかなように、注目線La及び参照線Lrは、実空間上において鉛直方向に伸びた線であり、注目点Paと参照点Prとは、実空間上において略同じ高さに設定される点である。なお、注目点Paと参照点Prとは必ずしも厳密に同じ高さである必要はなく、注目点Paと参照点Prとが同じ高さとみなせる程度の誤差は許容される。
 輝度差算出部35は、注目点Paと参照点Prとの輝度差を求める。仮に、注目点Paと参照点Prとの輝度差が大きいと、注目点Paと参照点Prとの間にエッジが存在すると考えられる。このため、図3に示したエッジ線検出部36は、注目点Paと参照点Prとの輝度差に基づいてエッジ線を検出する。
 この点をより詳細に説明する。図15は、輝度差算出部35の詳細動作を示す図であり、図15(a)は鳥瞰視された状態の鳥瞰視画像を示し、図15(b)は、図15(a)に示した鳥瞰視画像の一部B1を拡大した図である。なお図15についても検出領域A1のみを図示して説明するが、検出領域A2についても同様の手順で輝度差を算出する。
 カメラ10が撮像した撮像画像内に他車両V2が映っていた場合に、図15(a)に示すように、鳥瞰視画像内の検出領域A1に他車両V2が現れる。図15(b)に図15(a)中の領域B1の拡大図を示すように、鳥瞰視画像上において、他車両V2のタイヤのゴム部分上に注目線Laが設定されていたとする。この状態において、輝度差算出部35は、先ず参照線Lrを設定する。参照線Lrは、注目線Laから実空間上において所定の距離だけ離れた位置に、鉛直方向に沿って設定される。具体的には、本実施形態に係る立体物検出装置1において、参照線Lrは、注目線Laから実空間上において10cmだけ離れた位置に設定される。これにより、参照線Lrは、鳥瞰視画像上において、例えば他車両V2のタイヤのゴムから10cm相当だけ離れた他車両V2のタイヤのホイール上に設定される。
 次に、輝度差算出部35は、注目線La上に複数の注目点Pa1~PaNを設定する。図15(b)においては、説明の便宜上、6つの注目点Pa1~Pa6(以下、任意の点を示す場合には単に注目点Paiという)を設定している。なお、注目線La上に設定する注目点Paの数は任意でよい。以下の説明では、N個の注目点Paが注目線La上に設定されたものとして説明する。
 次に、輝度差算出部35は、実空間上において各注目点Pa1~PaNと同じ高さとなるように各参照点Pr1~PrNを設定する。そして、輝度差算出部35は、同じ高さ同士の注目点Paと参照点Prとの輝度差を算出する。これにより、輝度差算出部35は、実空間における鉛直方向に伸びる鉛直仮想線に沿った複数の位置(1~N)ごとに、2つの画素の輝度差を算出する。輝度差算出部35は、例えば第1注目点Pa1とは、第1参照点Pr1との間で輝度差を算出し、第2注目点Pa2とは、第2参照点Pr2との間で輝度差を算出することとなる。これにより、輝度差算出部35は、注目線La及び参照線Lrに沿って、連続的に輝度差を求める。すなわち、輝度差算出部35は、第3~第N注目点Pa3~PaNと第3~第N参照点Pr3~PrNとの輝度差を順次求めていくこととなる。
 輝度差算出部35は、検出領域A1内において注目線Laをずらしながら、上記の参照線Lrの設定、注目点Pa及び参照点Prの設定、輝度差の算出といった処理を繰り返し実行する。すなわち、輝度差算出部35は、注目線La及び参照線Lrのそれぞれを、実空間上において接地線L1の延在方向に同一距離だけ位置を変えながら上記の処理を繰り返し実行する。輝度差算出部35は、例えば、前回処理において参照線Lrとなっていた線を注目線Laに設定し、この注目線Laに対して参照線Lrを設定して、順次輝度差を求めていくことになる。
 図3に戻り、エッジ線検出部36は、輝度差算出部35により算出された連続的な輝度差から、エッジ線を検出する。例えば、図15(b)に示す場合、第1注目点Pa1と第1参照点Pr1とは、同じタイヤ部分に位置するために、輝度差は、小さい。一方、第2~第6注目点Pa2~Pa6はタイヤのゴム部分に位置し、第2~第6参照点Pr2~Pr6はタイヤのホイール部分に位置する。したがって、第2~第6注目点Pa2~Pa6と第2~第6参照点Pr2~Pr6との輝度差は大きくなる。このため、エッジ線検出部36は、輝度差が大きい第2~第6注目点Pa2~Pa6と第2~第6参照点Pr2~Pr6との間にエッジ線が存在することを検出することができる。
 具体的には、エッジ線検出部36は、エッジ線を検出するにあたり、先ず下記の数式1に従って、i番目の注目点Pai(座標(xi,yi))とi番目の参照点Pri(座標(xi’,yi’))との輝度差から、i番目の注目点Paiに属性付けを行う。
《数1》
I(xi,yi)>I(xi’,yi’)+tのとき
 s(xi,yi)=1
I(xi,yi)<I(xi’,yi’)-tのとき
 s(xi,yi)=-1
上記以外のとき
 s(xi,yi)=0
 上記数式1において、tは閾値を示し、I(xi,yi)はi番目の注目点Paiの輝度値を示し、I(xi’,yi’)はi番目の参照点Priの輝度値を示す。上記数式1によれば、注目点Paiの輝度値が、参照点Priに閾値tを加えた輝度値よりも高い場合には、当該注目点Paiの属性s(xi,yi)は‘1’となる。一方、注目点Paiの輝度値が、参照点Priから閾値tを減じた輝度値よりも低い場合には、当該注目点Paiの属性s(xi,yi)は‘-1’となる。注目点Paiの輝度値と参照点Priの輝度値とがそれ以外の関係である場合には、注目点Paiの属性s(xi,yi)は‘0’となる。
 次にエッジ線検出部36は、下記数式2に基づいて、注目線Laに沿った属性sの連続性c(xi,yi)から、注目線Laがエッジ線であるか否かを判定する。
《数2》
s(xi,yi)=s(xi+1,yi+1)のとき(且つ0=0を除く)、
 c(xi,yi)=1
上記以外のとき、
 c(xi,yi)=0
 注目点Paiの属性s(xi,yi)と隣接する注目点Pai+1の属性s(xi+1,yi+1)とが同じである場合には、連続性c(xi,yi)は‘1’となる。注目点Paiの属性s(xi,yi)と隣接する注目点Pai+1の属性s(xi+1,yi+1)とが同じではない場合には、連続性c(xi,yi)は‘0’となる。
 次にエッジ線検出部36は、注目線La上の全ての注目点Paの連続性cについて総和を求める。エッジ線検出部36は、求めた連続性cの総和を注目点Paの数Nで割ることにより、連続性cを正規化する。エッジ線検出部36は、正規化した値が閾値θを超えた場合に、注目線Laをエッジ線と判断する。なお、閾値θは、予め実験等によって設定された値である。
 すなわち、エッジ線検出部36は、下記数式3に基づいて注目線Laがエッジ線であるか否かを判断する。そして、エッジ線検出部36は、検出領域A1上に描かれた注目線Laの全てについてエッジ線であるか否かを判断する。
《数3》
Σc(xi,yi)/N>θ
 図3に戻り、第2立体物検出部37は、エッジ線検出部36により検出されたエッジ線の量に基づいて立体物を検出する。上述したように、本実施形態に係る立体物検出装置1は、実空間上において鉛直方向に伸びるエッジ線を検出する。鉛直方向に伸びるエッジ線が多く検出されるということは、検出領域A1,A2に立体物が存在する可能性が高いということである。このため、第2立体物検出部37は、エッジ線検出部36により検出されたエッジ線の量に基づいて立体物を検出する。さらに、第2立体物検出部37は、立体物を検出するに先立って、エッジ線検出部36により検出されたエッジ線が正しいものであるか否かを判定する。第2立体物検出部37は、エッジ線上の鳥瞰視画像のエッジ線に沿った輝度変化が所定の閾値よりも大きいか否かを判定する。エッジ線上の鳥瞰視画像の輝度変化が閾値よりも大きい場合には、当該エッジ線が誤判定により検出されたものと判断する。一方、エッジ線上の鳥瞰視画像の輝度変化が閾値よりも大きくない場合には、当該エッジ線が正しいものと判定する。なお、この閾値は、実験等により予め設定された値である。
 図16は、エッジ線の輝度分布を示す図であり、図16(a)は検出領域A1に立体物としての他車両V2が存在した場合のエッジ線及び輝度分布を示し、図16(b)は検出領域A1に立体物が存在しない場合のエッジ線及び輝度分布を示す。
 図16(a)に示すように、鳥瞰視画像において他車両V2のタイヤゴム部分に設定された注目線Laがエッジ線であると判断されていたとする。この場合、注目線La上の鳥瞰視画像の輝度変化はなだらかなものとなる。これは、カメラ10により撮像された画像が鳥瞰視画像に視点変換されたことにより、他車両V2のタイヤが鳥瞰視画像内で引き延ばされたことによる。一方、図16(b)に示すように、鳥瞰視画像において路面に描かれた「50」という白色文字部分に設定された注目線Laがエッジ線であると誤判定されていたとする。この場合、注目線La上の鳥瞰視画像の輝度変化は起伏の大きいものとなる。これは、エッジ線上に、白色文字における輝度が高い部分と、路面等の輝度が低い部分とが混在しているからである。
 以上のような注目線La上の輝度分布の相違に基づいて、第2立体物検出部37は、エッジ線が誤判定により検出されたものか否かを判定する。第2立体物検出部37は、エッジ線に沿った輝度変化が所定の閾値よりも大きい場合には、当該エッジ線が誤判定により検出されたものであると判定する。そして、当該エッジ線は、立体物の検出には使用しない。これにより、路面上の「50」といった白色文字や路肩の雑草等がエッジ線として判定されてしまい、立体物の検出精度が低下することを抑制する。
 具体的には、第2立体物検出部37は、下記数式4,5の何れかにより、エッジ線の輝度変化を算出する。このエッジ線の輝度変化は、実空間上における鉛直方向の評価値に相当する。下記数式4は、注目線La上のi番目の輝度値I(xi,yi)と、隣接するi+1番目の輝度値I(xi+1,yi+1)との差分の二乗の合計値によって輝度分布を評価する。下記数式5は、注目線La上のi番目の輝度値I(xi,yi)と、隣接するi+1番目の輝度値I(xi+1,yi+1)との差分の絶対値の合計値よって輝度分布を評価する。
《数4》
鉛直相当方向の評価値=Σ[{I(xi,yi)-I(xi+1,yi+1)}
《数5》
鉛直相当方向の評価値=Σ|I(xi,yi)-I(xi+1,yi+1)|
 なお、数式5に限らず、下記数式6のように、閾値t2を用いて隣接する輝度値の属性bを二値化して、当該二値化した属性bを全ての注目点Paについて総和してもよい。
《数6》
鉛直相当方向の評価値=Σb(xi,yi)
但し、|I(xi,yi)-I(xi+1,yi+1)|>t2のとき、
 b(xi,yi)=1
上記以外のとき、
 b(xi,yi)=0
 注目点Paiの輝度値と参照点Priの輝度値との輝度差の絶対値が閾値t2よりも大きい場合、当該注目点Pa(xi,yi)の属性b(xi,yi)は‘1’となる。それ以外の関係である場合には、注目点Paiの属性b(xi,yi)は‘0’となる。この閾値t2は、注目線Laが同じ立体物上にないことを判定するために実験等によって予め設定されている。そして、第2立体物検出部37は、注目線La上の全注目点Paについての属性bを総和して、鉛直相当方向の評価値を求めて、エッジ線が正しいものかを判定する。
 次に、本実施形態に係るエッジ情報を利用した立体物検出方法について説明する。図17及び図18は、本実施形態に係る立体物検出方法の詳細を示すフローチャートである。なお、図17及び図18においては、便宜上、検出領域A1を対象とする処理について説明するが、検出領域A2についても同様の処理が実行される。
 図17に示すように、先ずステップS21において、カメラ10は、画角a及び取付位置によって特定された所定領域を撮像する。次に視点変換部31は、ステップS22において、ステップS21にてカメラ10により撮像された撮像画像データを入力し、視点変換を行って鳥瞰視画像データを生成する。
 次に輝度差算出部35は、ステップS23において、検出領域A1上に注目線Laを設定する。このとき、輝度差算出部35は、実空間上において鉛直方向に伸びる線に相当する線を注目線Laとして設定する。次に輝度差算出部35は、ステップS24において、検出領域A1上に参照線Lrを設定する。このとき、輝度差算出部35は、実空間上において鉛直方向に伸びる線分に該当し、且つ、注目線Laと実空間上において所定距離離れた線を参照線Lrとして設定する。
 次に輝度差算出部35は、ステップS25において、注目線La上に複数の注目点Paを設定する。この際に、輝度差算出部35は、エッジ線検出部36によるエッジ検出時に問題とならない程度の数の注目点Paを設定する。また、輝度差算出部35は、ステップS26において、実空間上において注目点Paと参照点Prとが略同じ高さとなるように、参照点Prを設定する。これにより、注目点Paと参照点Prとが略水平方向に並ぶこととなり、実空間上において鉛直方向に伸びるエッジ線を検出しやすくなる。
 次に輝度差算出部35は、ステップS27において、実空間上において同じ高さとなる注目点Paと参照点Prとの輝度差を算出する。次にエッジ線検出部36は、上記の数式1に従って、各注目点Paの属性sを算出する。次にエッジ線検出部36は、ステップS28において、上記の数式2に従って、各注目点Paの属性sの連続性cを算出する。次にエッジ線検出部36は、ステップS29において、上記数式3に従って、連続性cの総和を正規化した値が閾値θより大きいか否かを判定する。正規化した値が閾値θよりも大きいと判断した場合(S29:YES)、エッジ線検出部36は、ステップS30において、当該注目線Laをエッジ線として検出する。そして、処理はステップS31に移行する。正規化した値が閾値θより大きくないと判断した場合(S29:NO)、エッジ線検出部36は、当該注目線Laをエッジ線として検出せず、処理はステップS31に移行する。
 ステップS31において、計算機30は、検出領域A1上に設定可能な注目線Laの全てについて上記のステップS23~ステップS30の処理を実行したか否かを判断する。全ての注目線Laについて上記処理をしていないと判断した場合(S31:NO)、ステップS23に処理を戻して、新たに注目線Laを設定して、ステップS31までの処理を繰り返す。一方、全ての注目線Laについて上記処理をしたと判断した場合(S31:YES)、処理は図18のステップS32に移行する。
 図18のステップS32において、第2立体物検出部37は、図17のステップS30において検出された各エッジ線について、当該エッジ線に沿った輝度変化を算出する。第2立体物検出部37は、上記数式4,5,6の何れかの式に従って、エッジ線の輝度変化を算出する。次に第2立体物検出部37は、ステップS33において、エッジ線のうち、輝度変化が所定の閾値よりも大きいエッジ線を除外する。すなわち、輝度変化の大きいエッジ線は正しいエッジ線ではないと判定し、エッジ線を立体物の検出には使用しない。これは、上述したように、検出領域A1に含まれる路面上の文字や路肩の雑草等がエッジ線として検出されてしまうことを抑制するためである。したがって、所定の閾値とは、予め実験等によって求められた、路面上の文字や路肩の雑草等によって発生する輝度変化に基づいて設定された値となる。
 次に第2立体物検出部37は、ステップS34において、エッジ線の量が第2閾値β以上であるか否かを判断する。なお、この第2閾値βは、予め実験等によって求めておいて設定された値であり、後述する立体物判断部38によって設定される。例えば、検出対象の立体物として四輪車を設定した場合、当該第2閾値βは、予め実験等によって検出領域A1内において出現した四輪車のエッジ線の数に基づいて設定される。エッジ線の量が第2閾値β以上であると判定した場合(S34:YES)、第2立体物検出部37は、ステップS35において、検出領域A1内に立体物が存在すると検出する。一方、エッジ線の量が第2閾値β以上ではないと判定した場合(S34:NO)、第2立体物検出部37は、検出領域A1内に立体物が存在しないと判断する。その後、図17及び図18に示す処理は終了する。
 以上のように、本実施形態のエッジ情報を利用した立体物の検出方法によれば、検出領域A1,A2に存在する立体物を検出するために、鳥瞰視画像に対して実空間において鉛直方向に伸びる線分としての鉛直仮想線を設定する。そして、鉛直仮想線に沿った複数の位置ごとに、当該各位置の近傍の2つの画素の輝度差を算出し、当該輝度差の連続性に基づいて立体物の有無を判定することができる。
 具体的には、鳥瞰視画像における検出領域A1,A2に対して、実空間において鉛直方向に伸びる線分に該当する注目線Laと、注目線Laとは異なる参照線Lrとを設定する。そして、注目線La上の注目点Paと参照線Lr上の参照点Prとの輝度差を注目線La及び参照線Laに沿って連続的に求める。このように、点同士の輝度差を連続的に求めることにより、注目線Laと参照線Lrとの輝度差を求める。注目線Laと参照線Lrとの輝度差が高い場合には、注目線Laの設定箇所に立体物のエッジがある可能性が高い。これによって、連続的な輝度差に基づいて立体物を検出することができる。特に、実空間において鉛直方向に伸びる鉛直仮想線同士との輝度比較を行うために、鳥瞰視画像に変換することによって立体物が路面からの高さに応じて引き伸ばされてしまっても、立体物の検出処理が影響されることはない。したがって、本例の方法によれば、立体物の検出精度を向上させることができる。
 また、本例では、鉛直仮想線付近の略同じ高さの2つの点の輝度差を求める。具体的には、実空間上で略同じ高さとなる注目線La上の注目点Paと参照線Lr上の参照点Prとから輝度差を求めるので、鉛直方向に伸びるエッジが存在する場合における輝度差を明確に検出することができる。
 更に、本例では、注目線La上の注目点Paと参照線Lr上の参照点Prとの輝度差に基づいて注目点Paに属性付けを行い、注目線Laに沿った属性の連続性cに基づいて当該注目線Laがエッジ線であるかを判断するので、輝度の高い領域と輝度の低い領域との境界をエッジ線として検出し、人間の自然な感覚に沿ったエッジ検出を行うことができる。この効果について詳細に説明する。図19は、エッジ線検出部36の処理を説明する画像例を示す図である。この画像例は、輝度の高い領域と輝度の低い領域とが繰り返される縞模様を示す第1縞模様101と、輝度の低い領域と輝度の高い領域とが繰り返される縞模様を示す第2縞模様102とが隣接した画像である。また、この画像例は、第1縞模様101の輝度が高い領域と第2縞模様102の輝度の低い領域とが隣接すると共に、第1縞模様101の輝度が低い領域と第2縞模様102の輝度が高い領域とが隣接している。この第1縞模様101と第2縞模様102との境界に位置する部位103は、人間の感覚によってはエッジとは知覚されない傾向にある。
 これに対し、輝度の低い領域と輝度が高い領域とが隣接しているために、輝度差のみでエッジを検出すると、当該部位103はエッジとして認識されてしまう。しかし、エッジ線検出部36は、部位103における輝度差に加えて、当該輝度差の属性に連続性がある場合にのみ部位103をエッジ線として判定するので、エッジ線検出部36は、人間の感覚としてエッジ線として認識しない部位103をエッジ線として認識してしまう誤判定を抑制でき、人間の感覚に沿ったエッジ検出を行うことができる。
 さらに、本例では、エッジ線検出部36により検出されたエッジ線の輝度変化が所定の閾値よりも大きい場合には、当該エッジ線が誤判定により検出されたものと判断する。カメラ10により取得された撮像画像を鳥瞰視画像に変換した場合、当該撮像画像に含まれる立体物は、引き伸ばされた状態で鳥瞰視画像に現れる傾向がある。例えば、上述したように他車両V2のタイヤが引き伸ばされた場合に、タイヤという1つの部位が引き伸ばされるため、引き伸ばされた方向における鳥瞰視画像の輝度変化は小さい傾向となる。これに対し、路面に描かれた文字等をエッジ線として誤判定した場合に、鳥瞰視画像には、文字部分といった輝度が高い領域と路面部分といった輝度が低い領域とが混合されて含まれる。この場合に、鳥瞰視画像において、引き伸ばされた方向の輝度変化は大きくなる傾向がある。したがって、本例のようにエッジ線に沿った鳥瞰視画像の輝度変化を判定することによって、誤判定により検出されたエッジ線を認識することができ、立体物の検出精度を高めることができる。
《立体物の最終判断》
 図3に戻り、上述した2つの立体物検出部33,37による立体物の検出にあたり、本例の立体物検出装置1は、第1立体物検出部33による検出結果と第2立体物検出部37の検出結果から立体物であるか否かを最終的に判断する立体物判断部38と、明るさ検出部40により検出された検出領域A1,A2の明るさに応じて第1立体物検出部33の第1閾値αと第2立体物検出部37の第2閾値βとを設定する閾値設定部39とを備える。
 明るさ検出部40は、カメラ10により検出される検出領域A1,A2の光量、またはカメラ10が検出した光量に基づいてカメラ10自体で制御されるシャッタースピード、絞り開口値、ゲイン値などのカメラ10の制御値をカメラ10から読み込み、閾値設定部39へ出力する。明るさとして検出領域A1,A2の光量を検出することで実際の環境の明るさに応じた閾値設定制御を実行することができる。また、光量に基づくカメラ10の制御値を検出することで、実際の撮像画像に則し、立体物検出の特性に沿った閾値を設定することができる。なお、明るさ検出部40は、検出領域A1,A2の光量や制御値等に代えて、時刻と現在位置の経度から太陽の高度を演算し、これを明るさとすることもできる。太陽高度を明るさの検出値とすることで、路面の検出状況が現実に近くなり、立体物検出の特性に沿った閾値を設定することができる。
 閾値設定部39は、明るさ検出部40により検出された明るさが暗いほど、第2立体物検出部37の検出結果の重みを大きく設定し、明るさが明るいほど第1立体物検出部33の検出結果の重みを小さく設定する。すなわち、検出環境が暗い場合はエッジ情報による検出結果の重みを上げ、検出環境が明るい場合は差分波形情報による検出結果の重みを上げる。具体的には、明るさ検出部40により検出された明るさが暗いほど、第1閾値αと第2閾値βとの比α/βを小さく設定し、明るさが明るいほど比α/βを大きく設定する。
 図21~図24は、明るさに対する第1閾値αと第2閾値βとの比α/βの設定例を示す制御マップである。図21は、明るさが明るくなるほど比α/βを階段的に増加させた例であり、図22は同様に明るさが明るくなるほど比α/βを階段的に増加させた例であるが、制御のハンチングを防止するためにヒステリシスを設定した例である。また、図23は、明るさが明るくなるほど比α/βを比例して増加させた例であり、図24は同様に明るさが明るくなるほど比α/βを比例して増加させた例であるが、制御のハンチングを防止するためにヒステリシスを設定した例である。
 なお、図21~図24に示す制御マップでは、第1閾値αと第2閾値βとの比α/βの設定例を示したが、第1閾値αと第2閾値βを互いに独立して設定してもよい。図25は、第1閾値αと第2閾値βを互いに独立して設定する制御マップであり、明るさが明るくなるほど第1閾値αを小さくすることとも第2閾値βを大きくする。この場合に、第1閾値αと第2閾値βのいずれか一方のみを制御してもよい。たとえば、第2閾値βを一定値に設定するとともに明るさが明るくなるほど第1閾値αを小さくする。また、明るさが所定値以上に明るくなると、第2閾値βの設定値を検出上限値より大きく設定し、第1立体物検出部33のみによって立体物の検出を実行してもよい。
 図26は、第1立体物検出部33による検出結果の重みXと、第2立体物検出部37による検出結果の重みYとの設定例を示す制御マップであり、明るさが暗いほど第1立体物検出部33による検出結果の重みXを小さくするとともに第2立体物検出部37による検出結果の重みYを大きく設定する。また、明るさが明るいほど第1立体物検出部33による検出結果の重みXをおおきく設定するとともに、第2立体物検出部37による検出結果の重みYを小さくし、特に所定値以上の明るさでは重みYをゼロに設定する。すなわち、この範囲では第1立体物検出部33によってのみ立体物を検出する。
 夜間などのように検出環境が暗い場合には、街灯やヘッドライト等の影響によって路面の照明状況が大きく変化するので、差分波形情報を用いた立体物検出方法では誤検出する可能性があるが、こうした照明による路面の明暗変動が生じても路面にエッジが発生する訳ではないので、エッジ情報を用いた立体物検出方法には影響が少ない。したがって、検出環境が暗い場合にはエッジ情報による検出結果の重みを上げることで立体物の検出精度を高めることができる。逆に昼間のように検出環境が明るい場合には、路面の模様や路外の物体のエッジが明確に検出されるので、エッジ情報を用いた立体物の検出方法では誤検出する可能性があるが、こうした路面の模様や路外物のエッジは差分波形情報を用いた立体物検出方法には影響が少ない。したがって、検出環境が明るい場合には差分波形情報による検出結果の重みを上げることで立体物の検出精度を高めることができる。
 図20を参照して、立体物判断部38及び閾値設定部39の動作を説明する。まず、ステップS41にて明るさ検出部40により検出領域A1,A2の明るさを検出し、閾値設定部39へ出力する。ステップS42にて、閾値設定部39は、検出された明るさと予め記憶された図21~図24のいずれかの制御マップを用いて第1閾値αと第2閾値βを演算し、第1立体物検出部33と第2立体物検出部37に出力する。第1閾値αと第2閾値βは、たとえば初期値α,βを、図21~24に示す制御マップから求められる比α/βとなるように適宜案分することで求めることができる。
 ステップS43では、上述した手順で差分波形情報による立体物の検出を実行する。また、ステップS44では、上述した手順でエッジ情報による立体物の検出を実行する。これら差分情報による立体物の検出とエッジ情報による立体物の検出に際しては、明るさに応じた第1閾値α及び第2閾値βがそれぞれ第1立体物検出部33と第2立体物検出部37に設定されている。
 ステップS45では、ステップS43にて立体物であると検出され、且つステップS44にて立体物であると検出されたか否かを判断し、いずれのステップS43,S44でも立体物であると検出された場合にはステップS46へ進み、立体物であると最終的に判断する。いずれかのステップS43,S44で立体物ではないと検出された場合にはステップS47へ進み、立体物ではないと最終的に判断する。
 以上のとおり、本例の立体物検出装置1によれば、夜間などのように検出環境が暗い場合には、街灯やヘッドライト等の影響によって誤検出する可能性がある差分波形情報による検出結果に対して、エッジ情報による検出結果の重みを上げるので、立体物の検出精度を高めることができる。逆に昼間のように検出環境が明るい場合には、路面の模様や路外の物体のエッジによって誤検出する可能性があるエッジ情報による検出結果に対して、差分波形情報による検出結果の重みを上げるので、立体物の検出精度を高めることができる。
 ちなみに、図3の位置合わせ部32及び第1立体物検出部33にて差分波形情報を生成するにあたり、上述した実施形態では図4に示すように自車両の移動速度に基づいて、現在時刻の鳥瞰視画像と一時刻前の鳥瞰視画像とを鳥瞰視画像の実空間における移動距離だけ位置をずらして位置合わせし、この状態での差分画像を求め、これから差分波形情報を生成したが、以下の方法によることもできる。
 すなわち、異なるタイミングにおける撮像画像をオフセットさせた差分画像では、移動物体の特徴点に対応する画素量(差分を示す画素数)が大きく現れ、異なるタイミングにおける撮像画像をオフセットさせない差分画像では静止物体の特徴点に対応する画素量が大きく現れる。そこで、本例では、オフセットしたタイミングの異なる撮像画像の差分画像の画素値(エッジ量)と、オフセットしないタイミングの異なる撮像画像の差分画像の画素値(エッジ量)とを比較することにより、立体物が静止物体であるか移動物体であるかを判断する。
 図27(a)に示すように、過去のタイミングT0において、検出領域A1,A2内に立体物の像Q(T0)が検出され、T0のタイミングの後の現在のタイミングT1において、検出領域A1,A2内に立体物の像Q(T1)が検出された場合には、検出主体である自車両Vは方向Bに沿って移動するので、画像上、過去のタイミングT0において検出された立体物の像Q(T0)は、検出領域A1,A2の図中上側の立体物の像Q(T1)の位置へ移動する。
 そして、図27(b)に示すように、現在のタイミングT1において検出された立体物の像Q(T1)の画素またはエッジ成分の分布と、過去のタイミングT0において検出された立体物の像Q(T0)の像であって、所定量だけオフセットさせた立体物の像Q(T0A)の画素またはエッジ成分の分布と、同じく過去のタイミングT0において検出された立体物の像Q(T0)の像であって、オフセットをさせない立体物の像Q(T0B)の画素またはエッジ成分の分布を得る。
 図27(b)に示すように、画像T1とオフセットされた画像T0Aとを比較すると、画像T1における立体物の像Q(T1)と画像T0Aにおける立体物の像Q(T0A)との位置(自車両Vの移動方向Bに沿う位置)はほぼ共通する。他方、同図に示すように、画像T1とオフセットしない画像T0Bとを比較すると、画像T1における立体物の像Q(T1)と画像T0Bにおける立体物の像Q(T0B)との位置(自車両Vの移動方向Bに沿う位置)は異なる。つまり、T1とT0Aとの差分画像を求めると、共通する部分については差し引かれて残らないので、特徴として抽出される画素の数は少なく、T1とT0Bとの差分画像を求めると、異なる部分が残るので、特徴として抽出される画素の数は相対的に多い。
 次に、立体物が移動物体であるか静止物体であるかを考慮して、図27に示す着目点を説明する。図28に基づいて立体物が移動物体である場合を説明し、図29に基づいて立体物が静止物体である場合を説明する。
 図28(a)に示すように、検出される立体物が移動する他車両VXである場合には、自車両Vと他車両VXの両方が移動するので、自車両Vと他車両VXとは所定の位置関係を保つ傾向がある。つまり、撮像画像をオフセットすると他車両VXの位置は、却ってずれる傾向があり、差分画像PDtには特徴となりうる画素(エッジ)が多く検出される。他方、図28(b)に示すように、撮像画像をオフセットしない場合には、自車両Vと他車両VXの位置は接近する傾向があり、差分画像PDtには特徴となりうる画素(エッジ)が少なく検出される。差分画像PDtにおける画素(エッジ)が多ければ積算値は高くなり、差分画像PDtにおける画素(エッジ)が少なければ差分波形情報における積算値は低くなる傾向がある。
 また、図29(a)に示すように、検出される立体物が静止した静止物体Q1である場合には、自車両Vが移動する一方で静止物体Q1は静止しているので、自車両Vと静止物体Q1とは離隔する傾向がある。つまり、撮像画像をオフセットすると自車両Vと静止物体Q1の位置は接近する傾向があり、差分画像PDtには特徴となりうる画素(エッジ)は少なく検出される。他方、図29(b)に示すように、撮像画像をオフセットしないと、自車両Vの移動に伴い静止物体Q1の位置が前回の撮像画像とは異なる傾向があり、差分画像PDtには特徴となりうる画素(エッジ)が多く検出される。差分画像PDtにおける画素(エッジ)が多ければ輝度分布情報における積算値は高くなり、差分画像PDtにおける画素(エッジ)が少なければ輝度分布情報における積算値は低くなる傾向がある。
 上述した考え方は、エッジ情報を用いる場合も同様に適用することができる。
 つまり、立体物が検出された第1の時刻T0において得られた第1鳥瞰視画像の位置と、第1の時刻の後の第2の時刻T1において得られた第2鳥瞰視画像の位置とを鳥瞰視上で位置合わせし、この位置合わせされた鳥瞰視画像の差分画像上において、互いに隣接する画像領域の輝度差が所定閾値以上である画素数をカウントして度数分布化して生成した第1輝度分布情報の第1積算値を求める。つまり、自車両Vの移動量を考慮して、オフセットした差分画像を生成する。オフセットする量d’は、図4(a)に示した自車両Vの実際の移動距離に対応する鳥瞰視画像データ上の移動量に対応し、車速センサ20からの信号と一時刻前から現時刻までの時間に基づいて決定される。第1積算値は、第1輝度分布情報としてプロットされた値の全部又は所定領域の合計値である。
 続いて、第1の時刻T0において得られた第1鳥瞰視画像と、第1の時刻T0の後の第2の時刻T1において得られた第2鳥瞰視画像との、位置をずらさないで得られた差分画像上において、互いに隣接する画像領域の輝度差が所定閾値以上である画素数をカウントして度数分布化して生成した第2輝度分布情報の第2積算値を求める。つまり、オフセットさせない差分画像を生成し、その積算値(第2積算値)を算出する。第2積算値は、第2輝度分布情報としてプロットされた値の全部又は所定領域の合計値である。
 そして、第2積算値が第1積算値よりも大きいと判断された回数に応じた評価値が所定の評価閾値以上である場合には、第1立体物検出部33により検出された立体物が「移動物体」であると判断する。評価値の算出手法は限定されないが、本実施形態では、所定周期で繰り返し実行される処理において、第2積算値が第1積算値よりも大きいと判断される度に、評価ポイントをカウントアップし、その合計値を「評価値」として求める。
 このように、異なる時刻の撮像画像に基づいて、オフセットさせた過去の撮像画像と現在の撮像画像との差分画像から抽出される画素量(エッジ量)と、オフセットさせない過去の撮像画像と現在の撮像画像との差分画像から抽出される画素量(エッジ量)との大小関係に基づいて、移動物体の画像遷移の特徴と静止物体の画像遷移の特徴とを識別し、立体物が移動物体であるか静止物体であるかを高い精度で判断することができる。
 本例では、オフセットしていない画像との差分画像において所定差分を示す画素(エッジ量)の第2積算値が、オフセットした画像との差分画像において所定差分を示す画素(エッジ量)の第1積算値よりも大きいと判断された場合には、第1カウント値を加算して評価値を算出する。つまり、第2積算値が第1積算値よりも大きいという判断が積み重なるにつれて、評価値を増加させる。そして、評価値が所定の評価閾値以上である場合には、立体物が静止物体であると判断する。
 この処理において、第2積算値が第1積算値よりも大きいという内容の判断が連続する場合には、この判断の連続回数が増えるにつれて、第1カウント値を高く設定する。このように、第2積算値が第1積算値よりも大きい判断が連続する場合には、検出された立体物が静止物体である可能性が高まっていると判断し、評価値がより大きくなるように第1カウント値を大きくするので、継時的な観察結果に基づいて、立体物が移動物体であるか否かを高い精度で判断することができる。
 また、第2積算値が第1積算値よりも大きいと判断された場合には第1カウント値を加算するとともに、第2積算値が第1積算値よりも小さいと判断された場合には、第2カウント値を減算して評価値を算出してもよい。この場合において、静止物検出部38は、第2積算値が第1積算値よりも大きいという内容の判断がされた後に、第2積算値が第1積算値よりも小さいという内容の判断がされ、さらにその後に、第2積算値が第1積算値よりも大きいという内容の判断がされた場合には、第1カウント値を高く設定する。
 このように、第2積算値が第1積算値よりも大きいという判断と、第1積算値が第2積算値よりも大きいという判断とが入れ替わり生じる場合は、検出された立体物は静止物体である可能性が高いと判断し、評価値が大きくなるように第1カウント値を大きくするので、継時的な観察結果に基づいて、静止物体を高い精度で判断することができる。ちなみに、移動物体の特徴の検出状態は安定的に観察できる傾向が高い。検出結果が不安定であり、立体物が静止物体であるという判断結果が離散的に検出された場合には、検出された立体物は静止物体である可能性が高いと判断することができるからである。
 また、第2積算値が第1積算値よりも小さいと判断された場合には、第2カウント値を減算して評価値を算出する。この場合において、第2積算値が第1積算値よりも小さいという内容の判断が所定回数以上連続した場合には、第2カウント値を高く設定する。
 このように、第2積算値が第1積算値よりも小さいと判断した場合には、検出された立体物が移動物体(他車両VX)である可能性が高いと判断し、静止物体を判断するための評価値が小さくなるように、減算に係る第2カウント値を大きくするので、継時的な観察結果に基づいて、静止物体を高い精度で判断することができる。
 上記カメラ10は本発明に係る撮像手段に相当し、上記視点変換部31は本発明に係る画像変換手段に相当し、上記位置合わせ部32及び第1立体物検出部33は本発明に係る第1立体物検出手段に相当し、上記輝度差算出部35,エッジ線検出部36及び第2立体物検出部37は本発明に係る第2立体物検出手段に相当し、上記立体物判断部38は本発明に係る立体物判断手段に相当し、上記明るさ検出部40は本発明に係る明るさ検出手段に相当し、上記閾値設定部39は本発明に係る閾値設定手段に相当する。
1…移動距離検出装置
10…カメラ
20…車速センサ
30…計算機
31…視点変換部
32…位置合わせ部
33…第1立体物検出部
34…スミア検出部
35…輝度差算出部
36…エッジ検出部
37…第2立体物検出部
38…立体物判断部
39…閾値設定部
40…明るさ検出部
a…画角
A1,A2…検出領域
CP…交点
DP…差分画素
DW,DW’…差分波形
DWt1~DW,DWm+k~DWtn…小領域
L1,L2…接地線
La,Lb…立体物が倒れ込む方向上の線
P…撮像画像
PB…鳥瞰視画像
PD…差分画像
MP…マスク画像
S…スミア
SP…スミア画像
SB…スミア鳥瞰視画像
V…自車両、他車両

Claims (9)

  1.  所定領域を撮像する撮像手段と、
     前記撮像手段により得られた画像を鳥瞰視画像に視点変換する画像変換手段と、
     前記所定領域の明るさを検出する明るさ検出手段と、
     前記画像変換手段により得られた異なる時刻の鳥瞰視画像の差分画像から差分波形情報を生成し、少なくとも前記明るさ検出手段により検出された明るさが所定値以上の明るさである場合に、前記差分波形情報が第1閾値α以上であることで立体物を検出する第1立体物検出手段と、
     前記画像変換手段により得られた鳥瞰視画像からエッジ情報を検出し、少なくとも前記明るさ検出手段により検出された明るさが所定値未満の明るさである場合に、前記エッジ情報が第2閾値β以上であることで立体物を検出する第2立体物検出手段と、を備える立体物検出装置。
  2.  前記第1立体物検出手段の検出結果と前記第2立体物検出手段の検出結果とから、立体物であるか否かを最終的に判断する立体物判断手段と、
     前記明るさ検出手段により検出された明るさに応じて前記第1閾値及び前記第2閾値を設定する閾値設定手段と、を備え、
     前記立体物判断手段は、前記差分波形情報が前記第1閾値α以上であって、前記エッジ情報が前記第2閾値β以上の場合に、立体物であると判断し、
     前記閾値設定手段は、前記明るさ検出手段により検出された明るさが暗いほど、前記第1閾値αと前記第2閾値βとの比α/βを小さく設定し、前記明るさが明るいほど前記比α/βを大きく設定する請求項1に記載の立体物検出装置。
  3.  前記第1立体物検出手段は、前記画像変換手段により得られた異なる時刻の鳥瞰視画像の位置を鳥瞰視上で位置合わせし、鳥瞰視画像に視点変換した際に立体物が倒れ込む方向に沿って前記位置合わせされた鳥瞰視画像の差分画像上において所定の差分を示す画素数をカウントして度数分布化することで、一次元の差分波形情報を生成する請求項1又は2に記載の立体物検出装置。
  4.  前記第1立体物検出手段は、前記画像変換手段により得られた異なる時刻の鳥瞰視画像のそれぞれについて、鳥瞰視画像に視点変換した際に立体物が倒れ込む方向に沿う所定の差分を示す画素数をカウントして度数分布化することで、一次元の差分波形情報をそれぞれ生成し、これら差分波形情報を位置合わせし、前記位置合わせされた差分波形情報の差分から前記差分波形情報を生成する請求項1又は2に記載の立体物検出装置。
  5.  前記第1立体物検出手段は、前記撮像手段が装着された移動体の移動速度に基づいて、前記異なる時刻の鳥瞰視画像の実空間における移動距離を算出し、当該算出された移動距離だけ前記異なる時刻の鳥瞰視画像をずらして位置合わせし、前記差分波形情報を生成する請求項1~4のいずれか一項に記載の立体物検出装置。
  6.  前記第1立体物検出手段は、
     前記撮像手段が装着された移動体の移動速度に基づいて、前記異なる時刻の鳥瞰視画像の実空間における移動距離を算出し、当該算出された移動距離だけ前記異なる時刻の鳥瞰視画像をずらして位置合わせし、当該位置合わせされた鳥瞰視画像の差分画像上において、所定の差分を示す画素数をカウントして度数分布化して生成した第1差分波形情報の第1積算値を求めるとともに、
     前記異なる時刻の鳥瞰視画像の位置をずらさずにこれらの差分画像を求め、当該差分画像上において所定の差分を示す画素数をカウントして度数分布化して生成した第2差分波形情報の第2積算値を求め、
     前記第2積算値が前記第1積算値よりも大きいと判断された回数に応じた評価値が所定の評価閾値以上であるか否かによって前記立体物を検出する請求項1~4のいずれか一項に記載の立体物検出装置。
  7.  前記第2立体物検出手段は、鳥瞰視画像に視点変換した際に立体物が倒れ込む方向に沿って、前記エッジ情報を検出する請求項1~6のいずれか一項に記載の立体物検出装置。
  8.  前記明るさ検出手段は、前記撮像手段が検知する前記所定領域の光量又はこれに基づく撮像手段の制御値を検出する請求項1~7のいずれか一項に記載の立体物検出装置。
  9.  前記明るさ検出手段は、太陽の位置に基づく明るさの特性値を検出する請求項1~7のいずれか一項に記載の立体物検出装置。
PCT/JP2012/069095 2011-12-19 2012-07-27 立体物検出装置 WO2013094242A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12860558.1A EP2797320B1 (en) 2011-12-19 2012-07-27 Object detection device
US14/363,882 US9740943B2 (en) 2011-12-19 2012-07-27 Three-dimensional object detection device
CN201280063075.3A CN104012081B (zh) 2011-12-19 2012-07-27 三维物体检测装置
JP2013550148A JP5776795B2 (ja) 2011-12-19 2012-07-27 立体物検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-276683 2011-12-19
JP2011276683 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013094242A1 true WO2013094242A1 (ja) 2013-06-27

Family

ID=48668151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069095 WO2013094242A1 (ja) 2011-12-19 2012-07-27 立体物検出装置

Country Status (5)

Country Link
US (1) US9740943B2 (ja)
EP (1) EP2797320B1 (ja)
JP (1) JP5776795B2 (ja)
CN (1) CN104012081B (ja)
WO (1) WO2013094242A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3009983A1 (en) * 2014-10-13 2016-04-20 Conti Temic microelectronic GmbH Obstacle detection apparatus and method
CN115327529A (zh) * 2022-09-05 2022-11-11 中国科学技术大学 一种融合毫米波雷达和激光雷达的3d目标检测与追踪方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061123A1 (ja) * 2012-10-17 2014-04-24 富士通株式会社 画像処理装置、画像処理プログラムおよび画像処理方法
TW201441581A (zh) * 2013-04-29 2014-11-01 Hon Hai Prec Ind Co Ltd 車輛輔助系統及車輛輔助方法
JP2015170174A (ja) * 2014-03-07 2015-09-28 ソニー株式会社 情報処理装置、情報処理システム、情報処理方法及びプログラム
KR101637716B1 (ko) * 2014-11-03 2016-07-07 현대자동차주식회사 차량의 장애물 위치 인식 장치 및 방법
DE102014019420A1 (de) * 2014-12-22 2016-06-23 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Kraftfahrzeugscheinwerfersystem, Kraftfahrzeug, Verfahren zum Betrieb eines Kraftfahrzeugscheinwerfersystems sowie Computerprogrammprodukt
FR3047932B1 (fr) * 2016-02-19 2018-03-16 Peugeot Citroen Automobiles Sa Dispositif et procede d'estimation du niveau d'attention d'un conducteur d'un vehicule
DE102016109027A1 (de) * 2016-05-17 2017-11-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Lageüberprüfung charakteristischer Punkte in Lichtverteilungen
JP6782433B2 (ja) * 2017-03-22 2020-11-11 パナソニックIpマネジメント株式会社 画像認識装置
CN110793564A (zh) * 2018-08-02 2020-02-14 昆山博威泰克电子科技有限公司 视觉检测设备和视觉检测方法
WO2020170835A1 (ja) * 2019-02-18 2020-08-27 ソニー株式会社 情報処理装置、情報処理方法及び情報処理プログラム
JP7327992B2 (ja) * 2019-05-10 2023-08-16 フォルシアクラリオン・エレクトロニクス株式会社 立体物検出装置、及び立体物検出方法
CN111709923B (zh) * 2020-06-10 2023-08-04 中国第一汽车股份有限公司 一种三维物体检测方法、装置、计算机设备和存储介质
EP3968274A1 (en) * 2020-09-14 2022-03-16 Tata Consultancy Services Limited Method and system for asset inspection using unmanned aerial vehicles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219063A (ja) 2007-02-28 2008-09-18 Sanyo Electric Co Ltd 車両周辺監視装置及び方法
JP2008229063A (ja) 2007-03-20 2008-10-02 Daiichi Shokai Co Ltd 遊技機
JP2009265783A (ja) * 2008-04-23 2009-11-12 Sanyo Electric Co Ltd 運転支援システム及び車両
JP2010226449A (ja) * 2009-03-24 2010-10-07 Aisin Seiki Co Ltd 障害物検出装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866450B1 (ko) * 2001-10-15 2008-10-31 파나소닉 주식회사 차량 주위 감시 장치 및 그 조정 방법
JP2006339960A (ja) * 2005-06-01 2006-12-14 Nissan Motor Co Ltd 物体検出装置、および物体検出方法
JP2009129001A (ja) * 2007-11-20 2009-06-11 Sanyo Electric Co Ltd 運転支援システム、車両、立体物領域推定方法
JP5556077B2 (ja) * 2009-07-28 2014-07-23 日産自動車株式会社 走行支援装置
JP4970516B2 (ja) * 2009-09-30 2012-07-11 日立オートモティブシステムズ株式会社 周囲確認支援装置
JP5251927B2 (ja) * 2010-06-21 2013-07-31 日産自動車株式会社 移動距離検出装置及び移動距離検出方法
JP5809785B2 (ja) * 2010-07-30 2015-11-11 日立オートモティブシステムズ株式会社 車両用外界認識装置およびそれを用いた配光制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219063A (ja) 2007-02-28 2008-09-18 Sanyo Electric Co Ltd 車両周辺監視装置及び方法
JP2008229063A (ja) 2007-03-20 2008-10-02 Daiichi Shokai Co Ltd 遊技機
JP2009265783A (ja) * 2008-04-23 2009-11-12 Sanyo Electric Co Ltd 運転支援システム及び車両
JP2010226449A (ja) * 2009-03-24 2010-10-07 Aisin Seiki Co Ltd 障害物検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2797320A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3009983A1 (en) * 2014-10-13 2016-04-20 Conti Temic microelectronic GmbH Obstacle detection apparatus and method
WO2016058893A1 (en) * 2014-10-13 2016-04-21 Conti Temic Microelectronic Gmbh Obstacle detection apparatus and method
US10417507B2 (en) 2014-10-13 2019-09-17 Conti Temic Microelectronic Gmbh Freespace detection apparatus and freespace detection method
CN115327529A (zh) * 2022-09-05 2022-11-11 中国科学技术大学 一种融合毫米波雷达和激光雷达的3d目标检测与追踪方法

Also Published As

Publication number Publication date
CN104012081B (zh) 2017-04-19
EP2797320A1 (en) 2014-10-29
EP2797320B1 (en) 2016-09-14
US9740943B2 (en) 2017-08-22
US20140368656A1 (en) 2014-12-18
EP2797320A4 (en) 2015-05-27
CN104012081A (zh) 2014-08-27
JPWO2013094242A1 (ja) 2015-04-27
JP5776795B2 (ja) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5776795B2 (ja) 立体物検出装置
JP5997276B2 (ja) 立体物検出装置及び異物検出装置
JP5804180B2 (ja) 立体物検出装置
WO2013157301A1 (ja) 立体物検出装置及び立体物検出方法
JP5874831B2 (ja) 立体物検出装置
JP5682735B2 (ja) 立体物検出装置
WO2014017600A1 (ja) 立体物検出装置および立体物検出方法
JP5743020B2 (ja) 立体物検出装置
JP5794378B2 (ja) 立体物検出装置及び立体物検出方法
JP5783319B2 (ja) 立体物検出装置及び立体物検出方法
JP5835459B2 (ja) 立体物検出装置
JP5871069B2 (ja) 立体物検出装置及び立体物検出方法
JP5794379B2 (ja) 立体物検出装置及び立体物検出方法
JP6003987B2 (ja) 立体物検出装置及び立体物検出方法
JP5768927B2 (ja) 立体物検出装置
WO2014017602A1 (ja) 立体物検出装置および立体物検出方法
JP5817913B2 (ja) 立体物検出装置及び立体物検出方法
JP5668891B2 (ja) 立体物検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550148

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14363882

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012860558

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012860558

Country of ref document: EP